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ABSTRACT In addition, the fact that floating-point addition is not associative
Motivated by the importance of floating-point computations, we presents problems related to the reproducibility of computations;
study the problem of securely and accurately summing many see, e.g., [17, 21-23]. For example, a secure contract involving the
floating-point numbers. Prior work has focused on security ab- summation of floating-point numbers may need to be verified after
sent accuracy or accuracy absent security, whereas our approach it has been signed. And if this depends on the summation of floating-
achieves both of them. Specifically, we show how to implement point values, performing the summation on different computers
floating-point superaccumulators using secure multi-party compu- could result in different outcomes, which could cause participants

tation techniques, so that a number of participants holding secret to reject an otherwise valid digital contract.

shares of floating-point numbers can accurately compute their sum Competing with this issue is that some applications of floating-
while keeping the individual values private. point arithmetic have computer-security requirements, including
integrity, confidentiality, and privacy. For example, computing
KEYWORDS the probability of satellites colliding could involve security and

privacy considerations when the satellites belong to competing
companies or adversarial nation-states, e.g., see [36]. Thus, there
is a need for protocols for computing sums of many floating-point

floating-point summation, superaccumulator, secret sharing

1 INTRODUCTION numbers as securely as possible. This holds for other domains
Floating-point numbers are the most widely used data type for where computation on private data is performed using floating-
approximating real numbers with a wide variety of applications; point arithmetic including applications in medicine and privacy-
see, e.g., [30, 41, 51]. A (radix-2) floating-point number x is a tuple preserving training of machine learning models on distributed
of integers (b, v, p) such that sensitive data.
b _m g1y In spite of the importance of accuracy and security for summing
x= (=17 x (1+27M0) x 2P ’ ) floating-point numbers, we are not aware of any prior work that
where b € {0, 1} is a sign bit, v is the m-bit mantissa (which is also simultaneously achieves both accuracy and security for summing
known as the significand), and p is the e-bit exponent. many floating-point numbers. As we review below, there is consider-
A well-known issue with floating-point arithmetic is that it is able prior work on methods for accurately summing many floating-
not exact. For example, it is known that summing two floating point numbers, but the methods used do not lend themselves
point numbers can have a roundoff error and these roundoff errors to transformations into secure computations. Likewise, as we
can propagate and even become larger than a computed result also review below, there is considerable prior work on securely
when performing a sequence of many floating-point additions. For computing sums of pairs of floating-point numbers, but these
example, floating-point addition is not associative [37]. prior methods do not consider the propagation of roundoff errors
Floating-point arithmetic has applications in many areas includ- and can lead to inaccurate results for summing many floating-
ing medicine, defense, economics, and physics simulation (e.g., in point numbers. Such inaccuracies can arise after adding numbers
the NVIDIA Omniverse [33]). Thus, there is considerable need in of significantly different magnitudes, where the values of the
computing sums of many floating-point numbers as accurately largest magnitude have opposite signs and significantly exceed
as possible. For example, the accuracy of any computation that other summation operands. Adding the values one at a time using
involves high-dimensional dot products or matrix multiplications, floating-point addition can therefore leave us with noise, while
such as in machine-learning (see, e.g., [26, 32]), depends on the implementing addition exactly will retain the necessary number of
accuracy of computing the sum of many floating-point numbers. summation bits. Thus, in this paper, we are interested in methods
Similarly, computations in computational geometry involve com- for summing many floating-point numbers that are both secure and
puting determinants, whose accuracy also depends on computing accurate.
the sum of many floating-point numbers; see, e.g., [22, 45, 49]. Related Prior Work. Neal [42] describes algorithms using a

number representation called a superaccumulator to exactly sum
n floating point numbers, which is then converted to a faithfully-
- — - - rounded floating-point number. Unfortunately, while Neal’s su-
This work is licensed under the Creative Commons Attribu- @ . . . i
tion 4.0 International License. To view a copy of this license @ peraccumulator representation reduces Carry—blt propagation, it
visit https://creativecommons.org/licenses/by/4.0/ or send a BY does not eliminate it, as is needed for the purposes of this work.
letter to_ Creative .Commons, PQ Box 1866, Mountam View, CA 94042, USA. A similar idea has been used in ExBLAS [17]’ an open source
Proceedings on Privacy Enhancing Technologies 2023(3), 432445 lib for fl ) . . Sh huck d b

© 2023 Copyright held by the owner/author(s). ibrary for floating point computations. Shewchuck [45] describes
https://doi.org/10.56553/popets-2023-0090 an alternative representation for exactly representing intermediate
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results of floating-point arithmetic, but the method also does not
eliminate carry-bit propagation in summations; hence, it also does
not satisfy our accuracy constraints. In addition to these solutions,
there are a number of adaptive methods for exactly summing n
floating point numbers using various other data structures for
representing intermediate results, which do not consider the secu-
rity or privacy of the data. Further, these methods, which include
ExBLAS [17] and algorithms by Zhu and Hayes [52, 53], Demmel
and Hida [21, 22], Rump et al. [46], Priest [43], Malcolm [39],
Leuprecht and Oberaigner [38], Kadric et al. [35], and Demmel and
Nguyen [23], are not amenable to conversion to secure protocols
with few rounds.

While integer arithmetic in secure multi-party computation has
been extensively investigated, secure floating-point arithmetic has
only gradually attracted attention in the last decade. Catrina and
Saxena [16] extended secure computation from integer pairwise
arithmetic to fixed-point pairwise arithmetic and applied it to
linear programming [15]. Franz and Katzenbeisser [28] proposed a
solution, based on homomorphic encryption and garbled circuits,
for floating-point pairwise operations in the two-party setting
with no implementation or performance results. Aliasgari et al. 3]
designed a set of protocols for basic floating-point operations
based on Shamir secret sharing and developed several advanced
operations such as logarithm, square root and exponentiation of
floating-point numbers. Their solution was improved and extended
for other settings and applications [2, 8, 36, 47] later. Dimitrov et
al. [24] proposed two sets of protocols using new representations
to improve efficiency, but did not follow the IEEE 754 standard
representation. Archer et al. [6] measure performance of floating-
point operations in different instantiations using a varying number
of computation participants and corruption thresholds. Rathee et
al. [44] design secure protocols in the two-party setting and exactly
follow the IEEE standard rounding procedure. In addition to the
above works on improving efficiency of unary/binary floating-point
operations, Catrina [11-13] proposed and improved several multi-
operand operations such as sum, dot-product, and polynomial
evaluation. Nevertheless, because their solutions are still based
on traditional floating-point pairwise addition, round-off errors
accumulate inevitably in each addition operation.

Our Results. In this paper, we develop new secure protocols for
summing many floating-point numbers that outperforms other
approaches. We design a superaccumulator-based solution that
privately and accurately calculates summations of many private
arbitrary-precision floating-point numbers, and we empirically
evaluate the performance of our solution on varying input sizes and
precision. Unlike standard floating-point addition, our approach
performs summation exactly without introducing round-off errors.

Our supperaccumulator-based approach and most of the proto-
cols we develop can be instantiated with building blocks based
on secret sharing in different settings, including computation
with or without honest majority and semi-honest and malicious
adversarial models. Some of the design choices are made in favor of
reducing communication and one efficient low-level building block,
conversion shares of a bit from binary to arithmetic sharing, is in
the three-party setting with honest majority based on replicated
secret sharing in the semi-honest model (as defined below). We
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Algorithm 1 s « ExpandAndSum(x1,x2,...,xp)

1: fori=1,...,ndo

2. y; « ConvertTolnt(x;);

3: end for

4 v« X y;; // exact addition
5. s « ConvertToFloat(v);

6: return s;

implement the construction in that setting and show that its runtime
is faster than the state of the art implementing floating-point
operations [12, 44]. Thus, we are able to implement exact addition
while simultaneously improving performance.

2 FLOATING-POINT SUMMATION
CONSTRUCTION

2.1 The Expand-and-Sum Solution

There is a simple naive solution for exactly summing a set of n
floating-point numbers, {x1,x2, ..., x, }, which we refer to as the
expand-and-sum solution. It is reasonable for low-precision floating-
point representations and is given as Algorithm 1. That is, for each
floating-point number x;, we convert the representation of x; into
an integer y;, with as many bits as is possible based on the floating-
point type being used for the x;s. Then we sum these values exactly
using integer addition and convert the result back into a floating-
point number.

The y;s would have the following sizes based on the IEEE 754
formats:

o Half: a half-precision floating-point number in the IEEE 754
format has 1 sign bit, a 5-bit exponent, and a 10-bit mantissa.
Thus, representing this as an integer requires 1+2° +10 = 43
bits.

o Single: a single-precision floating-point number has 1 sign bit,
an 8-bit exponent, and a 23-bit mantissa. Thus, representing
this as an integer requires 1 + 28 + 23 = 280 bits.

e Double: a double-precision floating-point number has 1
sign bit, an 11-bit exponent, and a 52-bit mantissa. Thus,
representing this as an integer requires 1+ 2!! +52 = 2,101
bits.

e Quad: a quad-precision floating-point number has 1 sign bit,
a 15-bit exponent, and a 112-bit mantissa. Thus, representing
this as an integer requires 1 + 21> + 112 = 32, 881 bits.

Further, there are also even higher-precision floating-point rep-
resentations, which would require even more bits to represent
as fixed-precision or integer numbers; see, e.g., [10, 27, 29, 31, 50].
Implementing a summation using this representation would involve
performing many operations on very large numbers using secure
multi-party computation techniques, thus degrading performance.
Of course, applications with high-precision floating-point numbers
are likely to be applications that require accurate summations;
hence, we desire solutions that can work efficiently for such
applications without requiring ways of summing very large integers.
In particular, summing very large integers requires techniques
for dealing with cascading carry bits during the summations, and
performing all these operations securely is challenging for very



Proceedings on Privacy Enhancing Technologies 2023(3)

large integers. Thus, we consider this expand-and-sum approach
for summing n floating-point numbers as integers to be limited to
low-precision floating-point representations.

2.2 Superaccumulators

An alternative approach, which is better suited for use with conven-
tional secure addition when applied to high-precision floating-point
formats, is to use a superaccumulator to represent floating-point
summands, e.g., see [17, 18, 42]. This approach also uses integer
arithmetic, but with much smaller integers. More importantly, it
can be implemented to avoid cascading carry-bit propagation.

In a superaccumulator, instead of representing a floating-point
number as a single expanded (very-large) integer, we represent that
integer as a sum of small components maintained separately. That
is, we represent the expanded integer y, corresponding to a floating-
point number x, as a vector of 2w-bit integers (Ya, Ya—1, - -» Y1)
wherey = 2.7, 2™y; and o = [2541] 5o that we cover all possible

w
exponent values. Also, note that if we convert a floating-point

number to a superaccumulator, then at most f = [mT“] + 1 of the
entries will be non-zero. We can choose w based on the underlying
mechanism for achieving security and privacy. For example, if we
want to use built-in 64-bit integer addition, we can choose w to
be 32.

In addition, we say that s is regularized if -2% < y; < 2%
for i = 1,...,a. At a high level, in our scheme, we start with
a regularized representation for each floating-point number x;,
and then we perform summations on an element-by-element basis.
Finally, we regularize the partial sums by shifting “carry” values
to neighboring elements. As we show, this approach allows us to
prevent these carry values from propagating in a cascading fashion
after performing a group of sums, which allows us to achieve
efficiency for our secure summation protocols.

Suppose we are given n floating-point numbers, {x1,x2,...,xn},
each represented as a regularized superaccumulator x; = Z?:l 2%y .

Further, suppose n < 2%~2. We sum all the x;’s by

e first summing the corresponding terms, s; = 37, i j,

e then splitting the binary representation of each s; into ¢4
andrj, so thats; = cj+12W_1+rj,where w1 < rj < 2w-1

e and lastly, updating each sj as sj «— rj +cj, for j=1,...,n.

As we show, because of the way that we regularize superaccumula-
tors, the “carry” values, c;, will not propagate in a cascading way,
and the result of the above summation will be regularized. This
allows us to complete the sum in a single communication round.

Further, for practical values of w, the constraint that n < 2w-2
is not restrictive. For example, if w = 32, this implies we can sum
up to one billion floating-point numbers in a single communication
round. Thus, to sum larger groups of numbers, we can group
the summations in a tree where each internal node has 2~2
children, and perform the sums in a bottom-up fashion. The
important property, though, is that performing the above approach
of summing n < 2%~2 regularized superaccumulators and then
adding the carry values, c; (some of which may be negative), to the
neighboring element will result in a regularized superaccumulator.
The following theorem establishes this property.
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THEOREM 2.1. Ifn < 2%72, then summing n regularized super-
accumulators using the above algorithm will produce a regularized
result.

PRrOOF. Let x1,x2, ..., X, be the set of input superaccumulators
to sum, where n < 22 and x; = Zj.‘:l 2Viy;jfori=1,2,...,n.
Recall that we sum all the x;s by summing the corresponding terms,
ie,sj = XL, yij. Since each x; is regularized, —2% < y;; < 2"
for all i, j. Thus, —2%n < sj < 2"n for all j; and hence, —22w=2
sj < 22% 2 since n < 2W72,

Recall that we split the binary representation of each s; into cj41
andrj, so that sj = Cj+12w_1 +rj, where —ow-1 < rj < 2%~1 Thus,

sj = Cj+12w_1 +rj < Cj+12w_1 +2w 1= (Cj+1 + 1)2W_1 < 22w—2
and

sj = Cj+12w_1 +rj > Cj+12w_l —owl = (Cj+1 - 1)2W‘1 > —22w-2

Therefore, —2%~1 +1 < Cj+1 < 2W~1 _ 1 for each j. So, when we
update each s; as sj < r; +cj, then

3j=rj+cJ-<2W_1+2W_1—1=2W—1and
sj=rj+cj>—2W 2w lir=—2"41.

Therefore, the result is regularized. O

3 SECURE COMPUTATION PRELIMINARIES
3.1 Security Setting

We use a conventional secure multi-party setting with N parties
running the computation, ¢ of which can be corrupt. Given a func-
tion f to be evaluated, the computational parties securely evaluate
it on private data such that no information about the private inputs,
or information derived from the private inputs, is revealed. More
formally, a standard security definition requires that the view of
the participants during the computation is indistinguishable from
a simulated view generated without access to any private data.

Most of the protocols developed in this work can be instantiated
in different adversarial models, but our implementation and one
low-level building block are in the semi-honest model, in which the
participating parties are expected to follow the computation, but
might try to learn additional information from what they observe
during the computation. Then the security requirement is that any
coalition of at most ¢ conspiring computational parties is unable
to learn any information about private data that the computation
handles. Achieving security in the semi-honest setting first is also
important if one wants to have stronger security guarantees, and
many of the protocols developed in this work would also be secure
in the malicious model when instantiated with stronger building
blocks.

Definition 3.1. Let parties Py, ..., PN engage in a protocol IT that
computes function f(iny, ... inN) = (outy,..., outy), where in;
and out; denote the input and output of party P;, respectively. Let
VIEWT1(P;) denote the view of participant P; during the execution
of protocol IT. More precisely, P;’s view is formed by its input and in-
ternal random coin tosses r;, as well as messages my, . . ., my passed
between the parties during protocol execution: VIEW(P;) =
(inj,ri,my,...,my). Let I = {P;,P;,,...,P;,} denote a subset of
the participants for t < N, VIEWp(I) denote the combined view
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of participants in I during the execution of protocol II (i.e., the
union of the views of the participants in I), and f;(iny,...,inxN)
denote the projection of f(iny,...,inx) on the coordinates in I
(i.e., fi(inq,...,inN) consists of the ijth, ..., i;th element that
f(iny,...,inyN) outputs). We say that protocol II is t-private in
the presence of semi-honest adversaries if for each coalition of
size at most t there exists a probabilistic polynomial time (PPT)
simulator Sy such that {S;(iny, fi(in1,...,iny)), f(iny,... iny)} =
{VIEWn (1), (outy,...,outy)}, where in; = [Up,¢r{ini} and = de-
notes computational or statistical indistinguishability.

The focus of this work is on precise (privacy-preserving) floating-
point summation, and this operation is typically a part of a larger
computation. For that reason, the inputs into the summation would
be the result of other computations on private data. Therefore, we
assume that the inputs into the summation are not known by the
computational parties and are instead entered into the computation
in a privacy-preserving form. Similarly, the output of the summation
can be used for further computation and is not disclosed to the
parties. In other words, we are developing a building block that can
be used in other computations, where the computational parties
are given privacy-preserving representation of the inputs, jointly
produce a privacy-preserving representation of the output, and
must not learn any information about the values they handle. This
permits our solution to be used in any higher-level computation
and abstracts the setting from the way the inputs are entered into
the computation (which can come from the computational parties
themselves or external input providers).

In our solution, we heavily rely on the fact that composition
of secure building blocks is also secure. As part of this work, we
develop several new building blocks to enable the functionality we
want to support.

3.2 Secret Sharing

To realize secure computation, we utilize (N, t)-threshold linear se-
cret sharing. Secret sharing offers efficiency due to the information-
theoretic nature of the techniques and consequently the ability to
operate over a small field or ring. Many of the protocols developed
in this work can be realized using any suitable type of secret
sharing (e.g,. with or without honest majority and in the semi-
honest or malicious settings) and by [x] we denote a secret-shared
representation of value x, which is an element of the underlying
field or ring. The expected properties are that (i) each of the
N computational parties P; holds its own share such that any
combination of ¢ shares reveals no information about x and (ii)
a linear combination of secret-shared values can be computed by
each party locally on its shares. SPDZ,« [19] is one example of a
suitable framework.

For performance reasons, many recent publications utilize com-
putation over ring Z,« for some k > 1, which permits the use of
native CPU instructions for performing ring operations. This is also
the setting that we utilize for our experiments and use to inform
certain protocol optimizations. Conventional techniques such as
Shamir secret sharing [48] cannot operate over Z,« and thus we
rely on replicated secret sharing [34] with a small number of parties.
Specifically, we use the setting with honest majority, i.e., where
t < N/2, and are primarily interested in the three-party setting,
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ie, N = 3. All parties Py,. .., Py are assumed to be connected by
pair-wise secure authenticated channels.

There is a need to secret share both positive and negative integers
and the space is used to naturally represent all values as non-
negative ring/field elements. In that case, the most significant bit
of the representation determines the sign.

For efficiency reasons, portions of the computation proceed on
secret shared values set up over a different ring, most commonly
Zj3. Thus, we use notation [x], to denote secret sharing over Z,¢
when ¢ differs from the default k.

3.3 Building Blocks

In a linear secret sharing scheme, a linear combination of secret-
shared values can be performed locally on the shares without com-
munication. This includes addition, subtraction, and multiplication
by a known element. Multiplication of secret-shared values requires
communication and the cost varies based on the setting. We use the
multiplication protocol from [7] that works with any number of
parties in the honest majority setting and communicates only one
element in one round in the three-party setting, i.e., when n = 3,
it matches the cost of three-party protocols such as [5]. Realizing
the dot product operation can also often be performed with the
communication cost of a single multiplication, regardless of the
size of the input vectors.

Our computation additionally relies on the following common
building blocks:

e Equality. An equality to zero protocol [b]; < EQZ([a])
takes a private integer input [a] and returns a private bit
[0], which is set to 1 if a = 0 and is 0 otherwise. Equality
of private integers [x] and [y] can be computed by calling
the protocol on input [a] = [x] — [y]. We use a variant of
the protocol from [20] that produces the output bit secret
shared over Z; (i.e., skips the conversion of the result to the
larger ring).

e Comparisons. [b] < MSB([a]) outputs the most signifi-
cant bit [b] of its input [a]. When working with positive and
negative values, MSB computes the sign and is equivalent to
the less-than-zero operation. For that reason, the operation
can also be used to compare two integers [x] and [y] by
supplying their difference as the input into the function. We
use the protocol from [7].

e Bit decomposition. [x,—1]1,...,[x0]1 < BitDec([x],¢)
performs bit decomposition an ¢-bit input [x] and outputs
¢ secret-shared bits. Our implementation uses the protocol
from [20], with a modification that random bit generation is
based on edaBits (see below) and the output bits are secret
shared over Z; by skipping their conversion to Zy.

e Truncation. Truncation [y] <« Trunc([x], ¢, u) takes a
secret-shared input [x] at most ¢ bits long and realizes a right
shift by u bits. It outputs y = | 57 ]. We invoke this function
only on non-negative inputs x. Our implementation aug-
ments randomized truncation TruncPr from [7] with BitLT
implemented using a generic carry propagation mechanism.

e Prefix AND. On input [x1]1, ..., [xn]1, PrefixAND outputs
[y1]1,--., [yn]1, where y; = ]_[j.:1 xj. This is the same

as y; = /\j.:1 xj when x;s are binary. PrefixAND can be
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realized as described in [14] using a generic prefix operation
procedure (when operating over a ring). As the inputs are
bits, for performance reasons this protocol is carried out in
Zy.

e Prefix OR.Protocol [y1]1, ..., [yn]1 < PrefixOR([x1]1, ...,
[xn]1) produces y; = \/j._1 xj. This operation can also be
implemented using a generic prefix operation mechanism
and executed over Z,.

e All OR. [yo]1,..., [y2n-1]1 < AlOr([xp-1]1,. .., [x0]1)
takes n bits and produces 2" bits y; of the form \/?:_01 Ci,
where each c; is either x; or its complement —x; and the pro-
tocol enumerates all possible combinations. The important
property is that only one element at position x = Hl'.’:_ol 2ix;
in the output array will be set to 1, while the remaining
elements will be 0. The protocol is described in [9], which
we implement over a ring.

¢ Random bit generation. Generation of random bits is a
lower-level component of many common building blocks
including comparisons, bit decomposition, etc. In this work,
we use edaBit from [25] for this purpose. The protocol

[r], [rn-1]1,--., [r0]1 « edaBit(n) produces random bits
[ri] shared in Z; and the integer they represent r = [17 2'r;
in Zyk.

e Share reconstruction. Another lower-level protocol on
which we rely is x = Open([x], £) for reconstructing a secret-
shared value to the computation participants. To achieve
security guarantees, we use a variant that reconstructs x €
Zye from [x] where ¢ < k. This is achieved by reducing each
share modulo 2¢ prior to the reconstruction to guarantee
that no information beyond the ¢ bits is exchanged during
the reconstruction.

¢ Ring conversion. [x]y « Convert([x]g, k, k’) starts with
x secret-shared over Z,r and produces shares of the same
value secret-shared over Zoy where k’ > k, i.e., the target
ring is larger. We use the Convert protocol from [7].

We also develop several other building blocks as described in Sec-
tion 4. Note that many of these building blocks can be implemented
using different variants, where the mechanism for random bit
generation plays a particular role. Using the edaBit approach as
described above lowers communication cost of protocols compared
to generating each random bit separately with shares in Z,«, but
incurs a higher number of communication rounds. We make design
choices in favor of lowering communication, but the alternative is
attractive when summing a small number of inputs or when the
latency between the computational nodes is high.

Notation « is used for functionalities that draw randomness
(to produce randomized output or to compute a deterministic
functionality that internally uses randomization) and notation = is
used for deterministic computation.

4 SECURE LARGE-PRECISION
CONSTRUCTION

We are now ready to proceed with our solution for secure and
accurate floating-point number summation based on the super-
accumulator structure of Section 2.2. As before, a floating-point
number x; is represented as a tuple (b;, v;, p;). Our solution takes a
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Algorithm 2 [s] « FLSum({[b1], [v1], [p1]). -- .. ([bn]. [vn]. [pn]))

i leta = [23M] and f = [MEL] 4 15

2 fori=1,...,nin parallel do

3 Alyial, .- [yi1]) < FL2SA([b:], [0il, [pi]. & B);
4: end for

5

Alyal, - [y1]) < SASum({[yral, ..., [y1al)s - - ((Ynal, -
[yn11));

6: ([b], [0], [p]) < SA2FL([yal, .., [y1]);

7. return ([b], [0]. [p]);

sequence of n secret-shared floating-point inputs ([b;], [v;], [pi])
and produces a secret-shared floating-point sum. At high level, it
proceeds by first converting the inputs into superaccumulators,
then computing the sum of the superaccumulators, regularizing
the result, and converting the resulting superaccumulator to a
floating-point number. The protocol, denoted as FLSum, is given in
Algorithm 2 (superaccumulator summation and regularization are
combined into SASum). Data representation parameters e, m, and
w are fixed throughout the computation (as given in Equation 1)
and are implicit inputs.

When constructing a privacy-preserving solution, the computa-
tion that we perform must be data-independent or data-oblivious,
as not to disclose any information about the underlying values. In
the context of working with the superaccumulator representation,
we need to be accessing all superaccumulator slots in the same way
regardless of where the relevant data might be located. In particular,
when converting a floating-point value to a superaccumulator,
at most f slots will contain non-zero values, but their location
cannot be disclosed. Similarly, when converting a regularized
superaccumulator corresponding to the sum to its floating-point
representation, only most significant non-zero slots are of relevance,
but we need to hide their position within the superaccumulator.

It is important to note that, unless specified otherwise, the
computation is performed over 2w-bit shares (or ring Z,zw in
our implementation) to facilitate superaccumulator operations. We
denote the default element bitlength by k. This default bitlength
is sufficient to represent all values with a single exception: the
bitlength m mantissa v in the floating-point representation can
often exceed the value of 2w. For that reason, we represent mantissa
v as as a sequence of [mTH] or #—1, secret-shared blocks storing w
bits of v per block. For clarity of exposition, each v; is written as a
single shared value in FLSum, while in the more detailed protocols
that follow we make this representation explicit.

For most protocols in this paper, including FLSum in Algorithm 2,
security follows as a straightforward composition of the building
blocks assuming that the sub-protocols are themselves secure. Then
using a standard definition of security that requires a simulator
without access to private data to produce corrupt parties’ view
indistinguishable from the protocol’s real execution, we can invoke
the simulators corresponding to the sub-protocols and obtain secu-
rity of the overall construction. Thus, in the remainder of this work
we discuss security of a specific protocol only when demonstrating
its security involves going beyond a simple composition of its
sub-protocols. In addition, for some protocols it is important to
ensure that they are data-oblivious (i.e., data-independent) such
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Algorithm 3 ([yq, ..
[p], & p)

’[y1]> — FLZSA([b],([Uﬁ_l],...,[U]]),

] Trunc([p], e, log w);

P = [p] - [p"&" - w;

11 < EQZ([pD):;

vp_1l = [op_y] +2m P2 - B2AGL - [2]1);
logl..... [o1]) < Shift(([op_1],. ... [o1]), [p""], w);
: fori=1,...,f in parallel do

[1] =2 [B]) - [oi];
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: ([dg), ..., [di]) < B2U([p"8h] + 1, a);
10: fori=1,...,ain parallel do
11:  if i < f then
12: [yil « Zioldi-j] - [ojls
13 elseif i < o — f+1then
14: [yl — Zf:_ol [di-;] - [o5];

15:  else '

16: [yi] < Z?:_OI_Z [di—pr14j] - [p-1-j1;
17: endif

18: end for

19: return ([yql, ..., [y1]);

that the executed instructions and accessed memory locations are
independent of private inputs. Data obliviousness is necessary for
achieving security because we need the ability to simulate corrupt
parties’ view without access to private data.

4.1 Floating-Point to Superaccumulator
Conversion

The first component is to convert floating-point inputs to their
superaccumulator representation. Because this operation is rather
complex and needs to be performed for each input, it dominates the
cost of the overall summation and thus it is important to optimize
the corresponding computation. The conversion procedure takes a
floating point value ([b], {[vg_1]...., [v1], [p]) representing nor-
malized x = (-1)? - (1 +27™0) - 2P=2"=1 and needs to produce
a regularized superaccumulator as a vector of a 2w-bit integers,

_ r2%+m
where a = [=1.
4.1.1 The Overall Construction. To perform the conversion, the

computation needs to determine the position within the superaccu-
mulator where the mantissa is to be written based on exponent [p],
represent the mantissa as  superaccumulator blocks, and write
the blocks in the right locations without disclosing what locations
within the superaccumulator those are. The protocol details are
given as protocol FL2SA (Algorithm 3), which we consequently
explain.

Recall that the superaccumulator’s step is 2". This means that
e — log w most significant bits of the exponent [p] represent the
index of the first non-zero slot in the accumulator. The log w least
significant bits of the exponent are used to shift the mantissa so that
it is aligned with the block representation of the superaccumulator.
Thus, in the beginning of FL2SA we divide the exponent [p] into
high

two parts: the most significant e — log w are denoted by p™8" and
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the remaining log w bits are denoted by p" (lines 1-2).

The next task is to use the mantissa (represented as f§ — 1 blocks)
and [p%] to generate f§ superaccumulator blocks. First, recall that
normalized floating-point representation assumes that the most
significant bit of the mantissa is 1 and is implicit in the floating-point
representation. Thus, we need to prepend 1 as the (m + 1)st bit of v.
In FL2SA we do this conditionally only when the exponent is non-
zero (lines 3—-4) because when p = 0, normalization might not be
possible (e.g., if the floating-point value represents a zero). Second,
we need to shift the updated mantissa blocks by a private log w-bit
value p°" to be aligned with the boundaries of superaccumulator
blocks and update each value to be w bits by carrying the overflow
into the next block.

To perform re-partitioning, we considered solutions based on
bit decomposition and truncation for re-partitioning the blocks,
and the second approach was determined to be faster. Our final
solution - a protocol called Shift that takes the original mantissa
blocks - right shifts the values by private [p!®¥] positions, where w
is the upper bound on the amount of shift, and re-aligns the blocks
to contain w bits each using truncation. The details of the Shift
protocol are deferred to the next sub-section. After producing the
superaccumulator blocks (line 5), we update the sign of each block
using bit [b] (lines 6-8). The desired superaccumulator representa-
tion is depicted in Figure 1, where the produced superaccumulator
blocks are intended to be written in positions p"8" + 1 through
phigh + .

The last task is to write the generated f superaccumulator blocks
[v;]s into the right positions of our a-block superaccumulator, as
specified by the value of [phigh]. Because the computation must
be data-oblivious, the location of writing cannot be revealed and
the access pattern must be the same for any value of p"8". To
accomplish the task, we considered two possible solutions: (i)
turning the value of p"9" into a bit array of size a with the phigh
value set to 1 and all others set to 0 and using the bit array to
create superaccumulator blocks and (ii) creating a bit array with a
single 1 in the first location and rotating the bit array by a private
amount p"8". The first approach was determined to be faster and
we describe it next.

The conversion of [p +1, the value of which ranges between
1 and a, to a bit array of private bits with the (p8"+1)th bit set
to 1 can be viewed as binary to unary conversion, denoted by
B2U. Prior work considered this building block, and specifically
in the context of secure floating-point computation [3], but prior
implementations were over a field. Because computation over a ring
of the form Z,x can be substantially faster, we design a new protocol
suitable over a ring using recent results, as described later in this
section. After the binary-to-unary conversion of p"&" + 1 (line 9
of FL2SA), each slot of the superaccumulator [y;] is computed as
the dot product of the previously computed data blocks [v;]s and
at most f bits [d;]s (lines 10-18) because the data blocks need to
be written at positions p/8" — § + 1 through p"8". In particular,
for the middle superaccumulator blocks, there are f bits and data
blocks to consider when creating each superaccumulator block [y;],
while the boundary blocks would iterate over fewer options. For
example, the block [y;] will be updated to [v1] only if [d1] = [1],
while block [y2] will be updated to [v1] or [v2] in the case of

high]
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Mantissa [v]:
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Figure 1: Illustration of floating-point to superaccumulator conversion.

Algorithm 4 ([vg], ..., [01]) « Shift({[o_1],..., [01]), [p]. W)
: lety =logw;
: {Ipyl1,- - -, [p1]1) < BitDec([p], y);

: for j =1,...,y in parallel do
[pj] « B2A([pjl1);

: end for i

o [s] < H)Y-II(ZZJ [pjl+1-1[p;l);
: fori=1,...,—1in parallel do
[ui] < [oi][s];

[di] « Trunc([ui], 2w, w);

: end for

: fori=2,...,f—1in parallel do
[vi] = [wi] —2Y[di] + [di-1];
: end for

o [o1] = [m] = 2Y[di];

: [op] = [dp-1];

: return ([og],..., [v1]);

=B R B S R I

—_ =
[N

P
SRS T )

[d1] = [1] or [d2] = [1], respectively. All superaccumulator blocks
are updated in parallel with communication cost equivalent to that
of a multiplications.

4.1.2  New Building Blocks. What remains is to describe our Shift
and B2U protocols. The Shift protocol takes an integer value
(mantissa in the context of this work) stored in f — 1 blocks
[v-1],- .., [01], shifts the value right by private amount specified
by the second argument [p], where the value of p ranges between
0 and w specified by the third argument, and outputs  new blocks
[og], ..., [01]. It is implicit in the interface specification that each
original block representation has (at least) w unused bits, so that the
content of each block can be shifted by up to w positions without
losing information. In particular, we assume that each block has w
bits occupied, so that after the shift the intermediate result can grow
to 2w bits before being reorganized to occupy w bits per block.
The computation, given in Algorithm 4, starts by bit-decomposing
the private amount of shift [p] and converting the resulting bits to
ring elements (lines 1-5). The content of each block [v;] is shifted
right (as multiplication by a power of 2) by the appropriate number
of positions depending on the value of each bit of the amount of
shift: when bit [p;] is 0, the value is multiplied by 1; otherwise it is
multiplied by a power of 2 that depends on the index j (lines 6-8).
We then truncate each shifted block (line 9) to split the value into
the least significant w bits that the block will retain and the most
significant w bits which will are the carry for the next block. Each
block is consequently updated by taking the carry from the prior
block and keeping its w least significant bits (lines 11-15). Because
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Algorithm 5 ([b1],..., [b¢]) « B2U([a],?)

1: g = [log?];

2 [r], [rg-111,. .., [ro]1 « edaBit(q);

3: ([dol1, ..., [d2a-1]1) < AllOr([rg-1]1, ..., [rol1)s
4 ¢ =Open([a] —1+[r],q);

5: fori=0,...,¢ —1in parallel do

6 [bir1] < B2A(1 = [d(c—i) mod 29]1);

7: end for

8: return ([b1],...,[b¢]);

we shift all blocks in the same way, this operation corresponds to a
shift with block re-aligning on the boundary of w bits per block.

Our ring-based solution for binary-to-unary conversion B2U
takes a private integer [a] and public range, where 0 < a < ¢, and
produces a bit array ([b1],..., [br]) with the ath bit set to 1 and
all other bits set to 0. Our goal is to have a variant suitable for
computation over ring Z, using most efficient currently available
tools. Our solution, shown as Algorithm 5, is based on ideas used
for retrieving an element of an array at a private index in [9].

The high-level idea consists of generating [log ¢] random bits
[ri] that collectively represent a random [log ¢]-bit integer [r],
generating [log £]-ary ORs of [r]—i for all log ¢-bit i and flipping the
resulting bits. This creates a bit array with all values set to 0 except
the element at private location [r] set to 1. The ORs are computed
simultaneously for all values using protocol AllOr. Consequently,
the algorithm opens the value of ¢ = r+a (modulo 2M°8?1) and uses
the disclosed value to position the only 1 bit of the array in location
a (i.e., the bit will be set at position i for whichc—i=r+a—-i=r).

Note that the protocol explicitly calls edaBit for random bit
generation (and inherits its properties) and there are alternatives.
We enhance performance by carrying out the most time-consuming
portion of the computation, namely AllOr, over a small ring Z;
because the computation uses Boolean values. This means that
after producing 2/1°8¢1 bits through a sequence of calls to edaBit,
AllOr, and Open and array rotation, we need to convert their shares
from Z; to Z,k, which we do using binary-to-arithmetic share
conversion B2A (line 6). In addition, reconstruction of ¢ = r + a on
line 4 needs to be performed using g-bit shares to enforce modulo
reduction and prevent information leakage, where share truncation
prior to the reconstruction is performed by Open itself using the
modulus specified as the second argument.

As far as security goes, we note that besides composing sub-
protocols the protocol also reconstructs a value which is a function
of private input [a] on line 8. Security is still achieved because [r]
is a private value uniformly distributed in Zyq. Thus, the value of
[a] is perfectly protected and the opened element of Zyq is also
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Protocol | Communication | Rounds
[20] 6(k +2) 2
[4] 6k 2
[40] 6k 1
Ours 3k 2

Table 1: Comparison of three-party B2A protocols in the
honest majority setting with target ring Z,«. Total protocol
communication is reported in bits.

uniformly distributed over the entire range. This means that the
view is easily simulatable by choosing a random element of Zq
as the output of Open and getting the parties to reconstruct that
value.

The last component that we would like to discuss is the B2A
protocol. Solutions for converting a bit b secret shared over Z; to the
same value secret shared over larger ring Z,«, [b]x < B2A([b]1,k),
appear in the literature. Conventional solutions that use square
root computation to generate a random bit (e.g., [20]) temporarily
increase the ring to be Z,k+2 for computing intermediate results. In
the context of this work, this effectively doubles the size of the ring
elements during the computation when we use a ring Z,3: or Zss.
When the number of participants is not large, an alternative is to
cast each local share in Z; as a share in Z,x and have the parties
compute XOR of those values over Z,«. This approach is used in
Araki et al. [4] in the three-party setting with honest majority
based on replicated secret sharing (RSS) that costs two consecutive
multiplications. The approach of Mohassel and Rindal [40] would
also require the same communication in two rounds, but the use of
the three-party OT procedure in that work reduces the number of
rounds to one.

In this work, we design a new solution in the three-party setting
using RSS that does not increase the ring size and lowers the cost
of prior protocols as illustrated in Table 1. Unlike many protocols
in this work that can be adapted to different types of underlying
arithmetic and the number of computational parties, this is the only
protocol that specifically uses RSS with N = 3 and threshold ¢ = 1.

With RSS when N = 3, there are three shares representing any
secret-shared [x] which we denote as [x](l), [x](z), and [x] ®),
Each computational party P; holds two shares with indices different
from i. For example, P, holds shares [x] (D and [x]®). We use
(1)
participant vsfith access to shares indexed by i holds a (sufficiently
long) key key; used as the seed to a pseudorandom generation. For
clarity, we refer to a PRG keyed by key; as G;. A call to G;.next
produces a pseudorandom ring element.

The input to B2A is a bit secret-shared over Z; and we need to
convert the bit to the shares over Z,« as specified by the second
argument. The protocol is given as Algorithm 6. The high-level
idea behind the solution is that x = [x]%l) ® [x]iz) ® [x]§3) and
we use the knowledge of the input shares by the parties to evaluate

the two XOR operations in the target ring. In particular, we can
(1)
1

notation [x],;” to denote a share in ring Z,«. In addition, each

conceptualize the bit shares [x],’ as secret-shared values over
Z, represented as [a]g = ([x]il),o, 0), [b]x = (0, [x]iz),o), and

[c]x = (0,0, [x]iS)). If we securely evaluate [a]; & [b]g ® [c]k, we
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Algorithm 6 [x]; < B2A([x]1, k)
Setup: Party P; holds shares and has access to PRGs G; with
indices j # i.
([x15", 0,0, bl =
(0.0,[x1*);
2: evaluate [s]; = [a]g - [P]g as follows:
(a) P3 computes [s]/(cz) = Gg.next, [s]](:) = [a],(cl) . [b]l(cZ) -
[s]](cz) (in Z,x), and sends [s]](cl) to Py;
(b) P, sets [s]](:) to the received value and [s]](f) =0;
(c) P1 computes [s]](cz) = Gy.next and sets [s]](f) =0;

3: [slk = l[alg + [blx — 2[s]gs

4: evaluate [u]g = [s]g - [c]f as follows:

](Cl) = Gy.next,u’ = [s]](cl) . [c]](f) - [u]l(cl)
(inZyx ), sends u” to P1, and computes [u] ](j)
(in Zyk).

(b) P; receives u’, computes u”’ = Gs.next, [u]](cz) = [S]I(CZ) .

1: set [a]g = (0, [x]iz)’())’ and [c]g =

(a) P2 computes [u]

= u’+Gjs.next

[c]§3) - u”, and [u]](f) = u’ +u" (all computation is in

Zyx), and sends [u]l(cZ) to Ps;

(c) Ps sets [u]](cz) to the received value and [u]

5 [xlg = [slk + [elg — 2[ulg;
6: return [x]g;

](Cl) = Gj.next.

will obtain secret-shared [x] in the desired ring, which could be
generically accomplished by two sequential multiplications (i.e.,
[a] ® [b] = [a] + [b] — 2[a] - [b]). This is also the logic used in [4].

However, given that our shares of a, b, and ¢ have a special
form, the cost of that computation can be reduced. In particular,
a typical implementation of the multiplication operation involves
multiplying accessible shares locally and re-sharing the products
with other parties using fresh randomization to hide patterns.
Because in our case some shares are set to 0, their product will be 0
as well, and no re-sharing is needed. For example, when computing
[alk - [b]k, the only contributing term to the product is the product
of [a]](cl) and [b] (@) which is computable by Ps in its entirety. As a
result of such optimizations, the communication cost of the overall
protocol is one ring element per party.

Referring to Algorithm 6, as mentioned above, the product of
[a] and [b] (step 2) can be computed locally by Ps, after which the
product is re-shared. The re-sharing uses proper k-bit elements to
hide information about the product and is split by P3 in two shares
to which it has access, namely [s] (1) and s(2). This is similar to the
re-sharing in regular multiplication (see, e.g., [7]) and involves P3
communicating a single ring element.

After turning the product into XOR (line 3), the parties need
to compute the product of [s]; and [c]j, where [s]; has two non-

empty shares ([s]l(cl) and [s]l(f) ) and [c] has one non-empty share
([c] ]((3)). This involves P, computing the product [s]]il) - [c] ](f) and
re-sharing by splitting it into two shares and P; computing the
product [s];f) - [e] §3) and also re-sharing it. As described in step 4

(1)
k

of Algorithm 6, Py’s product is split into [u], ’ and value u’, which
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becomes a part of [u]](f) . Similarly, P;’s product is split into [u]](cz)

and value u”’, which becomes the second component of [u] /(f). Both

Py and P, communicate one ring element each to finish re-sharing

and let everyone obtains the shares of the product u. The party then

finish the computation by turning the product into XOR (line 5). The

total communication is equivalent to that of a single multiplication.
We prove the following result:

CrLamm 1. B2A protocol in Algorithm 6 is 1-private in the semi-
honest model in the three-party setting in the presence of a single
computationally-bounded corrupt party assuming G is a pseudo-
random generator.

Proor. We prove that our B2A protocol in Algorithm 6 is secure
in the presence of a single corrupt party. We consider corruption
of party Py, P2, and P3 in turn and build a corresponding simulator
for each case.

Party P; is corrupt. We first assume that party P; is corrupt,
and build the corresponding simulator S; to simulate its view in
the ideal model. The simulator S; is constructed as follows:

e In step 4(a), S draws a uniformly random element u” « Z«
and sends it to party P; on behalf of party Ps.

o In step 4(b), S1 receives [u]](cz) from P; on behalf of Ps.

We next compare the view of P; that the simulator S; produces
with the view of the corrupt party P in the real execution. In the

beginning of the protocol, P; holds [b]](cz) = [x]iz) and [C]I(<3) =

[x] §3) and has access to G, and Gs. The simulated view consists of
P; receiving a randomly generated u’ in step 4(a), while in the real
execution it was computed as u’ = [s]](cl) . [c]](cl) — Gj.next. Now
because P; does not have access to Gy, the pseudo-random pad
G1.next information-theoretically protects the value of the product
[s]](cl) - [c] ’(Cl). Thus, the value of u” in the real execution is pseudo-
random. Then because by definition of a pseudo-random generator
its output is indistinguishable from a truly random string of the
same size to a computationally-bounded adversary, we obtain that
the simulated and real views are indistinguishable.

Party P, is corrupt. Next, consider the case that party P, is
corrupt. We construct simulator Sy as follows:

e In step 2(a), Sy draws a uniformly random [S]I(cl)

sends it to P, on behalf of party Ps.
o In step 4(b), Sz receives u’ from P, on behalf of P;.

]il) [x] i n and

[c]l(f) = [x]ig’) and has access to G; and Gs. Similar to the

case of corrupt P, So only communicates a random value as
(1)
k

¢ Zyk and
At computation initiation time, P2 holds [a]

[s]](:) to P2 in step 2(a). In a real execution, [s], ’ is computed

as [a] ](cl) . [b]](f) — Gy.next, where G is inaccessible to P2 and thus
its output information-theoretically protects the product. Because
the PRG’s output is computationally indistinguishable from a
truly random string to a computationally-bounded adversary, Py’s
simulated view is computationally indistinguishable from the view
in the real execution.

Party P3 is corrupt. Finally, we construct simulator S for the
case that party P3 is corrupt:
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Algorithm 7 ([yq]...., [y1]) < SASum({[yial,---. [y11]).-- -
(ynal, -, [yn1]))
=1

for i

T ,...,a in parallel do

[si] = S [yl

[bi] < MSB([si]);

[yi] « [si] - (2[b:] — 1)s

[ci+1] « Trunc([yi], 2w, w);
[ri] = [yi] = [ci+a] - 2V

[yi] « [ri] - [Bi] + [ci] - [bi-1]
: end for

: return ([yal, ..., [y1]);

W 2 N xRy

e In step 2(a), S3 receives [s]](cl) from party P3 on behalf of
party Pa.

e In step 4(b), S3 draws a uniformly random value [u]](cz) —
Z,i and sends it to P3 on behalf of P;.

In the beginning of the computation, P3 has access to [a] I(cl) =

[x] ﬁl), [b]l(<2) = [x] 52), G1, and Gy. It then receives a random [u]I(cZ)
from S3 in the simulated view, while in the real execution the value
is computed as u” +u”’, where u”” = G3.next. Due to security of the
PRG, its output is pseudo-random and information-theoretically
protects u’. We obtain that the value Ps is indistinguishable from
a truly random string to a computationally-bounded P3;. Thus,
we obtain that P3’s views in real execution and simulation are
computationally indistinguishable.

We conclude that our B2A protocol is secure in the presence of
a single semi-honest adversary. O

B2A is an important building blocks of many other protocols
including truncation, ring conversion, bit decomposition, etc. Thus,
the above efficient three-party B2A impact performance of the
computation. For that reason, we analyze performance of building
blocks and our protocols in the three-party setting using RSS
as given in Table 2. Note that we separate input-independent
computation that can be pre-computed and the remaining (input-
dependent) computation.

Random bit generation [r] « RandBit (as used, e.g., in MSB) is
implemented by using local randomness to generate shares of [r];
over Zy and converting them to the larger ring using B2A. We favor
the use of edaBit in sub-protocols in place of conventional RandBit
random bit generation. This lowers the amount of communication,
but increases the number of rounds.

The cost of AllOr as specified in [9] varies based on the size given
as an input. For that reason, in Table 2 we list a range of constants
for values « used with single and double precision in this work (the
smallest @ = 9 with single precision and w = 32 results in constant
1.5 and the largest & = 132 with double precision and w = 16 results
in constant 1.2).

4.2 Superaccumulator Summation

Once we convert the floating-point inputs into superaccumulators,
the next step is to do the summation and regularize the result.
This corresponds to the protocol SASum given in Algorithm 7. The
summation of superaccumulators is straightforward, where we sum
each superaccumulator block as [s;] = X1, [y; ;] fori=1,...,a
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Protocol Precomputable After precomputation
Communication Rounds Communication Rounds
Mult 0 0 3k 1
Open(?),t <k 0 0 3¢ 1
B2A 0 0 3k 2
RandBit 3k 2 0 0
edaBit(k) 3klog(k) + 7k log(k) + 2 0 0
edaBit(?), £ < k 3¢log(f) + 50 + 5k log(f) + 4 0 0
PrefixOr(n) (in Zy) 0 0 1.5nlog(n) log(n)
PrefixAnd(n) (in Z2) 0 0 1.5nlog(n) log(n)
MSB (k) 3klog(k) + 10k log(k) +2 12k — 12 log(k) +2
EQZ(k) 3k log(k) + 7k log(k) +2 6k — 3 log(k) +1
Trunc(¢,u) 3k log(k) + 18k log(u) +3 3k+3t+6u—=6 log(u) +3
BitDec(?), £ < k 3¢1og(?) + 5¢ + 5k log(¢) +4 3¢1og(?) + 3¢ log(¢) +1
Convert(k, k’) 3k log(k) + 7k log(k) +2 3k’k + 3k log(k) + 3k log(k) +3
. (B —1)(3k log(k) + 18k)+ max(log(y) + 4, 6(f—1)(2k+w—1)+
Shift(f, w) / 3ylog(y) %— 5y + 5k Y -53); Sygc +log(y) +1) — 3k y+2log(y) +7
B2U(a) [1.2-1.5]3- 2% +351log(8) + 58 + 5k | 2log(8) + 4 3ak + 30 3
B(3klog(k) + 7k)+ max(log(k) + 2, | 3k(fl + flog(k) + 1+ f+m+ 1)+ | 2log(l) +log(k)+
Normalize (S, w) 6llog(l) + 171 log(l) +2) 1.5(l-m—-2)log(l-m—-2)+ |log(l-m-2)+10
3l(log(l) +6) — 12

Table 2: Performance of protocols in the three-party setting based on RSS using ring Z,« (bit-level operations are over Zj).
Protocol parameters affecting performance are listed. Total communication across all parties in bits. y = [log(w)], § = [log(a)],

and | = wf; a, f, w, and m are computation parameters.

(line 2). The remaining computation regularizes the resulting
superaccumulator. We first compute the absolute value of each
block y; (lines 3-4) and then split the result into w most significant
bits (carry for the next block [c;+1]) and w least significant bits ([r;])
using truncation (lines 5-6). The final block value is assembled from
the carry of the prior block and the remaining portion of the current
block using their corresponding signs (line 7). The carry into block
1is 0.

Recall that each superaccumulator block is represented as a 2w-
bit integer and we can add at most n = 2¥~2 inputs without an
overflow. If one needs to sum more than 2*~2 inputs, the compu-
tation will proceed in layers, where we first sum accumulators in
batches of 272, regularize the result and then do another layer
of summation and regularization to arrive at the final regularized
superaccumulator.

4.3 Superaccumulator to Floating-Point
Conversion

What remains to discuss is the conversion of the regularized
superaccumulator representing the summation to the floating-
point representation. To maintain security, our protocols needs
to obliviously select f superaccumulator blocks starting from the
first non-zero block without disclosing the location of the selected
blocks. In the event that there are fewer than f blocks to extract,
the solution will still return f blocks.

The superaccumulator to floating-point conversion protocol
SA2FL is given as Algorithm 8 and proceeds as follows. Let ind
denote the (private) index of the first non-zero superaccumulator
block. We restrict the value we work with to be in the range e, . . .,

441

Algorithm 8 ([b], [vp_1]...., [01], [p]) < SA2FL([yel. ..., [y1])

1: fori=p,...,ain parallel do

2 [eiln < EQZ([yi])s

3: end for

# ([dal, ., [dprls) — PrefixAND([cal1, ., [ep]);
5: fori=f,...,a in parallel do

6 [di] < B2A([di]1);

7: end for

g: fori=pf+1,...,a—1in parallel do

9 [ui] = [di1] = [di];

10: end for

—_
—_

: ugl =1~ [dal;

- [ugl = [dgal;

cfori=1,....8 in_parallel do

[oi] — 5" [wjpori) - [y];

: end for

: ([b], [vg-1l, ..., [01]. [p]) < Normalize([og], ..., [01]);
o] = [p) + S liapa] - ws

- return ([b], [0g_1],..., [01], [p]);

o
a Uos WwN

=
o 3

to ensure that we can always extract § blocks, i.e., ind = f§ even
if the first non-zero block has the index smaller than f. Given
a regularized superaccumulator [yq], ..., [y1], we first test each
block with the index between f and « for equality to zero. Once it
is determined which blocks are zero, we need to compute the prefix
AND of the computed bits (or, equivalently, the prefix OR of their
complements) to determine the first non-zero block. Recall that



Proceedings on Privacy Enhancing Technologies 2023(3)

PrefixAND, on input [x1],..., [x,] outputs [y1],..., [yn], where
yi = H;'.:l x;j. Also, for performance reasons, we do not convert
the resulting bits of equality comparisons to full ring element and
instead proceed with prefix computation on bits.

For prefix AND, we start with the highest index and thus the
output will be a sequence of 1s followed by 0s starting from the high
indices. The first 0 is the value we want to mark differently from
others, indicating the first non-zero block. This is accomplished by
computing the difference between two adjacent block values (lines
8-12) and we obtain the first non-zero block marked with 1, while
all other blocks are as 0. It is important to note that the fth block
will be marked even if all of the blocks , . . ., ff are 0, because in that
case we still need to retrieve f blocks with the smallest values, i.e.,
ind is set to  and the actual content of the fth block is irrelevant.

The next step is to extract ff blocks starting from the marked
block, i.e., using the previously introduced notation, we extract
the blocks [yindl. - - -, [Yind-p+1] (lines 13-15). We consequently
normalize the block using a sub-protocol Normalize that returns a
floating-point representation of the blocks, which is consequently
updated on line 17 to modify the exponent according to the position
of the extracted blocks in the superaccumulator.

The next protocol, Normalize, corresponds to the conversion of
B extracted superaccumulator blocks to a normalized floating-point
value. As before, each block [v;] is assumed to contain w bits and
we normalize the value by finding the first non-zero bit and creating
an m-bit mantissa with the (m + 1)st bit set to 1 and the remaining
bits partitioned among the output blocks [vg_4], ..., [01].

The protocol is given as Algorithm 9 and proceeds as follows. The
first portion of the computation is concerned with assembling the
input blocks as a single integer and consequently determining the
first non-zero bit. A complicating factor is that different blocks can
have different signs, which makes it non-trivial to work at the level
of individual blocks. Therefore, the first step of the computation is
to convert the shares of the input blocks from the ring with k = 2w-
bit elements to longer [ = wf-bit elements (lines 2—4). The blocks
are consequently added together as [s]; (line 5) and the absolute
value of [s]; is computed as [v]; (lines 6-7). We next bit-decompose
the computed value (line 8) and from this point on the computation
can return to shorter k-bit shares, but we additionally optimize
the computation to run skip immediate conversion of bits to k-bit
shares and run the next step on bit shares as well.

Given the bits of the value we need to normalize, we determine
the first non-zero bit and grab the next m bits (as the (m + 1)st bit
is 1 and is implicit). If there are fewer than m + 1 non-zero bits, the
value must correspond to the lowest blocks of the superaccumulator
(as otherwise, the wf bits are guaranteed to contain m + 1 non-zero
bits) and cannot be represented in the properly normalized form.
In that case we store the m least significant bits in the mantissa and
the floating-point value’s exponent will be 0. Thus, we first call the
prefix OR operation on the most significant ~ [ — m bits (line 9) and
compute the difference between the adjacent bits. As a result, the
most significant non-zero bit of v will be set to 1 in [z;]s, with all
others set to 0 (lines 13-16). If the first non-zero bit is at position
m (when counting from 0) or a lower index, z, is set to 1 to permit
retrieval of m least significant bits (line 17). Then the m bits after
the marked bit are extracted (lines 18-20) and are stored in § — 1
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Algorithm 9 ([b], [vg_1],..., [01], [p]} < Normalize([og],...,
[01])

i letl=w-p;

2 fori=1,...,fin parallel do

3 [ovi]; « Convert([v], k,I);

4: end for

s+ [l = 2, 20 [oy]);

6: [b]; « 1—=2-MSB([s]y);

7. [o]; < [b]; - [s]is

8 (lei-1]1, .., [eol1) « BitDec([v]},1);
9: ([ci—z]1,- .., [em+1]1) « PrefixOR([c;—z]1, ..., [em+1]1);
10: fori=0,...,] —1in parallel do
1 [ei] « B2A([ci]1);

12: end for

B3: [z1-4] = [e1];

14: fori=m,...,I — 2 in parallel do
152 [zi] = [ei] = [cin]s

16: end for

17: [zm] =1~ [em+1];

18: fori =0,...,m—1in parallel do
o [w] = X zimei] - egl;
20: end for

21: fori=1,...,f—-2do

2. [oi] = Z}V:_Ol [jsiow] - 275

23: end for ‘

24 [opq] = Z;Z:Vl(ﬁ_z) [u;] - 20 W(B-2),
25 [zm] < [zm] - [em];

2 [p] = X2 i [zj4m]

N
N

: return ([b], [v/;_l], <o o], [p])s

blocks (lines 21-24).

What remains is to form the exponent based on the position of
the first non-zero bit. This time we need to distinguish between
normalized (m + 1)-bit mantissas that start from position m and
mantissas with fewer than m + 1 non-zero bits. For that reason, we
update the bit [z,] (line 25) prior to computing the exponent [p]
(line 26).

5 PERFORMANCE EVALUATION

In this section, we evaluate performance of our construction and
compare it to the state-of-the-art secure floating-point summation
protocols. Our implementation is in C++ using RSS over a ring
Z,y and is available at [1]. We run all experiments in a three-party
setting using machines with a 2.1GHz CPU connected by a 1Gbps
link with one-way latency of 0.08ms. All experiments are single
threaded and are not optimized for round complexity with respect
to pre-processing. Instead, randomness generation is performed
inline as specified in the protocols and the actual number of rounds
in the implementation is higher than what is possible and what
is reported in Table 2. Each experiment was executed at least 100
times, and the average runtime is reported.

To evaluate the impact of our new three-party B2A protocol,
in Figure 2 we provide performance comparison of a common
square root based solution from [20] and our solution described in
Algorithm 6. Because the former requires a slightly larger ring
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Input size
Prot. w =16 w =32
PL: 20 BT g0 [ gIZ[ 318 [ 56 [ 318 2 26 BT 20 [ 12 & 16 [ 518
FL2SA | 6.81 | 9.06 | 16.9 | 45.4 | 136 | 529 | 2160 | 8403 || 6.02 | 8.13 | 17.5 | 46.4 | 142 | 585 | 2324 | 9036
SASum | 3.22 | 3.14 | 3.81 | 3.68 | 3.56 | 4.37 | 20.5 | 85.1 311|317 | 3.68 | 3.71 | 3.89 | 417 | 184 | 79.2
SA2FL | 6.82 | 6.75 | 6.74 | 6.67 | 6.48 | 6.74 | 6.87 | 6.71 || 7.83 | 7.84 | 7.84 | 7.86 | 7.74 | 7.89 | 791 | 7.74
Total 16.8 | 189 | 27.4 | 55.7 | 146 | 540 | 2187 | 8495 || 16.9 | 19.1 | 28.7 | 57.9 | 154 | 598 | 2351 | 9124
(a) Single floating-point precision.
Input size
Prot. w =16 w =32
28 26 BT 20 212 & 316 T8 7 26 28 S0 [ 12 gl& | ol6 T8
FL2SA | 9.09 | 143 | 36.2 | 114 | 413 | 1668 | 6688 | 24805 || 9.32 | 14.3 | 32.9 | 106.9 | 384 | 1517 | 6247 | 23486
SASum | 4.43 | 4.87 | 491 | 493 | 6.29 | 104 | 174 57.4 || 4.78 | 4.87 | 5.17 5.07 | 639 | 9.71 | 147 45.0
SA2FL | 878 | 8.49 | 8.41 | 831 | 8.12 | 8.22 | 8.25 8.24 || 9.31 | 9.14 | 9.13 897 | 9.04 | 8.87 | 8.71 9.23
Total 223 | 27.7 | 49.5 | 127 | 427 | 1687 | 6714 | 24871 || 23.4 | 28.3 | 47.2 121 | 399 | 1536 | 6271 | 23540
(b) Double floating-point precision.
Table 3: Performance FLSum in ms.
103 £ = Performance of our superaccumulator-based floating-point sum-
o Ours e mation for single and double floating-point precision is provided
- 102 R [20] i in Table 3. The performance is additionally visualized in Figures
£ F e 3 and 4. We see that the bottleneck of the summation for both
g Lot B B single and double precision is the conversion FL2SA, particularly
k= F E when the input size n is large. This is expected because we need
Z F 1 to convert all n inputs into the superaccumulator representation.
10° F E In contrast, superaccumulator to floating-point conversion SA2FL
B 1 has a constant runtime for all input sizes because we only need to
1071 ‘ : ‘ — convert a single result and the workload does not change. Although
2! 2 21 210 2% summation SASum has communication complexity independent of
Input size n, its local computation linearly depends on the input size, which

Figure 2: Performance comparison of B2A protocols.

size Zyk+2, we set the computation over Z,x = Zyeo and thus
portion of the computation for the protocol from [20] are over
Zje2. The implications are that both protocols can internally use
64-bit arithmetic and the increase in the ring size does not impact
communication in bytes. Therefore, communication and the number
of rounds of the protocol from [20] are also the same as those
numbers for the protocol from [4]. Had we chosen k = 32 or
k = 64, the gap in performance between our protocol and that
from [20] would increase due to the need of the later to increase the
communication size and use a longer data type for the computation.

As we see from Figure 2, for smaller input sizes, both solutions
exhibit similar performance due to their equivalent round complex-
ity. However, as input size increases beyond 2° and communication
and computation become dominant factors in overall performance,
our solution outperforms [20] by a significant margin. For instance,
the performance gap between the two approaches is as large as a
factor of four for input size 22°, demonstrating the advantage of
our B2A protocol even beyond savings in communication.
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makes its runtime increase with n.

If we compare the runtimes for different values of w, using
w = 16 results in lower overall runtime with single precision,
while w = 32 is superior for double precision. The difference in
performance mainly stems from the impact of the choice of w on
the performance of FL2SA and its dependence on parameters « and
B (which w directly influences).

We also compare performance of our superaccumulator-based
solution with floating-point summations from [11, 12, 44]. We
execute SecFloat’s [44] pairwise addition in a tree-like manner to
realize floating-point summation and measure the performance on
our setup. Note that SecFloat is for the two-party setting (dishonest
majority) and was implemented only for single precision. We
also include published runtimes of the best performing solution,
SumFL2, from [12] as the implementation has not been released.
The experiments in [12] were run using three 3.6GHz machines
connected via a 1Gbps LAN, where the round-trip time (RTT)
measured via ping was reported to be 0.35ms (our RTT measured
via ping averaged at 0.25ms). We also calculate the communication
cost of SumFL2 using the specified formula.!. The results are given

In [12], communication measured from the implementation differed from commu-
nication derived from the analysis and the implementation’s communication is 9.3%
lower of the analytical cost. Because the measurement included only one data point
with 10 operands, we report results computed according to the formula
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Figure 3: Performance comparison with related work for single precision. [9]’s runtime uses different hardware.
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Figure 4: Performance of double precision protocol with w =
32.

Input size
Prot. Single Double
10 20 50 100 10 20 50 100
Ours | 16.5 | 174 | 18.6 | 21.2 223 | 241 | 273 | 30.5
[12] | 145 | 25.3 | 56.1 | 107.5 || 26.5 | 43.8 | 95.4 | 158

Table 4: Runtime comparison with SumFL2 from [12] in ms.

in Figure 3, where our single-precision solution uses w = 16.

As shown in the figure, our protocol has better runtime and
communication costs than the other two solutions. Although [44]
states that their implementation is not optimized for batch sizes
smaller than 2!°, our protocol is still 5 times faster and uses 17
times less communication than [44] with 28 inputs. For input sizes
larger than 2!, both solutions demonstrate the same trend. We
expect our advantages would be larger in the WAN setting where
bandwidth is limited and communication is the bottleneck.

Compared to [12], our best performing configuration has a
better runtime despite running on slower machines, as additionally
shown in Table 4. In [12], performance is reported with at most
100 inputs. When n = 100, our solution demonstrates the largest
improvement, being 5 times faster than SumFL2 from [12] for both
single and double precisions. We expect the improvement to be
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even larger as the number of inputs increases. Furthermore, we
note that our solution enjoys higher precision, as the goal of this
work was to provide better precision than what is achievable using
conventional floating-point addition. Lastly, while [13] discussed
additional optimizations to floating-point polynomial evaluation, it
is difficult to extract times that would correspond to the summation.

6 CONCLUSIONS

The goal of this work is to develop secure protocols for accurate
summation of many floating-point values that avoid round-off
errors of conventional floating-point addition. Our solution uses
the notion of a superaccumulator and the computation proceeds by
converting floating-point inputs into superaccumulator representa-
tion, performing exact summation, and converting the computed
result back to a floating-point value. Despite providing higher
accuracy, we demonstrate that our solution outperforms state-of-
the-art secure floating-point summation.
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