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Abstract

Objective. In the presence of oscillatory electric fields, the motion of electrolyte ions in biological
tissues is often limited by the confinement created by cell and organelle walls. This confinement
induces the organization of the ions into dynamic double layers. This work determines the
contribution of these double layers to the bulk conductivity and permittivity of tissues. Approach.
Tissues are modeled as repeated units of electrolyte regions separated by dielectric walls. Within the
electrolyte regions, a coarse-grained model is used to describe the associated ionic charge distribution.
The model emphasizes the role of the displacement current in addition to the ionic current and
enables the evaluation of macroscopic conductivities and permittivities. Main results. We obtain
analytical expressions for the bulk conductivity and permittivity as a function of the frequency of the
oscillatory electric field. These expressions explicitly include the geometric information of the
repeated structure and the contribution of the dynamic double layers. The low-frequency limit of the
conductivity expression yields a result predicted by the Debye permittivity form. The model also
provides a microscopic interpretation of the Maxwell-Wagner effect. Significance. The results
obtained contribute to the interpretation of the macroscopic measurements of electrical properties of
tissues in terms of their microscopic structure. The model enables a critical assessment of the
justification for the use of macroscopic models to analyze the transmission of electrical signals through
tissues.

1. Introduction

The macroscopic response of biological tissues to externally applied or internally generated electric impulses can
provide important information regarding the internal tissue structure. Characterizing this response is useful in
the design of materials relevant to medical applications and human-machine interfaces (Nunez et al 2006,
Grimnes and Martinsen 2011, Makarov et al 2015). As a characterization tool, conductivity measurements have
been shown to differentiate between tissues in different states and thus serve as potential diagnostic tools. For
example, the conductivities of some cancerous tissues have been shown to differ from those of healthy tissues
(Aberg etal 2011, Grenier et al 2013, Braun et al 2017, Teixeira et al 2018). Electrical properties can also
differentiate between different life stages of organisms (Grossi and Riccd 2017, Flores-Cosio et al 2020, Ibba et al
2021). Tissue conduction is also relevant to the interpretation of biological signals such as those observable in
electroencephalographic (EEG) recordings. The inverse problem that aims to localize the origin of EEG signals
in response to a physiological stimulus relies on modeling the human head as a set of conducting media
(Geselowitz 1967, Mosher et al 1999, Nunez et al 2006, Grech et al 2008, Solis and Papandreou-

Suppappola 2019). Typical models consider the head composed of homogeneous materials characterized with
parameters usually obtained from animal studies. In yet another direction, we note that human-body-mediated
signal transmission requires modeling of electrical conduction in tissues (Swaminathan et al 2015, Wang et al 2015,
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Lodieral 2020). In all these areas, a conceptual link between the microscopic model parameters used to describe the
cell-level or tissue-level structure and macroscopic electrical properties is important to make further progress. We
note that microscopic-level multicompartment models have been successfully applied to understand cells in
solution and interpret the properties of some vegetable tissues (Schwan 1957, Takashima et al 1989, Kuang and
Nelson 1997, 1998, Angersbach etal 1999, Grossi and Riccd 2017). Further, it is important to note that similar
questions arise in non-biological contexts, e.g. in electrolyte-based soft materials for energy and separation
applications, where understanding the link between microscopic structure and macroscopic properties is useful
(Sareni et al 1996, Brosseau 2006, Wang and Pan 2008, Jing etal 2015, Zhang et al 2018, Faucher et al 2019, Zhbanov
and Yang 2020).

For oscillating external fields of frequency w, the response of the macroscopic samples can be described by
means of a frequency-dependent complex conductivity o(w) or permittivity e(w). These quantities exhibit
distinct regimes characterized by drops in the values of the real part of the permittivity accompanied by the
appearance of peaks in its imaginary part (Foster et al 1986, Takashima et al 1989, Kuang and Nelson 1998,
Grimnes and Martinsen 2011). Considerable variations in peak location and width across materials is observed
(Gabriel et al 1996a, 1996b, 1996, 2009).

For frequencies in the GHz range, the response is dominated by molecular-level polarization and classified as
belonging to the y-dispersion regime. In the MHz range, peaks in the imaginary part of the permittivity of cell
suspensions are well understood as arising from the contrast between the electrical properties of the cells and
their suspension medium. Features in this range appear in many types of tissues and systems and are classified as
belonging to the 5-dispersion regime. Finally, the a-dispersion regime refers to a similar type of response that
appears at frequencies in the kHz region or below, though its origin is less well understood (Foster et al 1986,
Takashima et al 1989, Kuang and Nelson 1998, Martinsen et al 1998, Grimnes et al 2002, Gabriel et al 2009,
Abdalla 2011, Grimnes and Martinsen 2011, Nordbotten et al 2014, Podtaev et al 2015, Crowell et al 2020,
Bouchaalaeral 2021).

Many previous studies have used a bulk macroscopic model for the description of currents in confined
regions. We note that a confined electrolyte, in the presence of oscillating external fields, accumulates ions on the
confining boundaries and creates dynamic double layers. The role of these ionic double layers have been
considered in some detail in the exterior of cells in solution by modeling the cells as colloidal particles (Grosse
and Schwan 1992) and examining dispersion in the colloidal suspension (Schwarz 1962, Dukhin et al 1974,
Grosse and Delgado 2010). Here, we consider currents and the double layers inside the cells confined by
dielectric walls inaccessible to ions. We develop a microscopic model comprising a sequence of regions of
confined electrolytes separated by dielectric walls, that explicitly considers the effects of the external electric field
and the dielectric discontinuities at the electrolyte-wall interfaces on the formation of double layers. It is
assumed that the confining walls are themselves uncharged and hydrodynamic effects are ignored.

A sketch of the microscopic model system considered appears in figure 1. It contains an electrolyte region
(cell interior) of size Lg confined by thin dielectric walls (cell walls and cell exterior) of thickness Lp, and an
electric field in the direction perpendicular to the walls. Our key result is an analytical expression for the
conductivity of this system. In section 3.3, we arrive at the result

— ot E

7w = =0 ), (1)
where i = ~/—1 represents the unit imaginary number, and the characteristic parameters {(w) and o(w)are
complex and have a frequency dependence. Atlow frequencies, both these parameters have real limits {2, and
ag. The first, €2y, has units of frequency and can be interpreted as the inverse of the characteristic relaxation time
associated with the double layer buildup process. The second, &g, captures the conductivity of the pure
electrolyteregion. Our key result has alow-frequency (w < §2) limit of the form:

o(w) ~ —2—ab. @
w — i

Most discussions of electric properties of tissues under oscillating fields consider the Debye form of the
complex permittivity which is the sum over the terms Ae/(1 + iTw), where Ae and 7 represent an excess
permittivity contribution and its associated relaxation time respectively (Hurt 1985, Foster et al 1986, Gabriel
etal 19964, Eleiwa and Elsherbeni 2001). These terms lead to conductivity contributions of the form
0(w) = wrAe/(w — it '). We refer to this form as a Debye-type conductivity, and show that the low frequency
limit of our main result, equation (1), has this Debye form.

The new expression for the variation of conductivity and permittivity with frequency enables a closer
examination of the link between the material heterogeneities and phenomena in the o and 3-dispersion regimes.
The dynamic double layers in the interior of cells have a characteristic size given by the screening length '
associated with the electrolyte solution that emerges from ionic interactions (Kilic er al 2007a,

Israelachvili 2011). As shown below, several features of the response result directly from the double layers, and
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Figure 1. The top panel shows a set of similar electrolyte regions (white) separated by thick dielectric walls (gray) impermeable to ions.
The bottom panel shows the simplified one-dimensional periodic structure used for model calculations with a horizontal electric field
(solid field lines). The walls parallel to the field are ignored in the model. All electrolyte regions have size Ly and all walls have thickness
Lp. The horizontal axis is represented using the Cartesian coordinate x with the origin at the mid point of an electrolyte region.

both dimensionless quantities: the ratio of the wall thickness and the electrolyte-region thickness (Lp/Lg) and
kLg, determine the relaxation times characterizing the conductivity at low frequencies.

An important part of the discussion presented addresses the role of ionic currents. In the bulk of the
electrolyte regions, these currents form the main component of the total net current, which also includes a
relatively smaller contribution from the displacement current (Scott et al 2000a, 2000b, Barbero and Alexe-
Ionescu 2005). The net current, which we also refer to as the electromagnetic current, is conserved throughout
the material. That s, as a vector field it is divergenceless This is the case even when ions are completely blocked in
the wall region, where the displacement current dominates (Eisenberg et al 2017, Eisenberg 2018). The explicit
description of charge distributions and currents, including displacement currents within the dielectric walls,
leads to refined interpretations of experimental measurements of tissue properties and clearer understanding of
tissue-related phenomena such as the Maxwell-Wagner effect. Further, our work signals the need to reconsider
some macroscopic models comm employed to examine the electrical properties of tissues.

The rest of the paper is organized as follows. The current contributions and macroscopic description are
presented in section 2. The microscopic model is introduced in detail in section 3, which also provides
expressions for the conductivity and permittivity. Section 4 presents the results associated with several
illustrative examples. Section 5 discusses the connections of the microscopic model with experimental
measurements and the Maxwell-Wagner effect, and presents conclusions.

2. Macroscopic description of currents in tissues

The analysis of electrical phenomena in biological systems uses methods and models where alternating currents
(AC) as well as direct currents (DC) are relevant. Macroscopic tissue properties are often characterized by AC
impedances. On the other hand, description of electroencephalographic (EEG) signals assumes quasi-static
currents characterized by DC properties. Though related, the currents in these contexts are not the same. In DC
or quasi-static systems, the current is the flow of charged particles. In AC systems, this definition is modified to
include a displacement current term that allows a seamless description of capacitive and inductive components,
so that the newly defined current is conserved within circuits.

As in the examples noted above, context dictates the meaning of the current but, in some cases, an explicit
distinction is required. This article focuses on AC properties in regimes where ionic flux is relevant, typically
below 1 GHz, when molecular polarization is more prominent. The presence of the ionic flux component of the
current demands a careful choice of nomenclature. In addition, the explicit use of the concepts of the
displacement and electromagnetic currents introduced below, makes the discussion more precise and insightful.
The electromagnetic current has two key properties. First, it is fundamentally conserved due to the structure of
Maxwell’s equations. Second, in the complex domain, it is the object that satisfies a generalized constitutive
equation relating current and electric field, and thus defines the complex conductivity.

3
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The explicit definitions of the different currents are as follows. The flux of unbound charged particles defines
acurrent density j. The displacement current density jp in a medium can be defined as the time derivative of the
displacement field D:

i, = O/D. 3)

In linear materials this is proportional to the electric field E, D = €y<E with ¢ and ¢ are the vacuum and medium
permittivity respectively. The sum of the particle and displacement current densities is the object that appears in
Maxwell’s equations. It is referred here as the electromagnetic current density J:

I:j"’jD- 4)

Moving forward, we will refer toj, j;, and J as simply particle, displacement, and electromagnetic currents
respectively. When the particles are ions, the term ionic current is used. In the one-dimensional (1D) case the
current densities (fluxes) are proportional to currents through a fixed cross-sectional area perpendicular to the
flow direction.

In AC systems, the electromagnetic current J coincides with the circuit current (Harrington et al 1961, Fano
etal 1963, Jackson 1999). The currentJ is divergenceless:

V.J=0. 5)

In other words, the electromagnetic current is conserved. Gauss’ law equates the divergence of the electric
displacement vector in a medium with the charge density p of free particles: V - D = ¢,V - ¢E = p. Therefore,
the zero divergence of the electromagnetic current can be interpreted as a continuity equation:

V- J=8p+V-j=o. (6)

While the ionic current is of fundamental interest, the current measurements in electrical circuits
correspond directly to the electromagnetic current. For example, a simple Ammeter detects the magnetic field B
created by a circuit. Its value is determined from Ampere’s and Faraday’s laws and it turns out to be linear in the
electromagnetic current J, rather than in the flux of charged particles j. Previous studies have emphasized the
need to have a clear distinction between j and J (Fuller and Ward 1970), and have highlighted the key role of the
displacement current in the description of microscopic processes in heterogeneous materials (Eisenberg et al
2017, Eisenberg 2018).

The divergenceless condition, equation (5) is true for the current expressed as a function of time and position
aswell as in the frequency domain. In the latter case, it is standard to consider a single frequency w, in which case
we write J(t) = Re[J(w)e™'], where Re[-] denotes the real part of the argument and J(w) is a frequency-
dependent, complex amplitude. The conservation of the electromagnetic current in the time domain
immediately implies the conservation of J(w) in the frequency domain.

For a two terminal circuit element with external oscillating sources and linear elements, the impedance
Z = V(w)/1(w) is defined as the ratio of the amplitude of the potential drop V(w) to the circuit current I(w). A
definition for more general systems is based on the rate of energy dissipation in a space region, though this will
not be needed in this article (Harrington et al 1961, Fano et al 1963, Jackson 1999). In a homogeneous, passive
element of length L and cross-section area A, a complex conductivity can be defined as o(w) = L/(ZA). This
definition makes sense for macroscopic objects as long as the local behavior can be averaged. In the case of
tissues, o(w) characterizes an average over many cells. Noting that the magnitude of the potential drop in the
element can be expressed as E,;, L, where E,, is the complex amplitude of an average electric field, the definition of
the complex conductivity implies the following linear constitutive relation:

J(w) = 0 (W)Ea(w). @)

It must be emphasized that this linear relation works in the frequency domain, and thatJ is the electromagnetic
(or circuit) current. The field E,, is an average over the microscopic values of the electric field, which is simply
denoted by E.

The structure of the different currents in the context of bounded electrolytes is sketched in figure 2. Two
neighboring regions with ions are separated by a hard wall. An oscillatory external electric field is applied in the
horizontal direction. In the bulk of the electrolyte regions, far away from the walls, the combination of the
external field and local contributions due to the small accumulation of charges still produce a net field in the
same direction as the external one. There, the ionic current j satisfies the constitutive equation j = o,E, with g
being the conductivity of the ionic medium. In the bulk region, there are no significant charge density gradients
that contribute to the creation of ionic currents. The electromagnetic current in this region is ] = 0oE + g£,0/E,
where it is assumed that the local permittivity e is that of water (¢ = 80). The bulk electrolyte has a
characteristic frequency {2 = 0/ eg€o, typically in the range of GHz. In the bulk region of a pure electrolyte at
frequencies much lower than (2, the electromagnetic current and the ionic current approximately coincide,

J = jBulk-
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Figure 2. Structure of currents near an impermeable wall in an effective one-dimensional system. The left and right electrolyteregions
are separated by a dielectric wall shown in gray. Electrolyte ions in solution are shown as circles. The extreme left and right edges of the
figure are considered to have the bulk properties of the respective electrolyte regions. The two electrolyteregions can have different
ionic densities. The electromagnetic current J, at top, is spatially constant. Below, the ionic current j has equal bulk value in both
electrolyteregions, but decays to zero near the dielectric wall. In the third row, the displacement current jp, is large inside the dielectric
wall and small in the electrolyteregions, where it reflects the dynamic changes in the accumulated charge near the wall and thus in the
electric displacement field. See also figure 3 for a numerical example.

The figure also shows the presence of two double layers, one at each side of the wall. These double-layers are
dynamic and appear due to the stopped flux of ions at the wall. In contrast to the bulk region, changes in the
charge density in this region produce non-negligible contributions to the displacement current. Inside the hard
wall region there is no ionic current j = 0 and the total current equals the displacement current J = jp. The
region is permeated by the time-varying electric field. In the 1D case, the electric field must be spatially uniform
because its divergence is zero inside the dielectric wall region. In tissues, the field in the walls connects the
electrical activity across the electrolyteregions.

In the situation sketched in the figure, the two compartments separated by the wall do not have the same
properties; the sketch suggests different ionic concentrations. The ionic conductivities of these two
compartments are thus different. The previous analysis shows, however, thatin a 1D geometry, the two
compartments have identical electromagnetic current at all times for any frequency, and a nearly equal ionic
current in their bulk at low frequencies because the total current is mainly conductive in this region. In short, in
spite of the presence of a hard wall, where it is actually zero, the ionic current is essentially continuous at low
frequencies. These characteristics appear in the numerical examples presented below. We also note similar
discussions in (Eisenberg et al 2017).

It is worth noticing that the previous discussion carries over to tissues in contact with an electrode. Away
form the actual electrode contact, the circuit current in the measuring device can be identified with the flux of
electrons, and is approximately equal to the ionic current in the most conducting regions of the tissue. On the
other hand, it should also be stressed that the macroscopic calculations of conductivity and impedance must use
the full electromagnetic current.

3. Microscopic model of tissues based on confined electrolytes

We consider the setup shown in figure 1 where, in the direction of an applied external electric field, the tissue can
be considered as a set of similar electrolyteregions separated by thick dielectric walls. The transversal size of the
regions is not crucial to the analysis and thus we consider an effective 1D model. The electrolyteregion has length
Lg and the dielectric wall has thickness Lp. The repeated structure has a total length of L = Lg + Lp. Itis useful to
define the length ratios: g = Lg/L and £ = Lp/L. We adopt a system of coordinates where the variable x is
aligned with the field, the origin is at the center of an electrolyteregion, and the centers of the dielectric walls are
at+L/2,+3L/2, ...

The properties of the confined electrolyte can be discussed by adopting a coarse-grained representation
where average values of the ionic distribution and charge densities make sense. Itis assumed that the
electrolyteregion is overall electroneutral and contains a monovalent (1:1) electrolyte. Both charged species
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(cations and anions) have equal number densities 7. In the electrolyteregion, the model becomes a well-studied
system for diffusion in the presence of electric fields (Buck 1969, MaCdonald 1970, Macdonald et al 1987, Bazant
etal 2004). A description of the ionic currents, potential and impedance are presented for a similar model in
previous works (Cirkel et al 1997, Scott et al 2000a, 2000b, Barbero and Alexe-Ionescu 2005). The derivation
below aims at setting these results in the context of tissues and extending them by explicitly considering the
properties of the ionic, displacement and electromagnetic currents, and by taking into account the microscopic
structure of the dynamic double layers. Related models have been studied for other geometries, focusing on
single cells or cell suspensions (Schwarz 1962, Dukhin et al 1974, Foster et al 1986, Dukhin et al 1999, Koch 2004,
Grosse and Delgado 2010). Tissues have been less explored, and often modeled as sequences of slabs of
homogeneous materials. A connection between the properties of these slabs and the underlying microscopic
structure is not established (Kuang and Nelson 1998, Grimnes and Martinsen 2011).

3.1. Electrolyte region

The motion of individual ions in the confined electrolyteregion leads to changes in the local charge density pasa
function of space and time. The flux of ions of a given charged species s (e.g. monovalent cations) is dictated by
the dissipative dynamics driven by the gradient of the electrochemical potential 1, characterizing the species.
The average velocity v, of a group of ions associated with species s is given by

Vi = =y Vi, (8)

where 7yis the ion mobility. While vy generally depends on the ionic attributes (e.g. size, valency), we will assume
ions of both charged species to have the same mobilities. This model applies to ions in solution that are free.
When ions are associated to organelles or other cellular structures their mobility is greatly reduced. We assume
that the main contribution to conductivity arises from the free ions, though it is known that surface motion
contributes to electric response (Shilov et al 2001). In The electrochemical potential 1, is assumed to be
determined by entropic and electrostatic interactions:

p, = ks T In(ny/ng) + ez, 9

where the first term is the entropic term given by the product of the Boltzmann constant kg, the temperature T,
and the logarithm of the ratio between the local concentration n, and the average concentration n, of the charged
species. The second term is the electrostatic energy obtained via the product of the fundamental charge e, ion
valency z,, and the electrostatic potential ¢. This potential combines both the effect of the external field and the
local mean-field created by the charge density p. This chemical potential construction is standard in the context
of dynamic ion conduction (Bazant et al 2004, Kilic et al 2007a).

Noting that the gradient of the electrochemical potential is Vi, = kg Tn, 'V, — ez E,where E= — V¢ is
thelocal electric field, the local current j, for species s is obtained as

j, = ezsnyv, = —ezykg TVng + ve’z2n,E. (10)
Thelast term in equation (10) is nonlinear because the local electric field E depends on the particle density #,. An
electrolyte in the absence of an external field has uniform concentration ny and zero electric field E. The
linearization of the product n,E around this state is nyE. In what follows, this linear approximation is used. The
role of nonlinear terms has been discussed for the static case in biological contexts in (Levin 2002) and for general
electrolyte systems in (Bazant et al 2004, Kilic et al 2007a). Limitations are also known from experimental work
(Wright 2007). Typical cells and tissues have ionic concentrations in the 100 mM range. At these concentrations,
alinear response analysis is possible. Corrections to the linearization approximation appear in electrolyte
systems at room temperatures when concentrations of monovalent salts are higher than ~1 M (Bazant et al 2004,
Kilic et al 20072, 2007b, Israelachvili 2011). While average concentrations in biological systems are often below
this regime, ion accumulation in the double layers can reach very high concentrations. The presence of
corrections can be determined by comparing the highest predicted concentration with the 1 M threshold value.

Summing the currents in equation (10) over both species, the charge density becomes p = ) ezn,and the
netionic currentj = Yj, is given by

j = —DVp + ooF, (11)
where D is the diffusion constant:
D = kg T, (12)
and oy is the intrinsic conductivity for a 1:1 electrolyte:
oo = 2ye’ny. (13)

Using j from equation (11) in equation (6), the continuity equation for the charge density pleads to
0= DV?p — 0,V - E. Assuming that the electrolyteregion can be modeled as a uniform dielectric medium
characterized with a relative permittivity g, and using Gauss’ law V - E = p/(¢¢€g), one obtains the standard

6
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(Nernst—Planck) transport equation:
Oip = D[V?p — K%p], (14)

where £ is the inverse screening length given by K = 00/ (0eED) = 2¢*n,/(cocks T). From here on, we consider
water as the dielectric medium inhabited by the ions.

In addition to solving equation (14), it is necessary to also determine the electric potential ¢ by solving the
Poisson equation, and applying the boundary conditions set by the external field E.,,. The Poisson equation is
obtained by substituting E = — V ¢ in Gauss’s law:

—e0eeV2¢ = g9V - E = p. (15)

The boundary conditions for the electrolyteregion considered are: no-particle flux on the confining dielectric
walls (j|,yan = 0), continuity of the potential, and the matching of electric displacement at the electrolyte-wall
interface. In the 1D case, the solutions of the Poisson equation can be written in the form new

P (x, 1) = ¢.(x, 1) — xEg(1). (16)

The first term, ¢,, is a solution of the Poisson equation (equation (15)) with an inhomogeneous term equal to the
accumulated charges p. The derivative of ¢, is zero at the midpoint of the electrolyte region. The second term
xEg(t) is a spatially-linear potential that solves the homogeneous Poisson equation (V¢ = 0) and enables the
matching of appropriate boundary conditions. E(t) is the time-varying magnitude of a spatially-constant
electric field, which can be identified with the total field at the center of the electrolyte. Ep is not the external field
because it also has contributions due to the charges in the system outside the immediate electrolyte region.

In the following, unless otherwise noted (e.g. for the electromagnetic current density), we will use the same
symbol for the time and frequency domain amplitudes. Inside the electrolyteregion, the ion concentration can
bewrittenas p(x, t) = p(w, x)exp(iwt). We consider the steady state under the action of external oscillating
fields. See (Bazant et al 2004) for a discussion of the transient case. The spatial dependence of the density
amplitude p(w, x) can be taken to be proportional to sinh(gx). It can be checked by direct substitution that
p(w, x) satisfies Eq. (14) for suitable choice of the parameter q. Terms proportional to cosh(gx) must be set to
zero to maintain electroneutrality. The parameter g must satisfy the dispersion relation:

iw = D[q?® — K2]. 17)

The parameter g can be interpreted as a complex inverse screening length. Atlow frequencies,
g~ + K[1 + iw/(2Dx?)]. From here on, the symbol g denotes the root with the positive value. In addition to the
characteristic length £, the properties of the electrolyte determine a characteristic frequency Qg:

QE = 1):‘&2 = 0'0/(60615). (18)

Note that this characteristic frequency is associated with the electrolyte and not with the full system comprising a
series of confined electrolytes. The characteristic frequency of the whole system can be orders of magnitude
smaller. However, )¢ serves as a reference to observe the emergence of the low-frequency behavior.

The charge density is concentrated in the double layers created at the walls confining the electrolyte region.
We assume that the electrolyte region thickness Ly, is several times larger than the screeninglength ', Away
from the origin at the center of the electrolyte region, the density, proportional to sinh(qx), is dominated by the
exponential terms exp(gx) for x > 0 and exp(—qx) for x < 0. Thus, near each of the wall boundaries at
x == Lg/2, the density is given by an exponentially-decaying oscillatory function. The magnitude of the inverse
decay length is of the order of the screening length (g ~ ). It is useful to express this density as a function of the
distance away from the wall. Without any loss of generality, we consider the left end of the region located at
x = — Lg/2,and introduce alocal variable x’ = x + Lg/2. The charge density is then well approximated by
p ~ Pexp[—q(x + Lg/2)] = P exp[—gx’] (with Pbeinga frequency dependent amplitude). Similarly, near the
rightwallatx = Lg/2, p = —P explq(x — Lg/2)].

The charge density generates a potential ¢, that must satisfy the Poisson equation, equation (15). Near the
left boundary, the solution takes the form

¢.(w, x") = —[P/eoeeq*lexp[—qx']. (19)

This expression, along with its corresponding part at the right wall, provides the inhomogenous solution
indicated in equation (16).

The electric field associated with the above inhomogeneous potential is E. = [P/eycgq]exp[—gx'] near the
left wall. It creates an ionic current contribution oy E, = (Dk?/q) P exp[—qx']. The diffusion current is
proportional to the gradient of the charge density —DV p = —DqP exp[—gx']. The amplitude of the net ionic
current near the wall is then, using equations (11) and (16)
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2
jw, x") = (—i + q)DP exp(—qx’) + ooEp. (20)
q

This quantity must equal zero at the left wall, i.e. j(w, 0) = 0. Solving this relation for the charge density
amplitude P and using equation (17) leads to:
p="%p, @1)
w
This relation can also be obtained via a time-integration of the current density across the midpoint of the region,
which is just proportional to Eg. The above derivation highlights the use of the hard-wall condition.

Equation (21) yields the charge density p = (iqop E/w) exp[—gx'], which determines the amplitude of the
potential ¢, created by the charges near the confining wall. As the charge density decays quickly into the bulk, a
net total charge per unit area Q at the wall can be obtained by integration over the double layer region:

10y
Q= —E. (22)
w
This total charge amplitude characterizes the dynamic double layer. It is clearly out-of-phase with respect to the
bulk field. The electric field at both walls is the same by symmetry, and has the value Es = —V @ (w, + Lg/2) + Eg,
which can be written in terms of the bulk field Eg as
D 2
Es= —i—L E, (23)
w
The potential difference across the electrolyte region due to accumulated charges near the dielectric walls can
also be expressed in terms of the bulk field as 2i(DK*/ qw)Eg. The total potential difference in the
electrolyteregion Adg(w) is the sum of this term and the one due to the bulk field, which is —EgLg from
equation (16):

2Dk?
Adg(w) = [—LE T it ]EB. 24)
quw
Finally we note thatin our 1D model system, symmetry dictates that there is no accumulated charge at the
center (x = 0) of the electrolyte region. However, the x-component of the electromagnetic current atx = 0, J(w),
is finite and takes the value

J(w) = 0yEp + iwepeoEp = egeoDq’Eg, (25)

where the second equality follows from the dispersion relation in equation (17).

3.2. Dielectric wall

We consider the dielectric wall region centered at x = —L/2 of width Ly, confining the electrolyteregion
considered above centered at x = 0. Below, we only show the non-trivial, x-component of the vectors associated
with the 1D model. Within the dielectric wall characterized by a relative permittivity ep, there are no unbound
charges and the electric field is spatially uniform:

E(x, t) = Ep expliwt], (26)

where, Ep, is the amplitude in the frequency domain. Ep, can be determined via the continuity condition of the
displacement field at the boundary between the dielectric wall and the electrolyte solution:

epEp = & Es, (27)
where Es is the electric field at the edge within the electrolyteregion. Substituting Es from equation (23) yields
D 2
Ep= it p, (28)
&p W

The total potential difference across the dielectric wall region is simply A®p, = —LpEp, which yields

ZE—E LDDq2

Adp = Ep. (29)

€D w
Finally, the ionic current in the dielectric wall region vanishes, j(w, x) = 0. However, there is an electromagnetic
current within this region which is equal to the displacement current J(w) = jp(w, x) = iweoepEp = EEEOquEB.
The last equality and equation (25) demonstrate the conservation of the electromagnetic current.

3.3.Impedance and conductivity
The impedance of a material is a directly measurable quantity and is calculated by obtaining the potential drop
(the negative of the potential difference) necessary to create a given electromagnetic current. In a region of length
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L consisting of an electrolyte solution of length Ly and a dielectric wall of thickness L, the drop is
V(w) = — Adg — APy, Following equations (24) and (29), we obtain

2Dk* e LpDg?
VW) = (LE S AN R )EB. (30)
qw €D w
Using the relation between the electromagnetic current J(w) and Eg in equation (25), we find
2 4D 2
V(W) = —z(fﬁ B s )J(w), (31)
eeeoDg qwL Epw

where we have recalled the length ratios: £ = Lg/L and £, = Lp/L. The impedance Z of the repeating unit of
size L of transverse area A is

2 D 2
_ V(w) _ L fE—iZDH _iEE plgq ) (32)
AJ(w)  AegeoDg? qwL EpW
where the last equality easily follows from equation (31).
The impedance of the composite structure comprising N repeats of the the unit structure is NZ. The
conductivity is defined as the inverse of the impedance per unit length divided by the transverse area,
o(w) = (NL/NZ)/A = L/(ZA). This is also consistent with the macroscopic relation in equation (7),
o(w) = E,,/J(w), since E,, = V/L. Using equation (32), we obtain
27,2
o(w) = g /m (33)

—i(=2pg? + Zpg2
Gpw z(EDDq +qLD/<;)

where we have used the second equality in equation (18) to introduce the intrinsic conductivity o, for a
monovalent electrolyte. In obtaining this result we have used multiple repeats of an assumed periodic unit. If the
repeat units are not identical, the impedance is a sum of terms shown in equation (32). Each contribution
depends on the local dimensionless parameters £, g and L. The impedance as well as the effective
conductivity are averages over these contributions and thus determined by the average values of these
parameters.

Equation (33) is the key result of this paper. We now present this result in a simplified form by introducing a
characteristic frequency parameter {2:

2
Ow) = p2| 24 2 1 (34)
Z/ﬂEé‘D Kz qL fE

and a characteristic scale o* for the conductivity:

ofw) = 21+ i), (35)
4 E QE
where Q0 = Dr” is the characteristic frequency associated with the pure electrolyte, given in equation (18). With
these definitions, the conductivity becomes:
w E
ok. (36)
w — i§2
Equation (36) has a structure similar to a Debye conductivity form (see below), with a key difference: both 2 and
o ¥ are frequency-dependent and complex; in the case of the former, this becomes evident by noting that g is
complex and frequency dependent as seen in equation (17).
In the limiting case of w — 0, both ¢® and  have real limits: o and Q, respectively: of = 0,/ is the
conductivity associated with the electrolyteregion, while €2, is given by

fosr , 2 1
KEED KL LﬂE '

o(w) =

Qy = QE( (37)
Here we have used Q; = Dr” and the fact that g ~ r for w — 0. € represents the characteristic frequency of the
composite system characterized by electrolyte and dielectric wall regions, and can be interpreted as the inverse of

the characteristic relaxation time associated with the double layer buildup process. As evident by the ratio
QO / QEZ
o _ &b 21 (38)
QE D I/ﬂE kL & E

Qo can be orders of magnitude smaller than the characteristic frequency (2 associated with the pure electrolyte,
for example, under high electrolyte concentration such that kL > 1 and when £ >> ¢p.

9



10P Publishing

Phys. Med. Biol. 68 (2023) 105017 FJ Solis and V Jadhao

Using o and €2 in equation (33), the low-frequency limit for the conductivity becomes:
o(w) ~ —2—0k, (39)
w — i)
which seamlessly retrieves the standard Debye form. The complex conductivity can be writtenas ¢ = o’ + ic”
where o’ and 0” are its real and imaginary parts. At low frequencies these take the form

2
oy~ [y S (40)
wr+ Qf & Qe
wly o
o (w) ~ ﬁ(’géé (41)

The complex, frequency-dependent relative permittivity e(w) is given by e (w) = &'(w) + ie”(w) =
(" + i0") /(gow). In the low frequency limit, the real and imaginary parts of (w) are

Qo (o)
dw) ~ ———— R 42
( ) w2 + Q(z) e’:"()bﬂE ( )
(W) v ——— ] o) (43)
w? + Qo €0tk QE
The real part of the permittivity has the zero frequency limit
-1

w—0) =2 % e 2 1) (44)

EofEQO l/ﬂE fEED kL fE

As discussed below, this expression produces large numerical values for permittivity that match with the
experimental values. The imaginary part of the permittivity goes to zero as w — 0.

In addition to recovering the Debye-type forms for conductivity at low frequencies, the general result for
conductivity in equation (33) has a clear interpretation at high frequencies. The high-frequency limit gives

. .Opw D iweg
lim o(w) =i— = . (45)
Wm0 Qe epte + et /s + /e
Using this expression, we find that the high frequency limit for relative permittivity e(w) is real:
lim e(w) = ;, (46)
W00 %/ + t/ep

and can be expressed as a weighted harmonic mean of the permittivities associated with the electrolyte and
dielectric wall regions (noting that £ + £p = 1). In the limiting case of the pure electrolyte, £ — 1 (and

p — 0), werecover lim,, ., €(w) = &g. Similarly, in the case of a very thin electrolyteregion characterized by
g — 0(and £p — 1), we obtain lim,_, .. € (w) = &p.

4, Results

4.1. Examples

We begin by showing results for a system composed of repeated electrolyteregions of characteristic length

Lg = 195 ' separated by dielectric walls of thickness L, = #~ '. The total length of the repeated unit associated
with the composite system is L = 20x "~ '. The electrolyte solvent is assumed to be water, with permittivity

eg = 80, while the dielectric region has permittivity ep = 20. With these values, the characteristic real frequency
of the composite system follows from equation (37) as {2 = 0.2 (g, where (g is the characteristic frequency of
the pure electrolyte. The parameters characterizing this example system are selected to clearly illustrate the long-
range structural features of the associated fields and currents in order to highlight the influence of the
heterogeneous material structure on the electrical properties of the model system.

Figure 3 shows the structure of the electric potential, the electric field, ionic current, displacement current,
and the charge density associated with this example system when an external oscillating electric field of
frequency w = 0.095 (2 is applied. The plots show the real and imaginary amplitudes of these quantities as a
function of position x, which is measured in units of the screening length 5. The real part of these amplitudes,
the in-phase component, can be considered as snapshots obtained when the external field is maximum. The
imaginary parts correspond to times when the external field is zero and increasing. The potential, field, current,
and charge density are measured in units of &y, Ey, ju, and py, respectively. The reference potential and field
values are ¢y, = er/cocpand Ey = exn®y = en”/eyeg respectively. The current is expressed in multiples of
ju=o0oEu= erx*Q),, and the charge density is expressed in multiples of py; = ex’. In these units, the average value
of the magnitude of the external electric field used is 1 unit.
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Figure 3. Electrical properties (potential ¢, field E, ionic current j, displacement current jp, and charge density p) of a heterogeneous
system characterized with alternating sequence of electrolyteregions of length 19+ " and dielectric walls (shaded gray) of thickness
', The characteristic frequency is 0y = 0.2 Qg. Results are shown as a function of the position x for an external oscillating electric
field of frequency w = 0.095 Q. The bottom right subplot shows the variation in the real part of the conductivity and permittivity as w
is changed. See the main text for the meaning of other symbols and model system details.

In ahomogeneous system (pure electrolyte), the potential amplitude would be real and its plot would simply
be aline of slope —1. The situation is dramatically different for the heterogeneous composite system considered
here, where the potential ¢ has non-zero real and imaginary parts, and exhibits nonlinear features. The real part
is characterized with a sharp drop within the dielectric walls, where ¢ is linear. In the electrolyteregion, ¢ is
approximately linear in the bulk but exhibits a nonlinear variation near the walls due to the presence of the
dynamic double layers. The imaginary part of the potential is approximately zero, however, we observe a small
non-vanishing amplitude localized near the walls.

The electric field exhibits a variation with position that is consistent with the negative gradient of the
potential. The field is the negative of the gradient of the potential and is constant within the dielectric walls. It has
avery small value in the bulk of the electrolyteregion. This nearly vanishing field produces a small and uniform
ionic current in the bulk. The ionic current transitions, near the electrolyte boundaries to is zero value within the
walls. The displacement current is largest and uniform within the walls, and exhibits a variation with position in
the electrolyteregion that is consistent with the conservation of the full electromagnetic current. In the bulk of
the electrolyteregion, the numerical value of the electromagnetic current is approximately the same as the ionic
current. Finally, the charge density exhibits an the accumulation and depletion of ions at the opposite end the
walls. These are the dynamic double layers. The charge density vanishes within the dielectric walls.

Figure 3 also shows the real part of the conductivity in units of the electrolyte conductivity oy as a function of
the frequency w scaled by €2. The small ionic current in the bulk is responsible for the overall reduction of the
real part of the renormalized conductivity observed at low w. The corresponding imaginary part of the
permittivity, scaled by the factor e; = eg{2g/§2g = 400.0, as a function of wis also shown. We observe a peak in
the permittivity at a frequency w near the characteristic real frequency §2, of the heterogeneous system. The
system thus shows a J-relaxation.

Systems characterized with Lg > Lp, (i.e. when the thickness of the electrolyteregion is much larger than the
thickness of the wall) produce a much greater reduction of the characteristic real frequency €2 of the composite
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Figure 4. Electrical properties of a heterogeneous system characterized with alternating sequence of electrolyteregions of length
199+~ " and dielectric walls of thickness %~ '. Top panel shows the real and imaginary parts of the conductivity ¢ = o’ + io” asa
function of the frequency w of the applied external electric field. Middle panel shows the variation of the real and imaginary parts of the
permittivity ¢ = ¢’ 4 ie” with w. The bottom panel shows the Cole plot showing the variation of ¢” against ¢’. Electrical conductivity
tracks the standard semicircular shape in the low-frequency regime. However, at high frequencies, the linear growth in 0” leads to a
vertical asymptote. See the main text for the meaning of other symbols and model system details.

structure with respect to that of the pure electrolyte Q)g. For example, a composite system of total length

L =200k "with Ly = 199x 'and Lp = 1x~ ' (such that £x/¢p = 199) leads to 2, = 0.03 O, keeping all other
model parameters the same as above. The top two panels in figure 4 show the complex conductivity (scaled by
the intrinsic conductivity of the pure electrolyte o) and the complex relative permittivity as a function of the
frequency w for this example system. The bottom panel shows the Cole plot with the imaginary part of the
conductivity plotted against its real part. Both the real and imaginary parts of the normalized conductivity have a
limiting value of zero as w — 0. At large frequencies, the imaginary part of the normalized conductivity
dominates over the real part, which rapidly saturates to 1 /¢ & 1, where we take £ — 1 and £ — 0 (given

¢r > ¢p). The imaginary part grows linearly with w for large frequencies and taking £g — 1 and #p — 0in
equation(45), the slope of this linear growth is approximately x. In a Cole plot, the linear growth leadsto a
vertical asymptote after the real and imaginary parts closely track the semicircle shape.

The imaginary part of the permittivity approaches zero value as w — 0. However, taking g — 1l and p — 0
in equation (46), shows that the real part of the relative permittivity approaches egx L which is 228000 for this
example system with KL = 200 and e, = 80. Atlow frequencies, a clear peak in the imaginary part of the
permittivity is observed, indicating the presence of the G dispersion. Asw — oo , the imaginary part of the
permittivity tends to zero while the real part approaches e = 80.

4.2. Layered systems

To understand the effect of the dynamic double layers in determining the electrical properties of the confined
electrolyte system, it is useful to contrast the above results with a simpler model where these details play no
significant role. For very small screening lengths, one can consider a layered system of alternating piecewise-
uniform slabs of materials of permittivity and conductivity with constant (frequency independent) real parts.
These alternating slabs (k = 1, 2) have complex conductivities o B = gox + iweoerand lengths L. Their
impedances per unit area have values Z = L,/(Ac‘®). A system of multiple repeated units of these slabs has an
effective macroscopic conductivity oy = (L/A)(Z + Z,)~!, which is the weighted harmonic mean of the
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Table 1. Parameters for selected vegetable tissues.

Sample Lg(pm) Lp(nm) %~ '(nm) €E ep oo(Sm™) ;—WQO(MHZ) fs(MHz)
Carrot 60 8.2 0.96 80 2.3 0.66 7.0 5.0
Banana 80 10.4 0.96 80 2.3 0.54 5.5 7.0
Potato 100 11.6 0.96 80 2.3 0.84 7.6 6.0

conductivities of the components:

£ & \! (ESp0))
oy — (_1 n _z) __oPd® 47)
P RRG) 40D+ £60

where the relative lengths £, = L,/ L act as the weights.

The individual uniform slabs do not have a Debye-type conductivity, but the combined layered system does.
This is evident by examining the denominator in the last equality in equation (47), which has the form
£10P4+£,00 = £,00, + £5001 + iweo(£165 + £5¢1), similar to the expression in the denominator of
equation (40). For the case of an electrolyte slab of thickness ratio | = ¢ and permittivity €, = g alternating
with a dielectric slab of thickness ratio #, = £ and permittivity €, = ep, the real part of the denominator term is
¢poy. Here, 0 is the real part of the conductivity of the pure electrolyte and we assume that the conductivity of
the dielectric slab is much smaller. The imaginary part has the form iwe( & with mean permittivity
€ = {peg + fep- Considering the electrolyte region to be much longer than the dielectric slab, we get € ~ £ ep
and the imaginary part becomes iweoZ’gep. This layered system exhibits a characteristic frequency

p oy _ ‘e

Qy = Q. (48)

€0lEeD fEep

This direct calculation matches the low-frequency (w — 0) limiting value of the characteristic frequency €2, in
equation (34), associated with the microscopic model of the heterogeneous confined electrolyte system
when (K)L)71 < EE/(fE €p)-

In both the layered system and the microscopic model, the typically small value of the ratio £n/ £k suppresses
the associated characteristic frequency (Q2y or 2) to values much smaller than the characteristic frequency €2 of
the fully uniform and homogeneous pure electrolyte system. Control of this ratio is the key to generating the
characteristic values for the avand 3 dispersion regimes. The layer geometry can serve as the basis to introduce
more complex modeling of specific systems. In particular, we note that the assumption of a purely dielectric wall
can be relaxed to include the presence of mobile ions in the extracellular region, providing a small effective
conductivity to the model layer representing it.

4.3. Interpreting experimental measurements

Our model with dynamic double layers and even the simplified multiple slab systems produce good quantitative
results in concrete systems. For example, vegetable tissues have been well characterized by means of impedance
spectroscopy. Properties such as typical cell sizes can also be directly determined in the same samples by optical
microscopy. Reported conductivity measurements for banana, carrot and potato show clear 3 dispersion
behavior. From published data (Angersbach et al 1999), a characteristic frequency f; (in MHz) can be obtained
from the mid-points of the transition between plateaus of the (real) conductivity. The model discussed above can
broadly match the location of this frequency to the characteristic value 2 or Q2y. To this end, we use values of the
relevant parameters (Lp, Lg, 0, €g, €p) that have been measured or estimated for these three samples
(Angersbach et al 1999), as noted in table 1.

In these example systems, the electrolyte region is identified with the cytosol and vacuole of the cells, which
span most of the volume of the cells. We take the cell linear size as Lg and use the water permittivity to
characterize the permittivity g = 80 in this region. The thickness of the dielectric region Lp, is identified with
twice the cell membrane thickness and the permittivity of this region is taken to be e, = 2.3. The inverse
screening length is estimated to be & = 0.96 nm ', which corresponds to cytosolic ionic strength of 100 mM. We
note that the dimensionless factor (xLg)~!is very small so that both estimates of characteristic frequencies
effectively coincide 2 =~ Qy.

The estimated values used for the electrolyte conductivity, o ~ 0.7 Sm ™! can be compared with direct
calculations based on typical properties of cells. Interpreting the physiological ionic strength of 100 mM as
associated with just monovalent ions, and using the average of mobility values for sodium and chloride ions
(5.2 x 10~%and 7.7 x 10~*m?*(V s) ' respectively (Atkins and De Paula 2011)), one obtains an electrolyte
conductivity oy = 1.24 Sm™ . This value is large compared to the one noted in table 1. This suggests a reduced
effective mobility for ions in cells, which is expected as some of these ions can be bound to organelles or cell
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membranes and thus not directly participate in conductive motion. This analysis is a simplified version of that
presented by Angersbach et al (Angersbach et al 1999), which uses many more parameters. As noted, the
correction due to the dynamic double layers is in fact small. However, the explicit expressions obtained by the
microscopic model allow evaluation of quantities characterizing the internal structure of these systems.
Equation (45) shows that at high frequency, the conductivity result is not simply 0. The conductivity is in fact
dominated by its imaginary part which grows linearly with frequency at high frequency. The behavior of high-
frequency permittivity, which is purely real, provides a clearer comparison with experiments. Following
equation (46), permittivity at high frequencies is e(w) & egep/(epfk + €xfp), which is dominated by the
permittivity in the electrolyte region when the latter’s thickness is much larger than the thickness of the dielectric
wall (i.e. when £ ~ 1, £ & 1). Values of high-frequency permittivity close to those of water (~80) have been
recorded in all published data of watertissue (Gabriel et al 1996b, Angersbach et al 1999, Gabriel et al 2009).

Next we examine the behavior of permittivity at low frequencies, for which we have obtained a limiting value
in equation (44). In the case of £ ~ 1, and very small screening lengths (xL)™! < e /(4; €p), this limiting
value becomes €'(w — 0) “ep/#p. In other words, it is the ratio of relative permittivity and relative thickness of
the dielectric wall region. Using the aforementioned values for vegetable tissues (e, = 2, Zp = 1.25 x 10~ %), one
obtains e(w — 0) ~ O(10%), which matches experimental permittivity values recorded for most vegetable and
animal tissues (Gabriel et al 1996b, Angersbach et al 1999, Gabriel et al 2009).

The expression for the low-frequency permittivity in the limiting case of £ & 1 and small screening lengths
can also be recovered from the model of a layered system, without appeal to the internal structure of the material.
Following a similar calculation as above for the case of an electrolyteslab of thickness ratio £ = ¢k, permittivity
€1 = €, and conductivity o = 0y alternating with a dielectric slab of thickness ratio £, = ¢, permittivity
€, = €p, and conductivity oy, & 0, the imaginary part of the conductivity in the limit of w — 0 becomes
weoep/¢p. This immediately yields £’ (0) = ep/#p = epL/Lp, where the first equality is exactly the result
derived above using the microscopic model, and the second equality just expands the definition of the thickness
ratio.

We find that the zero-frequency limit of the permittivity is essentially the permittivity of the dielectric layer
multiplied by a geometric factor L/Lp = 1/£p that compares the total size of the repeated unit to the thickness of
the dielectric region. This observation can be used to discuss the appearance of very large relative permittivities.
In most tissues the values are large, in the 10° range. However, in some cases these values can reach 107 (heart
tissue, for example (Gabriel et al 1996b, 1996)). Our results show that such permittivities require the size ratio
?p1tobeverylarge. A way to obtain this large ratio is to consider the presence of strong heterogeneities where
dielectric regions are separated by very large, more conductive, regions. This scenario can arise when we
consider systems where the extracellular matrix of a tissue plays the role of conductive regions. The bounding
walls in this case are provided by ion-impermeable or low-conductivity tissues separating large multi-cellular
regions. These large size ratios also depress the ratio of the value of the characteristic frequency to the electrolyte
value Qo/$2g. Therefore, systems that exhibit these features might also present permittivity peaks in the a-
regime.

5. Discussion and conclusion

The above results show that the correction to the composite system due to the presence of the dynamic double
layers is small. However, consideration of these features enables a clearer interpretation of several aspects of
these systems, such as the origin of the large effective permittivities in experimental measurements. The confined
electrolytes model developed above also enables a microscopic description of important tissue-related
macroscopic phenomena such as the Maxwell-Wagner effect, which is the appearance of accumulated charges
at the interfaces between regions of different conductivities. While at the microscopic level this is just the
creation of the dynamic double layers (Takashima et al 1989), conductivity variations at the macroscopic level
must also create charge accumulation. The effect has been noted for models with heterogenous regions such as
those used for EEG analysis (Solis and Papandreou-Suppappola 2019) and in discussions of skin conduction
(Béarlea et al 2008) and tissue characterization (Guermazi et al 2014). As a macroscopic effect, it is likely to appear
as part of very low frequency behavior and thus will be connected with « dispersion processes (Grimnes and
Martinsen 2010). As figure 3 shows, the charge density in a system with multiple compartments has large local
variations. These variations can be spatially averaged to define a macroscopic charge density which is effectively
zero in a macroscopically-homogeneous region. However, at the interface between distinct macroscopic
regions, the average need not be zero. In a 1D case, the electromagnetic current is spatially constant but the
associated average electric field in each of the different regions may not have the same value. Gauss’ law then
requires the presence of charge at the interface between regions. This macroscopic effect can be described using
the microscopic model developed in this work.
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Figure 5. Within an AC cycle, the ions in the electrolyteregions accumulate at the dielectric walls, as shown in the top panel. The
middle panel shows only the excess charge associated with the double layers. In the bottom panel, the neighboring double layers of
regions with similar properties can be considered to cancel each other when averaged over large lengthscales. However, walls
separating regions of different intrinsic properties acquire a net charge due to the differences in the interfacial charge distributions on
either sides of the dielectric wall, leading to the emergence of the macroscopic Maxwell-Wagner effect.

A sketch of this scenario is shown in figure 5. The central part is composed of similar electrolyteregions,
which are bounded by a couple of electrolyteregions with different intrinsic properties (e.g. different electrolyte
concentrations). In the presence of an oscillatory field, the dynamic double layers appear at opposite sides of all
dielectric walls. At walls between neighboring similar electrolytes, the accumulated charges are equal in
magnitude and do not contribute to a macroscopic average. At walls separating regions with different properties,
the double layers do not hold identical charge, which produces a macroscopically observable charge density.
This construction is essentially the same as the elementary picture for the appearance of boundary charges in
homogeneous polarizable materials. Namely, internal dipoles cancel macroscopically but those at boundaries
contribute to net surface charges.

The macroscopic charge density that appears between regions of different properties can be calculated as
follows. The conservation of electromagnetic currents in a 1D system can be expressed as

J@ = c@(W)E@ = O (W)E® = J®), (49)

where 0*® are the macroscopic average values of conductivities of the i'™ electrolyteregion (where k = a, b), and

EP and J refer to the associated macroscopic electric fields and currents. The equality of the currents yields

cO(W)E® — ¢@(W)E@ = AcE,, + GAE = 0, (50)

where Ao = o' — 0'” and 7 are, respectively, the difference and mean value of conductivities. E,, is the

average field that is uniform within each region in the 1D case, and AE is the jump in the electric field at the
interface. By Gauss’ law, the discontinuity in the electric field corresponds to a Maxwell-Wagner accumulated
charge density Qumw = AE/¢q at the interface. Following equation (50), we have the result

Qmw = — g Ew , (51)
g &
which indicates that an interface is electrified by the presence of a non-vanishing field. This relation remains
macroscopically valid in the full three-dimensional case when the value E,, is identified as the field at the
interface. The charge density Qypw is @ net charge that includes both ionic and polarization contributions, and
thus there are many ways in which this net charge can appear. The scheme of figure 5, emphasizes the ionic
component of the charge accumulation.

The model developed has important implications for low-frequency phenomena. In models for interpretation
of electroencephalographic recordings and other biosignals, currents are considered quasi-stationary when the
frequencies involved are below 10° Hz. These currents are assumed to satisfy continuity and constitutive equations
with real constant conductivity in homogeneous regions (Geselowitz 1967, Mosher et al 1999, Nunez et al 2006).
Discussion of these models can be carried out directly in terms of observed potentials, but the models intrinsically
involve the Maxwell-Wagner effect and imply accumulation of charge at interfaces (Solis and Papandreou-
Suppappola 2019). As discussed in section 2, the continuity is satisfied only for the electromagnetic current and not
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its ionic component. Furthermore, at low frequencies the complex conductivity is mostly imaginary and thus has a
capacitive rather than conductive nature. It is therefore crucial to reconsider these models to incorporate the
complex form of the conductivity, which is not simply a minor correction.

The ideas developed here provide insight into several aspects of tissue conductivity. The key results predict
specific functional forms for the conductivity that clearly show the presence of characteristic frequencies and
provide correct limiting behaviors at low and large frequencies. Explicit consideration of the electrolyte behavior
enables clear microscopic interpretations of currents, low-frequency polarization, and the Maxwell-Wagner
effect. The proper consideration of the nature of currents informs the design of reliable models of macroscopic
tissue behavior. The results can be extended to other geometries and can help design models for heterogeneous
systems that explicitly use complex conductivities. Future work will also address the effects associated with the
distribution of sizes of the wall-bounded electrolyte regions within the periodic structure employed in this work.
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