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1 Overview 

In this paper, we discuss gaps in stress typology that are unexpected from the perspective of a foot-based 
theory and show that the patterns pose difficulties for a computationally implemented learning algorithm. 
The unattested patterns result from combining theoretical elements whose effects are generally well-attested, 
including iambic footing, nonfinality, word edge alignment and a foot binarity requirement. One of these 
patterns is particularly descriptively simple: stress is final in disyllables that begin with a light syllable (and 
in monosyllables), and penultimate otherwise. The fact that it, and a set of related patterns, pose a great 
difficulty to a class of learning algorithms suggests that their cross-linguistic absence may be due to learning 
factors. 

These patterns can be found amongst the 124 target stress systems constructed by Tesar and Smolensky 
(2000; henceforth TS) as a test of their approach to hidden structure learning. They do not flag the systems’ 
typological unattestedness, nor does any of the subsequent literature that uses this test set (Boersma 2003; 
Jarosz 2013; 2015; Boersma and Pater 2016). We became aware of their cross-linguistic absence when we 
found that they were part of a set of systems that our own learner failed on and looked to the theoretical-
typological literature to see if they existed.  

Our learner operates with a Maximum Entropy grammar (MaxEnt; Goldwater and Johnson 2003), and 
uses a form of Expectation Maximization to deal with hidden structure, as in Pater et al. (2012) (see Jarosz 
2006; 2013; 2015 for other applications of Expectation Maximization in phonology). This is the first study 
of Maximum Entropy learning of this well-studied test set; we find that the success rate is just slightly lower 
than the state-of-the-art results presented in Jarosz (2013) and Jarosz (2015).  

2 Two simple but unattested stress systems 

We begin by discussing two of the unattested stress systems from the TS test set that present difficulties 
to our learner (and related ones), so as to motivate this study from the perspective of stress typology. The 
first is the one already briefly mentioned: stress the final syllable of a bisyllabic word with a light initial 
syllable, else stress the penultimate syllable. This pattern falls out straightforwardly from standard constraints 
in Optimality Theory (OT; Prince and Smolensky 2004). The table in (1) shows a comparison of candidates 
that the analysis makes optimal, or Winners, with relevant competing candidates, or Losers (Prince 2002). 
The L in a candidate refers to a light syllable, an H to a heavy one, and a following 1 indicates that the syllable 
is stressed. Parentheses show foot boundaries. The three constraints are standard OT stress constraints 
(McCarthy and Prince 1993; Prince and Smolensky 2004) that are used by TS in their test set (see sec. 4 
below for definitions). FtBin is violated by a foot consisting only of a light syllable, Nonfin is violated by a 
word-final syllable that is footed, and AllFtR assigns a violation for every syllable separating each foot from 
the right edge of the word. A W beneath a constraint indicates that it prefers the Winner in that row, while an 
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Bruce Tesar for making test set available. This research was supported by NSF grants BCS-1650957 and BCS- 2140826 
to the University of Massachusetts Amherst. 
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L indicates that it prefers the Loser. 
 
(1) Winner-Loser comparisons for the first simple unattested system 
Winner ~ Loser FtBin Nonfin AllFeetR 

a. (L L1) ~ (L1)L W L W 
b. (H1)L ~ (H L1)  W L 
c. H(H1)L ~  (H1)H L     W 
 

A type of word that gets final stress is shown in (1a.). An unviolated Iambic constraint (not shown here) 
limits feet to those with stress on the rightmost syllable. The Loser’s initial stress thus requires a violation of 
FtBin, which therefore prefers the Winner with a binary foot. The Winner’s satisfaction of FtBin comes at 
the cost of a violation of Nonfin, which prefers the Loser. When the initial syllable is heavy, as in (1b.), it 
can be stressed without violating FtBin, and initial stress is preferred over final stress by Nonfin. AllFeetR is 
violated by the Winner in (1b), but serves to select the Winner in (1c), where Nonfin is not at issue. With the 
constraints in the order shown (ranked or weighted), the Winners are correctly optimal.  

We have been unable to find an example of a language with this pattern of stress in the typological 
literature that we have surveyed, and no phonologists that we have asked about it could think of one. The 
only prior discussion of a similar typological gap that we have found is that of Kager (2005, 24), who notes 
that a pattern in which only disyllables have final stress and all other word types have penultimate is produced 
by a standard set of Gradient Alignment constraints (McCarthy and Prince 1993), but not by Rhythmic 
Licensing Theory (Kager 2001), which is a grid-based theory of stress placement. He classifies it as 
unattested. Kager’s typological investigation is limited to quantity insensitive patterns, so the exact pattern 
here is not considered.  

From the perspective of a foot-based theory, it is hard to imagine what the explanation of this gap would 
be. Each of the constraints producing the pattern has well-attested effects elsewhere, and this pattern of 
interaction where a lone light syllable is footed with an adjacent one is the iambic version of the analysis that 
Prince and Smolensky (2004) provide for Latin. It’s perhaps worth noting that this suspension of nonfinality 
in small words is not particular to OT: parametric theories with extrametricality also invoke mechanisms to 
accomplish it (e.g. Hayes 1995). 

This pattern has been previously discussed in the learning literature. Jarosz (2013; fn. 10) notes that none 
of the OT learners she tested on it using the TS candidate and constraint sets found a correct analysis, and 
speculates that source of the difficulty is that “learners can be led astray by an overwhelming amount of 
evidence consistent with a preferred (but incorrect) analysis”. A trochaic analysis works for all word types 
except the light-initial disyllables (these cannot be parsed with final stress without violating the TS version 
of the Trochee constraint, FootNonfin). The failed learners wound up with a trochaic analysis in Jarosz’s 
study, as well as in our own learning simulations. 

Before turning to our own learning results, we’ll present another example of a pattern that shares all of 
these properties: (relatively) simple descriptively, apparently unattested, iambic under a foot-based approach 
but with most of the data consistent with a trochaic analysis, and as we’ll show below, hard to learn. In this 
one, main stress is always on the penultimate syllable. Secondary stress appears on the initial syllable in 
words up to four syllables in length, and shifts to the peninitial syllable in longer words. The foot parsings 
underlying this pattern are shown in (2); a 2 following a syllable indicates secondary stress while a 1 indicates 
primary. Fixed penultimate primary stress comes from having an iambic foot as close to the right edge as 
possible, while leaving the final syllable unparsed. Secondary stress appears on the initial syllable when the 
binary primary stress foot leaves only one syllable for the initial foot (2b.). It shifts to the peninitial syllable 
when there is more than one syllable to the left of the primary stress foot, as in (2c.). 
 
(2) Foot parsings for the second unattested language 
 

a. (L1) L  b. (L2) (L L1) L c. (L L2)L (L L1) L 
 

It’s again mysterious from the perspective of a foot-based theory of stress why this pattern should be 
unattested. Each of its parts are well attested: final “invisibility”, iambicity, and edge-oriented foot placement. 
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It can be produced with a standard OT constraint set, including the one TS use, and could also be 
straightforwardly generated by a parametric theory. Kager (2005) classifies the pattern of penultimate main 
stress and second syllable secondary as unattested, and points out that it too is generated by Gradient 
Alignment constraints, but not by Rhythmic Licensing. One can well imagine how it could be hard to learn, 
given that it has the same property that Jarosz (2013) identified for the previous pattern: much of the data is 
consistent with a trochaic analysis. Only words six syllables or longer cannot be parsed with trochaic feet, 
and when our learner fails, it winds up with a trochaic analysis.   

3 Hidden structure learning with MaxEnt grammar 

In the TS learning problems, prosodic structure is hidden in the sense that the target learning data consist 
only of strings of heavy and light syllables with stress indicated. A stress pattern for a given type of word 
will usually be consistent with multiple prosodifications. The learner is supplied with fully prosodified 
candidates and their constraint violations, and an indication of which candidates are consistent with each 
learning datum (e.g. that both candidates (L L1)L and L(L1 L) are consistent with the L L1 L learning datum). 
The goal of learning is to find a ranking of the constraints that will make one of the consistent candidates 
optimal for every learning datum.  

TS propose that the learner parses the learning datum using its current grammar, with the resultant full 
structure taken as the basis for updating the constraint ranking (Robust Interpretive Parsing; see Jarosz 2013 
for alternatives to this proposal). In our MaxEnt approach, first explored in Pater et al. (2012), we use the 
current probabilities of the consistent candidates to create a violation vector for the update of the constraint 
weights. The assignment of candidate probabilities by a MaxEnt grammar, and the creation of the violation 
vector for a learning datum are illustrated in (3). The constraint names are from TS; definitions appear in 
section 4 below. Constraint violations are shown as negative integers, and the current constraint weights are 
shown underneath each constraint. The Harmony is the weighted sum of constraint violations, as in Harmonic 
Grammar (Smolensky and Legendre 2006). In MaxEnt, the probability of a candidate is proportional to the 
exponential of its harmony; the probability of each of the four candidates is shown in the rightmost column. 
The probabilities in parentheses for the last two candidates are normalized across just those candidates, rather 
than the whole candidate set.  

The violation vector of the learning datum shown in the bottom row is the probability-weighted sum of 
violations of the violation vectors of the consistent candidates, that is, of candidates (3c.) and (3d.), using the 
probabilities normalized over those candidates. The greater penalty assigned by Nonfin and Iambic reflects 
the greater probability of candidate (3c.), which violates those constraints. Since the violation vector is the 
representation, we can say that the representation assigned to the learning datum is a blend of the 
representations of the consistent prosodifications, with the strength of each reflecting its probability. 

 
(3) Violation vector for learning datum L L1 L based on probabilities of consistent prosodifications 
 AllFeetR 

3 
Nonfin 
1 

Iambic 
1 

FootNonfin 
1 

 
Harmony 

 
Probability 

a. L(L L1)  –1  –1 –2 0.44 
b. (L1 L)L –1  –1  –4 0.06 
c. L(L1 L)  –1 –1  –2 0.44 (0.88) 
d. (L L1)L –1   –1 –4 0.06 (0.12) 

L L1 L –0.12 –0.88 –0.88 –0.12   
 

The learning objective is to maximize the likelihood of the learning data, or equivalently, to minimize 
the difference between the probabilities assigned by the grammar and the probabilities in the learning data. 
To calculate the probability of a learning datum, we sum the probabilities of the consistent candidates. With 
these constraint weights, the learning datum L L1 L has probability 0.50. Its probability will be maximized 
as that sum approaches 1, which would happen for example as we raised the weights of AllFeetR and 
FootNonfin relative to the other constraints, making L(L1 L) more and more probable since it violates neither 
constraint.  

If we assume that the learning data give L L1 L probability 1, the (inferred) observed data is the violation 
vector in the last row of (3). The learner’s expectation is the probability weighted sum over the whole 



Typological gaps in iambic nonfinality  

	 4 

Pater and Prickett 

candidate set, using the probabilities generated by the grammar. To create a vector for the update of the 
constraint weights we subtract the expected vector from the observed one (in OT terms, the Loser’s violations 
from the Winner’s). This calculation is shown in (4). 
 
(4) Calculation of update vector as Observed – Expected (Winner – Loser) 

 AllFeetR Nonfin Iambic FootNonfin 
Observed –0.12 –0.88 –0.88 –0.12 
Expected –0.12 –0.88 –0.50 –0.50 
Obs. – Exp. 0 0 –0.38 +0.38 
 
The update vector is added to the current constraint weights, scaled by a learning rate. This will increase the 
weight of FootNonfin and decrease the weight of Iambic, thus increasing the probability of the trochaic 
candidates. Further updates will continue to increase the probability of trochaicity, and will also increase the 
probability of final feet due to increases of the weight of AllFeetR, and decreases of Nonfin. The learner will 
therefore assign more and more probability to L(L1 L), getting arbitrarily close to 1 with an increasing 
number of updates (p = 1 is impossible since there will always be some probability assigned to the other 
candidates). It is important to note that even though it is successful here, this learner, like other hidden 
structure learners, is not guaranteed to converge on a correct grammar. For a simple example of a local 
optimum using these constraints that will trap this learner see Boersma and Pater (2016). 

We have just described the Gradient Descent algorithm with a form of Expectation Maximization to deal 
with hidden structure, using a formulation from Staubs and Pater (2013) that emphasizes its relationship to 
other learning models that have been used in the phonological literature. Run on-line, where each learning 
update is for a single tableau sampled from the learning data, it would be very similar to using a MaxEnt 
grammar in Boersma and Pater’s (2016) hidden structure learning set-up, which combines TS’s Robust 
Interpretive Parsing with the HG-GLA, whose update rule is equivalent to the one above. The only difference 
would be that we use probability weighted summation over consistent candidates rather than sampling from 
the distribution over them. A batch approach also eliminates on-line sampling from the set of tableaux; each 
learning update is over a probability weighted sum of the whole dataset rather than over a single tableau (see 
further Staubs and Pater 2013). In fully batch learning that eliminates these two kinds of sampling, which we 
use here, the outcome for a given set of initial weights is deterministic, which is convenient for learning 
experiments since it eliminates the need to average over multiple runs.  

Given the objective function (maximizing likelihood or minimizing error), there are various possible 
choices for an algorithm to find weights that optimize it – Gradient Descent is just one. We follow Pater et 
al. (2012) in choosing L-BFGS-B (Byrd et al. 1995), which has the advantage over other optimization 
algorithms of allowing a minimum weight of zero to be imposed (negative weights make constraints have 
the opposite of their intended effect). Because it is significantly more complex than Gradient Descent, we 
refer the interested reader to Byrd et al. (1995) for a description, and note just that the approach to hidden 
structure and to calculating the observed and expected probabilities are the ones explained here.  

4  Learning experiments 

The TS test set consists of 124 languages that can be generated by a ranking of the 12 constraints in (5).  
 

(5) Constraints from the TS Test Set (constraint definitions from Jarosz, 2013) 
1. FtBin: Each foot must be either bimoraic or disyllabic.  
2. Parse: Each syllable must be footed.  
3. Iambic: The final syllable of a foot must be the head.  
4. FootNonfin: A head syllable must not be final in its foot.  
5. Nonfin: The final syllable of a word must not be footed.  
6. WSP: Each heavy syllable must be stressed.  
7. WordFootR: Align the right edge of the word with a foot.  
8. WordFootL: Align the left edge of the word with a foot.  
9. MainR: Align the head foot with the right edge of the word.  
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10. MainL: Align the head foot with the left edge of the word.  
11. AllFeetR: Align each foot with the right edge of the word. 
12. AllFeetL: Align each foot with left edge of the word.   
 

There are 62 tableaux, one for every combination of light and heavy syllables for words two syllables through 
five syllables in length, and one each for six and seven syllable strings of light syllables. Candidates are all 
the possible footings of those strings into maximally binary feet, with one of the feet being the primary stress. 
The learning datum for each tableau is a stress pattern over the string of light and heavy syllables, that is, an 
indication of the correct placement for the primary stress and any secondary stresses. 

For each of the 124 languages we ran our learner1 with all weights starting at 1, and also 10 times with 
each weight randomly sampled from a uniform distribution from 0 to 10. We applied two success criteria, 
which turned out to be equivalent in that they agreed on whether each run was successful (see Pater 2014 on 
success criteria for this type of learning problem). In one, a learning run was successful if in every tableau 
the candidate with the highest probability was consistent with the learning datum. In the other, a learning run 
was successful if the summed probability of the consistent candidates was > 0.90. When the learner is 
initialized with constraint weights set to 1, 115/124 of the languages are learned successfully (93%). When 
the initial weights were randomly sampled, the learner was successful 91% of the time across 10 runs of each 
of the languages. The randomly initialized learner was successful in at least one of the ten runs for 121/124 
(98%) of the languages. Two of the languages that were never successfully learned with random initialization 
were learned successfully with initialization at 1, leaving just one language that our learner never successfully 
learned (labeled language 79 in the test set).  

We also ran learning experiments using the same setup as in Boersma and Pater (2016), using a Praat 
script and input files supplied by Paul Boersma. The learners in this case are on-line, and always start with 
random rankings or weight initializations; see Boersma and Pater (2016) for further details. We replicated 
the Stochastic OT and Noisy HG experiments from that paper, and also ran new experiments with a MaxEnt 
grammar model, and Noisy MaxEnt, which adds to MaxEnt the evaluation noise of Stochastic OT and Noisy 
HG. We ran each learner 10 times with random initializations. The success rates calculated as an overall 
average over runs, and in terms of whether each language was learned successfully at least once, are shown 
in (6), alongside the success rates for our batch MaxEnt learner. Our results are better than any of these on-
line learners, and just slightly worse than Jarosz’s (2013) best results of a 95% overall average with an on-
line OT and HG learners using an alternative parsing strategy to that of TS and Boersma and Pater (2016), 
and Jarosz’s (2015) 96% overall average using her Expectation Driven Learner with a pairwise ranking 
grammar. Language 79 was also never successfully learned by any of the on-line learners we ran.  

 
(6)  Overall success rates for batch MaxEnt and on-line learners 
 Batch MaxEnt 

(init 1) 
Batch MaxEnt 
(random init) 

On-line 
MaxEnt 

Noisy 
MaxEnt 

Stochastic 
OT 

Noisy 
HG 

Average  93% 91% 83% 90% 60% 89% 
At least one 93% 98% 92% 94% 70% 90% 
 

Using the results of our batch learner, we identified 11 languages as “Hard”: the nine languages that 
initialization at 1 failed on, and two more that random initialization never succeeded on. Of those 11 
languages, all of which seem unattested, 8 are cases in which a correct analysis must use iambic feet with 
nonfinality to place primary stress on the penultimate syllable. The other 3 languages are ones that have 
complex patterns of quantity sensitive stress placement in which a correct analysis uses a mix of trochaic and 
iambic feet. Language 79, the hardest of the languages, is in this second group. We were able, with some 
effort, to construct an analysis by hand for language 79, but it remains unclear what distinguishes it and the 
other two languages in this group from some other languages in the TS test set that our learners find relatively 
easy. We therefore put these aside and focus on the iambic nonfinality languages. 

	
1 A Python implementation of our learner, with input files for the TS languages, and output files for the runs reported 
here, is available at https://github.com/blprickett/Hidden-Structure-MaxEnt.	
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6 Successful and failed analyses of iambic nonfinality 

The first language that we discussed in section 2 is language 52 of the TS test set. The version of the test 
set we used (from Bruce Tesar via Paul Boersma) does not come with correct rankings or descriptions of the 
languages, so the descriptions and analyses presented here are our own. We start with a set of weights that 
we found by hand that yields a correct analysis, that is, one in which a candidate that is consistent with the 
target learning datum has the highest probability (=highest Harmony) for all of the tableaux. The constraints 
with non-zero weights are shown in (7), alongside the parse of the bisyllabic word types and one trisyllable. 
This analysis adds Parse and Iambic to the constraint set and ordering discussed in section 2. Iambic is 
unviolated in this analysis and could also have an arbitrarily higher weight; Parse is violated in order to satisfy 
Nonfin and must therefore have a lower weight than that constraint. The analysis will fail if either of these 
constraints has zero weight (e.g. by failing to choose iambs over trochees). 
 
(7) Weights and parses for correct analysis of language 52 found by hand 
 
FtBin   15   (L L1) 
Nonfin   10   (L H1) 
AllFeetR  5   (H1) L 
Parse   1   (H1) H 
Iambic   1   (L L1) L 

 
Our learner, with a random initialization, found the weights in (8), rounded to one decimal point, which yield 
the same parses as shown in (7). In this analysis, Nonfin has the highest weight, and the fact that (L L1) and 
(L H1) have higher probability than (L1)L and (L1)H respectively comes from a gang effect. FtBin, AllFeetR, 
MainR, WordFootR and Parse all prefer final stress for both L L and L H, as does WSP for L H, and their 
summed weight is greater than that of Nonfin. 

 
(8) Correct weights for language 52 found with a batch MaxEnt learner (random init) 
Nonfin   29.3 
FtBin   17.3 
Iambic   16.1 
AllFeetR  11.5 
MainR   5.1 
AllFeetL  3.4 
WordFootR  2.6 
FootNonfin  2.2 
Parse   1.3 
MainL   0.9 
WSP   0.8 
 
Random initialization led to successful learning only one out of ten tries for this language, and initialization 
at 1 also failed, as did every run of the Praat on-line learners. The final weights from initialization at 1 are 
shown in (9), along with the parses to which they assign highest probability for the five word types also 
shown in (7). The asterisked word types have stress in the wrong place relative to the learning data. This is a 
trochaic analysis, with FootNonfin, the TS trochee constraint, having higher weight than Iambic, and 
constraints wanting a foot at the right edge having higher weight than Nonfin, which had zero weight. 
 
(9) Incorrect weights for language 52 found with a batch MaxEnt learner (init 1) 
AllFeetR  8.5  *(L1 L) 
WordFootR  6.3  *(L1 H) 
FootNonfin  5.6  (H1 L) 
MainR   4.4  (H1 H) 
AllFeetL  2.2  L (L 1L) 
Iambic   1.9 
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MainL   1.8 
WSP   1.2 
Parse   1.1 
 
As Jarosz (2013) points out, the trochaic analysis fails on only 2 of the 62 tableaux. For the learners to be 
winding up so often in this local optimum, there must be something that prefers the trochaic analysis of 
penultimate stress over the iambic one. One likely factor is the greater depth of constraint ordering in the 
iambic analysis, which requires an active AllFeetR constraint that is itself overridden by Nonfin. The 
placement of the foot in the trochaic analysis is supported by several constraints: AllFeetR, WordFootR, and 
MainR, all of which have relatively high weight in (9). In MaxEnt, the iambic analysis requires AllFeetR to 
have sufficient weight on its own to rule out feet further to the left, and Nonfin must have sufficiently higher 
weight than AllFeetR to keep the foot off the final syllable. The trochaic analysis allows a group of lower 
weighted constraints to jointly place the foot in final position. This seems likely to structure the learning 
space in such a way that it is easier to wind up with the trochaic analysis, and harder to abandon it, though 
this remains somewhat speculative. 
 The second language in section 2 is language 121 in the TS test set. One of the randomly initialized batch 
MaxEnt learners found the correct iambic analysis in (10). Nonfin has the highest weight and is unviolated 
in the highest probability candidates, and Iambic has higher weight than FootNonfin (not shown due to its 
zero weight). This language differs from language 52 in having an initial secondary stress foot, which 
emerges because the constraints that prefer it, Parse and WordFootL, have higher weight than AllFeetR, 
which assigns violations to feet not aligned with the right edge.  
 
(10) Correct weights for language 121 found with a batch MaxEnt learner (random init) 
Nonfinal   42.6  (L1) L 
MainR   19.9  (L2) (L L1) L 
Iambic   13.5  (L L2) (L L1) L 
AllFeetL  12.8  (L L2)L (L L1) L 
Parse   10.4   
WordFootL  8.0 
AllFeetR  2.0 
MainL   0.7 
FtBin   0.5 
 
Intialization at 1 failed to yield a correct analysis, as did 8/10 of the random initializations with the batch 
MaxEnt learner. The on-line Praat learners were relatively successful on this language, with the exception of 
the Stochastic OT learner, which always failed. The failed trochaic analysis produced by the final weights of 
the batch MaxEnt learner with initialization at 1 is shown in (11). FootNonfin chooses trochaic bisyllabic 
feet, and the right oriented foot placement constraints places the main stressed foot at the right edge. The 
secondary stress foot is also aligned to the right, which works for all word types except the 6 and 7 syllable 
words, of which there are only two in the test set. The lack of an initial foot in the six syllable word is due to 
the activity of AllFeetR, which would assign a violation score of –4 to the initial foot, resulting in a penalty 
of 18 that exceeds the gain on Parse of 17 (2*8.5) that the foot would provide (see Potts et al. 2010 on OT/HG 
differences with Alignment constraints). If a trochaic foot were there, the result would still be incorrect, since 
the first and third syllables would be stressed, rather than the second. 
 
(11) Incorrect weights for language 121 found with a batch MaxEnt learner (init 1) 
FootNonfin  26.8  (L1 L) 
MainR   10.6  (L2 L) (L1 L) 
Parse   8.5   L (L2 L) (L1 L) 
AllFeetR  4.5   *L L (L2 L) (L1 L) 
WordFootR  2.9 
FtBin   2.2 
AllFeetL  2.0 
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 The other languages with iambic nonfinality amongst our “hard” languages are languages 41, 44, 45, 56 
and 119 in the test set. These have more data that are inconsistent with a trochaic analysis, and were generally 
somewhat more frequently successfully learned in our experiments. The proportions of successful runs over 
all 11 batch MaxEnt runs per language (initialization at 1, and 10 random), and over all 40 runs of on-line 
learners (10 each for the four grammar models) are provided in (12). The last two rows provide the average 
for these 7 languages, and for the 124 in the test set. Recall that a failure on initialization at 1 was sufficient 
for our “hard” classification, so it would be possible for a hard language to have a success rate as high as the 
average over all 124 (i.e. 10/11 = 0.91). 
 
(12) Language Batch MaxEnt On-line 

41   0.73    0.80 
44   0.36    0.30 
45   0.45    0.68 
52   0.09    0.00 
56   0.45    0.35 
119   0.18    0.00 
121   0.18    0.70 
All 7   0.35    0.40 
All 124  0.90    0.81 

 
We note that language 119 was no easier than 121 for the batch MaxEnt learner, and was in fact harder for 
the on-line learners we explored, even though less of the data for 119 is consistent with a trochaic analysis. 
Language 119 differs from 121 only in the four syllable words, which have stress on the second and third 
syllables, rather than the first and third. As shown in (11), the four syllable pattern in language 119 can be 
parsed trochaically; the second + third pattern in language 121 cannot. We do not know why language 119 
was not easier than 121. All the other languages in which more data was inconsistent with trochaic analysis 
(41, 44, 45, 56) were more successfully learned than the two languages that we have discussed in detail in 
which only two of the 62 learning data were inconsistent with trochaicity (51 and 121).  

7 Conclusions and future directions 

Boersma (2003) first brought up the possibility that the failure of learners on parts of the TS test set 
might help to explain typological gaps, if those languages were unattested. This possibility has remained 
unexplored until now, but the initial results presented in this paper seem promising. We implemented a batch 
MaxEnt learner that uses a form of Expectation Maximization to deal with hidden structure, and examined 
its performance on the TS test set. We found that the 11 languages that we classified as “hard” for that learner 
do seem to be unattested, and that 8 of them share a common property: penultimate stress assigned by an 
iambic foot that is kept off the final syllable by Nonfinality. Learners of these 8 languages often fall into local 
optima in which they have a trochaic analysis of penultimate stress, and when this analysis fails only for a 
small portion of the dataset, the probability of finding a correct analysis becomes quite low. 

We provided reasons that the trochaic analysis might be preferred for penultimate stress, but did not 
provide any detailed analysis of the structure of the learning space and of the local optima within it. We have 
done some initial exploration of smaller learning problems in which we have been able to study the interacting 
effects of the weight initialization, the distribution over the learning data, and the structure of the constraint 
set. Our hope is that this work will be able to scale up to larger systems like the ones we studied here.  

This research extends earlier demonstrations that learning might shape stress typology (Bane and Riggle 
2008; Heinz 2009; Staubs 2014; Stanton 2016) to cases of ambiguity caused by hidden structure. Further 
work is needed to show that learning will in fact have the desired effect on typology (e.g. through agent-
based simulations – see Staubs 2014), and it also remains possible that the true source of the gaps is in the 
grammatical theory: the systems are not produced by metrical theories that place stress without reference to 
feet (Prince 1983; Bailey 1995; Gordon 2002; Kager 2005).  

As well as further exploring the tightening of metrical typology through the use of learning, there is a 
great deal of work to be done on broadening the empirical coverage of combined learning-grammar systems. 
As a first step in studying a broader typology, we created a test set using the TS constraints and candidate 
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sets for the patterns in the StressTyp2 database (Goedemans, Heinz, and Hulst 2015) for which Finite State 
Automata are supplied, which we used to generate the target stress patterns for each language. We eliminated 
languages that used a three-way weight distinction, which cannot be captured by the TS constraint set. Our 
learner, with an initialization of 1, succeeded on just 45% of them. Inspection of the languages on which the 
learner fails suggests that many – if not all – are in fact patterns that cannot be expressed with the TS 
constraints. One example is the well-known Latin main stress pattern: stress the penult if heavy, else the 
antepenult. Because TS use a version of the Trochee constraint that is violated by a monosyllabic foot 
(FootNonfin), Prince and Smolensky’s (2004) analysis of this pattern is unavailable. When we add a more 
standard Trochee constraint that penalizes only finally stressed disyllables, our learner does succeed on the 
pattern. The questions of what is needed for a constraint set to generate the full typology represented in 
StressTyp2 and in other sources, and whether a learner equipped with such a constraint set would succeed on 
all the patterns, are topics that we hope to address in further work.  
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