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Abstract
Objective. In the presence of oscillatory electricfields, themotion of electrolyte ions in biological
tissues is often limited by the confinement created by cell and organelle walls. This confinement
induces the organization of the ions into dynamic double layers. This work determines the
contribution of these double layers to the bulk conductivity and permittivity of tissues.Approach.
Tissues aremodeled as repeated units of electrolyte regions separated by dielectric walls.Within the
electrolyte regions, a coarse-grainedmodel is used to describe the associated ionic charge distribution.
Themodel emphasizes the role of the displacement current in addition to the ionic current and
enables the evaluation ofmacroscopic conductivities and permittivities.Main results.We obtain
analytical expressions for the bulk conductivity and permittivity as a function of the frequency of the
oscillatory electric field. These expressions explicitly include the geometric information of the
repeated structure and the contribution of the dynamic double layers. The low-frequency limit of the
conductivity expression yields a result predicted by theDebye permittivity form. Themodel also
provides amicroscopic interpretation of theMaxwell–Wagner effect. Significance. The results
obtained contribute to the interpretation of themacroscopicmeasurements of electrical properties of
tissues in terms of theirmicroscopic structure. Themodel enables a critical assessment of the
justification for the use ofmacroscopicmodels to analyze the transmission of electrical signals through
tissues.

1. Introduction

Themacroscopic response of biological tissues to externally applied or internally generated electric impulses can
provide important information regarding the internal tissue structure. Characterizing this response is useful in
the design ofmaterials relevant tomedical applications and human-machine interfaces (Nunez et al 2006,
Grimnes andMartinsen 2011,Makarov et al 2015). As a characterization tool, conductivitymeasurements have
been shown to differentiate between tissues in different states and thus serve as potential diagnostic tools. For
example, the conductivities of some cancerous tissues have been shown to differ from those of healthy tissues
(Åberg et al 2011, Grenier et al 2013, Braun et al 2017, Teixeira et al 2018). Electrical properties can also
differentiate between different life stages of organisms (Grossi andRiccò 2017, Flores-Cosío et al 2020, Ibba et al
2021). Tissue conduction is also relevant to the interpretation of biological signals such as those observable in
electroencephalographic (EEG) recordings. The inverse problem that aims to localize the origin of EEG signals
in response to a physiological stimulus relies onmodeling the human head as a set of conductingmedia
(Geselowitz 1967,Mosher et al 1999,Nunez et al 2006, Grech et al 2008, Solis and Papandreou-
Suppappola 2019). Typicalmodels consider the head composed of homogeneousmaterials characterizedwith
parameters usually obtained fromanimal studies. In yet another direction,wenote that human-body-mediated
signal transmission requiresmodeling of electrical conduction in tissues (Swaminathan et al2015,Wang et al 2015,
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Lodi et al 2020). In all these areas, a conceptual link between themicroscopicmodel parameters used to describe the
cell-level or tissue-level structure andmacroscopic electrical properties is important tomake further progress.We
note thatmicroscopic-levelmulticompartmentmodels have been successfully applied to understand cells in
solution and interpret the properties of somevegetable tissues (Schwan1957, Takashima et al 1989,Kuang and
Nelson 1997, 1998,Angersbach et al 1999,Grossi andRiccò 2017). Further, it is important to note that similar
questions arise innon-biological contexts, e.g. in electrolyte-based softmaterials for energy and separation
applications,where understanding the link betweenmicroscopic structure andmacroscopic properties is useful
(Sareni et al 1996, Brosseau 2006,Wang andPan 2008, Jing et al2015, Zhang et al2018, Faucher et al 2019, Zhbanov
andYang2020).

For oscillating externalfields of frequencyω, the response of themacroscopic samples can be described by
means of a frequency-dependent complex conductivity σ(ω) or permittivity ε(ω). These quantities exhibit
distinct regimes characterized by drops in the values of the real part of the permittivity accompanied by the
appearance of peaks in its imaginary part (Foster et al 1986, Takashima et al 1989, Kuang andNelson 1998,
Grimnes andMartinsen 2011). Considerable variations in peak location andwidth acrossmaterials is observed
(Gabriel et al 1996a, 1996b, 1996, 2009).

For frequencies in theGHz range, the response is dominated bymolecular-level polarization and classified as
belonging to the γ-dispersion regime. In theMHz range, peaks in the imaginary part of the permittivity of cell
suspensions arewell understood as arising from the contrast between the electrical properties of the cells and
their suspensionmedium. Features in this range appear inmany types of tissues and systems and are classified as
belonging to theβ-dispersion regime. Finally, theα-dispersion regime refers to a similar type of response that
appears at frequencies in the kHz region or below, though its origin is less well understood (Foster et al 1986,
Takashima et al 1989, Kuang andNelson 1998,Martinsen et al 1998, Grimnes et al 2002, Gabriel et al 2009,
Abdalla 2011, Grimnes andMartinsen 2011,Nordbotten et al 2014, Podtaev et al 2015, Crowell et al 2020,
Bouchaala et al 2021).

Many previous studies have used a bulkmacroscopicmodel for the description of currents in confined
regions.We note that a confined electrolyte, in the presence of oscillating externalfields, accumulates ions on the
confining boundaries and creates dynamic double layers. The role of these ionic double layers have been
considered in somedetail in the exterior of cells in solution bymodeling the cells as colloidal particles (Grosse
and Schwan 1992) and examining dispersion in the colloidal suspension (Schwarz 1962, Dukhin et al 1974,
Grosse andDelgado 2010). Here, we consider currents and the double layers inside the cells confined by
dielectric walls inaccessible to ions.We develop amicroscopicmodel comprising a sequence of regions of
confined electrolytes separated by dielectric walls, that explicitly considers the effects of the external electricfield
and the dielectric discontinuities at the electrolyte-wall interfaces on the formation of double layers. It is
assumed that the confiningwalls are themselves uncharged and hydrodynamic effects are ignored.

A sketch of themicroscopicmodel system considered appears infigure 1. It contains an electrolyte region
(cell interior) of size LE confined by thin dielectric walls (cell walls and cell exterior) of thickness LD, and an
electric field in the direction perpendicular to thewalls. Our key result is an analytical expression for the
conductivity of this system. In section 3.3, we arrive at the result

( )
( )

( ) ( )s w
w

w w
s w=

- Wi
, 1E

where = -i 1 represents the unit imaginary number, and the characteristic parametersΩ(ω) andσE(ω) are
complex and have a frequency dependence. At low frequencies, both these parameters have real limitsΩ0 and
s0
E. Thefirst,Ω0, has units of frequency and can be interpreted as the inverse of the characteristic relaxation time

associatedwith the double layer buildup process. The second, s0
E, captures the conductivity of the pure

electrolyteregion. Our key result has a low-frequency (ω=Ω0) limit of the form:
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Most discussions of electric properties of tissues under oscillating fields consider theDebye formof the
complex permittivity which is the sumover the termsΔε/(1+ iτω), whereΔε and τ represent an excess
permittivity contribution and its associated relaxation time respectively (Hurt 1985, Foster et al 1986, Gabriel
et al 1996a, Eleiwa and Elsherbeni 2001). These terms lead to conductivity contributions of the form
σ(ω)= ωτΔε/(ω− iτ−1).We refer to this form as aDebye-type conductivity, and show that the low frequency
limit of ourmain result, equation (1), has this Debye form.

The new expression for the variation of conductivity and permittivity with frequency enables a closer
examination of the link between thematerial heterogeneities and phenomena in theα andβ-dispersion regimes.
The dynamic double layers in the interior of cells have a characteristic size given by the screening lengthκ−1

associatedwith the electrolyte solution that emerges from ionic interactions (Kilic et al 2007a,
Israelachvili 2011). As shownbelow, several features of the response result directly from the double layers, and
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both dimensionless quantities: the ratio of thewall thickness and the electrolyte-region thickness (LD/LE) and
κLE, determine the relaxation times characterizing the conductivity at low frequencies.

An important part of the discussion presented addresses the role of ionic currents. In the bulk of the
electrolyte regions, these currents form themain component of the total net current, which also includes a
relatively smaller contribution from the displacement current (Scott et al 2000a, 2000b, Barbero andAlexe-
Ionescu 2005). The net current, whichwe also refer to as the electromagnetic current, is conserved throughout
thematerial. That is, as a vector field it is divergenceless This is the case evenwhen ions are completely blocked in
thewall region, where the displacement current dominates (Eisenberg et al 2017, Eisenberg 2018). The explicit
description of charge distributions and currents, including displacement currents within the dielectric walls,
leads to refined interpretations of experimentalmeasurements of tissue properties and clearer understanding of
tissue-related phenomena such as theMaxwell–Wagner effect. Further, ourwork signals the need to reconsider
somemacroscopicmodels commemployed to examine the electrical properties of tissues.

The rest of the paper is organized as follows. The current contributions andmacroscopic description are
presented in section 2. Themicroscopicmodel is introduced in detail in section 3, which also provides
expressions for the conductivity and permittivity. Section 4 presents the results associatedwith several
illustrative examples. Section 5 discusses the connections of themicroscopicmodel with experimental
measurements and theMaxwell–Wagner effect, and presents conclusions.

2.Macroscopic description of currents in tissues

The analysis of electrical phenomena in biological systems usesmethods andmodels where alternating currents
(AC) as well as direct currents (DC) are relevant.Macroscopic tissue properties are often characterized byAC
impedances. On the other hand, description of electroencephalographic (EEG) signals assumes quasi-static
currents characterized byDCproperties. Though related, the currents in these contexts are not the same. InDC
or quasi-static systems, the current is the flowof charged particles. In AC systems, this definition ismodified to
include a displacement current term that allows a seamless description of capacitive and inductive components,
so that the newly defined current is conservedwithin circuits.

As in the examples noted above, context dictates themeaning of the current but, in some cases, an explicit
distinction is required. This article focuses onACproperties in regimeswhere ionicflux is relevant, typically
below 1 GHz, whenmolecular polarization ismore prominent. The presence of the ionic flux component of the
current demands a careful choice of nomenclature. In addition, the explicit use of the concepts of the
displacement and electromagnetic currents introduced below,makes the discussionmore precise and insightful.
The electromagnetic current has two key properties. First, it is fundamentally conserved due to the structure of
Maxwell’s equations. Second, in the complex domain, it is the object that satisfies a generalized constitutive
equation relating current and electric field, and thus defines the complex conductivity.

Figure 1.The top panel shows a set of similar electrolyte regions (white) separated by thick dielectric walls (gray) impermeable to ions.
The bottompanel shows the simplified one-dimensional periodic structure used formodel calculations with a horizontal electric field
(solidfield lines). Thewalls parallel to thefield are ignored in themodel. All electrolyte regions have size LE and all walls have thickness
LD. The horizontal axis is represented using theCartesian coordinate xwith the origin at themid point of an electrolyte region.
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The explicit definitions of the different currents are as follows. The flux of unbound charged particles defines
a current density j. The displacement current density jD in amedium can be defined as the time derivative of the
displacementfieldD:

( )= ¶j D. 3tD

In linearmaterials this is proportional to the electric fieldE,D= ε0εEwith ε0 and ε are the vacuumandmedium
permittivity respectively. The sumof the particle and displacement current densities is the object that appears in
Maxwell’s equations. It is referred here as the electromagnetic current density J:

( )= +J j j . 4D

Moving forward, wewill refer to j, jd, and J as simply particle, displacement, and electromagnetic currents
respectively.When the particles are ions, the term ionic current is used. In the one-dimensional (1D) case the
current densities (fluxes) are proportional to currents through a fixed cross-sectional area perpendicular to the
flowdirection.

In AC systems, the electromagnetic current J coincides with the circuit current (Harrington et al 1961, Fano
et al 1963, Jackson 1999). The current J is divergenceless:

· ( ) =J 0. 5

In otherwords, the electromagnetic current is conserved. Gauss’ law equates the divergence of the electric
displacement vector in amediumwith the charge density ρ of free particles:∇ · D= ε0∇ · εE= ρ. Therefore,
the zero divergence of the electromagnetic current can be interpreted as a continuity equation:

· · ( )r = ¶ +  =J j 0. 6t

While the ionic current is of fundamental interest, the currentmeasurements in electrical circuits
correspond directly to the electromagnetic current. For example, a simple Ammeter detects themagnetic fieldB
created by a circuit. Its value is determined fromAmpere’s and Faraday’s laws and it turns out to be linear in the
electromagnetic current J, rather than in the flux of charged particles j. Previous studies have emphasized the
need to have a clear distinction between j and J (Fuller andWard 1970), and have highlighted the key role of the
displacement current in the description ofmicroscopic processes in heterogeneousmaterials (Eisenberg et al
2017, Eisenberg 2018).

The divergenceless condition, equation (5) is true for the current expressed as a function of time and position
aswell as in the frequency domain. In the latter case, it is standard to consider a single frequencyω, inwhich case
wewrite ( ) [ ( ) ]w= wt Re eJ J i t , where [·]Re denotes the real part of the argument and J(ω) is a frequency-
dependent, complex amplitude. The conservation of the electromagnetic current in the time domain
immediately implies the conservation of J(ω) in the frequency domain.

For a two terminal circuit elementwith external oscillating sources and linear elements, the impedance
Z= V(ω)/I(ω) is defined as the ratio of the amplitude of the potential dropV(ω) to the circuit current I(ω). A
definition formore general systems is based on the rate of energy dissipation in a space region, though this will
not be needed in this article (Harrington et al 1961, Fano et al 1963, Jackson 1999). In a homogeneous, passive
element of length L and cross-section areaA, a complex conductivity can be defined asσ(ω)= L/(ZA). This
definitionmakes sense formacroscopic objects as long as the local behavior can be averaged. In the case of
tissues,σ(ω) characterizes an average overmany cells. Noting that themagnitude of the potential drop in the
element can be expressed asEavL, where Eav is the complex amplitude of an average electric field, the definition of
the complex conductivity implies the following linear constitutive relation:

( ) ( ) ( ) ( )w s w w=J E . 7av

Itmust be emphasized that this linear relationworks in the frequency domain, and that J is the electromagnetic
(or circuit) current. The fieldEav is an average over themicroscopic values of the electric field, which is simply
denoted byE.

The structure of the different currents in the context of bounded electrolytes is sketched infigure 2. Two
neighboring regionswith ions are separated by a hardwall. An oscillatory external electric field is applied in the
horizontal direction. In the bulk of the electrolyte regions, far away from thewalls, the combination of the
externalfield and local contributions due to the small accumulation of charges still produce a net field in the
same direction as the external one. There, the ionic current j satisfies the constitutive equation j= σ0E, withσ0
being the conductivity of the ionicmedium. In the bulk region, there are no significant charge density gradients
that contribute to the creation of ionic currents. The electromagnetic current in this region is J= σ0E+ εEε0∂tE,
where it is assumed that the local permittivity εE is that of water (εE= 80). The bulk electrolyte has a
characteristic frequencyΩE= σ0/εEε0, typically in the range ofGHz. In the bulk region of a pure electrolyte at
frequenciesmuch lower thanΩE, the electromagnetic current and the ionic current approximately coincide,
J≈ jBulk.
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Thefigure also shows the presence of two double layers, one at each side of thewall. These double-layers are
dynamic and appear due to the stopped flux of ions at thewall. In contrast to the bulk region, changes in the
charge density in this region produce non-negligible contributions to the displacement current. Inside the hard
wall region there is no ionic current j= 0 and the total current equals the displacement current J= jD. The
region is permeated by the time-varying electric field. In the 1D case, the electric fieldmust be spatially uniform
because its divergence is zero inside the dielectric wall region. In tissues, the field in thewalls connects the
electrical activity across the electrolyteregions.

In the situation sketched in thefigure, the two compartments separated by thewall do not have the same
properties; the sketch suggests different ionic concentrations. The ionic conductivities of these two
compartments are thus different. The previous analysis shows, however, that in a 1D geometry, the two
compartments have identical electromagnetic current at all times for any frequency, and a nearly equal ionic
current in their bulk at low frequencies because the total current ismainly conductive in this region. In short, in
spite of the presence of a hardwall, where it is actually zero, the ionic current is essentially continuous at low
frequencies. These characteristics appear in the numerical examples presented below.We also note similar
discussions in (Eisenberg et al 2017).

It is worth noticing that the previous discussion carries over to tissues in contact with an electrode. Away
form the actual electrode contact, the circuit current in themeasuring device can be identifiedwith theflux of
electrons, and is approximately equal to the ionic current in themost conducting regions of the tissue. On the
other hand, it should also be stressed that themacroscopic calculations of conductivity and impedancemust use
the full electromagnetic current.

3.Microscopicmodel of tissues based on confined electrolytes

Weconsider the setup shown infigure 1where, in the direction of an applied external electric field, the tissue can
be considered as a set of similar electrolyteregions separated by thick dielectric walls. The transversal size of the
regions is not crucial to the analysis and thuswe consider an effective 1Dmodel. The electrolyteregion has length
LE and the dielectric wall has thickness LD. The repeated structure has a total length of L= LE+ LD. It is useful to
define the length ratios:ℓE= LE/L andℓD= LD/L.We adopt a systemof coordinates where the variable x is
alignedwith thefield, the origin is at the center of an electrolyteregion, and the centers of the dielectric walls are
at±L/2,±3L/2,K.

The properties of the confined electrolyte can be discussed by adopting a coarse-grained representation
where average values of the ionic distribution and charge densitiesmake sense. It is assumed that the
electrolyteregion is overall electroneutral and contains amonovalent (1:1) electrolyte. Both charged species

Figure 2. Structure of currents near an impermeable wall in an effective one-dimensional system. The left and right electrolyteregions
are separated by a dielectric wall shown in gray. Electrolyte ions in solution are shown as circles. The extreme left and right edges of the
figure are considered to have the bulk properties of the respective electrolyte regions. The two electrolyteregions can have different
ionic densities. The electromagnetic current J, at top, is spatially constant. Below, the ionic current j has equal bulk value in both
electrolyteregions, but decays to zero near the dielectric wall. In the third row, the displacement current jD is large inside the dielectric
wall and small in the electrolyteregions, where it reflects the dynamic changes in the accumulated charge near thewall and thus in the
electric displacement field. See alsofigure 3 for a numerical example.
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(cations and anions) have equal number densities n0. In the electrolyteregion, themodel becomes awell-studied
system for diffusion in the presence of electric fields (Buck 1969,MaCdonald 1970,Macdonald et al 1987, Bazant
et al 2004). A description of the ionic currents, potential and impedance are presented for a similarmodel in
previousworks (Cirkel et al 1997, Scott et al 2000a, 2000b, Barbero andAlexe-Ionescu 2005). The derivation
below aims at setting these results in the context of tissues and extending themby explicitly considering the
properties of the ionic, displacement and electromagnetic currents, and by taking into account themicroscopic
structure of the dynamic double layers. Relatedmodels have been studied for other geometries, focusing on
single cells or cell suspensions (Schwarz 1962,Dukhin et al 1974, Foster et al 1986,Dukhin et al 1999, Koch 2004,
Grosse andDelgado 2010). Tissues have been less explored, and oftenmodeled as sequences of slabs of
homogeneousmaterials. A connection between the properties of these slabs and the underlyingmicroscopic
structure is not established (Kuang andNelson 1998, Grimnes andMartinsen 2011).

3.1. Electrolyte region
Themotion of individual ions in the confined electrolyteregion leads to changes in the local charge density ρ as a
function of space and time. Theflux of ions of a given charged species s (e.g.monovalent cations) is dictated by
the dissipative dynamics driven by the gradient of the electrochemical potentialμs characterizing the species.
The average velocity vs of a group of ions associatedwith species s is given by

( )g m= - v , 8s s

where γ is the ionmobility.While γ generally depends on the ionic attributes (e.g. size, valency), wewill assume
ions of both charged species to have the samemobilities. Thismodel applies to ions in solution that are free.
When ions are associated to organelles or other cellular structures theirmobility is greatly reduced.We assume
that themain contribution to conductivity arises from the free ions, though it is known that surfacemotion
contributes to electric response (Shilov et al 2001). In The electrochemical potentialμs is assumed to be
determined by entropic and electrostatic interactions:

( ) ( )m f= +k T n n ezln , 9s s sB 0

where thefirst term is the entropic term given by the product of the Boltzmann constant kB, the temperatureT,
and the logarithmof the ratio between the local concentration ns and the average concentration n0 of the charged
species. The second term is the electrostatic energy obtained via the product of the fundamental charge e, ion
valency zs, and the electrostatic potentialf. This potential combines both the effect of the external field and the
localmean-field created by the charge density ρ. This chemical potential construction is standard in the context
of dynamic ion conduction (Bazant et al 2004, Kilic et al 2007a).

Noting that the gradient of the electrochemical potential is m =  --k Tn n ez Es B s s s
1 , whereE=−∇f is

the local electric field, the local current js for species s is obtained as

( )g g= = -  +ez n ez k T n e z nj v E. 10s s s s s s s sB
2 2

The last term in equation (10) is nonlinear because the local electric fieldE depends on the particle density ns. An
electrolyte in the absence of an externalfield has uniform concentration n0 and zero electricfieldE. The
linearization of the product nsE around this state is n0E. Inwhat follows, this linear approximation is used. The
role of nonlinear terms has been discussed for the static case in biological contexts in (Levin 2002) and for general
electrolyte systems in (Bazant et al 2004, Kilic et al 2007a). Limitations are also known from experimental work
(Wright 2007). Typical cells and tissues have ionic concentrations in the 100mMrange. At these concentrations,
a linear response analysis is possible. Corrections to the linearization approximation appear in electrolyte
systems at room temperatures when concentrations ofmonovalent salts are higher than∼1M (Bazant et al 2004,
Kilic et al 2007a, 2007b, Israelachvili 2011).While average concentrations in biological systems are often below
this regime, ion accumulation in the double layers can reach very high concentrations. The presence of
corrections can be determined by comparing the highest predicted concentrationwith the 1M threshold value.

Summing the currents in equation (10) over both species, the charge density becomes ρ=∑sezsns and the
net ionic current j=∑js is given by

( )r s= -  +Dj E, 110

whereD is the diffusion constant:

( )g=D k T , 12B

andσ0 is the intrinsic conductivity for a 1:1 electrolyte:

( )s g= e n2 . 130
2

0

Using j from equation (11) in equation (6), the continuity equation for the charge density ρ leads to
∂tρ=D∇2ρ− σ0∇ · E. Assuming that the electrolyteregion can bemodeled as a uniformdielectricmedium
characterizedwith a relative permittivity εE, and usingGauss’ law∇ · E= ρ/(ε0εE), one obtains the standard
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(Nernst–Planck) transport equation:

[ ] ( )r r k r¶ =  -D , 14t
2 2

whereκ is the inverse screening length given byκ2= σ0/(ε0εED)= 2e2n0/(ε0εEkBT). Fromhere on, we consider
water as the dielectricmedium inhabited by the ions.

In addition to solving equation (14), it is necessary to also determine the electric potentialf by solving the
Poisson equation, and applying the boundary conditions set by the external fieldEext. The Poisson equation is
obtained by substitutingE=−∇f inGauss’s law:

· ( )e e f e e r-  =  =E . 150 E
2

0 E

The boundary conditions for the electrolyteregion considered are: no-particle flux on the confining dielectric
walls (j|wall= 0), continuity of the potential, and thematching of electric displacement at the electrolyte-wall
interface. In the 1D case, the solutions of the Poisson equation can bewritten in the formnew

( ) ( ) ( ) ( )f f= -x t x t xE t, , . 16c B

Thefirst term,fc, is a solution of the Poisson equation (equation (15))with an inhomogeneous term equal to the
accumulated charges ρ. The derivative offc is zero at themidpoint of the electrolyte region. The second term
xEB(t) is a spatially-linear potential that solves the homogeneous Poisson equation (∇2f= 0) and enables the
matching of appropriate boundary conditions. EB(t) is the time-varyingmagnitude of a spatially-constant
electric field, which can be identifiedwith the totalfield at the center of the electrolyte.EB is not the externalfield
because it also has contributions due to the charges in the systemoutside the immediate electrolyte region.

In the following, unless otherwise noted (e.g. for the electromagnetic current density), wewill use the same
symbol for the time and frequency domain amplitudes. Inside the electrolyteregion, the ion concentration can
bewritten as ( ) ( ) ( )r r w w=x t x i t, , exp .We consider the steady state under the action of external oscillating
fields. See (Bazant et al 2004) for a discussion of the transient case. The spatial dependence of the density
amplitude ρ(ω, x) can be taken to be proportional to ( )qxsinh . It can be checked by direct substitution that
ρ(ω, x) satisfies Eq. (14) for suitable choice of the parameter q. Terms proportional to ( )qxcosh must be set to
zero tomaintain electroneutrality. The parameter qmust satisfy the dispersion relation:

[ ] ( )w k= -i D q . 172 2

The parameter q can be interpreted as a complex inverse screening length. At low frequencies,
q≈± κ[1+ iω/(2Dκ2)]. Fromhere on, the symbol q denotes the root with the positive value. In addition to the
characteristic lengthκ−1, the properties of the electrolyte determine a characteristic frequencyΩE:

( ) ( )k s e eW = =D . 18E
2

0 0 E

Note that this characteristic frequency is associatedwith the electrolyte and notwith the full system comprising a
series of confined electrolytes. The characteristic frequency of thewhole system can be orders ofmagnitude
smaller. However,ΩE serves as a reference to observe the emergence of the low-frequency behavior.

The charge density is concentrated in the double layers created at thewalls confining the electrolyte region.
We assume that the electrolyte region thickness LD is several times larger than the screening lengthκ−1. Away
from the origin at the center of the electrolyte region, the density, proportional to ( )qxsinh , is dominated by the
exponential terms ( )qxexp for x> 0 and ( )-qxexp for x< 0. Thus, near each of thewall boundaries at
x=± LE/2, the density is given by an exponentially-decaying oscillatory function. Themagnitude of the inverse
decay length is of the order of the screening length (q∼ κ). It is useful to express this density as a function of the
distance away from thewall.Without any loss of generality, we consider the left end of the region located at
x=− LE/2, and introduce a local variable ¢ = +x x L 2E . The charge density is thenwell approximated by

[ ( )] [ ]r » - + = - ¢P q x L P qxexp 2 expE (withP being a frequency dependent amplitude). Similarly, near the
right wall at x= LE/2, [ ( )]r = - -P q x Lexp 2E .

The charge density generates a potentialfc thatmust satisfy the Poisson equation, equation (15). Near the
left boundary, the solution takes the form

( ) [ ] [ ] ( )f w e e¢ = - - ¢x P q qx, exp . 19c 0 E
2

This expression, alongwith its corresponding part at the right wall, provides the inhomogenous solution
indicated in equation (16).

The electric field associatedwith the above inhomogeneous potential is [ ] [ ]e e= - ¢E P q qxexpc 0 E near the
left wall. It creates an ionic current contribution ( ) [ ]s k= - ¢E D q P qxexpc0

2 . The diffusion current is
proportional to the gradient of the charge density [ ]r-  = - - ¢D DqP qxexp . The amplitude of the net ionic
current near thewall is then, using equations (11) and (16)
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⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )w
k

s¢ = - + - ¢ +j x
q

q DP qx E, exp . 20
2

0 B

This quantitymust equal zero at the left wall, i.e. j(ω, 0)= 0. Solving this relation for the charge density
amplitude P and using equation (17) leads to:

( )s
w

=P
iq

E . 210
B

This relation can also be obtained via a time-integration of the current density across themidpoint of the region,
which is just proportional toEB. The above derivation highlights the use of the hard-wall condition.

Equation (21) yields the charge density ( ) [ ]r s w= - ¢iq E qxexp0 B , which determines the amplitude of the
potentialfc created by the charges near the confiningwall. As the charge density decays quickly into the bulk, a
net total charge per unit areaQ at thewall can be obtained by integration over the double layer region:

( )s
w

=Q
i

E . 220
B

This total charge amplitude characterizes thedynamic double layer. It is clearly out-of-phasewith respect to the
bulkfield.The electricfield at bothwalls is the sameby symmetry, andhas the valueES=−∇fc(ω,± LE/2)+ EB,
which canbewritten in terms of thebulkfieldEB as

( )
w

= -E i
Dq

E . 23S

2

B

The potential difference across the electrolyte region due to accumulated charges near the dielectric walls can
also be expressed in terms of the bulkfield as 2i(Dκ2/qω)EB. The total potential difference in the
electrolyteregionΔΦS(ω) is the sumof this term and the one due to the bulkfield, which is−EBLE from
equation (16):

⎡
⎣⎢

⎤
⎦⎥

( ) ( )w
k
w

DF = - +L i
D

q
E

2
. 24S E

2

B

Finally we note that in our 1Dmodel system, symmetry dictates that there is no accumulated charge at the
center (x= 0) of the electrolyte region.However, the x-component of the electromagnetic current at x= 0, J(ω),
isfinite and takes the value

( ) ( )w s we e e e= + =J E i E Dq E , 25E E0 B 0 B 0
2

B

where the second equality follows from the dispersion relation in equation (17).

3.2.Dielectric wall
Weconsider the dielectric wall region centered at x=−L/2 of width LD confining the electrolyteregion
considered above centered at x= 0. Below,we only show the non-trivial, x-component of the vectors associated
with the 1Dmodel.Within the dielectric wall characterized by a relative permittivity εD, there are no unbound
charges and the electric field is spatially uniform:

( ) [ ] ( )w=E x t E i t, exp , 26D

where,ED is the amplitude in the frequency domain. ED can be determined via the continuity condition of the
displacementfield at the boundary between the dielectric wall and the electrolyte solution:

( )e e=E E , 27D D E S

whereES is the electric field at the edgewithin the electrolyteregion. Substituting ES from equation (23) yields

( )e
e w

= -E i
Dq

E . 28D
E

D

2

B

The total potential difference across the dielectric wall region is simplyΔΦD=−LDED, which yields

( )e
e w

DF = i
L Dq

E . 29D
E

D

D
2

B

Finally, the ionic current in the dielectric wall region vanishes, j(ω, x)= 0.However, there is an electromagnetic
current within this regionwhich is equal to the displacement current J(ω)= jD(ω, x)= iωε0εDED= εEε0Dq

2EB.
The last equality and equation (25) demonstrate the conservation of the electromagnetic current.

3.3. Impedance and conductivity
The impedance of amaterial is a directlymeasurable quantity and is calculated by obtaining the potential drop
(the negative of the potential difference)necessary to create a given electromagnetic current. In a region of length
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L consisting of an electrolyte solution of length LE and a dielectric wall of thickness LD, the drop is
V(ω)=−ΔΦS−ΔΦD. Following equations (24) and (29), we obtain

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )w
k
w

e
e w

= - -V L i
D

q
i

L Dq
E

2
. 30E

2
E

D

D
2

B

Using the relation between the electromagnetic current J(ω) andEB in equation (25), wefind

⎜ ⎟
⎛
⎝

⎞
⎠

ℓ
ℓ( ) ( ) ( )w

e e
k
w

e
e w

w= - -V
L

Dq
i
D

q L
i

Dq
J

2
, 31

E 0
2 E

2
E D

2

D

wherewe have recalled the length ratios:ℓE= LE/L andℓD= LD/L. The impedanceZ of the repeating unit of
size L of transverse areaA is

⎜ ⎟
⎛
⎝

⎞
⎠

ℓ
ℓ( )

( )
( )w

w e e
k
w

e
e w

= = - -Z
V

AJ

L

A Dq
i
D

q L
i

Dq2
, 32

E 0
2 E

2
E D

2

D

where the last equality easily follows from equation (31).
The impedance of the composite structure comprisingN repeats of the the unit structure isNZ. The

conductivity is defined as the inverse of the impedance per unit length divided by the transverse area,
σ(ω)= (NL/NZ)/A= L/(ZA). This is also consistent with themacroscopic relation in equation (7),
σ(ω)= Eav/J(ω), since Eav= V/L. Using equation (32), we obtain

( )ℓ
( ) ( ) ( )

ℓ
s w

w k s

w k
=

- +e
e

q

i Dq D
, 33

qL

2 2
0

E
2 2 2E D

D

wherewe have used the second equality in equation (18) to introduce the intrinsic conductivityσ0 for a
monovalent electrolyte. In obtaining this result we have usedmultiple repeats of an assumed periodic unit. If the
repeat units are not identical, the impedance is a sumof terms shown in equation (32). Each contribution
depends on the local dimensionless parametersℓD,ℓE andκL. The impedance as well as the effective
conductivity are averages over these contributions and thus determined by the average values of these
parameters.

Equation (33) is the key result of this paper.We nowpresent this result in a simplified formby introducing a
characteristic frequency parameterΩ:

⎜ ⎟
⎛
⎝

⎞
⎠

ℓ
ℓ ℓ

( ) ( )w k
e
e k

W = +D
q

qL

2 1
342 D E

E D

2

2
E

and a characteristic scaleσE for the conductivity:

⎜ ⎟
⎛
⎝

⎞
⎠ℓ

( ) ( )s w
s w

= +
W
i1 , 35E 0

E E

whereΩE=Dκ2 is the characteristic frequency associatedwith the pure electrolyte, given in equation (18).With
these definitions, the conductivity becomes:

( ) ( )s w
w

w
s=

- Wi
. 36E

Equation (36) has a structure similar to aDebye conductivity form (see below), with a key difference: bothΩ and
σ E are frequency-dependent and complex; in the case of the former, this becomes evident by noting that q is
complex and frequency dependent as seen in equation (17).

In the limiting case ofω→ 0, bothσE andΩhave real limits: s0
E andΩ0, respectively: ℓs s=0

E
0 E is the

conductivity associatedwith the electrolyteregion, whileΩ0 is given by

⎜ ⎟
⎛
⎝

⎞
⎠

ℓ
ℓ ℓ

( )e
e k

W = W +
L

2 1
. 370 E

D E

E D E

Herewe have usedΩE=Dκ2 and the fact that q≈ κ forω→ 0.Ω0 represents the characteristic frequency of the
composite system characterized by electrolyte and dielectric wall regions, and can be interpreted as the inverse of
the characteristic relaxation time associatedwith the double layer buildup process. As evident by the ratio
Ω0/ΩE:

ℓ
ℓ ℓ

( )e
e k

W
W

= +
L

2 1
, 380

E

E

D

D

E E

Ω0 can be orders ofmagnitude smaller than the characteristic frequencyΩE associatedwith the pure electrolyte,
for example, under high electrolyte concentration such thatκL? 1 andwhenℓE? ℓD.
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Using s0
E andΩ0 in equation (33), the low-frequency limit for the conductivity becomes:

( ) ( )s w
w

w
s»

- Wi
, 39

0
0
E

which seamlessly retrieves the standardDebye form. The complex conductivity can bewritten as s s s= ¢ + i
where s¢ andσ″ are its real and imaginary parts. At low frequencies these take the form

⎜ ⎟
⎛
⎝

⎞
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( ) ( )s w
w

w
s

¢ »
+ W

-
W
W

1 , 40
2

2
0
2

0

E

0

E

ℓ
( ) ( )s w

w
w

s
 »

W
+ W

. 410

2
0
2

0

E

The complex, frequency-dependent relative permittivity ε(ω) is given by ( ) ( ) ( )e w e w e w= ¢ +  =i
( ) ( )s s e w + ¢i 0 . In the low frequency limit, the real and imaginary parts of ε(ω) are

ℓ
( ) ( )e w

w
s
e

¢ »
W
+ W

, 420

2
0
2

0

0 E

⎜ ⎟
⎛
⎝

⎞
⎠ℓ

( ) ( )e w
w

w
s
e

 »
+ W

-
W
W

1 . 43
2

0
2

0

0 E

0

E

The real part of the permittivity has the zero frequency limit

⎜ ⎟
⎛
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⎞
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e
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As discussed below, this expression produces large numerical values for permittivity thatmatchwith the
experimental values. The imaginary part of the permittivity goes to zero asω→ 0.

In addition to recovering theDebye-type forms for conductivity at low frequencies, the general result for
conductivity in equation (33) has a clear interpretation at high frequencies. The high-frequency limit gives

ℓ ℓ ℓ ℓ
( ) ( )w s w

s w e
e e

we
e e¥ =

W +
=

+
i

i
lim . 450

E

D

D E E D

0

E E D D

Using this expression, we find that the high frequency limit for relative permittivity ε(ω) is real:

ℓ ℓ
( ) ( )w e w

e e¥ =
+

lim
1

, 46
E E D D

and can be expressed as a weighted harmonicmean of the permittivities associatedwith the electrolyte and
dielectric wall regions (noting thatℓE+ ℓD= 1). In the limiting case of the pure electrolyte,ℓE→ 1 (and
ℓD→ 0), we recover ( )e w e=w¥lim E. Similarly, in the case of a very thin electrolyteregion characterized by
ℓE→ 0 (andℓD→ 1), we obtain ( )e w e=w¥lim D.

4. Results

4.1. Examples
Webegin by showing results for a system composed of repeated electrolyteregions of characteristic length
LE= 19κ−1 separated by dielectric walls of thickness LD= κ−1. The total length of the repeated unit associated
with the composite system is L= 20κ−1. The electrolyte solvent is assumed to bewater, with permittivity
εE= 80, while the dielectric region has permittivity εD= 20.With these values, the characteristic real frequency
of the composite system follows from equation (37) asΩ0= 0.2ΩE, whereΩE is the characteristic frequency of
the pure electrolyte. The parameters characterizing this example system are selected to clearly illustrate the long-
range structural features of the associated fields and currents in order to highlight the influence of the
heterogeneousmaterial structure on the electrical properties of themodel system.

Figure 3 shows the structure of the electric potential, the electric field, ionic current, displacement current,
and the charge density associatedwith this example systemwhen an external oscillating electric field of
frequencyω= 0.095ΩE is applied. The plots show the real and imaginary amplitudes of these quantities as a
function of position x, which ismeasured in units of the screening lengthκ−1. The real part of these amplitudes,
the in-phase component, can be considered as snapshots obtainedwhen the external field ismaximum. The
imaginary parts correspond to times when the externalfield is zero and increasing. The potential, field, current,
and charge density aremeasured in units ofΦU,EU, jU, and ρU, respectively. The reference potential and field
values arefU= eκ/ε0εE andEU= eκΦU= eκ2/ε0εE respectively. The current is expressed inmultiples of
jU= σ0EU= eκ2Ωe, and the charge density is expressed inmultiples of ρU= eκ3. In these units, the average value
of themagnitude of the external electric field used is 1 unit.
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In a homogeneous system (pure electrolyte), the potential amplitudewould be real and its plot would simply
be a line of slope−1. The situation is dramatically different for the heterogeneous composite system considered
here, where the potentialf has non-zero real and imaginary parts, and exhibits nonlinear features. The real part
is characterizedwith a sharp dropwithin the dielectric walls, wheref is linear. In the electrolyteregion,f is
approximately linear in the bulk but exhibits a nonlinear variation near thewalls due to the presence of the
dynamic double layers. The imaginary part of the potential is approximately zero, however, we observe a small
non-vanishing amplitude localized near thewalls.

The electric field exhibits a variationwith position that is consistent with the negative gradient of the
potential. Thefield is the negative of the gradient of the potential and is constant within the dielectric walls. It has
a very small value in the bulk of the electrolyteregion. This nearly vanishing field produces a small and uniform
ionic current in the bulk. The ionic current transitions, near the electrolyte boundaries to is zero valuewithin the
walls. The displacement current is largest and uniformwithin thewalls, and exhibits a variationwith position in
the electrolyteregion that is consistent with the conservation of the full electromagnetic current. In the bulk of
the electrolyteregion, the numerical value of the electromagnetic current is approximately the same as the ionic
current. Finally, the charge density exhibits an the accumulation and depletion of ions at the opposite end the
walls. These are the dynamic double layers. The charge density vanishes within the dielectric walls.

Figure 3 also shows the real part of the conductivity in units of the electrolyte conductivityσ0 as a function of
the frequencyω scaled byΩ0. The small ionic current in the bulk is responsible for the overall reduction of the
real part of the renormalized conductivity observed at lowω. The corresponding imaginary part of the
permittivity, scaled by the factor εU= εEΩE/Ω0= 400.0, as a function ofω is also shown.We observe a peak in
the permittivity at a frequencyωnear the characteristic real frequencyΩ0 of the heterogeneous system. The
system thus shows aβ-relaxation.

Systems characterizedwith LE? LD (i.e. when the thickness of the electrolyteregion ismuch larger than the
thickness of thewall) produce amuch greater reduction of the characteristic real frequencyΩ0 of the composite

Figure 3.Electrical properties (potentialf,field E, ionic current j, displacement current jD, and charge density ρ) of a heterogeneous
system characterizedwith alternating sequence of electrolyteregions of length 19κ−1 and dielectric walls (shaded gray) of thickness
κ−1. The characteristic frequency isΩ0 = 0.2 ΩE. Results are shown as a function of the position x for an external oscillating electric
field of frequencyω = 0.095 ΩE. The bottom right subplot shows the variation in the real part of the conductivity and permittivity asω
is changed. See themain text for themeaning of other symbols andmodel systemdetails.
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structure with respect to that of the pure electrolyteΩE. For example, a composite systemof total length
L= 200κ−1 with LE= 199κ−1 and LD= 1κ−1 (such thatℓE/ℓD= 199) leads toΩ0= 0.03ΩE, keeping all other
model parameters the same as above. The top two panels infigure 4 show the complex conductivity (scaled by
the intrinsic conductivity of the pure electrolyteσ0) and the complex relative permittivity as a function of the
frequencyω for this example system. The bottompanel shows theCole plot with the imaginary part of the
conductivity plotted against its real part. Both the real and imaginary parts of the normalized conductivity have a
limiting value of zero asω→ 0. At large frequencies, the imaginary part of the normalized conductivity
dominates over the real part, which rapidly saturates to 1/ℓE≈ 1, wherewe takeℓE→ 1 andℓD→ 0 (given
ℓE? ℓD). The imaginary part grows linearly withω for large frequencies and takingℓE→ 1 andℓD→ 0 in
equation(45), the slope of this linear growth is approximately εE. In aCole plot, the linear growth leads to a
vertical asymptote after the real and imaginary parts closely track the semicircle shape.

The imaginary part of the permittivity approaches zero value asω→ 0.However, takingℓE→ 1 andℓD→ 0
in equation (46), shows that the real part of the relative permittivity approaches òEκLwhich is≈8000 for this
example systemwithκL= 200 and εE= 80. At low frequencies, a clear peak in the imaginary part of the
permittivity is observed, indicating the presence of theβ dispersion. Asω→∞ , the imaginary part of the
permittivity tends to zerowhile the real part approaches εE= 80.

4.2. Layered systems
Tounderstand the effect of the dynamic double layers in determining the electrical properties of the confined
electrolyte system, it is useful to contrast the above results with a simplermodel where these details play no
significant role. For very small screening lengths, one can consider a layered systemof alternating piecewise-
uniform slabs ofmaterials of permittivity and conductivity with constant (frequency independent) real parts.
These alternating slabs (k= 1, 2)have complex conductivitiesσ( k)=σ0k+ iωε0εk and lengths Lk. Their
impedances per unit area have valuesZk= Lk/(Aσ

( k)). A systemofmultiple repeated units of these slabs has an
effectivemacroscopic conductivity ( )( )s = + -L A Z ZY 1 2

1, which is theweighted harmonicmean of the

Figure 4.Electrical properties of a heterogeneous system characterizedwith alternating sequence of electrolyteregions of length
199κ−1 and dielectric walls of thicknessκ−1. Top panel shows the real and imaginary parts of the conductivity s s s= ¢ + i as a
function of the frequencyω of the applied external electricfield.Middle panel shows the variation of the real and imaginary parts of the
permittivity e e e= ¢ + i withω. The bottompanel shows theCole plot showing the variation ofσ″ against s¢. Electrical conductivity
tracks the standard semicircular shape in the low-frequency regime.However, at high frequencies, the linear growth inσ″ leads to a
vertical asymptote. See themain text for themeaning of other symbols andmodel systemdetails.
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where the relative lengthsℓk= Lk/L act as theweights.
The individual uniform slabs do not have aDebye-type conductivity, but the combined layered systemdoes.

This is evident by examining the denominator in the last equality in equation (47), which has the form
ℓ1σ

(2)+ℓ2σ
(1)= ℓ1σ02+ ℓ2σ01+ iωε0(ℓ1ε2+ ℓ2ε1), similar to the expression in the denominator of

equation (40). For the case of an electrolyte slab of thickness ratioℓ1≡ ℓE and permittivity ε1≡ εE alternating
with a dielectric slab of thickness ratioℓ2≡ ℓD and permittivity ε2≡ εD, the real part of the denominator term is
ℓDσ0. Here,σ0 is the real part of the conductivity of the pure electrolyte andwe assume that the conductivity of
the dielectric slab ismuch smaller. The imaginary part has the form ¯we ei 0 withmean permittivity

ℓ ℓe e e= +D E E D. Considering the electrolyte region to bemuch longer than the dielectric slab, we get ℓe e» E D

and the imaginary part becomes iωε0ℓEεD. This layered system exhibits a characteristic frequency

ℓ
ℓ

ℓ
ℓ

( )s
e e

e
e

W = = W . 48Y
D 0

0 E D

D E

E D
E

This direct calculationmatches the low-frequency (ω→ 0) limiting value of the characteristic frequencyΩ, in
equation (34), associatedwith themicroscopicmodel of the heterogeneous confined electrolyte system
when ℓ ℓ( ) ( )k e e- L 1

D E E D .
In both the layered system and themicroscopicmodel, the typically small value of the ratioℓD/ℓE suppresses

the associated characteristic frequency (ΩY orΩ) to valuesmuch smaller than the characteristic frequencyΩE of
the fully uniform and homogeneous pure electrolyte system.Control of this ratio is the key to generating the
characteristic values for theα andβ dispersion regimes. The layer geometry can serve as the basis to introduce
more complexmodeling of specific systems. In particular, we note that the assumption of a purely dielectric wall
can be relaxed to include the presence ofmobile ions in the extracellular region, providing a small effective
conductivity to themodel layer representing it.

4.3. Interpreting experimentalmeasurements
Ourmodel with dynamic double layers and even the simplifiedmultiple slab systems produce good quantitative
results in concrete systems. For example, vegetable tissues have beenwell characterized bymeans of impedance
spectroscopy. Properties such as typical cell sizes can also be directly determined in the same samples by optical
microscopy. Reported conductivitymeasurements for banana, carrot and potato show clearβ dispersion
behavior. Frompublished data (Angersbach et al 1999), a characteristic frequency fβ (inMHz) can be obtained
from themid-points of the transition between plateaus of the (real) conductivity. Themodel discussed above can
broadlymatch the location of this frequency to the characteristic valueΩ0 orΩY. To this end, we use values of the
relevant parameters (LD, LE,σ0, εE, εD) that have beenmeasured or estimated for these three samples
(Angersbach et al 1999), as noted in table 1.

In these example systems, the electrolyte region is identifiedwith the cytosol and vacuole of the cells, which
spanmost of the volume of the cells.We take the cell linear size as LE and use thewater permittivity to
characterize the permittivity εE= 80 in this region. The thickness of the dielectric region LD is identifiedwith
twice the cellmembrane thickness and the permittivity of this region is taken to be εD= 2.3. The inverse
screening length is estimated to beκ≈ 0.96 nm−1, which corresponds to cytosolic ionic strength of 100mM.We
note that the dimensionless factor ( )k -LE 1 is very small so that both estimates of characteristic frequencies
effectively coincideΩ0≈ΩY.

The estimated values used for the electrolyte conductivity,σ0≈ 0.7 S m−1 can be comparedwith direct
calculations based on typical properties of cells. Interpreting the physiological ionic strength of 100mMas
associatedwith justmonovalent ions, and using the average ofmobility values for sodium and chloride ions
(5.2× 10−8 and 7.7× 10−8m2 (V s)−1 respectively (Atkins andDe Paula 2011)), one obtains an electrolyte
conductivityσ0= 1.24 S m−1. This value is large compared to the one noted in table 1. This suggests a reduced
effectivemobility for ions in cells, which is expected as some of these ions can be bound to organelles or cell

Table 1.Parameters for selected vegetable tissues.

Sample LE(μm) LD(nm) κ−1(nm) εE εD σ0(S m
-1) ( )W

p
MHz1

2 0 fβ(MHz)

Carrot 60 8.2 0.96 80 2.3 0.66 7.0 5.0

Banana 80 10.4 0.96 80 2.3 0.54 5.5 7.0

Potato 100 11.6 0.96 80 2.3 0.84 7.6 6.0
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membranes and thus not directly participate in conductivemotion. This analysis is a simplified version of that
presented byAngersbach et al (Angersbach et al 1999), which usesmanymore parameters. As noted, the
correction due to the dynamic double layers is in fact small. However, the explicit expressions obtained by the
microscopicmodel allow evaluation of quantities characterizing the internal structure of these systems.
Equation (45) shows that at high frequency, the conductivity result is not simplyσ0. The conductivity is in fact
dominated by its imaginary part which grows linearly with frequency at high frequency. The behavior of high-
frequency permittivity, which is purely real, provides a clearer comparisonwith experiments. Following
equation (46), permittivity at high frequencies is ò(ω)≈ εEεD/(εDℓE+ εEℓD), which is dominated by the
permittivity in the electrolyte regionwhen the latter’s thickness ismuch larger than the thickness of the dielectric
wall (i.e. whenℓE≈ 1,ℓD≈ 1). Values of high-frequency permittivity close to those of water (≈80) have been
recorded in all published data of watertissue (Gabriel et al 1996b, Angersbach et al 1999, Gabriel et al 2009).

Next we examine the behavior of permittivity at low frequencies, for whichwe have obtained a limiting value
in equation (44). In the case ofℓE≈ 1, and very small screening lengths ℓ ℓ( ) ( )k e e- L 1

D E E D , this limiting
value becomes ℓ( )w e¢  0 D D. In other words, it is the ratio of relative permittivity and relative thickness of
the dielectric wall region. Using the aforementioned values for vegetable tissues (εD= 2,ℓD= 1.25× 10−4), one
obtains ε(ω→ 0)∼O(104), whichmatches experimental permittivity values recorded formost vegetable and
animal tissues (Gabriel et al 1996b, Angersbach et al 1999, Gabriel et al 2009).

The expression for the low-frequency permittivity in the limiting case ofℓE≈ 1 and small screening lengths
can also be recovered from themodel of a layered system, without appeal to the internal structure of thematerial.
Following a similar calculation as above for the case of an electrolyteslab of thickness ratioℓ1≡ ℓE, permittivity
ε1≡ εE, and conductivityσ01≡ σ0 alternating with a dielectric slab of thickness ratioℓ2≡ ℓD, permittivity
ε2≡ εD, and conductivityσ02≈ 0, the imaginary part of the conductivity in the limit ofω→ 0 becomes
ωε0εD/ℓD. This immediately yields ℓ( )e e e¢ = = L L0 D D D D, where the first equality is exactly the result
derived above using themicroscopicmodel, and the second equality just expands the definition of the thickness
ratio.

Wefind that the zero-frequency limit of the permittivity is essentially the permittivity of the dielectric layer
multiplied by a geometric factor L/LD= 1/ℓD that compares the total size of the repeated unit to the thickness of
the dielectric region. This observation can be used to discuss the appearance of very large relative permittivities.
Inmost tissues the values are large, in the 105 range. However, in some cases these values can reach 107 (heart
tissue, for example (Gabriel et al 1996b, 1996)). Our results show that such permittivities require the size ratio
ℓ-1D to be very large. Away to obtain this large ratio is to consider the presence of strong heterogeneities where
dielectric regions are separated by very large,more conductive, regions. This scenario can arise whenwe
consider systemswhere the extracellularmatrix of a tissue plays the role of conductive regions. The bounding
walls in this case are provided by ion-impermeable or low-conductivity tissues separating largemulti-cellular
regions. These large size ratios also depress the ratio of the value of the characteristic frequency to the electrolyte
valueΩ0/ΩE. Therefore, systems that exhibit these featuresmight also present permittivity peaks in theα-
regime.

5.Discussion and conclusion

The above results show that the correction to the composite systemdue to the presence of the dynamic double
layers is small. However, consideration of these features enables a clearer interpretation of several aspects of
these systems, such as the origin of the large effective permittivities in experimentalmeasurements. The confined
electrolytesmodel developed above also enables amicroscopic description of important tissue-related
macroscopic phenomena such as theMaxwell–Wagner effect, which is the appearance of accumulated charges
at the interfaces between regions of different conductivities.While at themicroscopic level this is just the
creation of the dynamic double layers (Takashima et al 1989), conductivity variations at themacroscopic level
must also create charge accumulation. The effect has been noted formodels with heterogenous regions such as
those used for EEG analysis (Solis and Papandreou-Suppappola 2019) and in discussions of skin conduction
(Bârlea et al 2008) and tissue characterization (Guermazi et al 2014). As amacroscopic effect, it is likely to appear
as part of very low frequency behavior and thuswill be connectedwithα dispersion processes (Grimnes and
Martinsen 2010). Asfigure 3 shows, the charge density in a systemwithmultiple compartments has large local
variations. These variations can be spatially averaged to define amacroscopic charge density which is effectively
zero in amacroscopically-homogeneous region.However, at the interface between distinctmacroscopic
regions, the average need not be zero. In a 1D case, the electromagnetic current is spatially constant but the
associated average electric field in each of the different regionsmay not have the same value. Gauss’ law then
requires the presence of charge at the interface between regions. Thismacroscopic effect can be described using
themicroscopicmodel developed in this work.
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A sketch of this scenario is shown infigure 5. The central part is composed of similar electrolyteregions,
which are bounded by a couple of electrolyteregions with different intrinsic properties (e.g. different electrolyte
concentrations). In the presence of an oscillatoryfield, the dynamic double layers appear at opposite sides of all
dielectric walls. At walls between neighboring similar electrolytes, the accumulated charges are equal in
magnitude and do not contribute to amacroscopic average. At walls separating regionswith different properties,
the double layers do not hold identical charge, which produces amacroscopically observable charge density.
This construction is essentially the same as the elementary picture for the appearance of boundary charges in
homogeneous polarizablematerials. Namely, internal dipoles cancelmacroscopically but those at boundaries
contribute to net surface charges.

Themacroscopic charge density that appears between regions of different properties can be calculated as
follows. The conservation of electromagnetic currents in a 1D system can be expressed as

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )s w s w= = =J E E J , 49a a a b b b

whereσ( k) are themacroscopic average values of conductivities of the ith electrolyteregion (where k= a, b), and
E( k) and J( k) refer to the associatedmacroscopic electric fields and currents. The equality of the currents yields

( ) ( ) ( )( ) ( ) ( ) ( )s w s w s s- = D + D =E E E E 0, 50b b a a
av

whereΔσ= σ( b)− σ( a) and s are, respectively, the difference andmean value of conductivities. Eav is the
average field that is uniformwithin each region in the 1D case, andΔE is the jump in the electric field at the
interface. ByGauss’ law, the discontinuity in the electric field corresponds to aMaxwell–Wagner accumulated
charge densityQMW=ΔE/ε0 at the interface. Following equation (50), we have the result

( )s
s e

= -
D

Q
E

, 51MW
av

0

which indicates that an interface is electrified by the presence of a non-vanishing field. This relation remains
macroscopically valid in the full three-dimensional case when the value Eav is identified as thefield at the
interface. The charge densityQMW is a net charge that includes both ionic and polarization contributions, and
thus there aremanyways inwhich this net charge can appear. The scheme offigure 5, emphasizes the ionic
component of the charge accumulation.

Themodel developedhas important implications for low-frequency phenomena. Inmodels for interpretation
of electroencephalographic recordings andother biosignals, currents are consideredquasi-stationarywhen the
frequencies involved are below103 Hz.These currents are assumed to satisfy continuity and constitutive equations
with real constant conductivity inhomogeneous regions (Geselowitz 1967,Mosher et al 1999,Nunez et al 2006).
Discussionof thesemodels canbe carried out directly in termsof observed potentials, but themodels intrinsically
involve theMaxwell–Wagner effect and imply accumulationof charge at interfaces (Solis andPapandreou-
Suppappola 2019). As discussed in section 2, the continuity is satisfied only for the electromagnetic current andnot

Figure 5.Within anAC cycle, the ions in the electrolyteregions accumulate at the dielectric walls, as shown in the top panel. The
middle panel shows only the excess charge associatedwith the double layers. In the bottompanel, the neighboring double layers of
regions with similar properties can be considered to cancel each otherwhen averaged over large lengthscales. However, walls
separating regions of different intrinsic properties acquire a net charge due to the differences in the interfacial charge distributions on
either sides of the dielectric wall, leading to the emergence of themacroscopicMaxwell–Wagner effect.
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its ionic component. Furthermore, at low frequencies the complex conductivity ismostly imaginary and thushas a
capacitive rather than conductivenature. It is therefore crucial to reconsider thesemodels to incorporate the
complex formof the conductivity,which is not simply aminor correction.

The ideas developed here provide insight into several aspects of tissue conductivity. The key results predict
specific functional forms for the conductivity that clearly show the presence of characteristic frequencies and
provide correct limiting behaviors at low and large frequencies. Explicit consideration of the electrolyte behavior
enables clearmicroscopic interpretations of currents, low-frequency polarization, and theMaxwell–Wagner
effect. The proper consideration of the nature of currents informs the design of reliablemodels ofmacroscopic
tissue behavior. The results can be extended to other geometries and can help designmodels for heterogeneous
systems that explicitly use complex conductivities. Futureworkwill also address the effects associatedwith the
distribution of sizes of thewall-bounded electrolyte regionswithin the periodic structure employed in this work.
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