

1 **Preferential flow patterns in forested hillslopes of the east Tibetan
2 Plateau revealed by dye tracing and soil moisture network**

3
4 Fei Wang^{1 2}, Genxu Wang³ , Junfang Cui¹ , Li Guo³, Carlos R. Mello⁴, Elizabeth W.
5 Boyer⁵, Xiangyu Tang¹, Yi Yang^{1 2}

6
7 ¹ Institute of Mountain Hazards and Environment, Chengdu 610041, China

8 ² University of Chinese Academy of Science, Beijing 100049, China

9 ³ State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water
10 Resource and Hydropower, Sichuan University, Chengdu 610065, China

11 ⁴ Water Resources Department, Universidade Federal de Lavras, CP 3037, Lavras MG
12 37200-900, Brazil

13 ⁵ Department of Ecosystem Science and Management, The Pennsylvania State University,
14 University Park, PA 16802, USA

15 corresponding authors: Genxu Wang, wanggx@scu.edu.cn; Junfang Cui,
16 jfcui@imde.ac.cn

17
18
19
20
21
22 *Note: This is a near-final preprint of this manuscript that was accepted and minorly
23 revised for publication. The citation for the final accepted version is:*

24 *Wang F, G Wang, J Cui, L Guo, C Mello, E Boyer, X Tang, and Y Yang (2022).*

25 *Preferential flow patterns in forested hillslopes of the east Tibetan Plateau revealed
26 by dye tracing and soil moisture network. European Journal of Soil Science, 73(4),
27 e13294, DOI: 10.1111/ejss.13294*

28 **Abstract**

29 Preferential flow (PF) through soil and regolith results in a rapid vertical and lateral water
30 movement within the profile. This study focused on quantifying PF in contrasting
31 forested hillslopes of the Hailuo Valley, located on China's east Tibetan Plateau.
32 Quantifying PF in this region is challenging since the underlying matrix is complex –
33 with shallow soils, thick underlying saprolite, and the combined effect of moraines,
34 weathered residual material, and debris flows. We developed new methods that integrated
35 dye tracing with high-frequency soil moisture monitoring to characterize PF pathways
36 and quantity PF frequency on contrasting forested hillslopes (broadleaf and coniferous).
37 Dye tracing experiments showed that soil-root interfaces in the upper soil layer (10-50
38 cm) and the deeper soil layer (50-100 cm) were the primary PF pathways, and that large
39 rocks strongly influence the percolation depth of water. The high-frequency soil moisture
40 network revealed that the mean PF frequency was 67.8% and 71.7% in the coniferous and
41 broadleaf forests, respectively. The frequency of PF in the deeper soil layer increases
42 from upslope to downslope locations on both forested hillslopes, highlighting the
43 tendency for PF to occur downslope. In addition to matrix conditions (e.g., stony
44 saprolite soil), the total amount and maximum intensity of precipitation (as throughfall in
45 these forests) were identified as factors that control PF occurrence. In contrast, the initial
46 soil water conditions (at 10, 50, and 100 cm depths) were insignificant in predicting PF
47 occurrence. Results of this field-based study highlight that PF is a ubiquitous and critical
48 subsurface flow mechanism that regulates rainfall-runoff relationships in forests of the
49 Tibetan Plateau, underscoring the need to consider PF in hillslope hydrological modeling.
50

51 **Keywords:** Preferential flow, flow paths, hillslope hydrology, hydrometeorology, subsurface
52 flow, subsurface structure, glacial till, throughfall, Tibetan Plateau

53

54 **1. Introduction**

55 Preferential flow (PF) in soils refers to the process by which infiltrating water
56 bypasses most of the soil matrix, resulting in a rapid vertical and lateral movement of
57 water within the soil profile, typically delivering water to deeper horizons (Beven 1982,
58 Jarvis et al., 2016; Guo and Lin, 2018; Nimmo, 2021). Hydrologically, PF affects the

59 water balance of the critical zone – influencing the rate and pathways of infiltration,
60 runoff, subsurface stormflow, and groundwater recharge (Buttle and McDonald, 2002;
61 Green and Erskine, 2011; Jost et al., 2012; Beven and Germann, 2013; Dusek and Vogel,
62 2016; Guo et al., 2020). Ecologically, PF influences mass transport of water and
63 associated loadings of solutes, sediments, and nutrients (Clothier et al., 2008; Wilson et
64 al., 2008; Weill et al., 2011; Larsbo et al., 2014; Fishkis et al., 2020; Liu and She, 2020).
65 Given the strong influence of macropores on the flow paths and residence times of water
66 in the soils, PF could play an essential role in the dynamic feedback between water and
67 vegetation (Guswa et al., 2020). Understanding PF and its variability over space and time
68 will advance fundamental knowledge of coupled hydrological and ecological processes
69 (McDonnell and Beven, 2014; Nimmo, 2021).

70 Forest soils commonly have high infiltration capacities that favor PF, given extensive
71 macropore systems consisting of decayed root channels and animal burrows in shallow
72 soils (Beven, 1982; Alaoui et al., 2011; Laine-Kaulio et al., 2015; Wiekenkamp et al.,
73 2016; Demand et al., 2019). Forested hillslopes often have a variably weathered and
74 deposited zone between the soil surface and the intact bedrock (Salve et al., 2012).
75 Rainwater can infiltrate into the weathered and deposited zone through PF pathways
76 before reaching the bedrock, and the presence of macropore networks is known to
77 influence the transport of water (Salve et al., 2012; Guo et al., 2019). Conceptual
78 understanding of PF in the weathered and deposited zone continues to evolve. In steep
79 hillslopes with shallow soils and thick saprolite, PF-induced subsurface flow through
80 macropore systems is a potential link to rapid runoff response. The shallow soil promotes
81 lateral development of root networks and channels, delivering the water at a high velocity
82 downward (Sidle et al., 2001). Thick saprolite may promote rapid water transport through
83 structural macropores or cracks, strongly affecting the water residence time in soils
84 (McGlynn et al., 2002). Saprolite underlying hillslope areas are typically stonier and
85 coarser-textured than the toe-slope colluvium (Laine-Kaulio et al., 2015; Hartmann et al.,
86 2020). Coarse-textured soils typically have no prominent structural channels and have
87 high saturated hydraulic conductivity along the soil profile, favoring PF occurrence
88 (Hendrickx and Flury, 2001; Hardie et al., 2011; Laine-Kaulio et al., 2015). Stony soils
89 alter water flow by dispersion, lead to an unstable wetting front due to the impermeability

90 of rock, and are markedly associated with the PF process (Cerdà, 2001; Jarvis, 2007;
91 Bogner et al., 2014; Liu and She, 2020). The ubiquity of PF occurrence in forests is of
92 great importance to hillslope hydrology, as PF flow pathways can be a significant factor
93 in predicting subsurface flow characteristics on hillslopes (Wienhöfer and Zehe, 2014).
94 Thus, PF and its controlling factors should be carefully examined (Beven and Germann,
95 2013; Li et al., 2018).

96 Numerous methods have been developed to visualize and quantify PF at different
97 spatial and temporal scales (Allaire et al., 2009; Jarvis et al., 2016). There have been
98 great advances in X-ray and MRI methods for imaging macropore structures at soil core
99 or soil column scales (Jarvis et al., 2017; Feng et al., 2020). Dye tracing experiments
100 reveal PF patterns in soil profiles (Weiler and Flühler, 2004; Laine-Kaulio et al., 2015;
101 Filipović et al., 2020). Moreover, the increasing availability of geophysical techniques
102 (e.g., ground-penetrating radar and electrical resistivity tomography) offered new
103 opportunities to quantify PF with minimal disturbance at plot to hillslope scales (Koestel
104 et al., 2009; Gormally et al., 2011; Haarder et al., 2011; Guo et al., 2014; Guo et al.,
105 2020). At catchment and regional scales, reliable measurement and quantification of PF
106 by the methods mentioned above remain arduous, with a need for bridging gaps across
107 scales (Nimmo, 2012; Jarvis et al., 2016; Guo and Lin, 2018; Nimmo, 2021). An
108 alternative method utilizing a high-frequency soil moisture monitoring network was
109 developed, which has advanced in-situ detection of PF across spatial and temporal scales
110 (Graham and Lin, 2011; Wiekenkamp et al., 2016). Using this method, researchers have
111 gained new understanding of PF relationships with watershed characteristics, such as
112 rainfall events (Jost et al., 2012; Lozano-Parra et al., 2015; Tian et al., 2019), soil depth
113 and hillslope topography (Graham and Lin, 2011; Liu and Lin, 2015; Wiekenkamp et al.,
114 2016); and initial soil water conditions and landforms (Holden, 2009; Liu and Lin, 2015;
115 Demand et al., 2019; Tang et al., 2020). However, using a data-intensive network-based
116 approach alone cannot resolve individual PF pathways or establish the continuity and
117 possible soil depths of the PF processes. Here, we propose that integrating dye tracing
118 experiments with a high-frequency soil moisture monitoring network is a promising way
119 forward to quantify PF characteristics and its contribution to hillslope water cycling in

120 forests. We use the combined approaches to illuminate multiscale PF processes and their
121 controlling factors under the natural conditions at field sites.

122 This study aims to advance the understanding of PF in steep mountain forests of the
123 Hailuo Valley, located on China's east Tibetan Plateau. Quantifying PF and its
124 contribution to hillslope water cycling in this region is challenging since the underlying
125 porous media matrix is complex. The forested hillslopes have shallow soils, thick
126 underlying saprolite, and the combined effect of moraines, weathered residual material,
127 and debris flows. Our specific objectives were to (i) Quantify PF occurrence over space
128 and time, using state-of-the-art methods that integrate intensive measurements from soil
129 moisture monitoring networks with field-scale dye tracing experiments, (ii) Identify PF
130 pathways and frequency in soil profiles of contrasting forest woodland habitats (broadleaf
131 and coniferous), and (iii) explore factors that potentially regulate PF patterns. Our results
132 provide insights into PF mechanisms on the Tibetan Plateau.

133

134 **2. Materials and Methods**

135

136 **2.1 Site description**

137 Our field sites are located in the Hailuo Valley on the eastern slope of Gongga
138 Mountain on the east edge of the Tibetan Plateau (Fig. 1). Elevation along the east slope
139 of Gongga mountain rises by 6400 m along just 29 km of horizontal distance, resulting in
140 distinct vertical zones of climate and a rich natural vegetation diversity along the
141 elevation gradient. The climate is dominated by the southeast Pacific monsoon, with
142 annual precipitation concentrated during the wet period from May to October (Zhong,
143 2002). Two hillslopes were selected for explorations of PF, in contrasting forest types
144 typical along the vertical vegetation gradient of the Hailuo Valley. One is in the
145 evergreen coniferous forest (*Abies fabri*, *Picea brachytyla*) at 3000m asl, and the other is
146 the deciduous broadleaf forest (*Lithocarpus cleistocarpus*, *Salix babylonica*) at 2260m asl.
147 On these hillslopes, soils are characterized by thin O and A horizons, a thick B horizon,
148 and rich rock fragments (Fig. 2) with the occasional size of a single rock fragment up to
149 meters in diameter (He et al., 2004).

150

151 **2.2 Soil measurements**

152 *Soil characteristic measurements.* To quantify soil properties of hillslopes, soil
153 samples at three slope positions (upslope, middle, and downslope) were collected near in
154 summer 2020, at locations within 2 m of the installation positions of the soil moisture
155 sensor arrays. Sampling included undisturbed soil core samples (n=3 for each depth,
156 cutting ring 100 cm³ in volume) and disturbed soil (n=3 for each depth). Root biomass
157 was collected from a 50 cm × 50 cm quadrat (n=2 for each slope position) at the upper
158 (10-50 cm) and deeper layers (50-100 cm). Soil core samples were oven-dried at 105°C
159 for 24 hours to determine soil bulk density, and soil porosity was calculated from the dry
160 bulk density with a particle density of 2.65 g/cm³ (Shao et al., 2006). Oven-dried soil
161 core samples were later passed through a 2-mm sieve to separate rock fragments (> 2
162 mm), and rock fragment content (cm³/cm³) was determined by the volume replacement
163 method. Disturbed soil was divided into two sub-samples after being air-dried and passed
164 through a 2-mm sieve, with one for soil particle size composition analysis by laser
165 particle size analyzer (Mastersizer 3000, Malvern Instruments Ltd, UK) and the other for
166 soil organic carbon (SOC) by dry combustion method after passing through 0.01 mm
167 sieve (Vario Macro Cube, Elementar Analysensysteme, Germany). Soil organic matter
168 (SOM) was estimated as SOC multiplied by 1.72 (after Pribyl, 2010). Collected roots
169 were gently washed to remove attached soil and oven-dried at 60°C for 72 hours to
170 constant weight. Soil saturated hydraulic conductivity (K_s) was measured using a Guelph
171 Permeameter (Soil Moisture Equipment Corp, USA) with at least three depths (3
172 replications at each depth) at the upper (10-50 cm) and deeper soil layer (50-100 cm).
173 Detailed processes of measurement refer to Guelph manual (Guelph Manual, Soil
174 Moisture Equipment Corp, USA).

175 *Soil moisture monitoring.* A soil moisture monitoring network was deployed at three
176 slope positions (up, middle and down slopes) in the forested hillslopes (Fig. 3). Soil water
177 potential (T4e, UMS Corp, Germany. Measurement ranges from -85 kPa to 100 kPa with
178 0.03kPa precision) was used to replace generally used soil water content, and soil water
179 potential is the force that governs the transport of in soils (Novick et al., 2022).
180 Installment of sensors was processed as follows: a nearly 60 cm-wide and 120 cm-deep
181 soil profile was firstly excavated, and then holes were drilled at 10, 50, and 100 cm depth

182 with an inclination between 15°-20° at the soil profile. Next, a total of 18 sensors (3
183 depths × 3 slope positions × 2 forest types) were carefully installed. Finally, soil was
184 backfilled with the original soils layer by layer to maintain the original soil setting and
185 minimum disturbance. The installation was finished at the end of October 2019.

186

187 **2.3 Dye tracing experiments and image analysis**

188 *Dye tracing experiments.* At the two study hillslopes, dye tracing experiments were
189 conducted at downslope locations during summer 2020 using a double ring method (Fig.
190 4). A dye tracer solution (using Brilliant Blue FCF, 4g/L) was continually added to reach
191 a constant head of 2 cm, and a total of 16 L solution was added for each experiment (Fig.
192 4). After four hours, the tracer completely infiltrated into the soil, and the soil profile was
193 ready for excavation. The dye-stained area was separated into two sub-areas along the
194 diameter of the outer ring (Fig. 4). Half of the dye area was excavated from 45 cm away
195 from the diameter center to the double ring center for vertical dye photographs. The other
196 half of the dye area was excavated from surface soil to deeper soil layer for horizontal
197 dye photographs until there was no clear dye bule color in the soils. The excavation
198 interval of soil profile was set to 5 cm. Dye photographs of soil profiles were
199 photographed by a D700 camera (Nikon Corp, Japan).

200 *Preferential flow imaging.* Image processing was conducted based on the theory
201 established by Flury (1994). First, a geometric correction was applied to eliminate
202 geometric distortion caused by photographing. Second, color adjustment was applied to
203 simplify image information and highlight the stained area. Third, RGB images were
204 converted to grayscale images, and a threshold of the color scale was set to turn images
205 into binary images with the stained area as black and unstained area as white, and the
206 threshold was cross-validated. The following parameters derived from the dye tracing
207 experiments were chosen for detection and quantification of PF patterns (van Schaik,
208 2009): (i) dye coverage (stained area divided by 30 cm×70 cm for horizontal photographs,
209 100 cm × 100 cm for vertical photographs), the best guess of total infiltration into the
210 profile, where a higher infiltration capacity will result in a larger stained area; and (ii) the
211 maximum depth of blue stains (MDS), the maximum penetration depth of water in the PF

212 pathways. Here we took the total depth of the last stained soil layer visualized in the
213 vertical soil profile as MDS.

214

215 **2.3 Preferential flow occurrence**

216 *Throughfall measurements.* Rainfall on the forested hillslopes was designated as
217 throughfall, i.e., the effective throughfall reaching land surface after canopy interception.
218 Five throughfall collection trenches (300 cm × 25 cm ×30 cm) were placed 1 m above the
219 ground with slight inclination (less than 2°) to eliminate the non-uniform distribution of
220 throughfall (Li et al., 2010). The outlet of the trench was connected to tipping buckets for
221 throughfall amount measurement by pipes. T4e sensors and tipping buckets were all
222 connected to CR1000 (Campbell Scientific Ltd, USA) for data collection, and data logger
223 was programmed to record data every 15 mins to capture the dynamics of soil water
224 potential. Recorded data during the growing season (May-September) in 2020 was used
225 in our study, that was 6 months after the installment of sensors, and excluded possible
226 disturbance and freezing damage during cold season (November-April).

227 *Preferential flow quantification.* The throughfall and soil moisture data at the 15-min
228 time interval were used in PF analysis. Based on the response time series of sensors
229 through the soil profile to a throughfall event, PF has been divided into two ways: (1) a
230 non-sequential response to a throughfall event, where a deeper soil layer responds before
231 shallow soil layers (Lin and Zhou, 2008), and this indicates rainwater bypassed the
232 shallow soil layers and percolated into the deeper soils, (2) a rapid rainwater flux through
233 the monitoring soil profile, characterized by a sequential response of sensors with depth
234 at a velocity greater than measured K_s of adjacent soil layer (Beven and Germann, 1982;
235 Flühler et al., 1996). A throughfall event was defined with a minimum depth amount of
236 1 mm. The end was defined as the last monitored response of a tipping bucket followed
237 by 6 h with throughfall amount less than 0.2 mm of throughfall. Once the throughfall
238 events were determined, if the soil water potential increased above the threshold (0.3
239 hPa), the response time of each sensor was recorded. Sequential and non-sequential
240 responses were determined as follows (Fig. 5). Non-sequential responses (NSR) were
241 defined when sensors responded *out of sequence*; where any deeper sensor responded
242 earlier than the upper sensors (e.g., the 50 cm sensor showed a response before the 10 cm

243 sensor). Sequential responses (SR) were defined when sensors responded *in sequence*,
244 with the surface sensor responding first, then the next deeper sensor probe, and so on
245 through all sensors in the soil profile. According to the PF definition, all NSR events and
246 part of SR events were PF events. Further, the sum of PF events and SR events is referred
247 to as total response events. The PF frequency was calculated by the following equation:

248
$$\text{PF frequency} = \frac{\text{PF events}}{\text{PF events} + \text{SR events}} * 100\%$$

249 *Factors controlling preferential flow.* To explore potential factors that control
250 PF occurrence, temporally varying factors including throughfall characteristics (total
251 throughfall amount, throughfall duration, throughfall intensity, maximum throughfall
252 intensity, throughfall skewness, kurtosis, and standard deviation) and initial soil water
253 condition, and spatially varying factors including soil bulk density, soil porosity, SOM,
254 clay content, rock fragment content, and root biomass were explored as potential
255 controlling factors (Liu and Lin, 2015; Wiekenkamp et al., 2016; Guo and Lin, 2018).
256 Statistical t-tests were used to compare factors and to generate hypotheses about their
257 potential significance in generating PF. Factors for PF-producing events vs. SR-
258 producing events were tested to indicate whether there were any significant differences
259 ($P < 0.05$). When a t-test is significant, the factor analyzed is considered to influence PF
260 processes (Liu and Lin, 2015). We further merged values of different slope positions into
261 a group to explore differences at the hillslope scale.

262

263 **3 Results**

264

265 **3.1 Soil properties of studied hillslopes**

266 Many of the soil properties between the upper and deeper layers were significantly
267 different ($P < 0.01$) in both forests. Results of basic soil properties indicated that the
268 upper soil had higher SOM (mean value of 52.81 g/kg and 52.19 g/kg in the coniferous
269 forest and broadleaf forest, respectively), lower bulk density (mean value of 0.89 g/cm³
270 and 0.92 g/cm³ in the coniferous forest and broadleaf forest, respectively) and more roots
271 biomass (110.33 g and 215.33 g in the coniferous forest and broadleaf forest, respectively)
272 in both forests. Moreover, the soil at the down slope position had the highest SOM

273 content in both forests. K_s at upper soil layer was usually higher than that of the deeper
274 soil layer, and K_s at upper soil layer showed considerable change even at nearby sites.

275

276 **3.2 Preferential flow pathways revealed by dye tracing experiments**

277 Dye photographs clearly showed important effect of roots and rock fragments on PF
278 pathways (Fig. 6). For the horizontal dye patterns in the coniferous forest (Fig. 7), a sharp
279 decrease of dye coverage was observed at 20 cm depth, where the existence of rock
280 fragments drove water to flow through the soil-rock interface and bypassed soil matrix
281 (Fig. 6c). Meanwhile, the surging increment of the dye coverage at 85 cm depth was
282 likely due to small-sized rock fragments, where the dye solution flowed along lacunar
283 pores and stained the surrounding soil matrix and rocks, leading to a larger stained area.
284 In the broadleaf forest, a sharp increase of dye coverage was observed at 20 cm, where
285 roots network drove water flow laterally and stained surrounding soils along the water
286 flow pathways (Fig. 7), and then the dye coverage fluctuated at the depth between 20 and
287 50 cm, where the complex soil-root-rock structure change was observed during soil
288 profile excavation. Below 50 cm depth, dye coverage decreased with the increase of soil
289 depth.

290 For the vertical dye photographs, a similar decreasing trend of dye coverage from far
291 to near the center of the dye ring was observed. In addition, soils in the broadleaf forest
292 showed a higher dye coverage, and this indicated a more extensive lateral movement of
293 the dye tracer than in the coniferous forest. Results also demonstrated that the broadleaf
294 forest had faster water velocity and further flow distance compared with that in the
295 coniferous forest (Fig. 8), because the topography of dye tracing experiment sites in two
296 forests was similar. The maximum depth of stain (MDS) was 115 cm in the coniferous
297 forest and 95 cm in the broadleaf forest. Soil profile excavation showed that the larger
298 MDS in the coniferous forest was mainly controlled and regulated by large rocks at the
299 deep soil layer where solution water flowed through the soil-rock interface to deep soil
300 layer.

301

302 **3.3 Individual throughfall events and general soil moisture conditions**

303 Throughfall was characterized by long duration and low intensity in both forests. A
304 total number of 70 and 45 throughfall events were delineated with an average duration of
305 27 and 21 hours, average throughfall intensity of 0.53 and 0.55 mm/h, mean total event
306 precipitation amount 17.14 and 12.70 mm in the coniferous forest and broadleaf forest.
307 Moreover, 44.3% and 46.7% of throughfall events had total event precipitation amount
308 less than 5 mm in the coniferous forest and the broadleaf forest, respectively. There was
309 no difference in the throughfall characteristics ($P > 0.1$) between the forest types.
310 Soil water potential at 10 cm showed the largest variation compared to other depths
311 during monitoring period in both forests. Soil water potential at 100 cm in the broadleaf
312 forest experienced more intense variation compared with that in the coniferous forest, this
313 indicated that intense interaction with throughfall in the broadleaf forest may be the result
314 of frequent PF occurrence. It should be noted that the soil water potential in the studied
315 period was in high water potential status regardless of forest types and depths (Fig. 9).

316

317 **3.4 Preferential flow frequency and controlling factors**

318 There were a total of 128 (including 17 sequential PF events) and 91 (including 11
319 sequential PF events) events identified as PF, accounting for 67.8% and 71.7% of total
320 response events in the coniferous and broadleaf forests, respectively, indicating that PF
321 occurrence was common in our study. The minimum PF frequency was found at the
322 upslope sites (with 60.0% in the coniferous forest and 65.9% in the broadleaf forest), and
323 the maximum PF frequency was found at the downslope site in both forests (with 74.6%
324 in the coniferous forest and 79.1% in the broadleaf forest). Both forests showed an
325 increasing trend of PF frequency from up to down slope sites (Fig. 10). Total throughfall
326 amount and maximum throughfall intensity were identified as controlling factors on PF
327 occurrence at the down slope sites in both forests. A higher throughfall amount (21.87
328 mm for PF vs. 8.60 mm for SR in the coniferous forest; 15.65 mm for PF vs. 3.73 mm for
329 SR in the broadleaf forest) and higher maximum throughfall intensity (4.63 mm/h for PF
330 vs. 2.54 mm/h for SR in the coniferous forest; 4.46 mm/h for PF vs. 2.38 mm/h for SR in
331 the broadleaf forest) were observed. Throughfall duration in PF-producing events at the
332 down slope site in the coniferous forest was much longer than that of SR events. Any
333 initial soil water condition was not recognized as a controlling factor in both forests.

334 The response times of PF and SR events to throughfall events at different soil depths
335 and forest types were compared (Fig. 11). There was no significant difference ($P > 0.05$)
336 in response time at 10 and 50 cm between the coniferous and broadleaf forest. A
337 significant difference ($P < 0.05$) in response time at 100 cm was observed with the mean
338 value of 517 mins in the coniferous forest and 365 mins in the broadleaf forest. Mean PF
339 frequency was 38.10% at the upper layer and 34.30% at the deeper layer in the coniferous
340 forest, and 34.53% at the upper layer and 48.20% at the deeper layer in the broadleaf
341 forest. There was an increasing trend of PF frequency of the deeper soil layer from up to
342 down slope sites in both forests (Fig. 12). Temporally varying factors (throughfall
343 characteristics and initial soil water conditions) were not identified as controlling factors
344 of PF generation between soil layers, with the exception of initial SWP 50 cm at hillslope
345 scale (Table 3).

346

347 **4. Discussion**

348

349 **4.1 Spatial controlling factors of PF occurrence**

350 The average PF frequency in the upper layer (10-50 cm) of the coniferous forest was
351 38.10%. This is comparable to results from the Wüstebach catchment dominated by
352 Norway spruce (*Picea abies (L.)*) and Sitka spruce (*Picea sitchensis*), where PF
353 frequency ranged from 7% to 51%, and the maximum depth of sensor installation is 40
354 cm (Wiekenkamp et al., 2016). The average PF frequency in the broadleaf forest was
355 34.53%, which is similar to results observed at the deciduous Shale Hills forest in
356 Pennsylvania, USA (ranging from 16% to 47%), where the deepest sensors are installed
357 at a depth of 50 cm (Liu and Lin, 2015). In the upper soil layer (10-50 cm), the root
358 network (see Fig. S1) and hydrophobicity caused by the SOM usually leads to high PF
359 occurrence and subsurface flow in forest soils (Bogner et al., 2010; Alaoui et al., 2011;
360 Gerke et al., 2015). A dense root network supplies abundant soil-root interphase and
361 decaying root channels to favor PF occurrence (Gerke et al., 2015). Higher SOM at the
362 upper soil layer results in a stronger hydrophobicity effect, and the formation of organic
363 coating on soil aggregate makes soil hard to wet and forces water to converge into PF
364 pathways (Nimmo, 2012; Gerke et al., 2015). The low clay content (< 4%) in this study,

365 which was below the threshold of 8% for initiating and persisting macropore structures in
366 soils (Koestel et al., 2012) for both studied forests, indicated that roots network
367 constituted the main flow pathways (Bogner et al., 2010; Demand et al., 2019). Abrupt
368 change of soil K_s in a short distance was observed in our study at the upper soil layer,
369 which is also in favor of PF in soils (Kishel and Gerla, 2002). Further, smaller-sized rock
370 fragments at the upper layer might not strongly affect water flow since these rocks and
371 surrounding soils were completely stained (Hartmann et al., 2020). Significant difference
372 in root biomass between forest types resulted in a slight discrepancy in PF frequency at
373 the upper soil layer, and this indicated that PF occurrence is probably related to fine roots
374 (Luo et al., 2019).

375 Within the deeper soil layer (50-100 cm), mean PF frequency was 35.43% in the
376 coniferous forest, 48.20% in the broadleaf forest. Rock fragment content in the deeper
377 layer showed no difference between forest types, whereas less soil porosity in the
378 broadleaf forest had higher PF occurrence, this may be explained by the fact that PF in
379 stony soils uses only a small fraction of porosity (Clothier et al., 2008; Jarvis et al., 2016).
380 Another explanation may be the appearance of large rocks in both forest sites, which was
381 not included in this study due to limited sampling scale and later elucidated by dye
382 tracing experiments. Large rocks in the broadleaf forest experienced more severe
383 weathering than the coniferous forest owing to a better thermal conditions resulting from
384 its lower elevation, and more soil-rock interphase contributed to funnel flow (Cerdà, 2001;
385 Sohrt et al., 2014; Hartmann et al., 2020). Overall, rock fragments are not a negligible
386 component for PF occurrence, and appearance of rock fragments in deeper soils leads to
387 continuous macropores and cracks (Zhang et al., 2016; Li et al., 2019).

388 Topographic effects on PF occurrence were evident in this study. An increasing trend
389 of PF frequency from up to down slope sites was observed, similar to observations in
390 other studies (P.Öhrström, 2002; Holden, 2009; Guo and Lin, 2018). The higher
391 hydrophobicity caused by higher SOM, gentler slope and increased contributing area at
392 down slope sites enhanced PF occurrence for both forest types (Hardie et al., 2011;
393 Benegas et al., 2014; Guo and Lin, 2018). Topography seemed not to have an effect on
394 the PF frequency at the upper soil layer in both forests (Fig. 12), the reason lies in the
395 high heterogeneity of the upper soil layer. Moreover, the higher PF frequency in the

396 deeper soil layer in the broadleaf forest may be attributed to more fragmented rocks,
397 which leads to more lacunar pores when compared with the coniferous forest.

398

399 **4.2 Temporal controlling factors of PF occurrence**

400 Throughfall characteristics, especially its intensity, were believed to be the key
401 factors controlling the PF occurrence (Green and Erskine, 2011; Liu and Lin, 2015;
402 Hopkins et al., 2016; Demand et al., 2019; Tian et al., 2019), and we also found a positive
403 relationship between throughfall intensity and PF frequency (Fig. S2). Total throughfall
404 amount and maximum throughfall intensity were identified as controlling factors on PF
405 ($P < 0.05$) at the down slope sites in both forests (Graham and Lin, 2011; Liu and Lin,
406 2015). A possible explanation for the observed phenomena may be the combined effect
407 of topography and throughfall, because throughfall with long duration and low intensity
408 tends to moisten soil more uniformly, and this was the prerequisite of subsurface
409 connectivity. Besides, gentler slope favors the formation of the transient water table at
410 surface or layers with contrasting hydraulic conductivity and forces water flow into PF
411 pathways at the down slope sites (Guo and Lin, 2018).

412 Initial soil water condition was not identified as a controlling factor in both forests,
413 and this is consistent with Nimmo (2012), who argued that local saturation of soil was
414 more likely to occur PF regardless of initial soil water condition. Similarly, Wiekenkamp
415 et al. (2016) found no clear relationship between the PF frequency and initial soil water
416 condition when rainfall amount was less than 25 mm, and Tang et al. (2020) found a
417 significant difference in initial soil water condition at only one of three studied sites.
418 Another explanation is that soil moisture showed slight fluctuation owing to plentiful and
419 concentrated throughfall during the study period and was far from the threshold of
420 influencing PF occurrence (Figure S3).

421

422 **4.3 Integrating multiple methods for PF investigation**

423 Soil moisture monitoring network has created new opportunities for detecting and
424 quantifying PF with high spatial and temporal resolution. The method has the advantage
425 of being noninvasive or minimally invasive compared with the traditional methods (e.g.,
426 Dye tracing), and is a real-time reflection of soil moisture to dynamic throughfall input.

427 And this has the potential to bridge the gaps between scales and to predict PF patterns in
428 soils (Jarvis et al., 2016; Guo and Lin, 2018). Meanwhile, validation of PF information
429 revealed by soil moisture monitoring network and possible PF flow pathways are
430 essential for better understanding of PF.

431 Dye tracing experiments can supply two-dimensional images of spatial variations in
432 water flow patterns at the pedon scale (Weiler and Flühler, 2004; Jarvis, 2007; Hartmann
433 et al., 2020). Visualization of flow pathways is based on images information interpreted
434 by photographing excavated soil profiles, and detailed soil profile information (e.g., soil
435 structure, distributions of roots and rocks) can be observed and obtained at the same time
436 to connect PF pathways with soil properties or soil structure (Holden, 2009; Gerke et al.,
437 2015; Guo and Lin, 2018). Nevertheless, the dye tracing experiment obtained limited
438 information about the real-time processes and its temporal dynamics, which can be
439 compensated for with information gained by a soil moisture monitoring network. Thus,
440 the combination of the two methods enables exploring the theoretical mechanisms of PF
441 (Jarvis et al., 2016; Guo and Lin, 2018). For example, soil moisture monitoring revealed
442 higher PF occurrence in the deeper soil layer at down slope position in the coniferous
443 forest, while soil properties showed no dramatic difference among slope positions. Dye
444 tracing experiment at down slope position revealed that the large rocks dispersed water
445 flow through lacunar to deeper soil. The agreement between results derived from the soil
446 moisture monitoring network and dye tracing method confirmed the effect of rock
447 fragments on PF occurrence. Without the dye tracing experiment, soil moisture
448 monitoring network cannot reveal the possible flow pathways and dye tracing
449 experiments cannot link the lacunar (soil-rock interface) with PF frequency. Therefore,
450 combining soil moisture monitoring network and dye tracing experiments enhances more
451 reliable interpretation.

452

453 **5. Conclusions**

454 The hydrological process of PF is challenging to study, given the need to
455 characterize vast heterogeneities in hydraulic properties of subsurface flow environments
456 and changing environmental conditions over time. Our study integrated a soil moisture
457 monitoring network and dye tracing experiments, providing an unprecedented view of PF

458 pathways and frequency. Results showed that the root network and rock fragments are of
459 importance in PF occurrence in forested hillslopes of the east Tibetan plateau. The
460 frequency of PF was high in both the coniferous forest and broadleaf forest. In the upper
461 soil layer, macropores created by the roots network are primary PF pathways and led to a
462 high frequency of PF. PF frequency at deeper soil was mainly attributed to rock
463 fragments through lacunar macropores (soil-rock interface). Further, PF tends to occur at
464 down slope sites in both forest types, and this was attributed to gentler slope and larger
465 contributing area of down slope sites. Total throughfall amount and maximum throughfall
466 intensity were identified as key controlling factors on PF occurrence at the down slope
467 sites in both forests. Initial soil moisture did not regulate PF occurrence in both studied
468 forests. These results revealed potential subsurface flow through roots network in shallow
469 soil, and rapid water flux through lunars in thick saprolite on forested hillslopes.

470 The integration of dye tracing experiments (which provides information on PF
471 pathways)_and a high-frequency soil moisture monitoring network (which provides
472 temporal dynamics and spatial variation of PF) is a promising way forward in the
473 investigation of PF and its controlling factors under field conditions. Future directions
474 toward the operational prediction of PF in forested landscapes might focus on the
475 assimilation, synthesis, and integration of high-resolution data on climatic forcings (e.g.,
476 of precipitation and throughfall) and subsurface architecture and properties (e.g., of the
477 distribution of pore spaces and characteristics of the porous media). This information, in
478 turn, would be used in concert with a high-frequency soil moisture monitoring network to
479 capture the dynamic field conditions (Guo and Lin, 2018). The time is ripe for such high-
480 resolution studies at hillslope and watershed scales, given advances in characterizing
481 surficial topography (Brubaker et al. 2013), scaling micro-CT analyses to field settings,
482 and in geophysical characterization of deep critical zone structure using novel approaches
483 (e.g., Flinchum et al. 2018, Oakley et al. 2021).

484

485 **Conflicts of interest**

486 The authors declare that they have no conflicts of interest.

487

488 **Acknowledgements**

489 This research was supported by the Strategic Priority Research Program of the Chinese
490 Academy of Sciences (Grant no. XDA23090201) and the National Natural Science
491 Foundation of China (Grant no. 41790431). EWB was supported by the US National
492 Science Foundation's critical zone collaborative network (Grant no. 2012893). Use of
493 trade or product names is for descriptive purposes only and does not imply endorsement
494 by the authors.

495

496 **References**

497 Alaoui, A., U. Caduff, H. H. Gerke, et al. (2011). Preferential Flow Effects on Infiltration
498 and Runoff in Grassland and Forest Soils. *Vadose Zone Journal* **10**(1): 367-377.

499 Allaire, S. E., S. Roulier and A. J. Cessna (2009). Quantifying preferential flow in soils:
500 A review of different techniques. *Journal of Hydrology* **378**(1-2): 179-204.

501 Benegas, L., U. Ilstedt, O. Roupsard, et al. (2014). Effects of trees on infiltrability and
502 preferential flow in two contrasting agroecosystems in Central America. *Agriculture,
503 Ecosystems & Environment* **183**: 185-196.

504 Beven, K. and P. Germann (1982). Macropores and water flow in soils. *Water Resources
505 Research* **18**(5): 1311-1325.

506 Beven, K. and P. Germann (2013). Macropores and water flow in soils revisited. *Water
507 Resources Research* **49**(6): 3071-3092.

508 Bogner, C., F. Bauer, B. Trancón y Widemann, et al. (2014). Quantifying the morphology
509 of flow patterns in landslide-affected and unaffected soils. *Journal of Hydrology* **511**:
510 460-473.

511 Bogner, C., B. Wolf, M. Schlather, et al. (2010). Analysing flow patterns from dye tracer
512 experiments in a forest soil using extreme value statistics. *European Journal of Soil
513 Science* **59**(1): 103-113. Brubaker KM, WL Myers, PJ Drohan, DA Miller, and EW
514 Boyer (2013). The Use of LiDAR Terrain Data in Characterizing Surface Roughness
515 and Microtopography. *Applied and Environmental Soil Science*, 891534, 13p., doi:
516 10.1155/2013/891534

517 Buttle, J. M. and D. J. McDonald (2002). Coupled vertical and lateral preferential flow on
518 a forested slope. *Water Resources Research* **38**(5): 18-11-18-16.

519 Cerdà, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and
520 erosion. *European Journal of Soil Science* **52**(1): 59-68.

521 Clothier, B. E., S. R. Green and M. Deurer (2008). Preferential flow and transport in soil:
522 progress and prognosis. *European Journal of Soil Science* **59**(1): 2-13.

523 Demand, D., T. Blume and M. Weiler (2019). Spatio-temporal relevance and controls of
524 preferential flow at the landscape scale. *Hydrology and Earth System Sciences*
525 **23**(11): 4869-4889.

526 Dusek, J. and T. Vogel (2016). Hillslope-storage and rainfall-amount thresholds as
527 controls of preferential stormflow. *Journal of Hydrology* **534**: 590-605.

528 Feng, Y., J. M. Wang, Z. K. Bai, et al. (2020). Three-dimensional quantification of
529 macropore networks of different compacted soils from opencast coal mine area using
530 X-ray computed tomography. *Soil & Tillage Research* **198**: 9.

531 Filipović, V., J. Defterdarović, J. Šimunek, et al. (2020). Estimation of vineyard soil
532 structure and preferential flow using dye tracer, X-ray tomography, and numerical
533 simulations. *Geoderma* **380**: 114699.

534 Fishkis, O., U. Noell, L. Diehl, et al. (2020). Multitracer irrigation experiments for
535 assessing the relevance of preferential flow for non-sorbing solute transport in
536 agricultural soil. *Geoderma* **371**: 114386.Flinchum, B. A., Steven Holbrook,
537 W., Rempe, D., Moon, S., Riebe, C. S., Carr, B.J., et al. (2018). Critical zone
538 structure under a granite ridge inferred from drilling and three-dimensional seismic
539 refraction data. *Journal of Geophysical Research: Earth Surface*, **123**, 1317–1343.
540 doi: 10.1029/2017JF004280

541 Flühler, H., W. Durner and M. Flury (1996). Lateral solute mixing processes—A key for
542 understanding field-scale transport of water and solutes. *Geoderma* **70**(2-4): 165-
543 183.Flury, M., H. Flühler, W.A. Jury, and J. Leuenberger. 1994. Susceptibility of
544 soils to preferential flow of water: A field study. *Water Resources Research*
545 **30**:1945–1954. doi:10.1029/94WR00871.

546 Gerke, K. M., R. C. Sidle and D. Mallants (2015). Preferential flow mechanisms
547 identified from staining experiments in forested hillslopes. *Hydrological Processes*
548 **29**(21): 4562-4578.

549 Gormally, K. H., M. S. McIntosh, A. N. Mucciardi, et al. (2011). Ground-Penetrating
550 Radar Detection and Three-Dimensional Mapping of Lateral Macropores: II.
551 Riparian Application. *Soil Science Society of America Journal* **75**(4): 1236-1243.

552 Graham, C. B. and H. S. Lin (2011). Controls and Frequency of Preferential Flow
553 Occurrence: A 175-Event Analysis. *Vadose Zone Journal* **10**(3): 816-831.

554 Green, T. R. and R. H. Erskine (2011). Measurement and inference of profile soil-water
555 dynamics at different hillslope positions in a semiarid agricultural watershed. *Water
556 Resources Research* **47**(12).

557 Guo, L., J. Chen and H. Lin (2014). Subsurface lateral preferential flow network revealed
558 by time-lapse ground-penetrating radar in a hillslope. *Water Resources Research*
559 **50**(12): 9127-9147.

560 Guo, L. and H. Lin (2018). Chapter two - Addressing Two Bottlenecks to Advance the
561 Understanding of Preferential Flow in Soils. *Advances in Agronomy*, **147**: 61-117.
562 DOI: 10.1016/bs.agron.2017.10.002

563 Guo, L., H. Lin, B. Fan, et al. (2019). Preferential flow through shallow fractured
564 bedrock and a 3D fill-and-spill model of hillslope subsurface hydrology. *Journal of
565 Hydrology* **576**: 430-442.

566 Guo, L., G. J. Mount, S. Hudson, et al. (2020). Pairing geophysical techniques improves
567 understanding of the near-surface Critical Zone: Visualization of preferential routing
568 of stemflow along coarse roots. *Geoderma* **357**: 113953.

569 Guswa, A. J., D. Tetzlaff, J. S. Selker, et al. (2020). Advancing ecohydrology in the 21st
570 century: A convergence of opportunities. *Ecohydrology* **13**(4).

571 Haarder, E. B., M. C. Looms, K. H. Jensen, et al. (2011). Visualizing Unsaturated Flow
572 Phenomena Using High-Resolution Reflection Ground Penetrating Radar. *Vadose
573 Zone Journal* **10**(1): 84-97.

574 Hardie, M. A., W. E. Cotching, R. B. Doyle, et al. (2011). Effect of antecedent soil
575 moisture on preferential flow in a texture-contrast soil. *Journal of Hydrology* **398**(3-
576 4): 191-201.

577 Hartmann, A., E. Semenova, M. Weiler, et al. (2020). Field observations of soil
578 hydrological flow path evolution over 10 millennia. *Hydrology and Earth System
579 Sciences* **24**(6): 3271-3288.

580 He, Y., B. Zhang, C. Huang, et al. (2004). Diagnostic Characteristics and Taxonomic
581 Classification of Forest Soils on the East Slopes of the Gongga Mountain(in Chinese
582 with English abstract). *Journal of Glaciology and Geocryology* **26**(1): 27-32.

583 Hendrickx, J. and M. Flury (2001). Uniform and preferential flow mechanisms in the
584 vadose zone. In: Conceptual models of flow and transport in the fractured vadose
585 zone (pp. 149-187), Washington DC: The National Academies Press.

586 Holden, J. (2009). Topographic controls upon soil macropore flow. *Earth Surface*
587 *Processes and Landforms* **34**(3): 345-351.

588 Hopkins, I., H. Gall and H. Lin (2016). Natural and anthropogenic controls on the
589 frequency of preferential flow occurrence in a wastewater spray irrigation field.
590 *Agricultural Water Management* **178**: 248-257.

591 Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil
592 macropores: principles, controlling factors and consequences for water quality.
593 *European Journal of Soil Science* **58**(3): 523-546.

594 Jarvis, N., J. Koestel and M. Larsbo (2016). Understanding Preferential Flow in the
595 Vadose Zone: Recent Advances and Future Prospects. *Vadose Zone Journal* **15**(12):
596 vzh2016.2009.0075.

597 Jarvis, N., M. Larsbo and J. Koestel (2017). Connectivity and percolation of structural
598 pore networks in a cultivated silt loam soil quantified by X-ray tomography.
599 *Geoderma* **287**: 71-71

600 Jost, G., H. Schume, H. Hager, et al. (2012). A hillslope scale comparison of tree species
601 influence on soil moisture dynamics and runoff processes during intense rainfall.
602 *Journal of Hydrology* **420-421**: 112-124.

603 Kishel, H. F. and P. J. Gerla (2002). Characteristics of preferential flow and groundwater
604 discharge to Shingobee Lake, Minnesota, USA. *Hydrological Processes* **16**(10):
605 1921-1934.

606 Koestel, J., R. Kasteel, A. Kemna, et al. (2009). Imaging Brilliant Blue Stained Soil by
607 Means of Electrical Resistivity Tomography. *Vadose Zone Journal* **8**(4): 963-975.

608 Koestel, J. K., J. Moeys and N. J. Jarvis (2012). Meta-analysis of the effects of soil
609 properties, site factors and experimental conditions on solute transport. *Hydrology*
610 and *Earth System Sciences* **16**(6): 1647-1665.

611 Laine-Kaulio, H., S. Backnäs, H. Koivusalo, et al. (2015). Dye tracer visualization of
612 flow patterns and pathways in glacial sandy till at a boreal forest hillslope. *Geoderma*
613 **259-260**: 23-34.

614 Larsbo, M., J. Koestel and N. Jarvis (2014). Relations between macropore network
615 characteristics and the degree of preferential solute transport. *Hydrol. Earth Syst. Sci.*
616 **18**(12): 5255-5269.

617 Li, W., G. Wang, G. Liu, et al. (2010). Undergrowth Penetration Rain Collector (in
618 chinese). S. I. P. Office. China, x pages.

619 Li, X.-Y., H. Lin and H. H. Gerke (2018). Frontiers in Hydopedology: Interdisciplinary
620 Research from Soil Architecture to the Critical Zone. *Vadose Zone Journal* **17**(1): 1-
621 4.

622 Li, Z. C., X. Hu, X.-Y. Li, et al. (2019). Quantification of Soil Macropores at Different
623 Slope Positions under Alpine Meadow Using Computed Tomography in the Qinghai
624 Lake Watershed, NE Qinghai-Tibet. *Eurasian Soil Science* **52**(11): 1391-1401.

625 Lin, H. and X. Zhou (2008). Evidence of subsurface preferential flow using soil
626 hydrologic monitoring in the Shale Hills catchment. *European Journal of Soil
627 Science* **59**(1): 34-49.

628 Liu, D. and D. She (2020). The effect of fracture properties on preferential flow in
629 carbonate-derived laterite from karst mountainous agroforestry lands. *Soil and
630 Tillage Research* **203**: 104670.

631 Liu, H. and H. Lin (2015). Frequency and Control of Subsurface Preferential Flow: From
632 Pedon to Catchment Scales. *Soil Science Society of America Journal* **79**(2): 362-377.

633 Lozano-Parra, J., S. Schnabel and A. Ceballos-Barbancho (2015). The role of vegetation
634 covers on soil wetting processes at rainfall event scale in scattered tree woodland of
635 Mediterranean climate. *Journal of Hydrology* **529**: 951-961.

636 Luo, Z., J. Niu, B. Xie, et al. (2019). Influence of Root Distribution on Preferential Flow
637 in Deciduous and Coniferous Forest Soils. *Forests* **10**(11): 986.

638 Markus, Flury, Hannes, et al. (1994). Susceptibility of soils to preferential flow of water:
639 A field study. *Water Resources Research*.

640 McDonnell, J. J. and K. Beven (2014). Debates—The future of hydrological sciences: A
641 (common) path forward? A call to action aimed at understanding velocities, celerities

642 and residence time distributions of the headwater hydrograph. *Water Resources*
643 *Research* **50**(6).

644 McGlynn, B. L., J. J. McDonnel and D. D. Brammer (2002). A review of the evolving
645 perceptual model of hillslope flowpaths at the Maimai catchments, New Zealand.
646 *Journal of Hydrology* **257**(1-4): 1-26.

647 Nimmo, J. R. (2012). Preferential flow occurs in unsaturated conditions. *Hydrological*
648 *Processes* **26**(5): 786-789.

649 Nimmo, J. R. (2021). The processes of preferential flow in the unsaturated zone. *Soil*
650 *Science Society of America Journal* **85**(1): 1-27.

651 Novick, K. A., D. L. Ficklin, D. Baldocchi, et al. (2022). Confronting the water potential
652 information gap. *Nature Geosciences* **15**(3): 158-164.

653 Oakley, D., B. Forsythe, X. Gu, A. Nyblade, and S. L. Brantley (2021). Seismic ambient
654 noise analyses reveal changing temperature and water signals to 10s of meters depth
655 in the critical zone, *Journal of Geophysical Research - Earth Surface*,
656 doi:10.1029/2020JF005823Öhrström, M. P., J Albergel, P.Zante, S.Nasri,
657 R.Berndtsson,J.Olssorn (2002). Field-scale variation of preferential flow as indicated
658 from dye coverage. *Journal of Hydrology* **257**: 164-173.

659 Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion
660 factor. *Geoderma* **156**(3-4): 75-83.

661 Salve, R., D. M. Rempe and W. E. Dietrich (2012). Rain, rock moisture dynamics, and
662 the rapid response of perched groundwater in weathered, fractured argillite
663 underlying a steep hillslope. *Water Resources Research* **48**(11).

664 Shao, M., Q. Wang and M. Huang (2006). Soil Physics (in Chinese), Higher Education
665 Press, Beijing, China, x pages.

666 Sidle, R. C., S. Noguchi, Y. Tsuboyama, et al. (2001). A conceptual model of preferential
667 flow systems in forested hillslopes: evidence of self-organization. *Hydrological*
668 *Processes* **15**(10): 1675-1692.

669 Sohrt, J., F. Ries, M. Sauter, et al. (2014). Significance of preferential flow at the rock
670 soil interface in a semi-arid karst environment. *Catena* **123**: 1-10.

671 Tang, Q., J. M. Duncan, L. Guo, et al. (2020). On the controls of preferential flow in soils
672 of different hillslope position and lithological origin. *Hydrological Processes* **34**(22):
673 4295-4306.

674 Tian, J., B. Zhang, C. He, et al. (2019). Dynamic response patterns of profile soil
675 moisture wetting events under different land covers in the Mountainous area of the
676 Heihe River Watershed, Northwest China. *Agricultural and Forest Meteorology* **271**:
677 225-239.

678 van Schaik, N. L. M. B. (2009). Spatial variability of infiltration patterns related to site
679 characteristics in a semi-arid watershed. *Catena* **78**(1): 36-47.

680 Weiler, M. and H. Flühler (2004). Inferring flow types from dye patterns in macroporous
681 soils. *Geoderma* **120**(1-2): 137-153.

682 Weill, S., A. Mazzia, M. Putti, et al. (2011). Coupling water flow and solute transport
683 into a physically-based surface–subsurface hydrological model.” *Advances in Water
684 Resources* **34**(1): 128-136.

685 Wiekenkamp, I., J. A. Huisman, H. R. Bogena, et al. (2016). Spatial and temporal
686 occurrence of preferential flow in a forested headwater catchment. *Journal of
687 Hydrology* **534**: 139-149.

688 Wienhöfer, J. and E. Zehe (2014). Predicting subsurface stormflow response of a forested
689 hillslope – the role of connected flow paths. *Hydrology and Earth System Sciences*
690 **18**(1): 121-138.

691 Wilson, G. V., R. F. Cullum and M.J.M. Römkens (2008). Ephemeral gully erosion by
692 preferential flow through a discontinuous soil-pipe. *Catena* **73**(1): 98-106.

693 Zhang, Y., M. Zhang, J. Niu, et al. (2016). Rock fragments and soil hydrological
694 processes: Significance and progress. *Catena* **147**: 153-166.

695 Zhong, X. (2002). Environment and Ecology at east edge of Qinghai-Tibet Plateau (in
696 Chinese), Sichuan University Press, Chengdu, China, x pages.

697