Multi-Party Replicated Secret Sharing over a Ring with
Applications to Privacy-Preserving Machine Learning

Alessandro Baccarini
University at Buffalo (SUNY)
Buffalo, New York, USA
anbaccar@buffalo.edu

ABSTRACT

Secure multi-party computation has seen significant performance
advances and increasing use in recent years. Techniques based
on secret sharing offer attractive performance and are a popular
choice for privacy-preserving machine learning applications. Tra-
ditional techniques operate over a field, while designing equivalent
techniques for a ring Z,x can boost performance. In this work, we
develop a suite of multi-party protocols for a ring in the honest
majority setting starting from elementary operations to more com-
plex with the goal of supporting general-purpose computation. We
demonstrate that our techniques are substantially faster than their
field-based equivalents when instantiated with a different number
of parties and perform on par with or better than state-of-the-art
techniques with designs customized for a fixed number of parties.
We evaluate our techniques on machine learning applications and
show that they offer attractive performance.

KEYWORDS

secure multi-party computation, replicated secret sharing, privacy-
preserving machine learning

1 INTRODUCTION

Secure multi-party computation has recently seen notable per-
formance improvements that make privacy-preserving computa-
tion of increasingly complex functionalities on increasingly large
data sets more practical than ever before. Recent significant in-
terest in privacy-preserving machine learning (PPML) has high-
lighted secret sharing techniques which were often previously
overlooked in the literature. Secret sharing (SS) offers superior
performance for arithmetic operations such as matrix multiplica-
tions over other cryptographic tools, and has been extensively used
for privacy-preserving neural network (NN) inference and train-
ing [14, 15, 18, 27, 36, 47, 49, 55, 56]. Because SS offers information-
theoretic security, computation can proceed on short integers, aid-
ing efficiency.

Traditionally, performance of SS techniques has been measured
in terms of two parameters: the number of interactive operations
and the number of sequential interactive operations, or rounds.
However, for some computations such as matrix multiplication local
operations can dominate the overall cost. Traditional techniques
such as Shamir SS [54] carry out computation on protected data
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over a field, most commonly set up as Z,, with prime p. This makes
frequent use of modulo reduction a necessity, increasing the cost
of the computation. To improve performance and directly utilize
native instructions of modern processors, researchers turned to
computation over ring Z,x [8, 12, 16, 20]. Unfortunately, Shamir
SS - a popular and efficient choice for computation in the honest
majority setting — cannot be used for computation over Z,, and
we must seek alternatives.

The honest majority setting, which assumes that only a minority
of the parties carrying out the computation can be corrupt, offers
great performance with reasonable trust assumptions relative to
stronger settings, making a good performance-security trade-off.
The techniques we are aware of in this setting which can perform
computation over ring Z,« for some k are limited to a fixed number
of parties, most commonly to 3 (see, e.g., [8, 14, 15, 41, 47]) and
cannot tolerate collusion. This means that the techniques do not
easily generalize to a larger number of participants, should there
be a need to change the computation setup, e.g., to permit the use
of a higher collusion threshold. This is the task we set to address in
this work and generalize computation based on replicated secret
sharing (RSS) to support more than n = 3 computational parties.

Our contributions can be summarized as follows:

e We design a comprehensive set of elementary building blocks
for RSS over an arbitrary ring in the semi-honest setting.
These building blocks include generating shares of pseu-
dorandom integers and ring elements, multiplication, re-
constructing a value from shares, multiplication followed
by reconstruction as a single building block, denoted by
MulPub, and inputting private values into computation. We
optimize the solutions to lower communication complexity
by relying on a pseudo-random function. This means that
the techniques are computationally secure, and they also
come with formal security proofs. Our solutions are efficient
and, for example, the cost of multiplication when instanti-
ated with three parties matches custom results which apply
to the three-party setting only [8, 55].

e We build on the techniques of [20] and [27] to develop higher-
level protocols over Z,x such as random bit generation, com-
parisons, conversion between different ring sizes and more
to enable general-purpose computation in this framework.

e We provide extensive benchmarks to evaluate performance
of the developed techniques. We observe that when n = 3 our
ring-based techniques can be between 10 and 33 times faster
than their field-based counterparts for different types of op-
erations. Incorporating recent advances in random bit gen-
eration can yield even more promising results. The improve-
ment from switching to ring-based techniques decreases as
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the number of parties n grows, but with n = 7 we can still
observe runtime improvements by a factor of 2 or higher for
certain operations.

e We improve the techniques of [18] for securely evaluating
quantized NNs and eliminate the need for fixed-point mul-
tiplication and large truncation, which enables us to use a
significantly smaller ring.

e We also evaluate performance of our techniques on machine
learning applications, namely, NN predictions and quantized
NN inference. Similarly, our runtimes are significantly faster
than similar field-based implementations and compare fa-
vorably to the state of the art designed to work with a fixed
number of parties.

For RSS-based techniques, it is expected that they will be used
with a relatively small n. This is similar to most efficient techniques
based on Shamir SS (e.g., [11, 13]) which also rely on RSS for certain
operations.

2 RELATED WORK

Secret sharing [10, 54] is a popular choice for secure multi-party
computation, and common options include Shamir SS [54], addi-
tive SS, and RSS [31] for three parties. Computation over rings,
and specifically Z,«, has recently gained attention in publications
including [5, 8, 12, 16, 18, 20, 22, 26, 34, 41]. We can distinguish
between three-party techniques based on RSS such as [5, 8, 12, 22,
26, 34, 41]; multi-party techniques based on additive SS such as
[16, 20], often for the setting with no honest majority; and ad-hoc
techniques for three or four parties that utilize one or more types
of rings with constructions for specific applications such as [33]
and others.

The first category is the closest to this work and includes Share-
mind [12], a well-developed framework for three-party computation
with a single corruption using custom protocols; Araki et al. [8]
who use three-party with a single corruption to support arithmetic
or Boolean circuits; and several compilers from passively secure
to actively secure protocols [5, 22, 26, 41]. Dalskov et al. [19] also
studied four-party computation with a single corruption. We are
not aware of existing multi-party techniques with honest major-
ity over a ring which extend beyond three parties or multi-party
protocols based on RSS over a ring. While RSS is meaningful only
for a small number of parties, we still find it desirable to support
more participants and build additional techniques for this setting.
For example, if our matrix multiplication protocol over a ring with
three parties is 100 times faster than field-based computation, it
will remain faster even if the work increases when the number of
parties is larger than 3.

We rely on the results of Damgard et al. [20] for some of our
protocols. While this work is for the SPDZ,« framework [16] in
the malicious setting with no honest majority, once we develop
elementary building blocks, the structure of higher-level protocols
can remain similar. Composite protocols such as comparison, con-
version, and truncation require a large number of random bits. We
leverage the edaBit protocol from [27] to efficiently generate sets
of binary and arithmetic shared bits. Their technique improves
upon the daBit technique [52]. Rabbit [44] builds on daBits [52]
and edaBits [27] and developed an efficient n-party comparison
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Framework Setting | Techniques | No.of | Networks
S-H Mal | HE GC SS | Parties | [42] gMob.

SecureML [438] v v v 2 v
MiniONN [42] v v v v 2 v
Gazelle [33] v v v v 2 v
DELPHI [46] v VRV ARV ) v
Chameleon [51] v v v 2 v
CrypTFflow [50] v v v 2 v
CrypTFflow2 [38] v v v 3
SecureNN [55] v v 3 v
Falcon [56] v v v 3 v
ASTRA [14] v v v 3
BLAZE [49] v v v v 3
ABY3 [47] v v v v 3
SecureQ38 [18] v v v | 3 n" v v
Trident [15] v v v v 4
Fantastic Four [19] | vV v 4
This Work v v n v v

Table 1: Comparison of state-of-the-art PPML frameworks.
(*) [18] supports n parties in the semi-honest, honest major-
ity setting over a field Fp, but only three parties over a ring.
The two NNs we consider are [42]’s four-layer convolutional
NN, and the quantized version of MobileNets (qMob.) [30].

protocol by relying on commutativity of addition over fields and
rings. Their protocol offers significant improvement over [27] in
most adversarial settings over a field, but remains comparable with
a passively secure honest majority over a ring.

Literature on PPML is also related to this work, and we present
a high-level comparison of the current state-of-the-art in Table 1.
Each framework is subdivided according to their security assump-
tions (semi-honest or malicious), the cryptographic techniques used,
the number of parties supported, and the methods of evaluation.
We highlight several key works below.

We distinguish between two-party solutions, where one party
holds the model and the other holds the input on which the model
is to be evaluated, and between multi-party (typically, three-party)
solutions. Publications from the first category include MiniONN
[42] and Gazelle [33], both of which studied NN evaluation using
SS, homomorphic encryption (HE), and garbled circuits (GC).

Multi-party constructions provide protocols for training and in-
ference across multiple parties. ABY3 [47] combines techniques
based on replicated and binary SS with GCs in the three-party
setting with honest majority. SecureNN [55] provides three-party
protocols for a variety of NN functions under the same security
assumption as ABY3. Their protocols are asymmetric, where par-
ties have dedicated roles in a computation. This work is improved
upon with FALCON [56] by adding malicious security with honest
majority and combining the techniques from SecureNN and ABY3.

ASTRA [14] is a three-party framework that uses SS over the ring
Z,r under both semi-honest and malicious security assumptions.
Similar to SecureNN, protocols are asymmetric. Abspoel et al. [6]
apply the MP-SPDZ [34] framework for secure outsourced train-
ing of decision trees. Their system operates under the three-party,
honest-majority assumption with RSS. Dalskov et al. [18] were the
first to address quantized NN inference using secure multi-party
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computation. Their system is built into MP-SPDZ and benchmarked
on the MobileNets [30] network architecture. Keller et al. [36] con-
ducts quantization-based training and inference with three parties
and one semi-honest corruption.

3 PRELIMINARIES
3.1 Secure Multi-Party Computation

We consider a secure multi-party setting with n computational
parties, out of which at most t can be corrupt. We work in the setting
with honest majority, i.e., t < n/2 and semi-honest participants and
use simulation-based security (see Appendix B for detail).

As customary with SS techniques, the set of computational par-
ties does not have to coincide with (and can be formed indepen-
dently of) the set of parties supplying inputs in the computation
(input providers) and the set of parties receiving output of the
computation (output recipients). Then, if a computational party
learns no output, the computation should reveal no information to
that party. Consequently, if we wish to design a functionality that
takes secret-shared input and produces shares of the output, any
computational party should learn nothing from protocol execution.

3.2 Secret Sharing

A 'SS scheme allows one to produce shares of secret x such that
access to a predefined number of shares reveals no information
about x. In the context of secure multi-party computation, each of
the n participants receives one or more shares x; and in the case
of (n, t) threshold SS schemes, possession of shares stored at any
t or fewer parties reveals no information about x, while access to
shares stored at ¢ + 1 or more parties allows for reconstruction of
x. Of particular importance are linear SS schemes, which have the
property that a linear combination of secret shared values can be
performed locally on the shares. Examples of linear SS schemes
include additive SS with x = }}; x; (as used in Sharemind [12] with
n = 3 and in SPDZ [23] with any n), Shamir SS which realizes (n, t)
secret sharing with ¢ < n/2 and represents a share as evaluation of
a polynomial on a distinct point, and RSS, which we discuss next.

3.3 Replicated Secret Sharing

Our techniques utilize RSS [31] which has an associated access
structure I'. An access structure is defined by qualified sets Q € T,
which are the sets of participants who are granted access, and the
remaining sets of the participants are called unqualified sets. In
the context of this work we only consider threshold structures in
which any set of ¢ or fewer participants is not authorized to learn
information about private values (i.e., they form unqualified sets),
while any ¢ + 1 or more participants are able to jointly reconstruct
the secret (and thus form qualified sets). RSS can be defined for any
n > 2 and any t < n. To secret-share private x using RSS, we treat
x as an element of a finite ring R and additively split it into shares
xT such that x = Y 7cqx1 (in R), where 7 consists of all maximal
unqualified sets of T (i.e., all sets of ¢ parties in our case). Then each
party p € [1, n] stores shares x7 forall T € 7 subjecttop ¢ T.In
the general case of (n, t)-threshold RSS, the total number of shares
is () with (";1) shares stored by each party, which can become
large as n and ¢ grow. In what follows, we use notation [x] to mean
that (private) x is secret shared among the parties using RSS.
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Example. In the (4, 2) setting, 7 consists of 6 sets 7~ = {{1, 2},
{1,3},{1,4},{2,3},{2,4}, {3,4}} and thus there are 6 correspond-
ing shares for every secret-shared x. Then party 1 stores shares
X{2,3}> X{2,4}> X{3,4}, Party 2 stores x(q 3}, X1 4}, X{(3 4}, etc.

The parties will need to perform computation on secret shared
values. The first important property of RSS is that it is linear. For
example, to add [a] and [b], party p computes at + br (in R) for
each T € 7 that p stores. A number of other operations, such as
multiplications, reconstructing a value from its shares, etc., are
interactive. We consequently describe in Section 4 the way we
realize these operations. An important optimization on which we
rely is non-interactive evaluation of a pseudo-random function
(PRF) using RSS in the computational (as opposed to information-
theoretic) setting as proposed in [17]; see Section 4 for detail.

In what follows, we use the notation <« to denote output of
randomized algorithms, while the notation = refers to deterministic
assignment.

4 BASIC PROTOCOLS

Recall that RSS enjoys the linear property. In addition to adding
secret-shared values, we use the ability to add/subtract known
integers to a secret-shared value [a] and multiply a secret-shared
value [a] by a known integer. Addition [a] + b converts b to [b]
without using randomness (e.g., we could set one share to b and the
remaining shares to 0 to maintain ) 7c4 by = b). Multiplication
[c] = [a]-bsetscr =ar-b (inR) VT € T.

For convenience and without loss of generality, we let n = 2¢ + 1.
When n > 2t + 1, 2t + 1 parties can carry out the computation on a
reduced set of shares in such a way that there is no need to involve
the remaining parties in the computation.

4.1 Random Number Generation

We will be using two types of random number generation, which
we discuss here.

PRG. Invocation of [a1], [az], ... « PRG([s]) is realized by inde-
pendently executing a PRG algorithm on each share of s without
interaction between the parties. Because the output of PRG([s]) is
private, we expect it to produce a sequence of secret-shared values
(represented as ring elements). Furthermore, in our construction we
only call the PRG to obtain random (secret-shared) ring elements.
This means that calling PRG(sT) to produce pseudo-random ar
will result in PRG([s]) generating [a], where a is pseudo-random
as well because a = ), 7cq ar (in R). This is similar to evaluating a
PRF on a secret-shared key in the RSS setting without interaction
in [17].

PRG(sT) can be realized internally using any suitable algorithm,
as long as it is consistent among the computational parties. For
example, because of the speed of AES encryption on modern proces-
sors, one might implement PRG(st) = PRF(sT, 0)||PRF(sT, 1)||. . .,
where PRF : R X {0,1}* — R is a PRF instantiated with AES.

Let G = PRG([s]). When the output of G is not consumed all at
once, we use notation G.next to retrieve the next (secret-shared)
element from G. Similarly, if G = PRG(st), notation Gr.next
refers to the next pseudo-random share output by Gr.
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PRandR. [a] < PRandR() computes a secret-shared random ele-

ment of ring R. We implement this function by executing PRG([k]).next,

where k is a system-wide key. The key k is set up at the system
initialization time (in the form of secret shares) and does not change
throughout program execution.

4.2 Multiplication

Multiplication [¢] < Mul([a], [?]) (or simply [a]-[b]) is realized
using the fact that [a]-[b] = X7, 1,e7 a1, b7, (in R). Note that for
any (T3, T2) pair, there will be a party holding shares T; and Ty, and
thus performing this operation involves local multiplication and
addition over different choices of Tj, Tz. More formally, let mapping
p: TXT — [1,n] denote a function that for each pair (Ty, T2) € 72
dedicates a party p € [1, n] responsible for computing the product
ar, -br, (clearly, p must possess shares T; and T3). For performance
reasons, we also desire that p distributes the load across the parties
as fairly as possible.

As a result of this (local) computation, the parties hold additive
shares of the product a-b = ¢, which needs to be converted to RSS
for consecutive computation. This conversion was realized in early
publications [9, 45] by having each party create replicated secret
shares of their result and distribute each share to the parties entitled
to knowing it (i.e., party p receives shares from each party for each
T € T subjecttop ¢ T). This results in each participant creating (%)
shares and sending (", ") of them to each party. Consequentially,
each participant adds the values received for share T and stores the
sum as cr, for each T in its possession.

More recent work, e.g., [8] and others traded information-theoretic
security (in the presence of secure channels) for communication
efficiency by having the parties generate shared (pseudo-) random
values. We pursue this direction as well. However, if this idea is
applied naively, it results in unnecessarily high overhead. In partic-
ular, if we instruct each party p to generate all shares for its secret,
some shares will be known to more than ¢ participants and thus do
not contribute to secrecy. Instead, our solution eliminates shares
that p does not possess and thus do not contribute to secrecy. Thus,
our construction utilizes key material consistent with the setup of
the RSS scheme. In particular, we use the same key setup as in pseu-
dorandom secret sharing, where k7 is known by all p ¢ T. Then
when a party needs to generate a pseudo-random share associated
of its value for share T, the party will draw it from the PRG seeded
with k7.

We, however, note that multiple participants may need to draw
from the PRG seeded with k7 to produce shares of their values, and
it is generally not safe to use the same secret to protect multiple
values, which is also the case in our application. Instead, multiple
elements might be drawn from the PRG (seeded with k) to protect
different values, and consistent use of the PRG with each seed can be
setup by the participants ahead of time, such that this information
is public knowledge.

In addition to the mapping p, our multiplication protocol requires
another mapping y : [1,n] — 7, which specifies for each party p
the share T (subject to p ¢ T) that p communicates (with all other
shares of p’s value being produced as pseudo-random elements). As
before, we desire to choose the values of y(p) as to evenly distribute
the load and communication.

611

Proceedings on Privacy Enhancing Technologies 2023(1)

Protocol 1 [c] « [a]-[p]
// pre-distributed values are [k] and public maps p and y
1: each p € [1, n] does the following
2 letS, ={TeT |p¢Th
3 P = Y1 1eq p(TT)=p A1 DT
. ®»  __(p).
SRR

5: forTESp docy =0;
6: for p’ € [1,n] in order do
7 forT € S, do
8: if (p’ #p) A’ ¢ T)A(x(p’) # T) then
9: cr = cT + GT.next;
10: else if (p’ = p) A (x(p) # T) then
11: z = GT.next;
12: cT )= cT +(Z);
13: o =Y 7
14: end if
15: end for
16:  end for
17: send V) to each p” ¢ y(p) (other than itself);
18:  for p’ € [1,n] such thatp ¢ y(p’) do
19: receive vif(g,) from p’, set Cy(p) = Cx(p) t vﬁf(z,);
20:  end for
21 ¢ =c + ’U(P) ;
x®) = Cx@) T Yy (py

22: return [c];

The above intuition leads us to the optimized n-party multiplica-
tion protocol given as Protocol 1. After computing its private value
v?) according to p, each party p distributes it into (";1) additive
shares (one of which is communicated while others are computed
using PRGs). Afterwards, each party sets its c7 as a sum of ¢ + 1
shares (computed or received) of values o®) for each party p’ enti-
tled to shares c7. This matches the fact that each share ar of secret
a is maintained by ¢ + 1 parties. Correctness is achieved by ensuring
that in Protocol 1 two different participants p and p” with access to
shares T consistently associate the values that they draw from Gt
with shares belonging to different parties by always processing the
values in the increasing order of participants’ IDs. Preparation of
the shares in Protocol 1 is done on lines 10-16, where a participant
either masks its share with a pseudo-random value because it is
used by another party or forms its own shares and the value to be
transmitted.

In this protocol, each party on average sends t ring elements and
draws (";1) -1+(@n- l)(";z) — t pseudo-random ring elements
(which is (¢ + l)((n;l) — 1) when n = 2t + 1). The latter can be
explained by using (";1) — 1 pseudo-random shares for its value
being re-shared and (";2) shares that it has in common with any
other party except the t values that it receives with a symmetric

communication pattern. (Recall that each party maintains ("_1)

t
shares of a secret and has (";2) shares in common with any other
party). When the communication pattern is not symmetric, the
overall amount of work and communication remains unchanged,
but it may be distributed differently. Thus, we refer to the average

work and communication in that case.
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mappings: input:
p:{1h{1} -3 x:1-{2} age), agsy, by, bisy
1h{2p—-3  2-(3) Gy = PRG(k(z)). Gs = PRG(k(3))
{11{3} > 2 3 {1} computation:
{2}, {1} -3 U= a{z)b{z) + a{z}b{3) + a{3}b{2}
{25L{2} -1 v} = Gs.next, vz} = v — v(3)
{2}, {3} =1 output:
{3}, {1} —» 2 s, ¢z} = v(zy + Gz.next
{31.{2} -1 €3y = vg3) g3y
(3}, 631 =2 @ V{z2}
input: W input:
a2 by bes aq), gy, by, by

G1 = PRG(k(1}), G3 = PRG(k(3y)
computation:

u = apyby + apybes + apybpy
ugy = G1.next, Uy = U — Uy
output:

C{1} = Uqny + Wiy

C(3} = U3 + Gj.next

Gy = PRG(k(1), G2 = PRG(k(zy)
computation:

w = abpy + apybpy + apbyy
w2} = G,.next, W1} =W — W3
output:

c(1y = Gy.next + wyyy

2y = Y2y T Wiz

G

Figure 1: Sample three-party multiplication [a]-[b]; arith-
metic is in R.

Compared to other results, the three-party version of our pro-
tocol matches communication of recent multiplication from [8],
which is available only for three parties and improves on commu-
nication of Sharemind’s three-party multiplication from [37] by
a factor of 2. For multi-party multiplication it can be desirable to
use a different communication pattern when a designated party
reconstructs a protected value and communicates it to others (as
in, e.g., [21]) which scales better as n grows. However, our version
has lower communication when n = 3, uses fewer rounds, and n is
typically small with RSS.

Example. With three parties, we could have party 1 (in posses-
sion of shares {2} and {3}) compute (and add) products a(3,b(3).
ag21by3), and a3y by, party 2 (in possession of shares {1} and
{3}) compute products a(3yb3y, a(1)b(3}, and a3y by}, and party
3 (in possession of shares {1} and {2}) compute products a(;,b(1}.
af1yby2),and agy)byq). This defines mapping p. Also let x(1) = {2},
x(2) = {3}, and y(3) = {1}. This, for example, means that when
(1) (1)
{2} {3y

the latter is computed using a PRG, while the former is being sent
to party 3 (i.e., the other party entitled to have that share). An illus-
tration of the multiplication protocol with these mappings in the
three-party setting is given in Figure 1.

We state security of multiplication as follows, with its proof
available in Appendix B:

party 1 divides its computed value o into shares v\ and v

THEOREM 1. Multiplication [c] < [a]-[b] is secure according to
definition 1in the (n, t) setting withn = 2t+1 in the presence of secure
communication channels and assuming PRG is a pseudo-random
generator.

Our multiplication protocol shares conceptual similarities with
(optimized) multiplication from [35]. In particular, both sample
pseudorandom secret shares according to the access structure and
communicate a single (properly protected) element to a number of
other participants. Our solution explicitly defines all maps and the
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computation associated with computing each share of the output,
while the latter appears to be under-specified in [35].

The computation associated with multiplication can be gener-
alized to compute the dot-product of two secret-shared vectors
DotProd({[a], ..., [aN1), ([b'],...,[bN])), or evaluate any other
multi-variate polynomial of degree 2, using the same communica-
tion and the same number of cryptographic operations as in multi-
plication. For that purpose, we only need to change the computation
in step 3 of the multiplication protocol. For example, for DotProd,
we modify step 3 to compute o) = 2T TeT,p(T1, Te)=p Zﬁ\il a’.T1 b;.z
(in R), while the rest of the steps remain unchanged.

Table 2 shows performance of these and other basic protocols for
the general (n, t) and the (3,1) settings. Communication is measured
as the number of ring elements sent by each party and computation
is the number of cryptographic operations (i.e., retrieval of the next
pseudo-random element using a PRG) per party.

4.3 Revealing Private Values

Open. Reconstruction of a secret shared value a = Open([a])
amounts to communicating missing shares to each party such that
the value could be reconstructed locally from all shares. Recall that
there are ('tl) total shares and each party holds (";1) of them. Thus,
each party receives d = (}) - (n;l) missing shares during this
operation.

Our next observation is that when n is not small (such as when
n = 7), the value of d will exceed n and transmitting d messages to
each party is not needed. Since the value is reconstructed as the
sum of all shares, it is sufficient to communicate sums of shares
instead of the individual shares themselves. Recall that [a] can be
reconstructed by ¢ + 1 parties. This means that it is sufficient for
a participant to receive one element (i.e., a sum of the necessary
shares) from ¢ other parties.

As before, we would like to balance the load between the parties
and ideally have each party transmit the same amount of data. This
means that we instruct each party to send information to ¢ other
parties according to another agreed upon mapping v : [1,n] —
(7, [1, n])?. For each party p, this mapping will specify which of p’s
shares should be communicated to which other party. The mapping
v will then define computation associated with this operation: each
p computes Y1 ,(p)=T,p a7 (in R) for each p” # p present in the
mapping and sends the result to p’.

Similar to other SS frameworks, simply opening the shares of a
maintains security of the computation (in the sense that no infor-
mation about private values is revealed beyond the opened value
a). This is because we maintain that at the end of each operation
secret-shared values are represented using random shares. In par-
ticular, it is clear that the result of PRG([s]).next and PRandR()
produces random shares; shares are properly re-randomized during
multiplication of [a] and [b], and shares of [a] + [b] and [a] — [b]
are random if the shares of [a] and [b] are random themselves.

Example. With n = 3, we could have v(1) = ({3},3), v(2) =
({1}, 1), and v(3) = ({2}, 2), which corresponds to v(p) = ({p —
1},p — 1) (where p — 1 = 3 for p = 1), which corresponds to the
communication pattern in Figure 2.

MulPub. Functionality ¢ = MulPub([a], [0]) refers to multiplying
two secret-shared [a] and [b] and opening their product c. We
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Operation Rounds Com(i : éert;gi% ops | Comm ! SCert}trgii ops
PRG([s]).next, PRandR() 0 0 2 0 (nzl)
Mul([a], [b]) 1 1 2 t (t+1) ((”21) - 1)
Open([a]) 1 1 0 t 0
MulPub([a], [5]) 1 2 2 n-1 ")
DotProd({[a'],. .., [aN]), ([b'],. .., [BN])) 1 1 2 t | (t+1) (("?1) - 1)

Table 2: Performance of basic RSS operations with computation and communication per party.

mappings:
v:1—({3},3)

2 - ({14, 1)

3 — ({2},2)

e

input:
a1y, a3y 4z}
output:

a=aqy tagy tagy

©

ags)

O

input:

4{2}> A{3}

output:

a=aqy tagy tagy

input:

a1} 4{2}

output:

a=aqy tagy tagy

Figure 2: Sample three-party Open([a]); arithmetic is in R.

discuss this functionality because in the past, this operation could
be implemented more efficiently than multiplication followed by an
opening in alternative SS frameworks (e.g., see [13]), and we pursue
a similar direction here. In the protocol we present here, MulPub is
realized using a single round without increasing communication
cost. Executing multiplication followed by Open would double the
number of rounds.

In multiplication, after computing a product, each locally calcu-
lated value is no longer random and must be re-randomized prior to
opening it. In our RSS setting, this is realized by relying on parties
locally computing pseudo-random values. Specifically, we associate
a secret key kt with each T € 7 (i.e., this is the same key shares
used with PRandR() and multiplication) and use pseudo-random
values Gt.next to protect the share of the product that each party
locally computes, prior to that party revealing its randomized value
to all others. We require all blinding pseudo-random values sum to
0 to ensure the reconstructed product is correct. In the three-party
case, this can be achieved by adding some pseudo-random values
and subtracting others, as illustrated in Figure 3.

With larger n and t, we must be careful to draw new elements
from each PRG to ensure that values released by different parties
are protected using proper randomness without reusing them. This
is similar to the logic used in multiplication. Then to realize this
logic and ensure that all blinding factors add to 0, when multiple
values are sampled from Gr, the last blinding value is set to the
sum of all previously drawn elements multiplied by —1 (in R). We
provide a detailed description of MulPub in Protocol 2. G7 and S,
are defined as in multiplication.

In this protocol, each party draws the same number of elements
from each Gt in its possession to ensure that after a single protocol
execution all parties are in the same state (but a party may discard

mappings:
p: {1, {1} -3 input:
{1}.{2} -3 biov. biar. Go. G
(1,3} -2 computation:
{2} {1} =3 oW = agbp) + apybes) + apbey
{2}, {2} =1 = vél) + Gy.next + Gs.next
{2} {3} -1 output:
1 i AT
> - (1)
¢
{3L{3} -2 @ O |
input: X(z)\ out
agy, aqay by, bys \ nput:
(1,}03{ P c® aq}s a2y, by, bzy, G, Gz
computation: ct();;lputation:
v = s1bsy + aqybysy + agsybiyy v = agybay + apybiyy + aybpy

¢® = 0@ + Gy.next — Gs.next
output:

4
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¢® =93 — G,.next — Gy.next
output:

_ 2 (3)
— M) 4 (@ 4 B c=cW+c@4¢

Figure 3: Sample three-party MulPub([a], [b]); arithmetic is in
R.

Protocol 2 ¢ < MulPub([a], [b])

// pre-distributed values are [k] and public map p
1: each p € [1, n] does the following:

2 0P =cP = Fr e o1 Tep a1 b1y

3 forT €S, do

4 let j be the number of parties p’ <p for p’¢T;
5: fori=0tot—1do

6 z = Gr.next;

7 if j = t then ¢?) = () — z;

8 else if i = j then ¢ =c(P) +z;

9 end if

10: end for

11:  end for

122 send ¢® to all other parties, and set ¢ = c(p);
132 fori=1ton-1do

14: receive ¢?”) from distinct p’, setc = ¢ + .
15:  end for

16: return c;

some computed values). Similar to the computation in multiplica-
tion, we order the parties based on the values of their IDs. Because
any given share T is stored at t + 1 parties, there are ¢ calls to each
Gr per invocation of this operation. Then the participant with the
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lowest ID among the parties with access to T (j = 0) uses the first
element of G to protect its value o?) and disregards the t — 1 other
elements, the participant with the next lowest ID uses the second
element, etc. The participant with the highest ID among those with
access to T (j = t) computes the sum of all ¢ elements drawn from
Gt and subtracts the sum from its o®). Correctness follows from
the fact that the sum of all blinding values over all parties and all
shares is equal to 0, i.e, c = X, P = 2p o) (in R).
To show security, we prove the following result:

THEOREM 2. The protocol MulPub([a], [b]) is secure according to
definition 1 in the (n,t) setting withn = 2t + 1 assuming PRG is a
pseudo-random generator.

Before proceeding with the proof, we demonstrate intuition behind
it on the three-party example in Figure 3. Let z7 denote the output
of Gr.next. Then party 1 transmits ¢ =M 4 z(2) + z(3), party
2 transmits ¢® = v@ + z(1) — 2(3}, and party 3 transmits P =
o3 - Z(1} — 2{2}, where ¢ = oD 4+ 0@ 1 3 and each v needs
to be protected (arithmetic is in R). Without loss of generality, let
party 3 be corrupt. Then party 3 (with access to z(;) and z(,}) can
compute oD 4 z(3}, 0@ - z(3}, and the output of the computation

¢, but no information about o) or v(2) (assuming security of the
PRG) other than their sum oD+ The latter, however, is already
computable by party 3 using the output ¢ and its share 03, which
reveals no extra information about a and b beyond their product.
The full proof is given in Appendix B.

Similar to multiplication, MulPub can be generalized to evaluate
any (multi-variate) polynomial of degree 2 and open the result.

4.4 Inputting Private Values

There will be a need to enter private values into the computation
in subsequent protocols, and we defer two variants of this function-
ality — when input is provided by an external party and one of the
computational parties — to Appendix A.

5 COMPOSITE PROTOCOLS

While the previous operations can be instantiated to work with any
finite ring, the techniques in this section work only in a ring Z,x
for some k. Ring Z, is the primary reason for supporting secure
computation over rings because it enables utilization of native CPU
instructions for ring operations.

The goal of this work is to enable efficient general-purpose com-
putation over rings Z,x, we therefore focus on major building
blocks which can be consequentially used to compose a protocol
for arbitrary functionalities including machine learning tasks. Of
central importance to this effort is the development of compari-
son protocols (for both less-than comparison and equality testing
functionalities), which are known to be difficult to design in a
framework where the elementary techniques are based on arith-
metic gates. Others include bit decomposition and truncation (i.e.,
division by a power of 2). Combined, these techniques can enable
Boolean, integer, fixed-point, and even floating-point arithmetic, as
well as array and related operations, giving the ability to compose
general-purpose protocols.

Because a number of protocols for common operations over
Z,x have already been developed, some of the constructions that
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we mention in these sections are adaptations of prior protocols
to our setting and we defer their specification to the appendix.
In particular, Appendix A provides specification of random bit
generation protocol, RandBit, that produces a bit shared in Z,x and
a more recent version from [27], edaBit, that generates a number
(k in our case) of random bits r; shared in Z; together with a
representation of the bits as an integer r = Z;‘:l 2'r; shared in Zyk.
The former can be computed in a single round, while the latter uses
noticeably lower communication per bit, but the round complexity
is logarithmic in k and t.

We also describe a comparison algorithm for computing [a] <
[b], which is commonly implemented by determining the most
significant bit of the difference between a and b and denoted by
MSB. Performance of these protocols is summarized in Tables 3
and 13.

Truncation is a necessary building block when working with
fixed-point values or simulating fixed-point computation using
integer arithmetic and permits us to minimize the ring size. Starting
from [13], probabilistic truncation of input a by m bits that produces
La/2™] + u, where u is a bit, is significantly faster than precise
truncation that rounds down. It is biased towards rounding to
the nearest integer to a/2™ and is sufficient for our purpose. The
protocol we present, TruncPr([a], m), is a constant-round solution
that combines the approach from [18] with edaBits from [27] and
inherits from [27] the requirement that input a is 1 bit shorter than
the ring size, i.e., MSB(a) = 0. We use notation [x], to denote that
SS is over Zye.

The truncation protocol, given as Protocol 3, uses related ran-
dom values r and 7, bit decomposition of which are known, where
r= Z;:ol 2ir; is a full-size random value and 7 = Zi.:,}l 2ir; is the
portion remaining after truncating m bits. We thus modify the ed-
aBit protocol to produce those values simultaneously. Each [r] and
[7] is computed as a sum of ¢ + 1 integers, so we must compensate
for two types of carries: (i) addition of m least significant bits in r
will produce carry bits into the next bits which are not accounted
for in 7 and (ii) while the carry bits past the k bits are automatically
removed in the ring when computing r, these bits remain in 7 due to
its shorter length. Because we compute the bitwise representation
of r using bitwise addition protocol BitAdd, we can also extract the
carry bit into any desired position which is already computed dur-
ing the addition. The logic of the truncation protocol necessitates
the removal of the (k — 1)th bit. For this reason, we capture carries
into the mth and (k — 1)th positions and denote those bits from
the ith call to BitAdd as cr;,, and cr; x4, respectively (line 10).
We subsequently convert the 2log(t + 1) carry bits and the most
significant bit of r, denoted as by_, from shares over Zy to Z,x
using binary-to-arithmetic sharing protocol B2A (from [20]). All
interactive operations except the last one (line 20) can be precom-
puted. Security follows from the protocol logic as specified in prior
work and from security of the building blocks.

It is also possible to use the above protocol to truncate an input
[a] by a private number of bits [m] as outlined in [18]: Let M be
some public upper bound on m. Protocol TruncPriv([a], [m], M)
then needs to securely compute [2M=™] . [4] and can subsequently
call TruncPr([2M~™ . q], M). A performance summary is given in
Table 3.
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Protocol Rand. Protocol Rounds Communication
MSB([al,) RandBit log(k —1)+3 2t(k +3)
edaBit log(t + 1)(log(k) + 1) + log(k — 1) + 4 t2(log(k) + 1) + 7t + 1/2
TruncPr([alg, m) RandBit 2 t(2k + 1)
’ edaBit log(t + 1)(log(k) + 1) + 4 t2(log(k) + 2/k + 4) + t(1/k + 4) + 1/2
RandBit log(k) + 4 2t(k + k) + t(log(k) + 2)
Convert([alx, k. k') edaBit log(t + 1)(Iog(gk) +1) + log(k) + 3 t2(log(k) + 1) + t(zk’g+ log(k) + 3)

Table 3: Performance of composite protocols with communication measured in the number of ring elements sent per party

over Z,k+; for RandBit and Z,« for edaBit(k).

Protocol 3 [a/2™]; « TruncPr([a]g, m)

Protocol 4 [a]; « Convert([alg, k, k'), where K’ > k

1: forp=1,...,t+ 1inparallel do
2. party p samples r(p), e r](f_)l
zj?:‘(} rJ(.”)zf and #P) = zj?;}n rj(.")zf;

3. simultaneously execute [r(l’)],c — Input(r(p), k), [f(f’)]k —
Input(f(P), k), and [rgp)]ﬁ—lnput(rgp), 1) for i=1, ..., k, with
p being the input owner;

: end for

e = RPN [Pk = S5 FP T

s=t+1;

: fori=1,...,[log(t + 1)] do

forj=1,...,[s/2] in parallel do

C=j+s(i—1)
w0 (P

€ Z, and computes r?) =

O N g

I P N )
11: if s mod 2 =0 thens =s/2;
else s+1 s+1
R (e TR s D R (T PR R
13: s=(s+1)/2
14: end if
15:  end for
16: end for

17 [bolts o [l = 13 T [P s

18: [bi—_1]k {[ere, mlks )» {lere, k—11k) < B2A([bi—1]1, {[cre, m]1),
([erp k—1l1)) for £=1,.. ., t;

o [l = [Fle = a2 + 30 (eremle —
[Cré’,k—l]kzk_m_l);

20: ¢ « Open([alg + [r]r);

21: ¢/ = (¢/2™) mod 2k—™~1;

22: [blg = (e/257) + [bpy Ji = 2(/25 Dlbg—y s

23 return ¢ — [f]g + [b]y - 2F-™°L,

6 NEURAL NETWORK APPLICATIONS

Today it is typical to benchmark secure multi-party frameworks
on machine learning applications, e.g., NN inference. We briefly
introduce NN basics and describe two mechanisms for improving
efficiency of secure NN inference.

A neural network is a series of interconnected layers consisting
of neurons. Each neuron has an associated weight and bias used for
computation on some input data and outputs a prediction based on
that data. A NN network layer takes the form y = g(xW + b),

[ 10 [ere, met 1. [exe g 1 BitAdd ([ )1,
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t: [rlg. [rol1s - - -» [re—1]1 < edaBit(k);

2: ¢ < Open([a]y — [r]);

3: [aol1, . ... [ag—1]1 < BitAdd(c, [rol1. ..., [rk—1]1);
4 fori=0tok — 1in parallel [a;]r < B2A([a;]1,k’);
5: return [a]p = Zf;ol[ai]kzzi;

where x is the input vector from the previous layer, W is the
weight tensor, b is the bias vector, and g is some activation func-
tion. Sample activation functions are Rectified Linear Unit (ReLU),
which on input x = (x1, ..., xx) computes y = (y1, . .., yN) Where
each y; = max(0, x;), and its variant ReLU6 which computes y; =
min(max(0, x;), 6).

6.1 Share Conversion

Conventional NN evaluation uses floating-point arithmetic, while
secure evaluations for performance reasons typically employ fixed-
point computation or emulate it on integers. If inputs are repre-
sented in the form of fixed-length integers, the values will grow
with each layer that performs matrix multiplication. This can impact
on performance because comparison-based activation and pooling
operations have cost linear in the bitlength of ring elements. For
this reason, it can be advantageous to start with a smaller ring size
and increase it mid-computation to accommodate longer values.

This approach involves converting secret-shared [a]; over Z,«
to a different representation [a]js over Z,w for k” > k. Conversion
techniques between certain types of fields are known [24], but they
do not apply to our case. Simply casting k-bit shares to k’-bit shares
for k’ > k affects correctness because the overflow due to share
addition is not reduced modulo 2*. Thus, the task is to leave k
least significant bits of the value and erase the remaining bits in a
longer share representation. One way to achieve this is to invoke
truncation as ([a]-ZkI_k) > 2K~k or [a] = ([a] > k)2X. However,
because computing precise truncation is costlier for rings than fields,
we design a more efficient version based on bit decomposition. In
particular, we perform bit decomposition of [a] into shares of bits
in Zj,, convert the bit shares to Z,x, and reassemble [a].

This procedure is denoted by Convert and given as Protocol 4
using edaBits. An equivalent version can be constructed using
RandBit. It is based on bit decomposition from [20] and uses Boolean
to arithmetic conversion, B2A, from Z, to YN and bitwise integer
addition, BitAdd. Performance is summarized in Table 3.
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6.2 OQuantized Neural Networks

To improve efficiency of NN inference, it is common to employ quan-
tization, which makes the resulting models suitable for deployment
in constrained environments and is a well-studied field (see, e.g.,
[29]). We outline the standard quantization approach from [32] and
its privacy-preserving realization from [18] for quantized TFLite
models and consequently describe our optimizations.

For a vector x, each real-valued x; is represented as x; = m(x;—z),
where m € R is the scale and z and X; are 8-bit integers with z being
the zero point. Given an input column vector x = (x1, ..., xx) and
arow vector w = (wy, ..., wy) of W with quantization parameters
(m1, z1) and (ma2, z2), respectively, the dot product of x and w, y =
Zfi 1 Xiwj, is specified with quantization parameters (m3, z3). Since
y ~ m3-(§—z3), x;i ® my-(Xj—z1),and w; ~ my-(w;—z2), quantized §
is computed as § & z3+mimg/ms3- Zﬁl()’ci+zl)-(ﬁ/i—zz) = z3+m:s.
Computing s requires integer-only arithmetic and is guaranteed to
fitin 16 +1og N bits. The scale m = mymgy/m3 is a small real number.
It can be written as m = 2~¢m’ with normalized m’ € [0.5, 1) which
informs the value of e and represented as a 32-bit integer m”’, where
m’ ~ 2_317’”",

Two-dimensional convolutions typically add a quantized bias
b once the dot product is computed. This is handled by setting
the scale of the bias to mymy and the zero-point to 0, such that
the bias can be added to s prior to scaling. The last step of a con-
volution layer is to apply an activation function such as ReLU6.
In a quantized NN, this functions as a clamping operation which
eliminates values outside of range [0, 255] and uses m3 = 6/255
and z3 = 0. This guarantees correct range while maximizing pre-
cision with 8-bit quantized values. Going forward, ms becomes
mj for the next layer and thus all intermediate layers share the
same mj = m3 = 6/255. Other activation functions such as sigmoid
would be handled differently, but we only consider clamping-based
functions like [18].

Computing the convolution layer securely requires the model
owner to enter private quantization parameters into the computa-
tion, including all zero points z;, modified scale m’’, and integer
scale adjustment 2M~¢731 where M is an upper bound set to 63.
After privately computing the dot product [s] and adding the bias
vector [b], the result is multiplied by [m’’] and need to be trun-
cated by private amount 31 + e. The truncation is accomplished
by multiplying the scaled dot product by [2M~"31] and [m-s] and
consequently truncating by M bits. Lastly, after adding [z3] locally,
clamping the result to the interval [0, 255] is performed using two
comparisons.

A limitation of [18]’s approach is it required large scaling factors
and consequently a large ring size of k = 72 for working with
real numbers, using M-bit truncation with M = 63. We propose a
modified approach where scales are folded into other aspects of the
layer computation and conduct smaller truncation at the end of each
layer, which guarantees compact representation of intermediate
results.

Let superscript (i) denote the layer number. Starting from layer
0, the entire layer computation (dot product, scaling, and clamping)
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can be interpreted as computing 0 < g<°> < 255, where

0) (0) ¢ N
y_<0>_m1 m

S R
m3 i=1

was set to 0, as prescribed by the clamping operation, for

(@)
3

and z

all layers except the last one. Because m§0> = 6/255, we scale the

equation to redefine g<°> as

§© = i ()_Ci<o>_zl<o>) ) (wi<0>_22<0>)+l;<0>’

i=1

where 0 < g<°> <6/ m§0>m§0>. Now, our clamping operation can
use these bounds, with the upper bound being privately entered
by the model owner to avoid division. As before, the output of this
layer becomes the input for the subsequent layer, i.e., % = g<i‘1>.
Our modified incoming vector, denoted Pas , is coupled with an
additional scaling factor of (255m§0>m§0>)/6, such that (1) =
255m§0>m§0>£<1>/6 = 5Dz, Using 1 = 5Dz gives us

N
g = Z(;C;U =250l = 240)) 4 5D 50
i=1

with 0 < g<1> < 6/(5<1>m§1>m§1>). This expression can be evalu-
ated securely without needing fixed-point multiplication or large
truncation, and all bounds are computed by the model owner prior
to privately entering them in the computation.

Evaluating subsequent layers in this fashion causes the outputs
to grow by factor §¢*1) = 5<i>255mfi>m§i>/6 with §(° = 1. How-
ever, we can ensure values remain small by truncating the output
§{*1) by £()) bits. With the right choice of £{!) we are able to
maintain the necessary accuracy, and the value of 541 conse-
quently becomes §4+1) = 5<i>~255m§i>m§i>/(6-25<1>). The maxi-
mum number of bits we can truncate in a layer needs to comply
with constraint 5% - 255m§i>m§i>/(6-2[(1>) > 1, which leads to
o < {log2(2555<i>mfi>m§i>/6)J. Once again, these values are
independent of the input data and become a part of the model. We
thus can use TruncPriv outlined in Section 5 for truncation by a pri-
vate amount. The net result is that we are able to use a significantly
smaller bound M and consequently substantially shorter ring size
k. In practice, the coefficients introduced in our methodology can
reasonably be folded into the scaling factors m themselves.

Other layers such as average pooling can be approximated by sub-
stituting the division by some integer d with truncation by [logd]
bits, and softmax can be replaced with argmax when computing
the final prediction. These changes can slightly impact the scaling
factors, but have no impact on the accuracy since we leverage basic
algebraic properties, without changing the fundamental calculation
itself.

7 PERFORMANCE EVALUATION

We implemented the protocols described in this work and evaluate
their performance. We run micro-benchmarks to evaluate the indi-
vidual operations as well as offer evaluation of machine learning
applications.
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Setup Batch Size Comm.
1 [ 10 [10% [10° [ 10" [10° [ 10°
G [ 30[0.081]0.0893[0.245 | 147 | 12.1 | 120 | 1,236 4
3pC 60 [0.082 0.0912]0.255 | 1.61 | 12.9 | 127 [ 1,289 8
& 1 30]0.075] 0.079 [0.097]0.153]0.606 | 5.87 | 59.6 4
60 [0.075 | 0.076 | 0.108 [ 0.320 [ 1.096 | 9.68 | 113 8
G [30[0-124 | 0.158 0.384 | 2.37 | 16.8 | 159 | 1,550 8
60[0.129] 0.167 0439 | 2.45 | 17.9 [ 173 [ 1,669 | 16
spe | pp 3010224 0267 [0.836 | 374 | 34.1 [ 23.5[ 2,227 6.4*
60 [0.229 ] 0.278 [0.924 | 4.01 | 36.4 | 254 2,436 | 12.8*
@ | 30]0184] 0.170 [0278[0711[ 4.00 [413 ] 377 8
60| 0.221] 0.224 [0.326 | 0.943 | 6.36 | 63.9] 579 16
G |30/ 0.168 | 0.198 0497 | 3.17 | 245 | 238 | 2,353 | 12
60[0.174 | 0.224 [0541 | 3.47 | 27.7 | 257 [ 2,520 | 24
7pc | pp 13010275 0327 | 118 | 769 | 604 | 502 [ 4,829 6.9**
60[0.281 ] 0.354 | 1.34 | 8.01 | 67.8 | 534 [ 5,186 | 13.7
g |30]0254] 037 [0.72 [ 284 [ 252 [266[2536] 12
60(0.285| 040 | 0.81 | 4.13 | 34.9 | 365 [ 3,490 | 24

Table 4: Runtime of multiplication protocols in ms and com-
munication is per party per operation in bytes (* means
average for asymmetric communication patterns). FG and
FD refer to the optimized GRR and DN field multiplication
from [11], resp., and R is our ring realization. 30 and 60 are
integer bitlengths.

The implementation was done in C++ and is available at [4]. We
use AES from the OpenSSL cryptographic library [1] to instantiate
the PRF and also to implement secure communication channels
between each pair of the computational parties. We report the av-
erage execution time of 1000 executions for the micro-benchmark
experiments and the average time of 5 executions for the appli-
cation experiments. The runtimes are also averaged across the
computation parties.

All experiments use identical 2.4 GHz virtual machines with
26 GB of RAM. They were connected via 10 Gbps Ethernet links,
which we throttled to 1 Gbps using the tc command. Two-way
latency was measured to be 0.106 ms. All experiments use a single
core. WAN benchmarks can be found in Appendix D.

7.1 Micro-benchmarks

In this section we report performance of individual operations such
as multiplication, matrix multiplication, random bit generation
(RandBit and edaBit) and comparison (MSB). The experiments
used two bitlengths, k = 30 and k = 60, which allows us to use the
uint32_t and uint64_t integer types, respectively, to implement
ring operations.

Tables 4 and 5 report performance of multiplication and matrix
multiplication, respectively. As we strive to measure performance
improvement when we switch computation from a field to a ring,
we compare performance of our protocols to those using Shamir SS
in the same setting (i.e., semi-honest security with honest majority)
using PICCO implementation [57] with recent improvements to
multiplication from [11]. The field size is set to accommodate 30-
and 60-bit integers. Batch size denotes how many operations were
executed at the same time in a single batch.
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Matrix Size
Setup
10 X 10 | 100 X 100 | 500 X 500 | 1000 x 1000
F (30) 0.318 91.6 1,025 8,289
F (60) 0.319 94.2 1,187 8,723
3PC
R (30) 0.187 2.83 212 1567
R (60) 0.288 3.82 226 1638
FG (30) 0.457 95.2 1,145 8,927
FG (60) 0.462 97.9 1,321 10,134
spC FD (30) 1.07 97.4 1,273 9,995
FD (60) | 1.09 102 1,493 11,964
R (30) 0.253 11.7 720 5,224
R (60) 0.331 12.5 813 5,939
FG (30) 0.891 97.7 1,272 9,953
FG (60) 0.904 101 1,478 10,864
7PC FD (30) 1.29 99.8 1,483 11,569
FD (60) 1.35 104 1,536 13,742
R (30) 0.658 48.0 5,880 48,793
R (60) 0.705 59.0 7,509 71,234

Table 5: Runtime of matrix multiplication in ms.

We measure runtime and communication with a number of par-
ties ranging from 3 to 7. For field multiplication, we measure per-
formance of two variants: GRR-based with higher asymptotic com-
munication and 1 round (FG) and DN-based with lower asymptotic
communication and 2 rounds (FD) as described in [11]. The former
is strictly better in the three-party setting. The latter, despite its
lower communication, does not lead to better performance as the
number of parties increases as it internally relies on RSS. However,
the difference in performance of the two variants is not substantial
enough to play a major role in larger computations, as is demon-
strated in Table 5. We therefore proceed with FG with 3 parties and
FD with 5-7 parties in other experiments where multiplication is
used.

From Table 4 we observe that our RSS performance is up to 20
times faster with a sufficiently large batch size in the 3-party setting
compared to the field and some performance advantage is main-
tained even with 7 parties despite the need to compute with a much
larger number of shares. Note that the performance gain is due to
faster instructions because communication is comparable across
different variants. This indicates that using native CPU instructions
for secure arithmetic has remarkable advantage.

Matrix multiplication in Table 5 is performed in a single round
using the necessary number of dot-products. Because local work
is the bottleneck, we see performance improvement by up to a
factor of 32.3 after switching to a ring with 3 parties. Performance
improvement with 5 parties is by up to a factor of 8.3 and up to a
factor of 2.1 with 7 parties. The ring performance is superior for all
configurations evaluated except for the two largest matrices with 7
parties.

Tables 6 and 7 provide random bit generation results. To support
k-bit integers, ring-based RandBit requires ring Z, .. Field-based
RandBit from [13] does not increase the field size; however, all uses
of RandBit we are aware of are for operations such as comparisons
that utilize statistical hiding and, as a result, increase the field
size by a statistical security parameter x (typically set to 48 in
implementations). For this reason, our field-based RandBit and MSB
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Setup Batch Size Comm. Protocol Batch Size Comm.
1 [ 10 [ 10° [ 10° J107]10° [ 10° 1 [ 10 J10°[10° ] 10% [ 10° [ 10°
F(30) [0.104]0.158 [ 0.457 | 2.87 | 25.4 [ 259 [ 2,637 [ 20 F (30) 1.29]3.71]23.7] 206 [ 2,051 ] 21.8s [ 2225 | 624
spc | E(60) 0107 [0.164 0546 [ 347 [32.8] 336 [ 3480 28 F (60) 1.97 [ 7.51|54.7 | 471 | 4,654 | 46.7s | 487s | 864
R (30) | 0.124 | 0.111 | 0.156 | 0.330 | 2.37 | 21.8 | 249 3 R+1B (30) 0.710.74 | 1.54]9.23| 88.7 | 0.85s | 8.25s| 265
R(60) | 0.112 | 0.124 | 0.170 | 0.555 | 4.57 | 43.9 | 477 16 R+1B (60) 0.76 | 1.01[3.92]29.2] 322 [3.04s|30.0s| 1009
F(60) [0.171 | 0.291 | 0.869 | 6.75 | 65.4 | 66.1 | 6,794 | 36 R+eB (60) 1.31]1.46|1.88(7.88| 60.6 |0.56s |5.71s| 117
5PC R (30) [ 0.169 [ 0.178 | 0.234 | 0595 | 450 [ 45.9 | 468 6 [3]+eB (32) |23.3]23.1|229(235] 27.3 |0.18s|1.31s| -
R (60) | 0.262 | 0.244 | 0.356 | 1.252 | 8.39 | 88.1 | 854 | 32 [3]+eB (64) |34.2|31.6|33.4]32.5) 359 | 0255 |2.155| —
TG0 Toai [os6o | 115 | 518 (700 61 [ssia| 0 [3]+ABY3 (32) | 8.51|8.97 |9.05 | 13.6| 52.1 |0.39s|3.66s| -
Fleo) [0264 |0tz | 138 | o4z (845 | e2a 5511 84 [3]+ABY3 (64) | 9.09]9.06 | 8.88 | 14.2| 585 |0.41s|3.87s| -
7PC R (30) [ 0.255 [ 0.268 | 0472 | 1.53 | 104 | 117 [ 1134 | 24 F (30) 2.12[6.17]37.5] 349 [3,219[32.2s [ 333s | 1248
R (60) | 0237 | 0.288 [ 0508 | 2.15 | 183 | 217 | 2092 | 48 F (60) 332[11.9(84.0 | 738 | 7,021 | 68.8s | 701s | 1728
Talfle 6': Runtime of RandBit I?rotf)cols in ms and communi- 5PC 2:?3 Ezg; ;gz ;gz gg; 3(1)2 22471 2215(2)2 éggz 2503108
cation is per party per operation in bytes. R+eB (30) 377402633 |27.1] 203 [1.97s|19.1s| 162
R+eB (60) 4.164.71|10.1]56.3| 447 |4.24s|41.1s| 338
F (30) 3.08[9.14[48.4 [ 452 [ 4.42s [ 43.2s | 447s | 1872
Batch Size F (60) 455 13.1| 101 | 943 | 9.36s | 94.2s | 959s | 2592
Protocol 1 [ 10 [ 107 [10° [ 10" [10°] 10° Comm. 7PC R+1B (30) 2.08]2.74(7.38|56.1|0.62s | 5.95s | 65.4s | 795
R@0) 0562|0577 [0532 [ 296 205|207 | 1978| 32 R+1B (60) 2.39]3.93[18.6| 190 | 1.75s | 17.6s | 179s | 3027
R(60) Tosaz o737 1111 (566 432 4054175 68 R+eB (30) 552]7.6425.8| 186 | 1.65s | 16.8s | 165s | 316
3PC BBz | 197 1 159 162 (167 [200] 138 1368~ R+eB (60) 6.3110.6 |45.3] 371 | 3.57s | 36.3s | 356s | 663
(3] (64) | 228 | 255 | 252 | 24.4 | 306 | 254 | 2,201 — Table 8: Runtime of MSB protocols in ms unless marked oth-

Table 7: Runtime of edaBit protocols in ms compared to MP-
SPDZ implementation. Communication for our solution is
per party per operation in bytes.

benchmarks utilize 79- and 109-bit fields. Both versions of RandBit
in Table 6 communicate the same number of field or ring elements;
however, the performance gain of the ring version grows as we
increase the batch size, reaching 10 to 12-fold improvement with
3 and 5 parties and indicating that local field-based computation
is the bottleneck. This is in large part due to the need to perform
modulo exponentiations (see [13]). That is, even though field-based
RandBit also relies on RSS, other non-RSS computation such as
modulo exponentiation is significant and the overall slowdown
with the number of parties is not as large. In the 7-party setting the
improvement of the ring-based variant is by up to a factor of 6.
The concept of edaBit is recent and for that reason in Table 7
we compare our implementation to that reported in the original
publication [27], available through MP-SPDZ repository [3]. Note
that each edaBit corresponds to generating k random bits together
with the corresponding k-bit random integer. It is clear from the
table that MP-SPDZ’s implementation is optimized for large sizes
and fast networks. In particular, it gives comparable runtime for
batches of size 1 and 1,000. For the same reason, we were unable
to accurately report communication cost per operation from the
experiments and refer the reader to the original publication [27]
for that information. Note that the times we measured for MP-
SPDZ are very different from those originally provided in [27],
which reported the ability to generate 7.18 million 64-bit edaBits
per second. This is over 15 times faster than the fastest time per
operation we record and stems from the differences in hardware. In
particular, experiments in [27] were run multi-threaded on powerful
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erwise. Communication is per party per operation in bytes.
rB and eB indicate variants using RandBit and edaBit, re-
spectively.

AWS c5.9xlarge instances with 36 cores and a 10 Gbps link. This
distinction highlights the need to reproduce experiments on similar
hardware to draw meaningful comparisons about performance of
different algorithms.

Table 8 reports performance of multiple MSB protocols: (i) field-
based protocol from [13] using PICCO’s implementation with opti-
mizations from [11], our ring implementations (ii) using RandBit
and (iii) using edaBit, and ring-based implementations from MP-
SPDZ [3] (iv) using edaBit and (v) using ABY3. The last two support
only three-party computation.

The gap between the first two shows performance improvement
due to switching from field-based to ring-based arithmetic. Both
of them make a linear in k number of calls to RandBit, but our
implementation executes BitLT over Z, while field-based uses a
fixed field for all operations. As a result, our ring RandBit-based
MSB is up to 26.9 times faster than the field version with 3 parties,
up to 17.9 times with 5 parties, and up to 7.2 times with 7 parties.

If we compare our RandBit and edaBit MSB implementations,
the use of the edaBit version becomes advantageous starting from
batch sizes of 100 with 3 parties, 1000-10000 with 5 parties, but
is not beneficial with 7 parties. This can be explained by the need
to perform a larger number of bitwise additions during edaBit
generation as the number of computational parties increases.

MP-SPDZ’s edaBit-based implementation in the three-party set-
ting generally took longer to run than our edaBit-based implemen-
tation until the batch size becomes large. As explained earlier, this is
due to different performance emphases in the two implementations.
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ABYS3 (three-party) implementation is slower than what we obtain
except for the largest batch sizes with the longer bitlengths.

We also visualize time per operation with variable batch sizes
in Figure 4 using three parties. Multiplication and RandBit sub-
figures compare ring vs. field protocols, indicating a substantial
gap as expected; edaBit sub-figure compares our and MP-SPDZ
implementations in the same setting; and MSB sub-figure compares
RandBit and edaBit variants.

It is also informative to compare our field vs. ring results with
those of SPDZ. While SPDZ [23] and its ring version SPDZ,« [16,
20] use a much stronger adversarial model and different type of
SS, we would like to know whether similar savings are achievable
in different settings. [20] reports that performance improved by a
factor of 4.6-4.9 for multiplication and by a factor of 5.2-6.0 for
RandBit-based comparison on a 1Gbps LAN. The results are only
provided as throughput improvement and do not report different
batch sizes. In our experiments we observed greater improvements,
up to 20 times for multiplication and up to 26.9 improvement for
MSB. This may be explained by the fact that our techniques are
more lightweight and perhaps switching to faster arithmetic makes
less of an impact in the SPDZ setting.

7.2 Machine Learning Applications

We next evaluate our protocols on machine learning applications
and show that they exhibit good performance. We consider NNs
and quantized NNs, in part to facilitate comparison to prior work.

Neural Networks. There are many types of NNs, and for our
standard benchmarking we chose the NN from MiniONN [42] for
the MNIST dataset [39] (Figure 12 in [42], Network B in [55], and
Network C in [56]), because it is a popular choice for evaluating
privacy-preserving NN inference. The MNIST NN evaluation uses
convolution, fully-connected layers, an ReLU activation function,
and max pooling of a window 2 X 2 to compute the maximum
element in that window.

We use MiniONN’s implementation choices and, in particular,
run the computation on integer inputs. To avoid using floating-point
arithmetic, [42] scaled inputs by a factor of 1000 and rounded to the
nearest integer. To compensate for the bitlength of the intermediate
results growing with each multiplication, [42]’s implementation
ran the computation using a 37-bit modulus and avoided the use
of truncation. However, we determined that this size is too small,
and 49 bits are needed to correctly evaluate the model, which we
subsequently use. Our implementation achieves the same 99.0%
precision as reported for this model in [43] (which corrects [42]).

While it is possible to perform the entire computation in Zy49, we
observe that the initial steps are of the largest size and use signifi-
cantly shorter integers than 49 bits. Because the cost of comparisons
is linear in the bitlength of the ring elements, we can substantially
improve performance by starting computation on shorter values
and converting the intermediate results to a larger ring prior to
multiplication, which increases the size of the intermediate results.
Therefore, we start computation with 20-bit integers and increase
the ring size by 10 bits prior to subsequent matrix multiplications.

Performance of MNIST NN inference with three parties (total
time) is presented in Table 9. We also ran the same computation
over a field (using [11, 57]), which required an 89-bit modulus. To
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closely mimic our ring-based implementation, this implementa-
tion computes with integers of increasing sizes, but uses the same
modulus throughout the computation.

We also include runtimes of two-party MiniONN [42], two-party
Gazelle [33], two-party FALCON [40], SecureNN with custom three-
party arithmetic [55], three-party FALCON [56], and three-party
Dalskov et al. [18] with two types of truncation (TruncPr and
TruncPrSp, respectively). Many of those solutions were executed
on more powerful hardware which would not lead to a meaning-
ful performance comparison. For that reason, we reproduced the
implementations except for MiniONN, Gazelle, and two-party FAL-
CON [40] on our machines. From those, only Gazelle was executed
on more powerful AWS instances with multi-threading at the time
of original publication, but its performance even with that setup is
not competitive with what we achieve. Furthermore, the solution
was consequently surpassed in SecureNN, which we execute on
our hardware.

Table 9 shows the time for a single inference and for executing
multiple inferences in a batch where available. We can see that our
single prediction time is lower than in other publications despite
the fact that the solution is generalizable to a larger number of
parties with a larger collusion threshold. Our communication is
also low and the only construction that improves the time when
executing multiple predictions in parallel is FALCON [56]. While
their implementation benefits from larger batching through multi-
threading and lower communication due to small moduli, FALCON
is limited to three parties. Our solution, however, can be invoked
with a larger number of parties as demonstrated in Table 10 with
n=>5.

Several other publications benchmarked NN predictions (7, 14,
15, 38, 46, 47, 49-51]. However, because they do not support or
do not run MiniONN’s MNIST NN evaluation, we cannot directly
compare our performance. For example, while ABY? [47] is said
to use MiniONN’s MNIST NN, evaluation is actually based on a
different, simpler model used in Chameleon [51].

Quantized Neural Networks. Benchmarks for quantized NNs
were based on the MobileNets [30] architecture, which consists of
28 layers and 1000 output classes. The network alternates between
3 X 3 depthwise convolutions and 1 X 1 pointwise convolutions.
A resolution multiplier p (128—224) scales the dimensions of the
input image, and a width multiplier & (0.25-1.0) scales the size of
the input and output channels. The models we used are hosted
on TensorFlow’s online repository [2] and are trained on the Ima-
geNet [25] dataset. We experimentally determined that an upper
bound of M = 16 is sufficient for truncation by a private value,
since all computed £¢?)s are < 9 for all model configurations.
Performance of quantized MobileNets inference is presented in
Tables 11 and 12 with 3 and 5 parties, respectively. Our methodol-
ogy from Section 6.2 allowed us to reduce the ring size from k = 72
to k = 30 or less, potentially reducing the time by a factor of 2. For
accurate comparison, we executed [18]’s implementation on our
machines using the same setting. Since a 5-party honest-majority
ring implementation is not available in [18], or more generally in
MP-SPDZ, we use a field-based implementation for the 5-party
case from MP-SPDZ. Recall that the ability to generalize ring-based
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Figure 4: Three-party micro-benchmarks results.
| Field | MiniONN* [ Gazelle® [ SecureNN [ FALCON* [40] | FALCON [56] | [18] | Ours, 3PC

Batch Size 1 1 1 1 1 1 128 1 1 5 10 50

Latency 1328 9320 810 1228 840 123 20.4 279,196 | 82.5 | 68.8 | 67.4 | 67.6

Comm. 8.12 657.5 70.0 37.9 92.5 0.55 15.6, 9.7 2.76

Table 9: Runtime of MNIST NN prediction in ms and communication in MB. (*) denotes results taken from the original publi-

cations.
| Field, 5PC | Ours, 5PC
Batch Size 1 1 5 10 25
Latency (ms) 2047 414 | 370 | 367 | 355
Comm. (MB) 16.2* 6.34

Table 10: Performance of MNIST NN prediction in 5-party
configuration. (*) means average for asymmetric communi-
cation.

Ours MP-SPDZ Z,, [18]
a | 025 05 075 1.0 | 025 05 075 1.0
128 | 3.19 647 992 133 | 319 6.26 9.88 14.0
160 | 494 100 151 20.7 | 415 8.17 136 193
P 192 | 7.17 143 220 29.7 | 5.00 11.0 178 26.7
224 1 971 199 30.0 409 | 657 141 23.1 349

Table 11: Performance of 3PC quantized MobileNets predic-
tion in seconds. MP-SPDZ results are over a ring Z,.

Ours MP-SPDZ Fp, [18]
a | 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
128 | 23.7 48.0 73.1 98 442 688 992 1343
160 | 374 751 113 151 904 1414 2031 2765
p 192 | 52.8 107 162 219 | 1398 2182 3156 4269
224 | 727 145 220 297 | 1919 3005 4324 5877

Table 12: Performance of 5PC quantized MobileNets predic-
tion in seconds. MP-SPDZ results are over a field F,.

honest-majority protocols to more participants is our main objec-
tive.
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The results our 3-party solution achieves are comparable to those
in [18] despite ring reduction and can be explained by the differ-
ences in the algorithms. That is, Escudero et al. [28] experimentally
determined that [18]’s implementation with ABY3’s local conver-
sion was superior to edaBits (which we use) only in one setting that
we use (semi-honest, honest majority setting over Z,« ). In addition,
MP-SPDZ’s optimization for large computation also aids its effi-
ciency. This demonstrates that our quantized NN solution can aid
efficiency. Furthermore, our gain in the 5-party case is significant,
leading to the reduction in time by a factor of 13-26.

8 CONCLUSIONS

In this work we study multi-party threshold secret sharing over
a ring in the semi-honest model with honest majority with the
goal of improving performance compared to field-based computa-
tion. We design low-level operations for n-party replicated secret
sharing over any ring and consequentially build on them to en-
able general-purpose protocols over ring Z,. Our implementation
results demonstrate that ring-based implementations of different
operations are significantly faster than their field-based equiva-
lents with 3, 5, and even 7 parties. This allows us to improve per-
formance of different applications including privacy-preserving
machine learning tasks. We specifically test performance of neural
network and quantized neural network classification and determine
that performance of our techniques is on par with the best custom
three-party protocols for those functions.
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Protocol 5 [a1], ..., [am] < Input(ay,...,am)
forT e 7\ {T"} do
input owner generates random k7 and sends it to each p € T;
end for
fori € [1,m] do
forT e 7\ {T*} do
each p ¢ T sets share a; 7 = PRG(kT).next;
end for
input owner computes a; T+ = aij -
2rer\{1+} PRG(kT).next (in R) and sends it to p ¢ T™;
9:  eachp ¢ T" sets share a; 7+ to the value received from input
owner;
10: end for
11: return [a1],...,[am];
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A ADDITIONAL PROTOCOLS
A.1 Inputting Private Values

We start with a general case when a participant who is not a com-
putational party supplies their input into the computation and
consequently discuss an optimized version when the input owner
is one of the computational parties. The input owner holds a private
value a which will be represented as an element of ring R. The
input owner will need to generate replicated shares that correspond
to a and send them to the computational parties. This will be the
easiest way to proceed when there is only one element to share.
However, when someone is sharing a vector of elements, we can
save on communication by using pseudo-random shares. All shares
except one for any element can be pseudo-random and computed
locally by computational parties after obtaining a PRG seed. This
means that among all shares T € 77, one is marked as special and is
denoted as T*. The corresponding share is computed by the input
owner and is communicated to all parties with access to that share.
The construtcion is given as Protocol 5.

When the input owner is one of the computational parties, we can
capitalize on the fact that the parties already have pre-distributed
PRG seeds. We denote the input party as p*. Note that p* has access
to a subset of the PRG seeds corresponding to the shares it is entitled
to have access to, but not to all seeds. While we could generate new
seeds for each T such that p* € T and make it availableto allp ¢ T
and p*, these seeds will be accessible to more than ¢ parties and do
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not contribute to security. Therefore, we instead choose to set such
shares to 0 and use only shares accessible to p*. As a result, T* will
be such that p* ¢ T*, the parties will set shares ar = PRG(kT).next
for each T such thatp ¢ T and T # T*, share T* will be computed
as ar= = a— X7 st. peT AT+T+ aT (in R) by p* and communicated
to all p ¢ T*, and all remaining shares ar are set to 0.

All variants use a single round. When a single input is shared by
an external party, the input owner simply generates all (';) shares
and communicates them to the computational parties (each share
is stored by ¢ + 1 participants). This cost (which becomes sharing of
a PRG seed) is amortized among all inputs when sharing multiple
inputs. The additional cost per input for the input owner becomes
generation (';) —1 pseudorandom ring elements and communicating
the last, computed share to ¢ + 1 computational parties, i.e., the total
communication is t + 1 ring elements. Each computational party
needs to generate (";l) or (";1) — 1 pseudo-random ring elements.
When the input is shared by a computational party, there is no
setup cost. The input owner need to generate (";1) — 1 pseudo-
random elements (i.e., similar to the number of shares it stores
per shared value) and communicate the computed share to ¢ other

parties. Each other party computes (";2) (i.e., the number of shares

it has in common with the data owner) or (";2) — 1 pseudo-random
ring elements. As will be relevant later, when a computational
party is sharing a ring element in the (3,1) setting, the input owner
communicates a single ring element to another party (and only one
pseudo-random element is computed by the input owner and the
remaining computational party). The security proof can be found
in Appendix B.

THEOREM 3. Input is secure according to definition 1 in the (n, t)
setting with n = 2t + 1 in the presence of secure communication
channels and assuming PRG is a pseudo-random generator.

A.2 Random Bit Generation

Random bit generation is a crucial component of a variety of proto-
cols including different types of comparisons, bit decomposition,
division, etc. Therefore, it is of paramount importance to support
this functionality for general-purpose computation. In this work
we examine two variants: (i) generating shares of a single bit as full-
size ring elements and (ii) generating shares of k-bit random r as
full-size ring elements together with generating shares of individual
bits of r in Z,.

The first variant, denoted RandBit, originated in [13] for field-
based SS and was modified in [20] to work in Z,x. We use the logic
of [20] and adjust the algorithm to work in our setting. The result
is shown as Protocol 6.

To achieve 50% probability of each outcome of the output bit, the
computation uses a larger ring Z,x+» for most steps of the protocol
when the remaining computation uses ring Z,x. Consequently, we
use notation [x], with variable ¢ to denote that shares and compu-
tation are over ring Z,¢. We also parameterize function PRandR
by the desired bitlength and PRandR(¢) denotes that the function
returns a random ring element from Z,..

Correctness of Protocol 6 follows from [20] and security follows
from the logic. That is, because the protocol only discloses random
e and otherwise uses secure building blocks, no information about
private values can be leaked. The protocol runs in one round using
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Protocol 6 [b] < RandBit()

: [ulgs2 < PRandR(k + 2);

o lalks2 = 2[ulg4a + 15

- e — MulPub([a]k2. [alk+2);

. compute the smallest root of e modulo 2¥*2 and denote it by c;
compute the inverse of ¢ modulo 2K*2 and denote it by ¢™1;

50 [dlgsz = ¢ algsa + 15

6: for each T € 7, let share by = dr/2;

7: return k least significant bits of each br as [b]g;

B N
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Protocol Rounds Communication
RandBit() 1 n—-1
edaBit(k) | log(t+1)(log(k)+1)+1 | t?(log(k)+1)+t+1/2

Table 13: Performance of random bit generation protocols
with communication measured in the number of ring el-
ements sent per party over Z,:. for RandBit and Z,. for
edaBit(k).

Protocol 7 ([r]g, [bol1, - - -, [br_1]1) < edaBit(k)

1: forp=1,...,t+ 1inparallel do

2. party p samples r(p>, . .,r](f_)l € Zy and computes r?) =

k-1..(p),j.
Zis 2

3. simultaneously execute [r(P)]. Input(r®), k) and
[r@)]l — Input(rgp), 1) for i = 1,...,k with p being the

i
input owner;

—

4: end for

5 [rlk = ZpEr P

6: S=t+1;

7: fori=1,...,[log(t +1)] do

8. forj=1,...,|s/2] in parallel do

o (Il PP« BitAd(AY L
el Vel PR

10: if s mod 2 = 0 then

11 s=5/2;

12: else

1 ST = T s

14: s=(s+1)/2;

15: end if

16:  end for

17: end for

18 [bolte s bt = [ T I D
19: return ([r]g, [bol1, .- -5 [Dr—1]1)

the same communication as MulPub over Z,... To improve per-
formance, in our implementation we compute the square root and
inverse operations on line 4 simultaneously.

The second variant of random bit generation is based on the
computation described in [27] and is denoted as edaBit(k), where
the parameter k specifies the number of generated random bits as
well as the bitlength of their representation as integer r. It produces
secret-shared k-bit integer r together with shares of the individ-
ual bits of r in Zy. We use a simplified version with k being equal
to the bitlength of the ring elements (i.e., the ring is Z,x), which
eliminates certain operations for dealing with carry after addition.
The construction is given as Protocol 7. The idea consists of t + 1
parties (without loss of generality, we chose the first t + 1 parties
for this role) each locally generating k random bits and computing
representation of those bits as a k-bit integer (line 2). The bits are
input into the computation using SS over Z3, while the integers
are entered using shares in Z, (line 3). Because we use Input to
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Protocol 8 [a;_;]r < MSB([a]), where a = Z{.‘:_Ol a;2t e Zok

o [rlks [rolh, - - - [rk—1]1 < edaBits(k);

: [b]x < RandBit();

[Pk = [k = Drema 2R

. ¢ — Open([alg + [Flg):

¢/ = ¢ mod 2k,

: [ulr « BitLT(c/, [rol1s - - -» [ri—2]1);

al = ¢ = [T + 25 uls

o [dlg = lalg = [a]xs

: e « Open([d]g +2k-1 [b]x) and let eg_; be the most significant
bit of e;

10: [ag—1]g = ex—1 + [blg — 2ex-1[P1is

11: return [ag_q]x;

T LI~ R R

generate shares over different rings, we specify the second argu-
ment ¢, which indicates that the shares need to be produced in
Zyc. The output that the protocol produces is the sum of the t + 1
random integers (without the carry bits) and its bit decomposition
is computed using bitwise addition BitAdd from [53] of the t + 1
integers represented as bits in a tree-like manner.

A.3 Comparisons

Less-than comparisons, [a] < [b], are traditionally computed using
SS by determining the most significant bit of the difference between
a and b. Starting from [13], comparison protocols blind the differ-
ence by adding a random integer bit decomposition of which is
known, open the sum, truncate all but one bit, and compensate for
any carry caused by the addition. This logic was adapted to the
ring setting in [20] by using building blocks that work over Zx.
In the solution that we present as Protocol 8, we incorporate the
edaBit protocol from [27] for efficient random bit generation into
the construction of [20] adopted to the semi-honest setting. The
presence of carry is determined using sub-protocol BitLT which
performs comparison of two bit-decomposed values, one of which
is given in the clear, using binary computation over Z;.

Security of the algorithm follows from prior work and the fact
that we use a composition of secure building blocks. In particu-
lar, the only values revealed in the protocol (in steps 4 and 9) are
information-theoretically protected using freshly generated ran-
domness. The complexity of this protocol and its prior version that
makes calls to RandBit is given in Table 3.

To correctly implement comparison of two k-bit integers over
ring Z,x, one would need to invoke the MSB protocol 3 times.
However, correctness is also guaranteed if we compare two (k —
1)-bit integers over ring Z, using a single call to MSB. We use
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the latter approach in our implementation of machine learning
algorithms.

There are noteworthy differences in the design of protocols devel-
oped for a ring as opposed to original protocols for a field. Certain
operations such as prefix multiplication are not available in a ring,
and we resort to logarithmic round building blocks when protocols
over a field achieve constant round complexity. In the context of
comparison, a typical tool for realizing them was truncation (i.e.,
right shift), the cost of which was linear in the number of bits trun-
cated, but the modulus had to be increased by a statistical security
analysis to support such operations. In a ring, on the other hand,
there is no significant increase in the ring size, but the commu-
nication cost is linear in the bitlength of the ring and not in the
bitlength of the truncated portion. This brings different trade-offs,
but the availability of faster arithmetic in a ring will still lead to
significant savings.

B SECURITY DEFINITIONS AND PROOFS

DEFINITION 1. Let parties Py, . . ., P, engage in a protocol I1 that
computes function f(iny,...,.in,) = (outy,..., outy,), where in;
and out; denote the input and output of party P;, respectively. De-
note VIEWT1(P;) as the view of participant P; during the execu-
tion of protocol I1. More precisely, P;’s view is formed by its input
and internal random coin tosses r;, as well as messages my, . . ., my,
passed between the parties during protocol execution: VIEWT(P;) =
(inj,ri,my,...,mg). LetI = {Py,, Pi,, ..., P;, } denote a subset of the
participants fort < n, VIEWp(I) denote the union of the views of
the participants in I, and fi(in1, ..., iny) denote the projection of
f(ing,...,iny,) on the coordinates in I. We say that protocol I1 is
t-private in the presence of semi-honest adversaries if for each coali-
tion of size at most t there exists a probabilistic polynomial time
simulator St such that {Sy(iny, fi(in1, ..., iny)), f(in1,...,iny)} =
{VIEW(I), (outy, .. ., outp)}, where ing = Up,er{ini} and = de-
notes computational or statistical indistinguishability.

Proof of Theorem 1. Let I denote the set of corrupt parties. We con-
sider the maximal amount of corruption with |I| = t. Because the
computation proceeds on secret shares and the parties do not learn
the result, no information should be revealed to the computational
parties as a result of protocol execution.

We build a simulator Sj that interacts with the parties in I as
follows: when a party p € I expects to receive a value from another
party p’ ¢ I in step 5 of the computation according to function y,
St chooses a random element of R and sends it to p. St preserves
consistency of the view and ensures that when the same value is
to be sent by p’ to multiple parties in I, all of them receive the
same random value. This is the only portion of the protocol where
corrupt parties can receive values (that the simulator produces),
and the only portion of the protocol when a corrupt party p may
send a value to an honest party p’ is step 4, which Sy receives on
behalf of p’. All other computation is local, in which S; does not
participate.

We next argue that the simulated view is computationally indis-
tinguishable from the real view. First, note that the corrupt parties
in I collectively hold shares ar, br and keys k7 (and thus can com-
pute values Gr.next) for each T € 7 such that 3p € Iand p ¢ T.
This entitles the corrupt parties to computing the corresponding
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shares cT, but the rest of the shares must remain unknown, so that
they are unable to compute c. Next, notice that when |I| = ¢, there
is only one share T* = I such that all parties p € I have no access to
krs and c+, while all parties p” ¢ I store those values. Then there
are two cases to consider: (1) If one or more parties p € I receive
x(p’)'s share of v from another party p’ ¢ I (it must be the case
that y(p”) # T*), the received share has been masked by a fresh
pseudo-random element from Gr+, is therefore pseudo-random
and indistinguishable from random by any p € I. (2) If no party
p € I receives a value from any given p’ ¢ I, indistinguishability is
trivially maintained. O

Proof of Theorem 2. As before, let I denote the set of corrupt
parties with |I| = . We build a simulator Sy that interacts with the
parties in I as follows: after Sy extracts shares ar, b, kr (T € T
such that 3p € I and p ¢ T) from the corrupt parties and receives
the output ¢ from the trusted party, S; computes o®) as prescribed
by the protocol for each p € I and also their sum vy = X, 1 o)

(in R). S; sets v?) values for the remaining n — t parties to random
elements of R subject to Zpgzl 0@ = ¢ - vy (in R). Sy, acting on
behalf of party p ¢ I, sends the corresponding v(P) to each party in
I

To show that this simulation is indistinguishable from the real
protocol execution, recall that there will be at least one T, denoted
by T* = I, to which the parties in I have no access (and thus
correspondingly cannot distinguish the output G7+ from random
elements of the ring). During real protocol execution the parties in
I receive t + 1 values ¢), one per p ¢ I. With the knowledge that
the corrupt parties collectively have, they can remove the effect
of all randomization except the use of the output of G7=. If we
let z; 7+ denote the ith call to Gr+.next during the execution of
MulPub in Protocol 2, then the corrupt parties can recover t values
of the form v(?) + z; T+ with unique p and i and one value of the
form o) — Zf‘:l z; 7+ for another p. The next thing to notice is
that any ¢ (out of t + 1) of these values are pseudo-random and
computationally protect the corresponding v?) values. The intro-
duction of the remaining value reveals the sum of all @) s, but not
other information (i.e., the last value corresponds to the difference
to make the sum equal to ¢ — vy). This means that substituting
these values with random elements subject to % p¢; o) = -y
provides the same information to the corrupt parties and achieves
computational indistinguishability of the views. O

Proof of Theorem 3.1t is straightforward to show security of the
full version of Input when the input owner is different from the com-
putational parties. That is, the input owner creates proper shares
according to the SS scheme using a PRG. Thus, as long as security
of the PRG holds, the real view is computationally indistinguishable
from a simulated view created without the use of any secrets.

However, when the input owner is one of the computational
parties, only a reduced set of shares is produced. Thus, we need to
evaluate the combined view of each coalition of t corrupt partici-
pants. There are two important cases to consider: (i) input owner
p* is a part of the coalition and (ii) it is not.

When p* is a corrupt participant, building a simulator is trivial:
the simulator simply receives shares from the input owner on be-
half of honest participants and terminates. Because inputs a; are
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available to the corrupt parties, no information need to be protected
and the real and simulated views use identical values.

When there are ¢ corrupt participants who are different from
p*, we simulate the view by choosing a random value for a; 7+ and
sending it to each corrupt p ¢ T*. What remains to show is that
the ¢ corrupt parties do not possess enough shares to reconstruct

the secret and, as a result, cannot learn any information about it.

In more detail, p* distributes its secrets using only shares T such
that T € 7 \ {T*}. However, because we use (n, t) threshold SS,
there will be a share T possessed by p* which is not available to any
of the t corrupt parties I. Specifically that share is available to all
participants except corrupt minority I. This means that the corrupt
parties will not be able to reconstruct information about the private
inputs and the real and simulated views are indistinguishable as
long as PRG’s security holds. O

C 5PC AND 7PC MULTIPLICATION MAPS

We define the necessary mappings for our multiplication protocol
[a] - [b] (Protocol 1). Since p is substantially larger for 5 and 7
parties, we instead give one possible expression to calculate o(P)
for an arbitrary party p. All index calculations are performed mod
n.

For the 5-party configuration, we assign a unique index (i) to
each T € S, for party p:

(1) ={p+1p+2} (4)={p+2,p+3}
2 ={p+1Lp+3} G)={p+2p+4}
(3 ={p+Lp+4} (6) ={p+3,p+4}

such that we use a(;), b(;) in place of ay, by, in the expression for

0P). Then, the product of all shares can be computed by party p:

6 6
’U(P) =a() (Z b(i)) + a(2) (Z b(i)) + ags) (b(z) + b(4))
i=1

i=1
+ag) (bu) + b(s)) +ags) (bu) + b(z)) +ag) (bu) + b(s)) :
Lastly, we define the mapping y(p) = {p + 1,p + 2}.

For the 7-party configuration, we once again assign a unique
index (i) to each T € S, for party p such that:

1) ={p+1,p+2,p+3} 7) ={p+1,p+3,p+6}

@ ={p+1L,p+2,p+4}
B)={p+1L,p+2,p+5}
4 ={p+1Lp+2,p+6}
6)={p+1L,p+3,p+4}
6) ={p+1,p+3,p+5}

(13) ={p+2,p+3,p+6}
(149) ={p+2,p+4,p+5}
15) ={p+2,p+4,p+6}
(16) ={p+2,p+5p+6}

®) ={p+Lp+4,p+5}
9) ={p+Lp+4,p+6}
(10) ={p+1,p+5p+6}
(1) ={p+2,p+3,p+4}
(12) ={p+2,p+3,p+5}

17) ={p+3,p+4,p+5}
(18) ={p+3,p+4,p+6}
19) ={p+3,p+5p+6}
20) ={p+4,p+5p+6}
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The product of all shares can be computed by party p:

20 20 20 20
oP=q (Z b(f)) +ag) (Z b<i>) +ag3) (Z b(i)) +a(a) (Z b(i))
i i=1 i=1 i=1

+a(s) b(l)+b(z>+b<3>+b<4>+b<n>+b<1z>+b<13>+b<14>+b<16))

+a(e) (Z b(:)) +a) b(s>+b<6>+b<s>+b<w>+b<1z>+b<14>)
+a(s) (”u)+b(s>+b(e>+b<7>+b<11>+”<1z>+”<13>)

+a(9) (’7<1)+b(s>+b(6>+b<11>+b<12>+b<17>)

+a(1) b(z)+b(s>+b(s>+b<9>+b<u>+b<14>)

+aqy) b(l)+b(z>+b<3>+b<4>+b<s>+b<6>+b<1o>)

+aaz) bu)+b(z)+b(5>+b(7>+b(s>+b(9>)

(

(

(
+a(13) (b<1>+b(z>+b(3>+b(s>+b(e>+b(s>)
+a(14) (b(1)+b(s>+b<e>+b(7>) +4(15) (b(3)+b(s>+b(e>)
+4(16) (b<z>+b<s>) +a(17) (b<1>+b(z>+b(3>+b<4>+b<1e>)
+a(18) (b(1>+b<z>+b<3>) +a(19) (b<z>+b<9>)

+a(20) (b(1)+b(6)+b(7)) .
Lastly, we define the mapping y(p) = {p + L,p + 2,p + 3}.

D WAN MICRO-BENCHMARKS

The experimental configuration for WAN micro-benchmarks use
the same servers as the LAN micro-benchmarks, with an added
23 ms one-way latency and the bandwidth throttled to 76 Mbps.
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Setu Batch Size
P 1 [ 10 [10° [10° [ 10" ] 10° [ 10°
ro |30 ] 235 | 235 [ 237 [ 259 | 40.9 | 291 [ 2669
3pC 60 | 235 | 23.6 | 237 | 263 | 70.8 | 438 | 4187
® |30 [235[235[235[236 [ 246 [ 169 [ 1525
60 | 23.6 | 23.6 | 235 | 23.6 | 52.7 | 311 | 2994
FG | 30 [ 235 [ 235 | 237 | 27.1 | 49.7 | 448 | 4285
60 | 235 | 235 | 23.8 | 27.4 | 79.6 | 724 | 6927
30 | 47.1 | 47.1 | 47.2 | 523 | 91.2 | 518 | 4678
SPC | ¥D 60 | 47.1 | 47.1 | 473 | 52.8 | 115 | 758 | 6957
g |30 [ 470 [ 469 [ 470 [ 475 [ 542 [ 482 | 4934
60 | 46.9 | 47.0 | 46.8 | 47.9 | 105 | 981 | 9443
G | 30235 [ 235 239 | 286 | 856 | 661 | 6109
60 | 235 | 23.6 | 241 | 29.1 | 116 | 1035 | 9843
spe | pp |30 [ 471 [47.1 1479 [ 577 | 126 | 860 | 7513
60 | 47.1 | 47.2 | 481 | 584 | 162 | 1235 | 10972
g |30 [ 705 [ 704708 [749 [ 174 [ 1484 | 11503
60 | 70.4 | 70.4 | 70.7 | 76.1 | 253 | 2426 | 21083

Table 14: WAN runtime of multiplication protocols in ms.
FG and FD refer to the optimized GRR and DN field multi-
plication from [11], resp., and R is our ring realization. 30

and 60 are integer bitlengths.

Setup Matrix Size
10 x 10 | 100 X 100 | 500 x 500 | 1000 x 1000
F (30) 23.8 116 1,278 9,462
spc LE (60) 23.8 119 1,556 10,292
R (30) 23.3 28.3 582 2,842
R (60) 233 57.2 968 4,489
FG (30) 239 119 1,375 10,313
FG (60) 24.0 123 1,733 12,163
5pC FD (30) 47.5 146 1,692 12,492
FD (60) 47.5 153 2,185 14,952
R (30) 46.7 63.1 2,103 10,155
R (60) 46.7 116 3,297 15,938
FG (30) 24.3 121 1,483 11,296
FG (60) 24.3 126 1,845 12,923
7PC FD (30) 48.2 147 1,886 15,389
FD (60) 48.2 155 2,443 16,598
R (30) 71.1 206 8,200 58,142
R (60) 71.3 301 12,018 98,145

Table 15: WAN runtime of matrix multiplication in ms.
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Setup Batch Size
1 [ 10 [10° [ 10° [ 10" [ 10° | 10°
F(30) | 235 235 [ 241 | 284 | 588 | 495 | 4475
3pC F(60) | 235 | 235 | 242 | 30.1 | 101 | 743 | 6870
R(30) | 236 | 235 | 235 | 239 | 328 | 232 | 2120
R(60) | 23.6 | 23.6 | 235 | 24.9 | 675 | 430 | 4173
F(30) | 235 ] 236 | 247 [ 339 ] 957 [ 944 | 9157
spe F(60) | 235 | 23.6 | 249 | 35.1 | 142 | 1382 | 12781
R(30) | 235 | 235 | 236 | 243 | 41.6 | 386 | 3803
R(60) | 235 | 235 | 235 | 25.1 | 83.0 | 763 | 7493
F@0) [ 237237 ]239]261] 816 626 | 6201
7pC F(60) | 237 | 237 | 239 | 27.0 | 123 | 1111 | 11105
R(30) | 236 | 236 | 238 | 256 | 79.7 | 627 | 6017
R(60) | 237 | 236 | 24.0 | 274 | 129 | 1194 | 11626

Table 16: WAN runtime of RandBit protocols in ms.

Protocol Batch Size
1 10 [10f J10° [ 10" [ 10° [ 10°
R (30) 164 | 165.079 | 164 | 169 | 233 | 1525 | 13899
spC R (60) 189 | 188.855 | 188 | 198 | 414 | 3062 | 29212
[3]1(32) | 1045 | 1044 | 1045 | 1046 | 1050 | 9834 | 97638
[3](64) | 1849 | 1849 | 1850 | 1850 | 1859 | 17351 | 172588

Table 17: WAN runtime of edaBit protocols in ms compared
to MP-SPDZ implementation.

Protocol Batch Size
1 J10 J1of J10° [ 10" [ 10° [ 10°
F (30) 164 | 169 | 205 | 639 | 5114 | 47002 | 469621
F (60) 166 | 176 | 308 | 1442 12611 | 120213 | 1313728
R+1B (30) 187 | 187 | 189 | 244 | 859 | 7492 | 71238
R+1B (60) 210 | 211 | 222 | 464 | 2893 | 26743 | 262235
— R+eB (30) 351 | 351 | 351 | 357 | 483 | 2656 | 23065
R+eB (60) 398 | 398 | 398 | 410 | 849 | 5015 | 46611
[3]+eB (32) 1448 | 1449 | 1448 | 1451 | 1491 | 11099 | 105248
[3]+eB (64) 2253 | 2253 | 2254 [ 2219 | 2398 | 18801 | 181247
[3]+ABY3 (32) | 452 | 453 | 500 | 1160 | 7839 | 74717 | 741118
[3]+ABY3 (64) | 476 | 477 | 524 | 1178 7891 | 75042 | 744067
F (30) 166 | 174 | 229 | 998 | 8533 | 79248 | 801954
F (60) 168 | 184 | 364 | 234821007 | 202218 | 2119692
spC R+1B (30) 351 | 351 | 377 | 507 | 1636 | 14508 | 139451
R+1B (60) 398 | 398 | 528 | 863 | 5351 | 50290 | 493042
R+eB (30) 962 | 973 | 964 | 1003 | 1436 | 10662 | 98823
R-+eB (60) 1103 [ 1104 | 11101193 | 2805 | 23685 | 201298
F (30) 166 | 169 | 212 | 947 | 8512 | 82489 | 829618
F (60) 167 | 175 | 371 | 2389 22649 | 222109 | 2239171
7pC R+1B (30) 516 | 516 | 550 | 738 | 3181 | 26537 | 126586
R+1B (60) 586 | 588 | 737 | 1434 | 9297 | 84788 | 415354
R+eB (30) 1431|1432 | 1461 | 1682 | 6339 | 43072 | 368024
R+eB (60) 1642 | 1648 | 1710 | 2133 | 12181 | 85635 | 784269

Table 18: WAN runtime of MSB protocols in ms unless
marked otherwise. rB and eB indicate variants using Rand-
Bit and edaBit, respectively.
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