Downloaded via INDIANA UNIV BLOOMINGTON on April 24, 2023 at 21:13:40 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

‘ I ‘ Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Probing Accuracy-Speedup Tradeoff in Machine Learning
Surrogates for Molecular Dynamics Simulations

Fanbo Sun, JCS Kadupitiya, and Vikram Jadhao*

Cite This: https://doi.org/10.1021/acs.jctc.2c01282

I: I Read Online

ACCESS |

[l Metrics & More

| Article Recommendations

Molecular

Dynamics
Simulations \

Output

Soft-Matter Properties

:l Surrogate Accuracy & Speedup E

d?x

Input / —

dt?
932%
°e°o
22

1% —~
Data Reduction

i
.f 0

V/’:\
w “"’

SHO Surrogates T m
A

Machine
'A\ Learning

ABSTRACT: The performance promise of machine learning surrogates of molecular dynamics simulations of soft materials is
significant but generally comes at the cost of acquiring large training datasets to learn the complex relationships between input soft
material attributes and output properties. Under the constraint of limited high-performance computing resources, optimizing the size
of the training datasets becomes paramount. Using an artificial neural network based surrogate for molecular dynamics simulations of
confined electrolytes, we explore the tradeoff between surrogate accuracy and computational gains. Accuracy is assessed by
computing the root-mean-square errors between the surrogate predictions and the ground truth results obtained via molecular
dynamics simulations. The computational performance is judged by evaluating the speedup which incorporates the training dataset
creation time. Improvement in accuracy occurs with a loss of speedup, which scales as the inverse of the training dataset size. The
link between surrogate generalizability and the accuracy-speedup tradeoff is assessed by examining the errors incurred in surrogate
predictions on unseen, interpolated input variables and developing a net speedup metric to capture the associated gains.

. INTRODUCTION

Molecular dynamics (MD) simulations are powerful computa-
tional methods for investigating the microscopic origins of a
wide variety of material and chemical phenomena. These
simulations furnish molecular-level mechanisms that drive
structure and property control in materials while isolating
interesting regions of the material design space to aid
experimental exploration and discovery. Recent years have
seen a surge in the integration of machine learning (ML)
methods with MD simulations to reduce computational costs,
enhance predictive power, and expedite the analysis of high-
dimensional output data.'”"* A number of studies have
explored the use of ML to develop surrogates for MD
simulations.”™'>'>'® The key idea behind a surrogate is to
collect data from conventional MD simulations and train an
ML model that approximates the relationships between the
input parameters and the simulation outcomes.”™'* Thus, the
surrogate bypasses part or all of the explicit evolution of the
simulated components. The associated performance enhance-
ment enables the surrogate to serve as a fast exploratory tool
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that complements the MD simulation in traversing the input
design space and to act as a dynamic alternative to simulation
caching for retrieval of reliable estimates of simulation outputs.

Neural networks, including deep neural networks (DNNs),
have been proven to be particularly effective in the design of
surrogates. Examples include DNNs that predict adsorption
equilibria for different thermodynamic conditions,"' DNN-
based denoising autoencoders that predict the temporally
averaged radial distribution function of Lennard-Jones fluids
from a single snapshot of fluid particles generated in MD
simulations,” Bayesian neural networks that predict the
dissociation time scale of compounds bypassing the explicit
time evolution of the particle trajectories in ab initio MD
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Figure 1. Overview of the approach to design, train, and use an ML surrogate for MD simulation of a soft-matter system.

simulations,'” and autoencoders that generate new protein-like
structures and act as a proxy for MD simulations to mine the
protein conformational space.'”
In our previous work, >'*'® we introduced ML surrogates
for the MD simulations of soft materials. Our goal was to
demonstrate that artificial neural network (ANN) based
regression models can accurately predict the relationships
between the input parameters characterizing the soft-matter
system and the simulation outcomes describing the system’s
equilibrium properties. The approach was illustrated with the
design of an ANN-based surrogate for coarse-grained MD
simulations of confined electrolytes. These simulations
establish the links between the distributions of electrolyte
ions and the ion attributes for diverse solution conditions. The
ionic distributions shed light on the origins of ion-specific
effects in confinement (e.g, ion adsorption at interfaces),
which can be meaningful in the interpretation of effective
interactions between nanoparticles, biomolecules, and mem-
branes and for the evaluation of interfacial activity in
separation technologies.'” These distributions also provide a
reliable guide to the regions of the material design space where
significant changes in the structural organization of ions are
expected, which can aid in the experimental exploration and
design of electrolyte-based materials.”*>° The ML surrogate
was trained to predict the relationship between the output
distribution of positive ions and the input variables character-
izing the electrolyte solution comprising positive and negative
ions of the same size confined by uncharged surfaces. The
predicted ionic density lproﬁles were in excellent agreement
with MD simulations."'® Additionally, the time required for
predictions using the surrogate was significantly smaller (by a
factor of 10,000) compared to the runtime of the
corresponding MD simulation.

In general, once a surrogate is trained, we can obtain outputs
through ML inference in seconds instead of running an MD
simulation, which usually takes much longer (e.g., hours). The
high accuracy and small inference time allude to the significant
scientific and computational performance promise of surro-
gates for MD simulations of soft materials. However, the
performance enhancement comes at the cost of generating
large training datasets, which is a time-consuming process that
requires running many MD simulations on high-performance
computing (HPC) clusters. Designing ML surrogates that
reach an acceptable level of scientific performance (accuracy)
with large gains in the computational performance requires an
understanding of the link between the accuracy-speedup

tradeoff and the size of the training datasets. Sample size
determination for training and testing sets has long been
recognized as a critical task in traditional ML applications such
as the design of high-performance pattern recognition
systems,”® which consider the tradeoff between the degree of
precision and limitations on resources.”” Recently, the
importance of designing optimal training and validation
datasets for developing robust ML models has been recognized
in the biomedical engineering and materials science
domains.”* ™

In this paper, we study the accuracy-speedup tradeoft
associated with surrogate models using the ML surrogates for
MD simulations of confined electrolytes. Surrogates are
designed using a dataset generated by conducting simulations
of 4050 different electrolyte systems that exhibit a much
greater complexity in the relationship between the input
electrolyte attributes and the output ionic structure due to the
inclusion of ionic size asymmetry, charged surfaces, and a
broader range of concentrations than previously explored.
Surrogates are tasked to predict the density profiles of both
positive and negative ions by learning the relationship between
1004 output features characterizing the density profiles and 5
input features: confinement length, electrolyte concentration,
positive ion diameter, negative ion diameter, and surface
charge density. The scientific performance is measured by
computing the root-mean-square errors (RMSE) between the
surrogate predictions and the ground truth results obtained via
MD simulations as well as by comparing the output features
obtained via the two approaches. The computational perform-
ance is judged by evaluating the speedup which incorporates
the training dataset creation time. Two data reduction
methods: random splitting and deterministic separation, are
utilized to study the surrogate performance and general-
izability. A study of the changes in the surrogate accuracy with
the training dataset size Ny, € (150, 3550) reveals a power-
law decrease in the overall RMSE, and the onset of
convergence of the surrogate accuracy for Ny, =2 1550
samples. The speedup decreases with increasing N, scaling
as 1/Nyi,- Based on the overall and output-specific errors and
the agreement between the predicted density profiles and the
ground truth results obtained via MD simulations, an
acceptable level of accuracy under the constraint of maximizing
the speedup is reached for the training dataset containing N,
= 1550 samples. Surrogate generalizability is assessed by
examining the surrogate performance on input variable values
obtained via interpolation. The surrogate performance varies
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greatly depending on which input material attribute is hidden
and the fraction of the samples associated with the interpolated
values the surrogate sees during training. Increasing this
fraction improves the accuracy, but at the cost of reducing the
potential of computational gains. A simple metric for the net
speedup is presented to probe this accuracy-speedup tradeoff.

2. METHODS

Figure 1 shows an overview of the approach describing the
design, training, and use of a surrogate for MD simulation of a
soft-matter system. We first run MD simulations on an HPC
cluster for different model variables (input) characterizing the
soft-matter system, and save the converged simulation
outcomes (output) for training the ML surrogate, which
occurs after a set number of successful simulation runs. An
error handler aborts the MD simulation program and displays
appropriate error messages when a simulation fails due to any
predefined criteria. The inputs are also fed to the ML-based
prediction module, which is trained to learn the associated
output quantities. Once trained, the ML surrogate is ready to
be used for predicting the output properties of a soft-matter
system characterized with a given set of input material
attributes. Figure 1 highlights the use of data reduction
methods to train the surrogates.

2.1. Input Variables and Output Quantities. We
consider a monovalent electrolyte in water confined by two
planar interfaces at room temperature T = 298 K. A coarse-
grained model'”*'™** is employed to describe the electrolyte
solution. Water is modeled as an implicit solvent with a
dielectric permittivity of 80. The main simulation cell is a
rectangular box with dimensions L X L X h, where L denotes
the box edge length in the unconfined x and y directions, and h
denotes the confinement length (interfacial separation). The
box dimension L is selected on the basis of the Debye length of
the solution;"’ for electrolyte concentration ¢ > 0.5 M, L = 10
nm, and for ¢ £ 0.5 M, L = 15 nm. h ranges from 4—5 nm. The
planes at z = —h/2 and z = h/2 represent the location of the
charged interfaces (z = 0 corresponds to the midpoint between
the interfaces). Each interface is characterized with a uniform
charge density o, < 0, which is modeled by discretizing the
interface with M mesh points and assigning each mesh point
the same charge q = GSLZ/M. M=784forc>05M,and M =
1764 for ¢ < 0.5 M. The positively charged ions (cations) and
negatively charged ions (anions) associated with the
monovalent electrolyte are modeled as spheres with hydrated
sizes d, and d_ respectively. An appropriate number of
counterions, modeled as cations of the same diameter and
charge, are included in the confinement to ensure electro-
neutrality. The total number of ions within the confinement
ranges from 366 to 1228, depending on the concentration,
confinement length, and the surface charge density character-
izing the interfaces.

Electrolyte system attributes h, ¢, d,, d_, and o, are chosen as
the surrogate input variables (Table 1). c is defined as ¢ = N_/
V, where N_ is the number of anions, and V is the volume of
the simulation box. We note that not all electrolyte system
attributes that are expected to alter the output ionic structure
are considered as tunable input variables. For example, ion
valencies (set to 1, —1), temperature (298 K), and solvent
permittivity (80) are held fixed across all the simulations.

MD simulations are performed using LAMMPS® in an
NVT ensemble at T = 298 K. Ion—ion and ion-interface steric
interactions are modeled using Lennard-Jones potentials,'’ and

Table 1. Input Variables and Their Values at Which
Simulations Are Launched to Generate the Dataset

Simulated Values

4.0, 4.2, 4.4, 4.6, 4.8, 5.0
0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0

Input Variable
Confinement length & (nm)

Electrolyte concentration ¢
(M)

Cation diameter d, (nm)
Anion diameter d_ (nm)

Surface charge density o
(C/m?)

0.2, 0.3075, 0.415, 0.5225, 0.63
0.2, 0.3075, 0.415, 0.5225, 0.63
—0.01, —0.015, —0.02

all electrostatic interactions are modeled using Coulomb
potentials whose long-range is properly treated with Ewald
sums.’® Each system is simulated for 1 ns to reach equilibrium
with a time step of 1 fs. After equilibration, systems are
simulated for 9 ns and ion trajectory data are collected every
0.1 ps. Due to the planar symmetry and the homogeneously
charged interfaces, the ionic distributions vary only in the
direction perpendicular to the interfaces and are functions of a
single variable z. Trajectory data samples are used to compute
the average ionic distributions n,(z) of cations and n_(z) of
anions, which form the output quantities. Converged results
for the ionic distributions are obtained by computing the
average using the samples generated post equilibration from 3
to 10 ns. Each distribution or number density profile is
specified by computing the average ion population densities
(with error bars) at 502 locations within the confinement
region z € (—h/2, h/2). The output of the ML surrogate is
thus characterized with 1004 features.

2.2. Datasets for Surrogate Training. Table 1 shows the
region of the material design space that contributes toward the
dataset used to train and test the ML surrogate. By sweeping
over the shown discrete values of each input variable, 4, ¢, d,,
d_, and o, 4050 unique electrolyte systems are created. For
each of these systems, MD simulations are run, and the
converged distributions of cations and anions are extracted as
output. Each MD simulation is performed for ~10 ns and takes
~3.5 h using 96 cores. Generating the entire dataset took
approximately 20 days, including the queue wait times on the
Indiana University BigRed3 supercomputing cluster.

Figure 2 illustrates the two data reduction methods
employed in our investigation to prepare the training and
testing datasets: random splitting and deterministic separation.
Figure 2a illustrates the random splitting method used in
results shown in Sections 3.1 and 3.2, where the dependence of
the surrogate performance on the size of the training dataset is
investigated. First, Ny = 500 samples are randomly drawn
from the total dataset S of size N = 4050 to form an
independent test dataset S The samples in this test dataset
are hidden from the surrogate. Next, N, samples are
randomly drawn from the reduced dataset Sy of size Ny —
Nt = 3550 to form the train dataset S;,. This process is used
to create 15 training datasets with sample size N, = 150, 200,
250, 300, 350, 400, 450, 500, 550, 1050, 1550, 2050, 2550,
3050, 3550. Post-training, the surrogate is evaluated using the
N, samples in the test dataset Si..

Figure 2b shows the deterministic separation method used
in the results shown in Section 3.3, where the generalization
ability of the surrogate is assessed. First, a decision is made
about what input variable and associated values are hidden
from the training dataset. An example of such a decision is to
exclude all electrolyte systems having the concentration value ¢
= 1.0 M from the training of the surrogate. These systems form
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Figure 2. Overview of the data reduction methods used to train the
surrogate. In the random splitting method (a), a test dataset Sy is
first formed by randomly drawing samples from the total dataset S.
The train dataset S, is formed by randomly drawing samples from
the reduced dataset Sg. In the deterministic separation method (b), a
decision is first made to exclude the samples associated with
preselected input parameters to create the test dataset Sy The
remaining data forms the train dataset S, ;. If needed, A, samples
are removed from S and appended to Sy,

the test dataset S of size N such that each sample s € S,
is an input-output pair associated with a simulation of an
electrolyte at ¢ = 1.0 M. The training dataset S, is the
complement of Sy, i€, Span = {s € S: &S, In the
aforementioned example, the surrogate gets trained on input-
output pairs associated with all electrolyte systems, except
those that are characterized with ¢ = 1.0 M. Such an approach
enables the evaluation of the surrogate predictions for input
variable values not “seen” during training. In order to study the
link between the surrogate performance and the number of
samples the surrogate sees during training that have the hidden
input value, we randomly draw and remove A, samples from
the test dataset S, and append it to the training dataset S,
This enables us to systematically investigate how the

surrogate’s performance is affected by changing A,,, with
At = 0 corresponding to the case in which the surrogate
makes predictions in a complete “blind” mode (see Section 3.3
for more details).

2.3. Feature Extraction and Regression. The ML
surrogate is trained to predict the density profiles of cations
and anions. Each density profile is characterized with 502
points. For a given sequence of input parameters, the surrogate
thus makes a total of P = 1004 predictions to quantify the
output jonic distributions. Figure 3 shows a sketch of the ANN
model used in the surrogate to implement the regression and
prediction of these output quantities. The ANN architecture
has 2 hidden layers, similar to the surrogate employed in our
earlier work.'® The weights and biases in these hidden layers
are determined by the regression process following an error
backpropagation algorithm, implemented by a stochastic
gradient descent procedure. This process uses a training
dataset and an appropriate loss function for error computation
and backpropagation to update the weights and biases after
each batch of input data is regressed through the network by a
simple forward prediction. The mean square error (MSE)
between the ground truth and the surrogate predictions is
chosen as the loss function.

Training the ANN model involves an appropriate selection
of hyperparameters such as the number of first hidden layer
units 7;, the number of second hidden layer units n,, the
learning rate I, the batch size b, and the number of epochs #,. I,
acts as a step size associated with the gradient descent process
to reach the minimum of the MSE loss function. b is the
number of training samples allowed to pass through the ANN
before its weights and biases. n, controls the number of
complete passes made through the entire training dataset.

In both random splitting and deterministic separation
methods, the data in the training dataset S, are separated
further into training and validation sets using a ratio of 0.8:0.2
in order to find the optimal hyperparameters for the ANN
model. A min-max normalization filter is applied to normalize
the input data at the preprocessing stage. A separate grid

ANN based Feature Extraction and Regression
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Figure 3. Artificial neural network (ANN) based regression model used in the ML surrogate to extract features and predict output density profiles
of cations (n,) and anions (n_). The input layer, two hidden layers, and output layer are characterized with S, 256, 512, and 1004 nodes,

respectively.
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search is performed for each training dataset S, to obtain the
set of optimal hyperparameters by examining the validation
loss. The grid search is carried out for a total of n, = 20000
epochs for the following hyperparameters: n, € {128, 256,
512}, n, = {256, 512}, I, € {0.0001, 0.0002}, b € {32, 64}.
Regardless of the training dataset size, the optimal values are
found to be n; = 256, n, = 512, and b = 32. For most cases, the
optimal value for the learning rate is [, = 0.0001. A few training
datasets do yield a marginally lower value of the validation loss
for I, = 0.0002, however, the ANN performance on the test
dataset is unaffected when I, = 0.0001 value is used.

The ReLU activation function is applied to the output of the
input and the second hidden layer, while the sigmoid activation
function is applied to the output of the first hidden layer. The
Adam optimizer is used to optimize the error backpropagation
process. During the forward propagation in the training phase,
the dropout rate in the dropout layers between the input and
the first hidden layer, and between the first and second hidden
layers is set to d, = 0.1 to prevent overfitting. The weights in
each hidden layer are initialized using a Glorot normal
distribution characterized by a mean of 0 and a variance of 2/
(h + h'), which changes according to the size of the input (h)
and output (h') associated with the hidden layer. The ANN
model is implemented using scikit-learn and TensorFlow Keras
libraries. Scikit-learn is used for grid search and feature scaling,
and Tensorflow Keras is used to build, train, and evaluate the
ANN model.

3. RESULTS AND DISCUSSION

3.1. Surrogate Performance vs Train Dataset Size. We
begin by showing the results for the surrogate model
convergence for different training dataset sizes generated via
the random splitting method depicted in Figure 2a. Recall that
in this method, an independent test dataset S of size Ny =
500 is first created by randomly drawing elements from the
total dataset S of size N = 4050. The reduced dataset Sy of size
Nigtat — Niest = 3550 is used to create training datasets S, of
different sizes Ny, = {150, 200, 250, .., 3050, 3550}. Each
element in S, is randomly drawn from Sy. For each S, the
ANN model convergence is examined by computing the
validation loss L for each epoch of training and examining the
overfitting behavior. L is computed as the average mean square
error (MSE) incurred by the model to make P = 1004
predictions describing the cation and anion density profiles
associated with the validation dataset S,; € S, of size N, =
0.2N, train®

Ny

R - u ok k2
L—szk;llyj yjl

val j=1

(1)

Here, ﬁlk represents the k™ prediction made by the surrogate to

characterize the ion number density for the electrolyte system
j, and y}’-‘ is the corresponding ground truth result.

The validation loss L decreases with increasing training
dataset size N, from 150 to 3550. For the sake of clarity,
Figure 4 shows a comparison of L for S datasets of sizes Ny, =
150, 350, 500, 1050, 3550. For N, > 300, L exhibits a
decrease with increasing number of epochs up to the highest
value of n, = 20000, yielding convergence for n, > 15000. For
Niain < 300, a small increase in L is observed within 15000 < n,
< 20000, indicating the crossover to the overfitting regime. For
example, for the dataset of size N, = 150, the crossover

pubs.acs.org/JCTC
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Figure 4. Validation loss defined in eq 1 vs number of epochs , for
training dataset size Ny, = 150 (green circles), 350 (yellow down
triangles), 500 (black cross), 1050 (red up triangles), 3550 (blue
squares). For N, = 350, 500, 1050, 3550, the validation loss
decreases with increasing n, and exhibits convergence for n, > 15000.
For Ny.,;, = 150, an increase in the validation loss is observed when n,

> 15000, signaling overfitting.

occurs near 1, = 15000, which corresponds to a validation loss
of L =9.31 X 107>, The crossover value for n, increases slightly
with increasing Ny, = 200, 250, and 300. For simplicity, we
checkpointed all models at n, = 15000 and saved the associated
weights and biases to evaluate the performance of the surrogate
on the independent test dataset. On average, changing the
number of epochs n, € (15000, 20000) had an insignificant
effect on the surrogate performance.

The scientific performance (accuracy) of the surrogate is
assessed by examining the errors incurred in the surrogate
predictions for the cation and anion density profiles associated
with the electrolyte systems in the unseen test data. The root-
mean-square error (RMSE) E, associated with the k™
prediction characterizing the density profiles is computed by
averaging over the errors incurred in making this prediction for
all the N samples in the test dataset:

1/2
1 Niegt
E, = |Ak _ k|2
k N Y =Y
test j=1 (2)

Here, ﬁjk is the k™ prediction or inference associated with the

ion number density for the input system specified by the index
j, and y;C is the corresponding ground truth. Prediction numbers
k=1,2,.., 502 correspond to the cation density profile and k
= 503, 504, ..., 1004 correspond to the anion density profile.
For a train dataset S, of size Ny, E; is evaluated using eq 2

for each of the P = 1004 surrogate predictions and an overall
RMSE E is computed:

1 P
E==)E
Pia (3)

E serves as a metric to evaluate the accuracy of the surrogate as
a function of the train dataset size. In what follows, all reported
RMSE values (e.g., By, E) are expressed in units of M.

Figure S5 shows the overall RMSE E for the 1S training
datasets described in Section 2.2. E exhibits a power-law
decrease with increasing training dataset size Ni,. A steep
drop in E from N, = 150 to 1050 is followed by a relatively

rain
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Figure S. Overall RMSE value E (in units of M) defined in eq 3
decreases as a power-law with increasing the size N, of the
surrogate training dataset. A sharp decrease is observed when the
Nipain increases from 150 to 1050. E starts to exhibit convergence for
Nirain 2 1550. The inset shows the speedup S/Syypc defined in eq S
v Ny The dotted red line represents S = Sypc. S/Sppc
decreases with increasing N, scaling as 1/N,.

milder decay as N, is increased further, and the surrogate
accuracy reaches convergence for N, = 1550 samples. In

rain ~

order to evaluate the robustness of the surrogate predictions,
we computed the error bar associated with E by employing the
random splitting method 10 times to get 10 different S,
datasets for the same N,;,. In general, the error bar is larger for
Niain < 500, indicating a low degree of robustness for the
predictions made by the surrogate trained on smaller number
of samples.

The computational performance of the surrogate is assessed
by evaluating the potential gain or speedup resulting from
surrogate use. The speedup depends on the computational
costs associated with the creation of the training dataset S
and can be expressed as

trains

Nptseq

Nptp + N_. t (4)

train”train

where N, is the number of surrogate predictions, Ny, is the

number of elements in the training dataset, t, is the time to
run the MD simulation via the sequential (serial) model, ¢, is
the time it takes for the surrogate to make a prediction for one
input, and t,;, is the average walltime associated with the MD
simulation to create one element of S . fu., is typically
similar to the average runtime of the parallel MD simulation.
Niin X tirain is the amount of time utilized to create the training
dataset. For MD simulations of confined electrolytes, t, ~ 24
h, tyin ® 3.5 h, and f, & 0.3 s. Note that in eq 4, we have
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Figure 6. Cation and anion (inset) density profiles for four representative electrolyte systems I (a), II (b), III (c), and IV (d) predicted by the
surrogate. Ground truth results (blue squares) are extracted by using MD simulations. Surrogate predictions are shown for train dataset size Ny, =
200 (yellow up triangles), 1550 (green down triangles), and 3550 (red circles). For systems I-III, the surrogate trained with Ny, = 1550 and 3550
samples produces results in good agreement with the ground truth, while surrogate predictions for Ni.;, = 200 are inferior. For system IV, all
surrogate predictions deviate from the ground truth. See the main text for the electrolyte system details.
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assumed that the training dataset generation using MD
simulations is a much more time-consuming process compared
to the surrogate training using TensorFlow, which is generally
the case.

The above formula highlights a unique feature of the ML
surrogate performance: S rises with increasing N, that is, the
speedup increases as the surrogate makes more predictions. At
first glance, this suggests a limitless computational performance
gain through the use of a surrogate. However, the predictions
are only informative if they meet an acceptable level of
scientific performance or accuracy. Considering this accuracy-
speedup tradeoff, a more practical assessment of the speedup S
is the gain achieved in making predictions with errors similar
or less than the overall RMSE value E, where the latter serves
as an acceptable accuracy level, which changes with the train
dataset size N, In general, the errors incurred in the
surrogate predictions on the train dataset are expected to be
smaller than the RMSE value E. Thus, an estimate for S is
obtained by setting N, = Niey + Niin in eq 4:

S _ Nptseq ~ S Np _ S [1 Mest)
- ~ <HPC — “HPC +
Nptp + thra.inttrain Ntrain train
)

where the second equality follows by noting t, ~ 0 < f,, and
we have introduced Sype = foq/tyain to denote the traditional

speedup obtained by parallelizing the MD simulation using
HPC resources. For the case of simulations of confined
electrolytes considered here, Sypc = 7.

Figure §S inset shows the speedup S/Sypc associated with
the same 13 training dataset sizes N, for which the error E is
shown in the outset. S scales as 1/N,,,;,, and decreases from
R4.38ypc for Ny, = 150 to &1.14Spc for N, = 3550. This
trend highlights the tradeoff between the surrogate accuracy
and the potential for speedup resulting from its application. A
gain in the accuracy with increasing train dataset size occurs at
a loss in the speedup. Note that S/Sypc > 1, as evident by all
S values above the dotted red line indicating S = Syypc. This
indicates that for all training dataset sizes, the speedup from
the use of the surrogate exceeds the enhancement resulting
from parallelization.

It is likely that the number of predictions made by a well-
trained surrogate with an acceptable level of average error, E
will exceed N + Ny, samples. For example, the speedup can
be boosted by tasking the surrogate to make predictions on the
interpolated values between the discretized input variables.
This requires an assessment of the associated errors incurred
by the surrogate that are linked to its generalizability, which we
discuss in Section 3.3.

We now compare the cation and anion number density
profiles predicted by the ML surrogate with the ground truth
results obtained using MD simulations for the unseen
electrolyte systems in the test dataset in order to obtain a
direct assessment of the prediction quality. Figure 6 shows the
results of cation (outset) and anion (inset) density predictions
for 4 representative input systems randomly selected from the
test dataset. The systems are labeled (h, ¢, d,, d_, o) using the
S input variables defined in Section 2.1. The 4 systems are
system I (4.6, 0.25, 0.5225, 0.415, —0.01), system II (4.4, 1.0,
0.3075, 0.63, —0.01), system III (4.6, 1.75, 0.3075, 0.63, —
0.01), and system IV (4, 0.1, 0.63, 0.5225, —0.01). Figure 6a—
d, respectively, show surrogate prediction results for systems I,

IL, IIL, and IV for three train dataset sizes N,
3550.

For systems I, II and III, surrogates designed using N,
1550, 3550 samples produce density profiles in good
agreement with the ground truth, while the surrogate trained
with Ny, = 200 samples generates inferior predictions. For
system IV, all three surrogates yield predictions that deviate
from the ground truth. The surrogate trained using N, = 200
samples fails completely to capture the ionic structure. An
explanation emerges by examining the input variables for the
electrolyte system IV, many of which are on the edge of the
design space used to train the surrogate (for example, h = 4.0
nm, ¢ = 0.1 M, and d, = 0.63 nm). As N,,,;, decreases, the
surrogate performance worsens because it does not “see”
enough of these edge combinations during training.

3.2. Output-Specific Surrogate Performance. The
negatively charged surfaces that tend to attract cations and
repel anions and the differences in the size of cations and
anions lead to differences in the cation and anion density
profiles, as evident in Figure 6. In addition to the overall RMSE
E, it is thus useful to examine the cation- and anion-specific
accuracy values for a more precise evaluation of the surrogate
performance. The density profiles also show that the
confinement created by the two interfaces produces distinct
ion accumulation and depletion behaviors within the interfacial
regions as compared to the bulk. Therefore, it is also useful to
assess the performance of the surrogate for different regions
within the confinement that exhibit distinct ionic structure. In
this subsection, we carry out a detailed examination of these
output-specific surrogate performance metrics.

We introduce the set K* = {1, 2, 3--502} comprising
prediction indices associated with the cation density profile
and define E = E, for k € K" as the average RMSE value E;
incurred in the k™ prediction characterizing the cation density
profile. Similarly, we introduce K~ = {503, 504---1004} which
comprises prediction indices associated with the anion density
profile, and define E; = E; for k € K™ as the average RMSE
value incurred in predictions characterizing the anion density
profiles. For both K™ and K~ sets, it is also useful to note that
the low and high index values represent the confining
interfaces and the indices outside these ranges are defined as
associated with the bulk of the confined region.

Figure 7 shows the plot of E; and E; associated with
predictions made by the surrogate trained with Ny, = 200,
1550, and 3550 samples. To facilitate the comparison of the
errors for cation and anion density predictions, we left-shift the
prediction index numbers for anions by 502, i.e., the prediction
indices k = {503, 504, .., 1004} for the anion density are
mapped to k = {1, 2, .., 502}. In general, RMSE values for both
cation and anion density predictions are higher near the
interface compared with the bulk. Very large errors are
observed for the case of N,,,;, = 200 near the interface. Both Ej
and E; decrease as N, is increased.

To understand the performance of the surrogate on different
regions of the confinement that are associated with distinct
ionic structures, we evaluate the contributions to the RMSE
emerging from predictions near the interfaces and the
predictions within the bulk. The interface set I is defined as
a set of 100 predictions made by the surrogate near the 2
interfaces. For cations, I = {1, 2, 3---50, 452, 453---502}, and
the corresponding bulk set B = {k € K*: k&I}; for anions I =
{503, 504-+-553, 954, 955---1004}, and the corresponding bulk
set B = {k € K: k&I}. This enables us to define RMSE values

= 200, 1550,
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Figure 7. RMSE values (in units of M) associated with surrogate
predictions for the cation density profile (E;) and anion density
profile (E;) vs prediction index k. Green circles and crosses, red up
and down triangles, and blue squares and diamonds represent E and
E; for training dataset size Ny, = 200, 1550, 3550 respectively. Large
errors near the left and right edges of the plot correspond to
predictions near the interface. E{ and E; decrease with increasing
Nivaine

1, Eg, Er, and Ej associated with interface and bulk for cation
and anion density predictions as

Ef = iZE;, Ef = iz Ef

NI kel NB keB (6)
1 1

Ef=—YE, Ej=—YF
Niier Np tep (7)

Figure 8 shows a bar chart of these interface and bulk RMSE
values incurred in surrogate predictions for training dataset size
Niain = 200, 400, 550, 1550, 2550, 3550. Regardless of the
training dataset size, errors incurred in predicting output
features associated with the interface are higher than those
incurred in predicting output features associated with the bulk.
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Figure 8. Interface RMSE E; (blue) and bulk RMSE Ej (orange) for
the cation density predictions, and interface RMSE E; (green) and
bulk RMSE Ej (red) for the anion density predictions vs training
dataset size Ny, = 200, 400, 550, 1550, 2550, 3550. For all Ny,
interface RMSE Ef values are higher than the bulk RMSE Ef. All
errors are in units of M.

This suggests that the model predictions for the interfacial
ionic structure are inferior to the bulk predictions. The RMSE
values Ej and E; associated with the predictions near the
interface decrease sharply as N, increases from 200 to 1550.
As N, is increased further, these errors decrease relatively
slowly, indicating the onset of convergence for Ny, 2 1550.
The bulk RMSE values Ej and Ej decrease as N,,,;, increases
from 200 to 1550. Further increase in N,.,;, leads to only a very
slight drop in Ej and Eg, indicating convergence.

This analysis suggests that some output features (e.g,
interfacial structure) present a more challenging test to the
generalization capabilities of the surrogate compared with
others (e.g, bulk structure). In addition to assessing the error
(E) associated with the overall output, it is thus important to
examine the output-specific errors (Ej, E;, Ef, Ej) to credibly
assess the convergence and the acceptable level of scientific
performance of the surrogate. For the electrolyte system under
study, judging by the RMSE values E, Ej, E;, E; and Eg as well
as the predicted density profiles (Figure 6), an acceptable level
of scientific performance for the surrogate at the highest
speedup S & 4/3Sypc is reached for the training dataset of
size Ny,in = 1550. As we move to the studies in Section 3.3, it
will be useful to define a reference error scale to judge the
surrogate performance. We choose this to be the errors E, Ef,
E;, Eg, and Eg associated with the predictions made by the
surrogate trained with Ny, = 1550 samples (e.g, E = 0.017,
Ef ~ 0.04, and so on).

3.3. Dataset Composition and Surrogate General-
izability. It is important to recognize that while the qualitative
trends shown above regarding the accuracy-speedup tradeoff
are expected to hold more generally, the quantitative results
regarding the optimal training dataset size are intricately linked
to the specific dataset composition. Table 1 highlights the
input design space, which shows that different input
parameters have different discretizations and ranges. While
the ranges get normalized to (0,1) for all input variables during
preprocessing, the different numbers of discretizations yield
differences in the contributions of the input variables toward
the learning of the surrogate. We used a dataset of 4050
samples formed via a specific representation of the input design
space: nhxnand+Xnd_><an6X9X5X5><3,
where ny, n, g, Mg, N, are the number of discretizations
associated with the input variables h, ¢, d,, d_, o, respectively. A
different combination of these discretizations yielding 4050
samples will lead to quantitative differences in the RMSE
values and the optimal training dataset size.

The specific set of discretizations employed here is the result
of a design choice informed by domain knowledge'”*” and
constraints due to the limited computing resources. For
example, our recent study”’ of coarse-grained simulations of
dense electrolytes was inspired by experiments reporting
dramatic changes in the screening behavior of electrolytes
with increasing concentration.”® Thus, the electrolyte concen-
tration ¢ emerged as a key input variable to probe the ionic
structure and is therefore discretized with the most number of
values. We also showed that the rise in the steric ion—ion
correlations, which depend on the cation size d, and anion size
d_, is critical to changes in the ionic structure, particularly in
the interfacial regions. This paved the way for selecting a good
representation of ion diameters in discretized input design
space. Such domain knowledge infusion is essential for
building ML surrogates for MD simulations of soft matter.
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Figure 9. RMSE values (in units of M) and cation density profiles associated with the predictions made by the surrogate trained using datasets
generated via the deterministic separation method by excluding electrolyte concentration ¢ = 1 M (a, b) or by excluding the cation diameter d, =
0.415 nm (c, d). (a) and (d) show interface RMSE E; (blue) and bulk RMSE Ej; (orange) for the cation density predictions, and interface RMSE
E; (green) and bulk RMSE Ej (red) for the anion density predictions for different percentages f = 0%, 1%, 10%, 50% of samples appended to the
train dataset. (b) and (d) show cation density profiles for the same electrolyte system in the test set characterized with input variables (4.2, 1.0,
0.41S, 0.41S, —0.01). Yellow up triangles, green down triangles, and red circles represent surrogate predictions with f = 0%, 1%, 10% respectively.
Blue squares with errorbars show the ground truth results produced by MD simulations.

In all our previous experiments, the surrogate performance is
tested on electrolyte systems in the test dataset S that the
surrogate did not see during training. However, it is very likely
that the surrogate encountered the input variables associated
with these samples in other combinations. For example, while
the surrogate did not see the specific electrolyte system II (h =
4.4, c=1.0,d, =0.307S, d_ = 0.63, 6, = —0.01) during training,
it was trained on many systems that have the concentration ¢ =
1 M such as the electrolyte system (h = 4.6, c = 1.0, d, = 0.415,
d_ = 0415, 6, = —0.02). In order to assess the generalizability
of the surrogate, it is important to explore its performance on
completely unseen input variables.

A campaign that accomplishes this task can be initiated by
utilizing the total dataset of 4050 simulations to design training
and testing datasets that enable the study of surrogate
performance on input variable values obtained via interpolation
between the values seen during training. The deterministic
separation method (Section 2.3), where preselected input
variable values are held in a test set hidden from the surrogate
training, is suited for this purpose. One can also start a
campaign where datasets are designed to enable the study of
surrogate performance on input variable values extrapolated

outside the region of the input design space. At this time, we
do not carry out this exercise. Our expectation is that the
relatively simple neural network architecture with 2 hidden
layers will not fare well on extrapolations.

Surrogate generalizability is key to understanding the
potential of computational performance enhancement: a
greater degree of generalizability ensures that the surrogate
can make a large number of predictions beyond the initial
dataset composed of the training and testing samples, thus
boosting the speedup obtained in eq S. Generalizability is
linked to the discretization errors associated with the coarse-
grained dataset representative of the continuum input material
design space and to challenges associated with capturing a
specific feature in the output which may correlate strongly to
one or more input variables. For example, the interfacial ionic
structure is strongly correlated with the ion size. To assess
surrogate generalizability, we carry out 3 studies that involve
determining the surrogate performance on unseen input
variable values obtained via interpolation between the seen
ones. In all these studies, the surrogate is trained using the
deterministic separation method outlined in Section 2.2. The
validation loss is observed to decrease with increasing number
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Figure 10. RMSE values in units of M (a) and cation density profiles (b) associated with the predictions made by the surrogate trained using
datasets generated by the deterministic separation method via excluding electrolyte concentration ¢ = 0.25, 0.75, 1.25, and 1.75 M. (a) Interface
RMSE E/ (blue) and bulk RMSE Ej (orange) for the cation density predictions, and interface RMSE Ej (green) and bulk RMSE Ej (red) for the
anion density predictions decrease with an increase in the percentage f of samples removed from the test dataset and appended to the train dataset.
(b) Yellow up triangles, green down triangles, red circles represent surrogate predictions with = 0%, 1%, 10% respectively for an electrolyte system
in the test set characterized with input variables (4, 0.25, 0.3075, 0.41S, —0.015). With increasing f, surrogate predictions become closer to the

ground truth results (blue squares) produced by MD simulations.

of epochs in all cases, yielding convergence for n, > 15000. The
optimal ANN models are built by checkpointing at #, = 20000.

We begin with excluding systems characterized with
electrolyte concentration ¢ = 1 M from the training dataset
Staiy and using these excluded systems to create the test
dataset S In order to study the dependence of the surrogate
performance on the number of ¢ = 1 M samples the surrogate
sees during training, we define f = 100A.,,/N, as the
percentage of test samples appended to the training dataset
Strainy Where A, denotes the number of samples drawn
randomly from the test set. f = 0% means S contains all
electrolyte systems with ¢ = 1 M, and S,;, contains none,
signaling that the surrogate will make predictions in a
completely “blind” mode. f = 50% implies that 50% of samples
from S, are randomly drawn and appended to S,,;,, which are
likely to “informate” the surrogate learning of the features
associated with the hidden, interpolated input variable value.
The training and testing dataset sizes (Ny,i, Niegr) for f = 0%,
1%, 10% and 50% are (3600, 450), (3604, 446), (3645, 405),
(3825, 225) respectively. These different dataset compositions
enable the probing of the generalization ability of the surrogate
on unseen ¢ = 1 M electrolyte systems after it sees A, = 0, 4,
45, and 225 samples characterized with ¢ = 1 M.

Figure 9a shows a bar chart of the average interface and bulk
RMSE values for cations (E;, E;) and anions (E;, Eg) as a
function of f. Figure 9b shows the cation density profiles
predicted by the surrogate for a representative system in the
test set characterized with the input variable combination of
(4.2, 1.0, 0.415, 0.415, —0.01). The f = 0% result exhibits very
large errors Ef = 0.125, E; ~ 0.1, and E§ = 0.175, which
shows that the model fails to generalize well on this
interpolated input variable value if it does not “see” any ¢ =
1 M samples. The corresponding density profile result
completely misses the ground truth.

For f = 1%, which corresponds to only four ¢ = 1 M samples
seen by the surrogate, the model gains knowledge and adjusts
its weights and biases, yielding 3X smaller RMSE values and a
much improved density profile prediction. The interface
RMSE values Ef approach the acceptable reference error

trans

scale (~0.04) set by the errors associated with the training
dataset of 1550 samples (Section 3.2). However, the average
RMSE is higher than the reference value (E & 0.017) due to
the relatively high bulk RMSE values, ~ Ef = 0.0S. For f =
10%, which corresponds to the surrogate seeing 45 systems
with ¢ = 1 M, Ef ~ EF =~ 0.025. While the bulk RMSE values
are still on the higher side, the overall error is low and close to
the reference RMSE E. Further, the corresponding density
profile prediction agrees well with the MD simulation results,
particularly near the interfaces. Errors Ef and Ej associated
with f = 50% are smaller than the reference errors, indicating
the convergence of the surrogate accuracy.

We next performed a similar study by hiding the cation
diameter value d, = 0415 nm during the training of the
surrogate. The training and testing datasets associated with f =
0%, 1%, 10%, and 50% are (3240, 810), (3248, 802), (3321,
729), and (3645, 40S) respectively. These different dataset
compositions enable the probing of the generalization ability of
the surrogate on unseen electrolyte systems with cations of
diameter d, = 0.415 nm, after the surrogate sees A, = 0, 8,
81, and 405 systems with cations of diameter d, = 0.415 nm.
Figure 9¢,d, respectively, show the RMSE errors Ef, Eg, Er, Eg,
and the predicted cation density profiles for the same
electrolyte system used in the previous study. A very different
picture emerges in comparison to the study depicted in Figure
9a,b, where the preselected hidden input variable is ¢ = 1 M.
For all f values, Ef < 0.02 and the predicted density profiles
show that the surrogate generalizes well for the bulk region,
even for f = 0%. Ef &~ 0.04 for anions at f = 0% is close to the
acceptable reference error scale and is reduced by half for f =
10%. The corresponding surrogate predictions for the anion
density profiles agree well with the ground truth.

On the other hand, the interface RMSE values for cations
start out 5X bigger than E; at f = 0% and do not decrease
sharply with increasing f, dropping to Ef &~ 0.07 at f = 50%.
The predicted cation density profiles are consistent with these
errors, indicating that the prediction of the cation density
profile near the interface is challenging for the surrogate if it
does not “see” the cation diameter during training. This is
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consistent with our physical understanding that the cation size
is the primary determinant of the cation contact density near
the confining surfaces.”” In another study, an anion diameter
value was excluded from the surrogate training, and we found
analogous results: predictions were significantly poorer for the
anion density profile near the interfaces, while other output
features were predicted with acceptable accuracy.

We now perform a study to assess the surrogate general-
izability in making predictions for multiple electrolyte
concentrations interpolated between the observed values.
Electrolyte concentrations ¢ = 0.25, 0.75, 1.25, 1.75 M are
excluded from the training dataset and the surrogate is trained
on ¢ = 0.1, 0.5, 1.0, 1.5, 2.0 M. This effectively increases the
discretization step by a factor of ~2. The surrogate is then
tasked to make predictions for the interpolated ¢ values, i.e., c =
0.25, 0.75, 1.25, 1.75 M in the test dataset. We generate the
training and testing datasets for f = 0%, 1%, 10%, and 50%,
whose sizes (Nyan Neg) are (2250, 1800), (2268, 1782),
(2430, 1620), and (3150, 900) respectively. Using these
different dataset compositions, we evaluate the surrogate
performance on electrolyte systems characterized with ¢ = 0.25,
0.75, 1.25, and 1.75 M after it sees A,,.. = 0, 18, 180, and 900
samples with these concentrations.

Figure 10a shows a bar chart of the resulting RMSE values
E;, Eg E;, Eg and Figure 10b shows the predicted density
profiles for a representative system in the test dataset
characterized with input variables (4, 0.25, 0.307S5, 0.41S,
—0.015). For f = 0%, the model predictions incur large
interface and bulk errors, and the associated density profile
misses the ground truth entirely, indicating the inability of the
surrogate to generalize without seeing any systems charac-
terized with the interpolated ¢ values. The f = 1% result shows
improvement, but the errors are still large, and the agreement
with the ground truth is poor. For f = 10%, the errors are below
or close to the acceptable reference errors, and the predicted
density profile exhibits good agreement with the ground truth
result. The surrogate accuracy converges for f = 50% as evident
by the errors Ef, Ej, Er, Eg well below the reference values.

The last study sheds light on the accuracy-speedup tradeoft
probed in Section 3.1. First, the surrogate does not need to see
all possible combinations of the interpolated values with the
other input variables in order to achieve an acceptable level of
scientific performance. To illustrate, starting from a dataset of
2250 samples (f = 0%), for which the surrogate performs
poorly, we only need to add up to 900 samples (f = 50%) in
order to achieve acceptable accuracy. In other words, instead of
a dataset containing 4050 samples obtained with running
simulations on all the finer-resolution grid points generated via
interpolation, the target accuracy can be achieved with a
dataset of less than 3150 samples. This reduction in the
training dataset size increases the speedup.

A simple estimate of a speedup achieved through this
interpolation approach can be derived by utilizing the f
parameter, which represents the fraction of the new systems a
surrogate is shown before it is tasked to make predictions.
Before interpolation, the potential gains possible with the
surrogate application is captured by the baseline speedup Sg
given as

trans

N, train (8 )

This equation is similar to eq S except that we assume the
surrogate can make N, predictions at an acceptable level of
accuracy, where N, is the total number of samples in the
dataset.

For simplicity, we consider the case of interpolating on one
input variable (dimension). As the discretization step is
reduced by half, the number of predictions approximately
doubles to 2N,,,. However, the number of training samples
required to get a well-trained surrogate increases to N, +
fNiow- For instance, in the above study, f € (10, 50)%.
Following the process used in defining the baseline speedup,
the net speedup S’ associated with the surrogate performance
considering both the preinterpolation and the postinterpola-
tion phases can be written as

2’I\th»tal
Ntrain + thotal (9)

The net speedup S’ decreases as f increases. In other words, if
the surrogate needs to see a large fraction of the interpolated
values in order to make predictions at the accepted accuracy
level, then the speedup will be small. In another scenario, if one
can tolerate larger errors incurred in the predictions made by a
surrogate trained on a small fraction of the interpolated values,
then the speedup can be boosted. This is another
manifestation of the accuracy-speedup tradeoff.

By replaCing Ntotal/Ntrain in eq 9 with SB/SHPC uSing eq 8’

,N
S' = Sipe

S’ can be expressed as
o 25Swec 2
Supc + S5 1/Sp+ f/Supc (10)

A number of qualitative insights follow from eq 10 regarding
the potential gains associated with the application of the
surrogate via the interpolation approach to generate more
predictions. If the interpolation is such that the surrogate needs
to see all (f = 100%) of the new potential predictions
(interpolated samples) in order to achieve the acceptable
accuracy, then the net speedup S’ is bounded from above by
28ypc, which is the limit of taking the baseline speedup

Sy — 0. For this case, the lower bound of S’ is Syypc, which

is the same as that of Sj. These lower and upper bounds of S’
will increase as f decreases. For example, if the surrogate only
needs to see half (f = 50%) of the new samples obtained via
interpolation to make predictions with acceptable accuracy, the
net speedup is bounded by (4/3)Sypc < S’ < 4Sypc. The
maximum possible net speedup is doubled compared with the
case where the surrogate needs to see all of the new samples.
An interesting possibility arises for f = 0%, which indicates that
the baseline surrogate is already well generalized and will
predict with acceptable accuracy on all new samples generated
via interpolation. For this case, we get S’ = 285 > 28, i€,
the net speedup scales linearly with the baseline speedup, and
while it has a lower bound of 28;p, it does not have an upper
bound.

4. CONCLUSIONS

We have conducted a systematic study of the tradeoff between
the scientific and the computational performance associated
with ML surrogates for MD simulations of soft materials. The
study used a dataset generated by conducting simulations of
4050 different electrolyte systems that exhibit a rich and
complex relationship between the input electrolyte attributes
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and the output ionic structure. The surrogate was tasked to
learn the relationship between 1004 output features character-
izing the ionic distributions and S input features describing the
electrolyte system: confinement length, electrolyte concen-
tration, cation diameter, anion diameter, and surface charge
density.

The scientific performance or accuracy was measured by
computing the RMSE values between the surrogate predictions
and the ground truth results obtained via MD simulations as
well as by comparing the output features obtained via the two
approaches. The computational performance was evaluated by
computing the speedup which incorporated the training
dataset creation time. A power-law decrease in the overall
RMSE was observed with increasing training dataset size N,
€ (150, 3550), with the onset of convergence for N, 2 1550
samples. This improvement in the prediction accuracy with
increasing N, was accompanied by a reduction in the
speedup.

A comprehensive assessment of the scientific performance
was obtained by evaluating the output-feature-specific
surrogate accuracies via computation of the RMSE values
associated with the interfacial and bulk regions separately for
cations and anions. Predicting output features associated with
the interfacial regions incurred larger errors compared with the
features associated with the bulk regions. An acceptable level of
accuracy was reached for the training dataset with N, = 1550
samples based on the overall and output-specific RMSE values
and the agreement between the predicted density profiles and
the ground truth. This training dataset was found to be optimal
under the constraint of maximizing the speedup.

The generalizability of the surrogate was explored by testing
its performance on unseen values of the input variables
obtained via interpolation. The surrogate performance was
affected by which input variable (material attribute) was
hidden. Showing larger fractions of the new interpolated
samples to the surrogate during training improved its accuracy
but at the cost of reducing the potential of computational
gains. This tradeoft was captured by developing a net speedup
metric that revealed qualitative insights about the bounds on
the computational gains associated with the surrogate if the
interpolation approach is adopted to generate new predictions.

The interpolation study shows that the brute force approach
of reducing the discretization step of the input variables to
generate simulations for a larger set of grid points is not only
computationally prohibitive but may not yield substantial
improvements in surrogate accuracy as the latter converges
with far fewer samples. Further, the surrogate does not need to
see all possible combinations of the interpolated input variable
value with the other input variables in order to achieve an
acceptable accuracy level. Eliminating the unnecessary
simulations to further reduce training dataset size may require
the use of active learning based methods to crawl through the
input design space. Exploring such smart sampling meth-
0ds** to determine the training datasets of optimal size and
composition will be a subject of future work.

At present, the surrogate design and MD simulations employ
different environments and workflows. Recent work has
investigated the use of ML platforms to improve the execution
(e.g., accuracy and performance) of MD simulations
themselves.*' = Our future work will leverage these ideas to
explore simplifying the end-to-end surrogate design process by
developing a unified framework to enable the execution of MD

simulations and surrogate design tasks in a one-stop plat-
form.*
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