

Electrochemical production of two-dimensional atomic layer materials and their application for energy storage devices

Cite as: *Chem. Phys. Rev.* **4**, 011306 (2023); <https://doi.org/10.1063/5.0134834>

Submitted: 14 November 2022 • Accepted: 30 December 2022 • Published Online: 13 February 2023

 Hoyoung Lee, Shikai Jin, Jiyong Chung, et al.

COLLECTIONS

 This paper was selected as Featured

[View Online](#)

[Export Citation](#)

[CrossMark](#)

Electrochemical production of two-dimensional atomic layer materials and their application for energy storage devices

Cite as: Chem. Phys. Rev. **4**, 011306 (2023); doi: [10.1063/5.0134834](https://doi.org/10.1063/5.0134834)

Submitted: 14 November 2022 · Accepted: 30 December 2022 ·

Published Online: 13 February 2023

View Online

Export Citation

CrossMark

Hoyoung Lee, Shikai Jin, Jiyong Chung, Minsu Kim, and Seung Woo Lee^{a)}

AFFILIATIONS

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

^{a)}Author to whom correspondence should be addressed: seung.lee@me.gatech.edu

ABSTRACT

Two-dimensional (2D) atomic layer materials have attracted a great deal of attention due to their superior chemical, physical, and electronic properties, and have demonstrated excellent performance in various applications such as energy storage devices, catalysts, sensors, and transistors. Nevertheless, the cost-effective and large-scale production of high-quality 2D materials is critical for practical applications and progressive development in the industry. Electrochemical exfoliation is a recently introduced technique for the facile, environmentally friendly, fast, large-scale production of 2D materials. In this review, we summarize recent advances in different types of electrochemical exfoliation methods for efficiently preparing 2D materials, along with the characteristics of each method, and then introduce their applications as electrode materials for energy storage devices. Finally, the remaining challenges and prospects for developing the electrochemical exfoliation process of 2D materials for energy storage devices are discussed.

Published under an exclusive license by AIP Publishing. <https://doi.org/10.1063/5.0134834>

TABLE OF CONTENTS

I. INTRODUCTION	1
II. ELECTROCHEMICAL EXFOLIATION	2
A. Anodic exfoliation	3
B. Cathodic exfoliation	6
C. Dual exfoliation	7
D. Bipolar exfoliation	8
III. APPLICATION AS ENERGY STORAGE DEVICES...	12
A. Electrochemically exfoliated graphene-based electrodes	12
B. Other 2D atomic layer material-based electrodes	13
IV. CONCLUSIONS AND FUTURE OUTLOOK	14

I. INTRODUCTION

Two-dimensional (2D) materials, triggered by the discovery of graphene, have been applied in a wide variety of fields over the past decade due to their superior properties. Graphene is well-known to be a paradigm of atomically thin 2D materials with exceptional mechanical, thermal, optoelectronic, and electrical properties.^{1–5} The rise of graphene has greatly inspired the exploration of other classes of 2D materials, including black phosphorus, transition metal dichalcogenides (TMDs),

hexagonal boron nitride (h-BN), transition metal oxides (TMOs), metal carbides or nitrides (MXenes), and covalent organic frameworks (COFs).^{6–10} Outstanding properties of these 2D materials^{11–15} have led to great success in applications such as energy storage devices, electrochemical sensors, and field effect transistors.^{16–20} Although 2D materials have had a significant impact on a broad range of applications, industrial-level scalability and high-quality structural control are still required for commercialization.

Since Geim and Novoselov successfully isolated high-quality graphene from highly oriented pyrolytic graphite (HOPG) by micro-mechanical cleavage in 2004,¹ many researchers have explored a wide range of techniques for producing atomically thin nanomaterials.^{21,22} Numerous 2D material production methods have been reported, which are simply categorized into two strategies: bottom-up and top-down. Bottom-up techniques such as epitaxial growth,^{23–28} chemical or hydrothermal/solvothermal synthesis,^{29–34} molecular beam epitaxy,^{35–39} and chemical vapor deposition (CVD)^{40–43} build monolayer or few-layered sheets starting from molecular precursors. In general, 2D materials synthesized by bottom-up techniques have large grain sizes and high quality.^{44–48} However, bottom-up synthetic procedures typically require expensive equipment operating under harsh conditions (e.g., high temperature and pressure) and have difficulties in

transferring samples to other substrates for post-synthesis processing. On the other hand, top-down methods such as mechanical cleavage with scotch tape, wet chemical oxidation, liquid-phase sonication, and electrochemical exfoliation are based on exfoliation from bulk crystals or powders.^{1,49–52} The different bond strength between weak Van der Waals interactions along the adjacent plane and strong covalent bonds along the basal plane atoms enables layer-by-layer extraction by external force or intercalation. Mechanical exfoliation can achieve high-quality 2D materials on small scales that limit their use on a laboratory scale for fundamental study. Wet chemical oxidation and liquid-phase sonication assisted by sheer forces are facile and cost-effective methods to generate solution-processable 2D materials.^{53–56} However, such processes are typically time-consuming, often employ hazardous chemicals, and provide limited control over the structure of the resulting 2D materials.^{8,50,55,57}

Electrochemical exfoliation, a top-down strategy, enables efficient and large-scale production of 2D materials while maintaining high quality comparable to those produced from bottom-up techniques. This process is based on a collective phenomenon consisting of ion intercalation, chemical oxidation or reduction, gas evolution, mechanical expansion, and exfoliation. Various ions under an electric field can intercalate into most types of bulk-layered materials to reduce intermolecular interactions between layers, and subsequent gas evolution from the co-intercalated solvent molecules causes expansion and exfoliation of the 2D materials.^{58,59} These processes take only several minutes to hours to synthesize solution-processable 2D materials. The electrochemical exfoliation method enables sophisticated control over the exfoliated materials by utilizing electromotive forces compared to other chemical or mechanical driving forces for exfoliation, which is a significant advantage for 2D materials used in electronic devices where structural integrity is a critical factor. In addition, this method involves various processing parameters (i.e., quality of starting materials, concentration and types of anions or cations, solvents, voltage, and time). Because of these advantages, 2D materials produced by electrochemical exfoliation have been used in a variety of applications, such as

electrocatalysts,^{60–63} batteries,^{64–68} supercapacitors,^{69–72} sensors,^{73–76} passivation layer,⁷⁷ and organic field-effect transistors.^{78,79} In this review, we introduce several types of electrochemical exfoliation setups and discuss the exfoliation mechanism along with examples of graphene and other 2D materials such as MoS₂ and black phosphorus. We then introduce how electrochemically exfoliated 2D materials can be used as electrode materials in various energy storage devices. Finally, we discuss the various challenges and emerging opportunities for the electrochemical exfoliation process of 2D materials for energy storage applications.

II. ELECTROCHEMICAL EXFOLIATION

A typical setup for an electrochemical exfoliation process includes a working electrode (WE), which is the bulk materials to be exfoliated, a counter electrode (CE), which is usually a metal plate or wire, a reference electrode (RE), an electrolyte, and a power supply [Fig. 1(a)]. During the exfoliation process, a fixed potential or electrical current causes the guest ions in the solvent to move into the space between the layers of the 2D material. Depending on the potential applied to the working electrode, the guest ions can be anions with a positive potential (anodic exfoliation) or cations with a negative potential (cathodic exfoliation). In general, anodic exfoliation is advantageous for producing 2D materials with high yields, exhibits high exfoliation efficiency, and is accompanied by functionalization of the products by oxidation (i.e., halide ions,⁶⁵ organic compounds,^{80,81} nonmetals,^{82–86} metals,⁸⁷ and metal oxides⁶⁹), whereas cathodic exfoliation can produce high-quality 2D materials but with a relatively low rate.^{88,89} In addition, a dual exfoliation technique has been developed to simultaneously exfoliate 2D materials from both the cathode and anode [Fig. 1(b)].^{90,91} Bipolar exfoliation [Fig. 1(c)] has recently been highlighted as a method that enables facile and scalable manufacturing of 2D materials.^{92–94} A wireless exfoliation process via a redox reaction allows the use of small powders or flakes as starting materials. A bipolar electrode (BE) is placed in between two metallic feeder electrodes (FE), and the exfoliation process takes place in the absence of direct

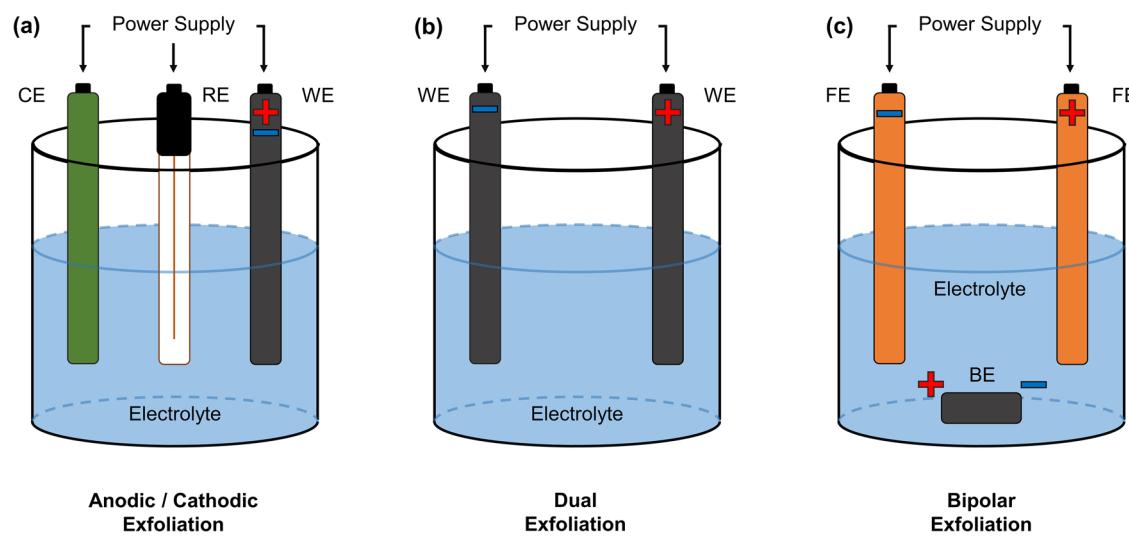
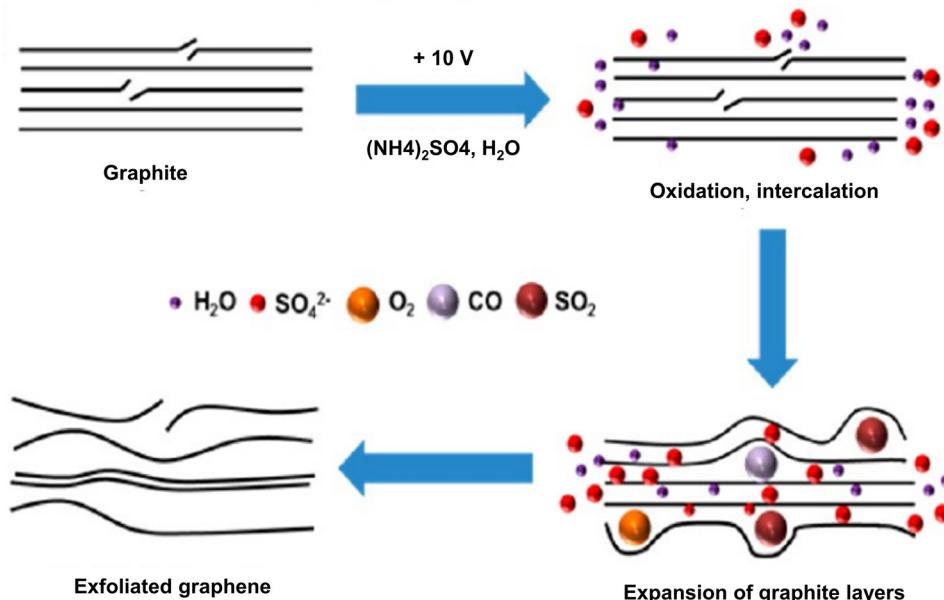


FIG. 1. Schematic illustrations of (a) anodic/cathodic, (b) dual, and (c) bipolar electrochemical exfoliation setups.


Ohmic contact, unlike the previously mentioned processes, which require direct contact of all components.

A. Anodic exfoliation

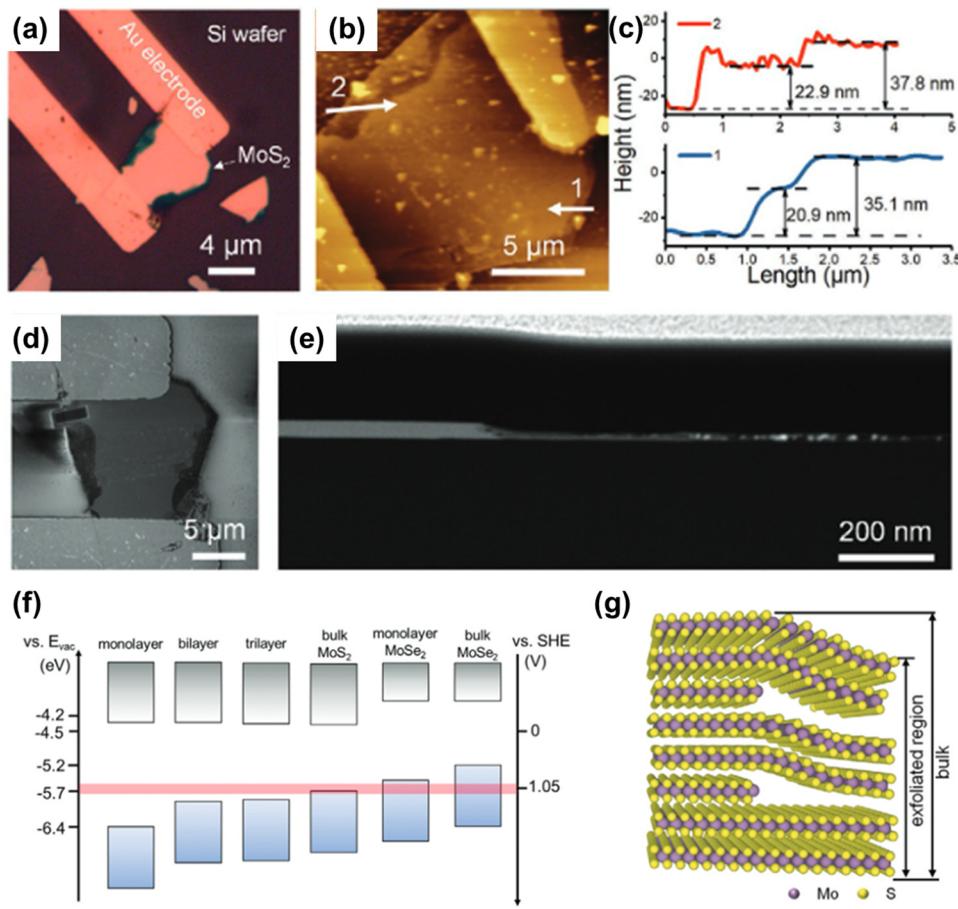
Anodic exfoliation drives the intercalation of negatively charged anions into the 2D material at the working electrode in aqueous or organic solvent conditions (Table I). The first attempt at electrochemical exfoliation was demonstrated by anodic exfoliation of graphite in ionic liquids.⁹⁵ Wang and co-workers applied a constant voltage of 5 V to two graphite rods as both the anode and cathode in 0.001 M poly(sodium-4-styrenesulfonate) (PSS) aqueous solution, and after 20 min, a black-colored graphene product began to appear.⁹⁵ In this process, polystyrenesulfonate anions act as both intercalants and surfactants.⁹⁵ Subsequently, Su *et al.* demonstrated electrochemical exfoliation of HOPG and natural graphite flakes in dilute sulfuric acid (0.5 M, pH = 0.3),⁹⁶ which is inspired by the report in 1996 that the expandable graphite was produced by incorporating concentrated sulfuric acid (H_2SO_4).⁹⁷ The thickness of the graphene sheets obtained in this study was less than 3 nm thick, and the maximum dimension was 30 μm .⁹⁶ They reported that at low voltages (<10 V), the exfoliation process was slow and efficient, but at high voltages (>25 V), fast and non-uniform exfoliation was observed.⁹⁶ Feng group succeeded in fabricating a high fraction of few-layered graphene using defective graphite foils that facilitated intercalation of anions in 0.1 M H_2SO_4 , and achieved high yields (over 60% of the total amount of starting graphite materials) in 2013.⁷⁸ In their study, the lateral size of the electrochemically exfoliated graphene (EG) sheet was around 10 μm with a carbon-to-oxygen (C/O) atomic ratio of 12.3.⁷⁸ Later from the same group, natural graphite flakes were electrochemically exfoliated in various aqueous inorganic salts: $(\text{NH}_4)_2\text{SO}_4$, Na_2SO_4 , K_2SO_4 , NH_4Cl , NaNO_3 , and

NaClO_4 .⁹⁸ Salts containing sulfate anions (SO_4^{2-}) outperformed other anions and took only 5 min to exfoliate graphite flakes into thin graphene sheets. In particular, ammonium sulfate [$(\text{NH}_4)_2\text{SO}_4$] under neutral pH conditions exhibited high exfoliation yields of graphene (>85 wt. %) with lateral sizes up to 44 μm and a high C/O ratio of 17.2.⁹⁸

When a sufficient voltage is applied across the electrodes, the reduction of water at the cathode generates hydroxyl ions (OH^-) and the anodic oxidation of water produces oxygen radicals ($\text{O}\cdot$) in the electrolyte.^{58,99} Graphite edge sites and grain boundaries are preferentially oxidized by these ions and radicals.⁷⁸ Edge oxidation causes the graphite layers to expand, providing sufficient space for sulfate ions (SO_4^{2-}) and water molecules to intercalate. Various gaseous species, such as SO_2 , O_2 , CO , and CO_2 , can be produced by SO_4^{2-} reduction, water oxidation, and carbon corrosion.^{98–100} These generated gaseous species exert sufficient shear forces on the graphite layers to overcome weak van der Waals interactions, leading to the separation and production of graphene sheets (Fig. 2).¹⁰¹ The previous study has explained that the higher efficiency of sulfate ions is due to the lower standard reduction potential of SO_4^{2-} (+0.20 V) compared to other anions (0.96 V for NO_3^- , 1.36 V for Cl^- , and 1.42 V for ClO_4^-). Therefore, the favorable formation of SO_2 gas from SO_4^{2-} compared to other gases (NO or Cl_2) can cause effective exfoliation of graphite in sulfate-containing solutions. Recently, the origin of superior exfoliation efficiency with SO_4^{2-} anion was studied with the support of density functional theory (DFT) calculation and *in situ* mass spectrometer.¹⁰² The electrochemical exfoliation of HOPG in sulfuric acid using with *in situ* mass spectrometer showed that the generation of CO_2 , CO , and O_2 was associated with the oxidation of carbon and co-intercalated water molecules, but no SO_2 gas was detected during exfoliation.¹⁰² This study suggests that the repulsive interaction between SO_4^{2-} anions and graphene sheets can promote the easy

FIG. 2. Schematic illustration of electrochemical exfoliation of graphite under positive potential in sulfate-containing electrolytes. Reprinted with permission from Parvez *et al.*, J. Am. Chem. Soc. **136**(16), 6083–6091 (2014). Copyright 2014 American Chemical Society.⁹⁸

access of sulfate anions into the graphite layers and concomitant water diffusion, thereby enhancing the exfoliation efficiency.¹⁰²

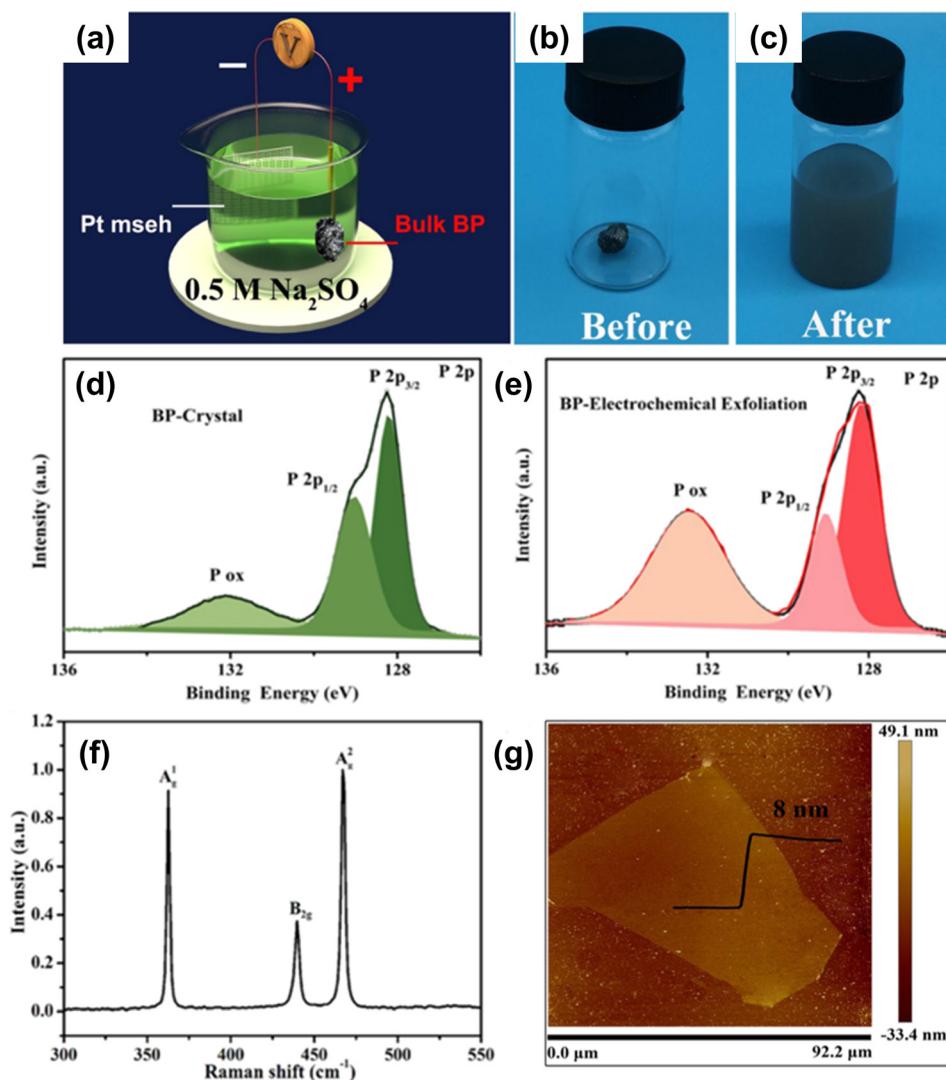

One of the main challenges of the anodic exfoliation process is to overcome the severe oxidation of 2D materials under high positive potential. Hydroxyl and oxygen radicals can be formed by the oxidation of water as follows: $\text{H}_2\text{O} \rightarrow \cdot\text{OH} + (\text{H}^+ + \text{e}^-) \rightarrow \cdot\text{O} + (\text{H}^+ + \text{e}^-)$.¹⁰³ The generated radicals readily react with the graphite surface, resulting in the formation of oxygen-containing functional groups with substantial levels of defects in the exfoliated graphene.⁹⁹ Therefore, several strategies have been attempted by adding reducing agents as additives to prevent oxidative damage during electrolysis. Yang *et al.* tested a series of reducing agents (2,2,6,6-tetramethylpiperidine-1-yl)oxyl (TEMPO), ascorbic acid, and sodium borohydride to eliminate the effect of $\cdot\text{OH}$ radicals.¹⁰³ The authors explained that the favorable reaction of $\cdot\text{OH}$ radicals to TEMPO than the graphite reduces the oxygen content of exfoliated graphene, therefore achieving a C/O ratio of 25.3 with relatively low defects.¹⁰³ In 2015, Chen and co-workers produced graphene with a C/O ratio of 26 by adding melamine into a dilute sulfuric acid solution.¹⁰⁴ During the exfoliation process, melamine was adsorbed onto the graphene sheets and acted as a protective layer preventing further oxidation.¹⁰⁴ The authors emphasized that the graphite powder with melamine additive can improve scalable production of graphene by combining electrochemical reaction and *in situ* extraction method.¹⁰⁴ Ejigu *et al.* tested transition metal ions (e.g., Co^{2+} , Fe^{3+} , Ru^{3+} , Mn^{2+} , Ir^{3+} , and Sn^{4+}) as catalytic antioxidant additives during the electrochemical exfoliation of graphite.⁶⁹ The addition of CoSO_4 to the exfoliation solution achieved a graphene product

with a high C/O ratio of 36. The authors proposed that the Co^{2+} is oxidized to Co^{4+} at the graphite surface and acts as an active electrocatalyst for O_2 evolution. As a result, the deposited Co^{4+} cations could prevent the oxidation of graphite by $\cdot\text{OH}$ radicals.⁶⁹

The aqueous phase anodic exfoliation process has been applied to the production of other 2D materials. For example, You *et al.* first demonstrated anodic exfoliation of MoS_2 in 0.5 M H_2SO_4 solution.¹¹⁵ A two-electrode system was employed with a natural MoS_2 bulk crystal as the anode and a platinum (Pt) wire as the ground electrode.¹¹⁵ A static bias of +1 V was applied to the MoS_2 crystal for 10 min, and the potential was increased to +10 V for 30 min to complete the exfoliation process.¹¹⁵ The obtained MoS_2 nanosheets had a lateral dimension of $\sim 10 \mu\text{m}$ and a high degree of crystallinity.¹¹⁵ Later, the same group prepared MoS_2 nanosheets with a larger lateral size ($\sim 50 \mu\text{m}$) and a lower degree of oxidation in 0.5 M Na_2SO_4 aqueous solution.¹¹⁶ From an industrial point of view, it is preferable to use inexpensive bulk MoS_2 powders as a starting material rather than expensive bulk crystals. Wu *et al.*, therefore, employed MoS_2 powder as the starting material to fabricate few-layered MoS_2 nanosheets.¹²² The MoS_2 powder was suspended in 1 M Na_2SO_4 aqueous solution by sonication for 60 min and poured into a polypropylene membrane bag (125 000 mesh) with titanium mesh (100 mesh).¹²² Defect-rich MoS_2 nanosheets were obtained under a constant voltage of 20 V for 4 h, followed by a post-treatment of tip sonication for 2 h.¹²² Recently, Pan *et al.* reported a new electrochemical strategy demonstrating fast conversion from bulk MoS_2 to bi/tri-layer MoS_2 [Figs. 3(a)–3(e)].¹²³ Due to the intrinsic layer-dependent valence band of MoS_2 , the valence bands of

TABLE I. Reported anodic exfoliation systems of 2D materials. Note: PSS: poly(sodium-4-styrenesulfonate); SDBS: sodium dodecyl benzene sulfonate; TSCuPc: copper phthalocyanine-3,4',4'',4'''-tetrasulfonic acid tetrasodium salt; 9-ACA: 9-anthracene carboxylate; [C₈mim]: 1-octyl-3-methylimidazolium; [BMIm]: 1-butyl-3-methylimidazolium.

Working electrode	Salt	Solvent	Voltage	Thickness	Ref.
Graphite rod	PSS	H_2O	5 V	1–2 layers	95
Graphite rod	SDBS	H_2O	25 V	...	105
Graphite rod	TSCuPc	H_2O	12 V	1–6 layers	106
Graphite rod	9-ACA and NaOH	H_2O	20 V	0.79 nm	107
Graphite rod	[C ₈ mim][PF ₆]	H_2O	15 V	1.1 nm	108
HOPG and graphite rod	[BMIm][BF ₄]	H_2O	1.5–15 V	...	58
HOPG and graphite flake	H_2SO_4 or K_2SO_4	H_2O	10 V	1–7 layers	96
Flexible graphite paper	H_2SO_4	H_2O	1.6–5 V	<3 layers	109
Graphite flake	$(\text{NH}_4)_2\text{SO}_4$ or Na_2SO_4 or K_2SO_4	H_2O	10 V	1–2 layers	98
Graphite foil	H_2SO_4 or Na_2SO_4 or LiClO_4	H_2O	10 V	6–8 layer	110
Graphite foil	NaBF ₄	H_2O	10 V	<3 layers	111
Graphite rod	NaOH and H_2O_2	H_2O	3 V	3 layers	112
Graphite flake	H_2SO_4	H_2O	10 V	1–3 layers	78
Graphite foil	NaOH and Na_2SO_4	H_2O	3–10 V	2–4 layers	113
Graphite foil	TBA·HSO ₄	H_2O	± 10 V	1–3 layers	114
MoS_2 crystal	H_2SO_4	H_2O	10 V	1–3 layers	115
MoS_2 crystal	Na_2SO_4	H_2O	10 V	1–5 layers	116
BP crystal	H_2SO_4	H_2O	1–3 V	...	117
Sb crystal	Na_2SO_4	H_2O	10 V	3.5 nm	118
BP crystal	Na_2SO_4	H_2O	10 V	3–4 layers	119
Bi_2Se_3 and Bi_2Te_3	Na_2SO_4	H_2O	± 10 V	...	120
Ti_3AlC_2	NH_4Cl , TMA·OH	H_2O	5 V	1–2 layers	121


FIG. 3. (a) Optical image of MoS₂ sheet after electrochemical treatment. [(b) and (c)] Atomic force microscopy (AFM) image and the thickness profile. (d) The SEM image of the MoS₂ sheet. (e) Cross-profile scanning transmission electron microscopy (STEM) image of the MoS₂ sheet from the rectangle region in (d). (f) Energy band diagrams of MoS₂ and MoSe₂ with different layers. The red band represents the redox potential range from Refs. 124 and 125. (g) The schematic illustration of the edge and the basal plane of MoS₂ after exfoliation. Reproduced with permission from Pan *et al.*, *Adv. Funct. Mater.* **31**(8), 2007840 (2021). Copyright 2020 John Wiley and Sons. ¹²³

mono-, bi-, and tri-layer MoS₂ are lower than the oxidation potential region of Mo, where the bulk MoS₂ valence band falls into the region [Fig. 3(f)]. Therefore, only bulk MoS₂ crystal was electrochemically exfoliated into few-layered MoS₂ flakes.¹²³

Black phosphorus has recently attracted scientific interest due to its excellent carrier mobility and tunable bandgap.¹²⁶ Black phosphorus not only exhibits high electric conductivity, but also has the most thermodynamically stable structure of all phosphorus allotropes and the lowest risk of explosion during chemical processes.^{127–129} It consists of multiple puckered sheets of covalently bonded phosphorus atoms in a honeycomb structure and held by weak van der Waals interactions between the layers, which can be easily separated into single-layer black phosphorus, phosphorene. Ambrosi *et al.* successfully obtained black phosphorus nanosheets from bulk flakes in 0.5 M Na₂SO₄ solution via aqueous phase anodic exfoliation [Figs. 4(a)–4(c)].¹¹⁷ A positive DC voltage of +1 V was first applied to the black phosphorus crystal for 2 min; then, the voltage was increased to +3 V to intercalate the anion species (SO₄²⁻) into the interlayer of the bulk crystal, causing it to expand and exfoliate over time.¹¹⁷ The reduced thickness of black

phosphorus was observed with scanning transmission electron microscopy (STEM) image, and high-resolution x-ray photoelectron spectroscopy (XPS) spectra of the P 2p signal confirmed the oxidation of the exfoliated nanosheets [Figs. 4(d)–4(e)].

Electrochemical exfoliation has been demonstrated to overcome metallic bonds between layered MAX nanosheets. MXenes are a new class of 2D materials discovered in 2011.¹³⁰ They are generally produced by the selective etching of A from MAX layered counterparts, where the MAX phases^{130,131} as the chemical composition of M_{n+1}AX_n, where n = 1–3, “M” is the early transition metal (such as Sc, Ti, V, Cr, Zr, Nb, or Mo), “A” represents an IIIA or IVA group elements, and “X” is carbon and/or nitrogen. Traditionally, the A layer is etched using highly hazardous hydrofluoric acid HF or LiF/HCl solution,^{132–134} which has been a major barrier to the scale-up of production and wider adoption of MXenes as functional materials. In 2017, a new attempt to synthesize MXene without fluoride-based solutions was reported. Sun *et al.* presented the first evidence of MXene without –F terminal groups using dilute aqueous HCl electrolytes.¹³⁵ They synthesized Ti₂CT_x MXene from Ti₂AlC by electrochemical exfoliation in

FIG. 4. (a) Schematic illustration of the electrochemical exfoliation of bulk BP into few-layered BP nanoflakes. Photographs of (b) the bulk BP crystal and (c) the electrochemically exfoliated BP nanoflakes dispersed in DMF. XPS spectra high-resolution P 2p core levels of (d) bulk BP crystal and (e) electrochemically exfoliated BP nanoflakes. (f) Raman spectrum and (g) AFM image of the electrochemically exfoliated BP nanoflakes. Reprinted with permission from Yang *et al.*, ACS Appl. Mater. Interfaces **11**(6), 5938–5946 (2019). Copyright 2019 American Chemical Society.¹¹⁹

HCl electrolyte, in which Tx represents different terminal groups such as –F, –O, and –OH. They demonstrated that Ti₂CT_x MXene produced from electrochemical exfoliation was terminated with –Cl, –O, and –OH groups, but not –F groups.¹³⁵ Recently, Yang *et al.* demonstrated fluoride-free electrochemical delamination of Ti₃AlC₂ to Ti₃C₂ in 1 M NH₄Cl and 0.2 M tetramethylammonium hydroxide (TMA-OH).¹²¹ Two pieces of bulk Ti₃AlC₂ were used as anode and cathode, respectively, and chloride ions in the electrolyte selectively etched Al under constant potential of (+5 V) for 12 h.¹²¹ Yin *et al.* reported the synthesis of Ti₃C₂F_x MXene using compact Ti₃AlC₂ bulk as starting material via a sealed three-electrode electrochemical etching system.¹³⁶ During the electrochemical process, the F anions in the nonaqueous [BMIM][PF₆] electrolyte reacted

with the Al atoms.¹³⁶ After 5-h exfoliation, Ti₃C₂F_x sheets with an average lateral size of 350 ± 27 nm and height profiles of two Ti₃C₂F_x sheets showed thickness values of 2.5 and 3 nm were synthesized.¹³⁶ In addition, the degree of fluorination of as-prepared Ti₃C₂F_x MXene with CF and TiF₃ was controlled by adjusting the etching potential.¹³⁶

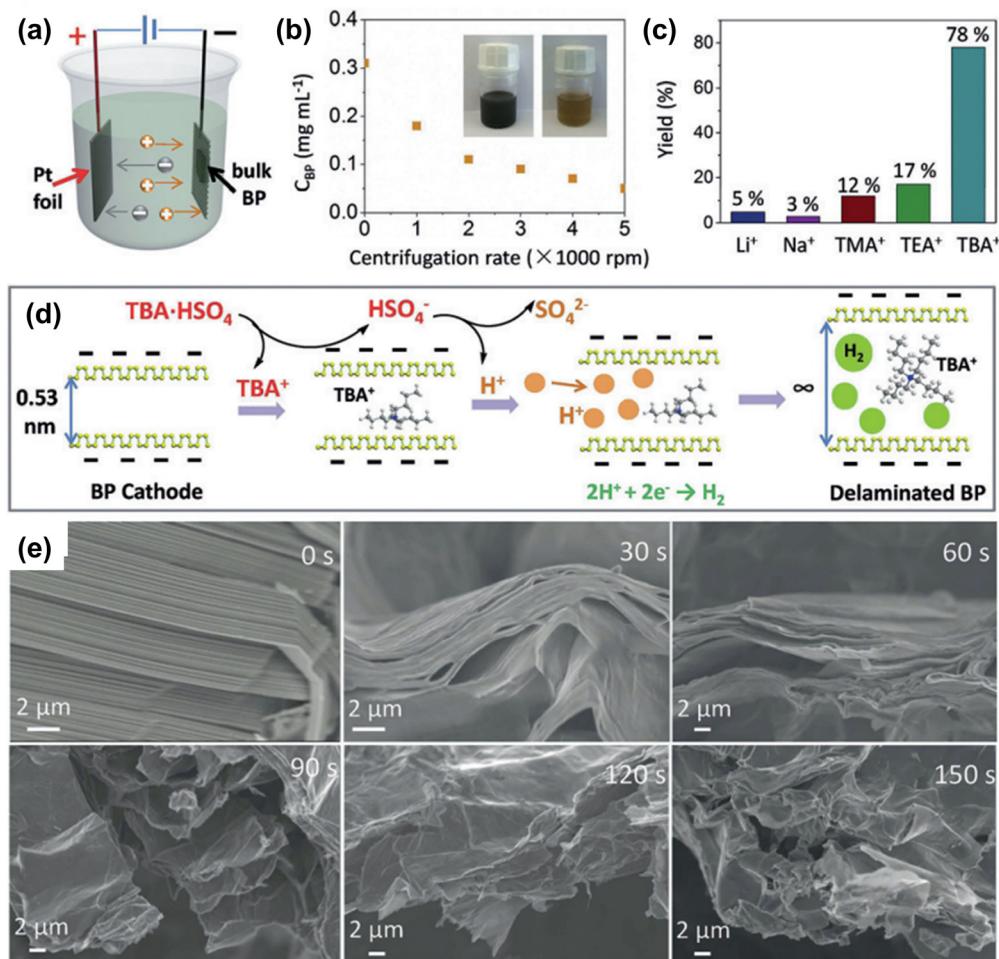
B. Cathodic exfoliation

Anodic exfoliation enables an efficient 2D material production process with high production rates, but oxidation of the exfoliated product is unavoidable. This can be a major drawback if certain applications, such as electronics, require pure 2D materials with no surface oxidation. To preserve the intrinsic characteristics of 2D materials,

cathodic exfoliation is a promising route as a non-oxidative exfoliation process as it applies a negative potential to the layered material for the intercalation of negatively charged ions (Table II).

In a rechargeable lithium-ion battery (LIB) system, Li^+ ions are reversibly intercalated into the graphite anode, which is the lithium host.¹³⁷ During charging/discharging, co-intercalation of solvent causes loss of reversibility and severe volume changes of graphite electrode. Such expansion of the graphite electrode in the battery system leads to undesirable exfoliation of the graphite. Inspired by this phenomenon, Wang *et al.* reported the cathodic exfoliation of graphite in a non-aqueous electrolyte consisting of LiClO_4 and propylene carbonate (PC).⁵⁹ Co-intercalation of PC solvent with Li^+ ($\text{Li}^+:\text{2PC}$ and $\text{Li}^+:\text{3PC}$) was observed at high potentials of -15 ± 5 V. The expanded graphite was then washed with acid and water to separate the individual layers with the aid of hydrogen gas evolution ($\text{Li} + 2\text{H}_2\text{O} \rightarrow 2\text{LiOH} + \text{H}_2$).⁵⁹ Zheng *et al.* prepared semiconducting 2D materials such as MoS_2 , WS_2 , TiS_2 , TaS_2 , and ZrS_2 by controlling the lithiation and sonication processes of the intercalated compounds in the aqueous phase.¹³⁸ The lithiation process was performed in a battery test system using a Li foil anode as a Li-ion source. After the lithium intercalation process using galvanostatic discharge at a current density of 0.05 mA, the Li-intercalated 2D materials were washed with acetone and ultrasonicated in water for further exfoliation process.¹³⁸ In 2018, few-layered silicene nanosheets were also obtained by the successive electrochemical lithiation and delithiation processes.¹³⁹ First, the lithiation of Si nanopowders was performed in Li-ion coin cells by a discharging process. Subsequent delithiation by rinsing with de-ionized water or isopropyl alcohol produced graphite-like "siliphite" or few silicene layers, respectively.¹³⁹ The authors claimed that different exfoliation phenomena were due to different delithiation kinetics depending on proton concentration.¹³⁹

As an alternative to small Li^+ ion (diameter: ~ 0.18 nm), tetra-alkyl ammonium (TAA^+) cations with larger sizes such as tetramethylammonium (TMA^+ , diameter: ~ 0.558 nm), tetra-ethyl-ammonium (TEA^+ , diameter: ~ 0.674 nm), and tetra-n-butyl-ammonium (TBA^+ , diameter: ~ 0.826 nm) have been used as intercalating agents for cathodic intercalation. Zhong and Swager first demonstrated the two-step intercalation of Li^+ and TBA^+ into graphite.¹⁴⁰ Graphite was first expanded by smaller-sized Li^+ ions and then significantly expanded by replacing the Li^+ ions with larger TBA^+ cations. Later, Yang *et al.* studied the electrochemical exfoliation of graphite rod and HOPG in TBA^+ -containing electrolytes with various organic solvents such as acetonitrile (AN), N,N-dimethylformamide (DMF), and propylene carbonate (PC).¹⁴¹ The authors suggested that effective graphite exfoliation was obtained by both intercalation of solvated cations into graphite and subsequent gas bubbling from the decomposition of the electrolyte. Cooper *et al.* compared exfoliation efficiency of HOPG with quaternary ammonium cations with different sizes: TBA^+ , TEA^+ , and TMA^+ .¹⁴² TBA^+ cation was found to be the most effective for HOPG expansion, followed by TEA^+ . However, a sonication step was generally required to split the graphite layers uniformly. Recently, Zhang *et al.* improved exfoliation efficiency by employing a sandwich-structured electrode that can promote uniform cation intercalation into graphite.¹⁴³ The authors also tested the electrochemical exfoliation of graphite with various organic electrolytes consisting of TAA^+ salts in different aprotic polar solvents (acetone, DMF, NMP, DMSO, AN, and PC) to investigate the effects of cations and solvent molecules


solvation on the exfoliation process.¹⁴³ Electrochemical intercalation of TBA^+ in propylene carbonate exhibited a high exfoliation yield (91.5%) of few-layered ($>80\%$, 1–3 layers) graphene at high speed (over 50 g h^{-1}).¹⁴³ The authors suggested that the size of the solvated TAA^+ ions rather than the size of the bare cations affects the efficiency of intercalation and thereby the exfoliation of graphite.¹⁴³

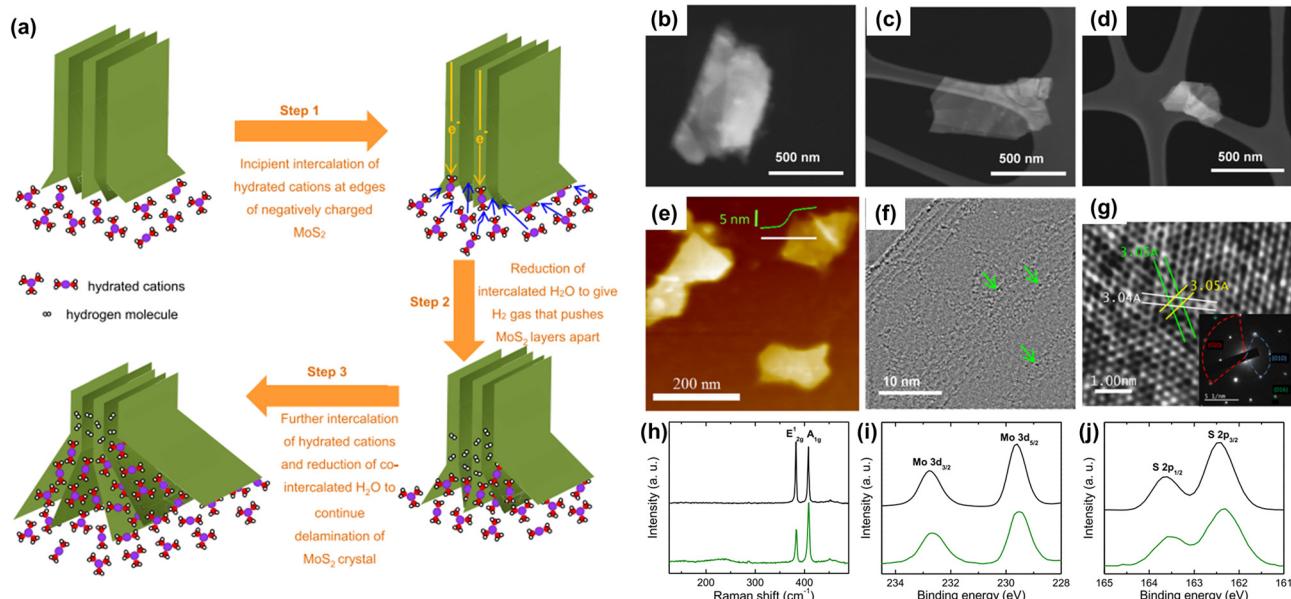
In addition to graphene, Yang *et al.* demonstrated successful electrochemical delamination of bulk BP crystal into few-layered BP flakes with high yields (up to 78%) using quaternary ammonium molecules as intercalating agents [Figs. 5(a) and 5(e)].¹⁴⁴ In this study, 0.1 M tetra-n-butyl-ammonium bisulfate (TBA-HSO_4) in anhydrous PC solvent was used as an electrolyte and a constant potential of -8 V was applied.¹⁴⁴ The authors proposed three key factors for effective intercalation and exfoliation: (1) the variable vertical diameter of flexible n-butyl chains (0.47–0.89 nm) matches the interlayer distance of BP (0.53 nm); (2) the penetration and reduction of solvated protons ($\text{HSO}_4^{2-} \rightleftharpoons \text{SO}_4^{2-} + \text{H}^+$, $2\text{H}^+ + 2\text{e} \rightarrow \text{H}_2$) further increase the distance between two adjacent BP layers; (3) the solvent (propylene carbonate) stabilizes the exfoliated flakes against re-aggregation [Fig. 5(d)].¹⁴⁴ Later, Li *et al.* reported ultrafast cathodic expansion (less than 1 min) of bulk BP employing TBA^+ as a cationic intercalant in polar aprotic solvents such as dimethyl sulfoxide (DMSO).¹⁴⁵ In addition to BP, TBA^+ cations (0.05 M) dissolved in propylene carbonate (PC) have been used to demonstrate cathodic exfoliation of 2D transition metal dichalcogenide superconductors (2DSCs) such as $\text{Nb}(\text{Se/Te})_2$, $\text{Ta}(\text{S/Se})_2$, $\text{Ti}(\text{S/Se})_2$, and MoTe_2 .¹⁴⁶

Considering the scalability and cost of the electrochemical exfoliation process, it is more reasonable to employ environmentally benign aqueous electrolytes instead of expensive and often toxic organic solvents. Dalal *et al.* demonstrated cathodic exfoliation of graphite foils using various aqueous solutions containing varying concentrations of alkali metal chloride salts (LiCl , NaCl , KCl , RbCl , and CsCl).¹⁴⁷ Sufficiently high cathodic voltages (-10 V and above) and high concentrations of cations (2 M and above) were required to achieve cation intercalation and subsequent hydrogen gas evolution processes.¹⁴⁷ Graphene nanoplatelets (mainly 10–13 layer graphene sheets) generated from the KCl aqueous electrolyte in a short period of time (<10 min) exhibited low-defect densities (I_D/I_G of 0.06, a C/O ratio of 57.8) and high exfoliation yields ($>80\%$).¹⁴⁷ Garcia-Dali and co-workers also reported the successful use of aqueous alkali metal electrolytes (most notably, 4 M KCl) for cathodic delamination of MoS_2 [Fig. 6(a)].¹⁴⁸ A fast and efficient cathodic exfoliation was achieved using an aqueous solution, and moreover, the electrochemical route prevented oxidation [Figs. 6(h)–6(j)] or phase transformation of the exfoliated products [Figs. 6(b)–6(g)].¹⁴⁸

C. Dual exfoliation

The simultaneous exfoliation process at both working and counter electrodes within a single electrochemical cell can improve the energy utilization of electrochemical exfoliation and increase the production rate of 2D materials. Mao and co-workers demonstrated a graphite-graphite cell in a protic ionic liquid (PIL) for simultaneous intercalation/exfoliation on both electrodes with an additional shear grinding process.¹⁵⁷ Highly expanded graphite at the cathode and fully oxidized graphite at the anode were obtained at a cell voltage of 3 V,

FIG. 5. (a) Schematic illustration of the reaction cell. (b) Centrifugation rate as a function of the concentration of BP dispersion in isopropyl alcohol. Inset: the BP dispersion (left); the BP dispersion after centrifugation (right). (c) The delamination yields depending on the intercalating cations. (d) Schematic illustration of the mechanism for the intercalation process. (e) SEM image of the BP cathode after various periods of intercalation. Reproduced with permission from Yang *et al.*, *Angew. Chem. Int. Ed.* **57**(17), 4677–4681 (2018). Copyright 2018 John Wiley and Sons.^[44]

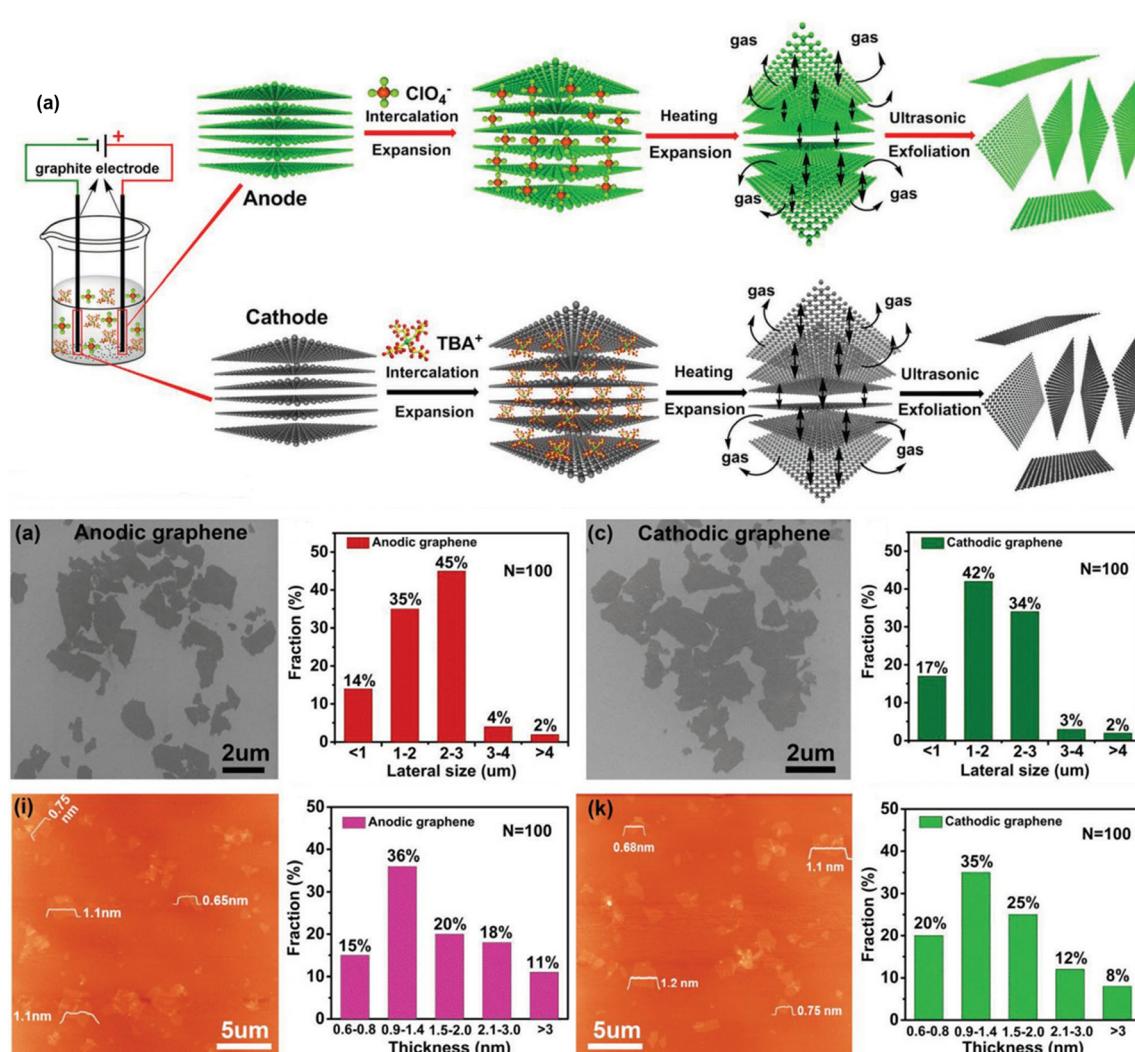

and mechanical grinding was performed to separate the graphene sheets.^[157] Yang *et al.* achieved dual intercalation/exfoliation in both graphite foils using alternating current in 0.1 M tetra-n-butylammonium bisulfate (TBA·HSO₄) aqueous solution.^[114] High exfoliation efficiency (80% total yield, 75% of graphene is composed of 1–3 layers) was achieved with ultra-high production capacity (over 20 g h⁻¹), and exfoliated graphene showed remarkable hole mobility up to 430 cm² V⁻¹ s⁻¹.^[114] Later, Zhang and Xu developed an electrode design for high-yield, scalable dual-electrode exfoliation using TBAClO₄/PC solution, where TBA⁺ and ClO₄⁻ can simultaneously intercalate into both the graphite cathode and anode, respectively [Fig. 7(a)].^[90] The authors designed graphite electrodes wrapped in a confined space between porous metal meshes for both anode and cathode,^[90] which allows sufficient intercalation of both cations and anions. As a result, high yields (85% from the cathode and 48% from the anode) of few-layered graphene (>70% for 1–3 layers) were achieved at ultrahigh production rates (<25 g h⁻¹) [Figs. 7(b)–7(i)].^[90]

D. Bipolar exfoliation

The recently introduced bipolar exfoliation method generally involves two feeder electrodes (FEs) that are connected to a power supply, and a bipolar electrode (BE) placed in between the two FEs [Figs. 1(c) and 8(a)]. The voltage applied across the FEs (E_{tot}) generates an electric field in the solution that induces an electric potential (E_{elec}) across the BE, leading to electrochemical reactions at the poles of the BE.^[158–160] Crooks,^[161] Duval, and co-workers^[162–164] suggested that the equilibrium potential (ΔE_{elec}) can be estimated by the parameters including the distance separating the driving electrodes ($l_{channel}$), and the length of the BE (l_{elec}) and the driving total electric field (E_{tot}) as the following equation:

$$\Delta E_{elec} = E_{tot} \left(\frac{l_{elec}}{l_{channel}} \right).$$

The apparent potential difference between the opposite ends induces the asymmetric Faradaic reactions at the anodic pole and the

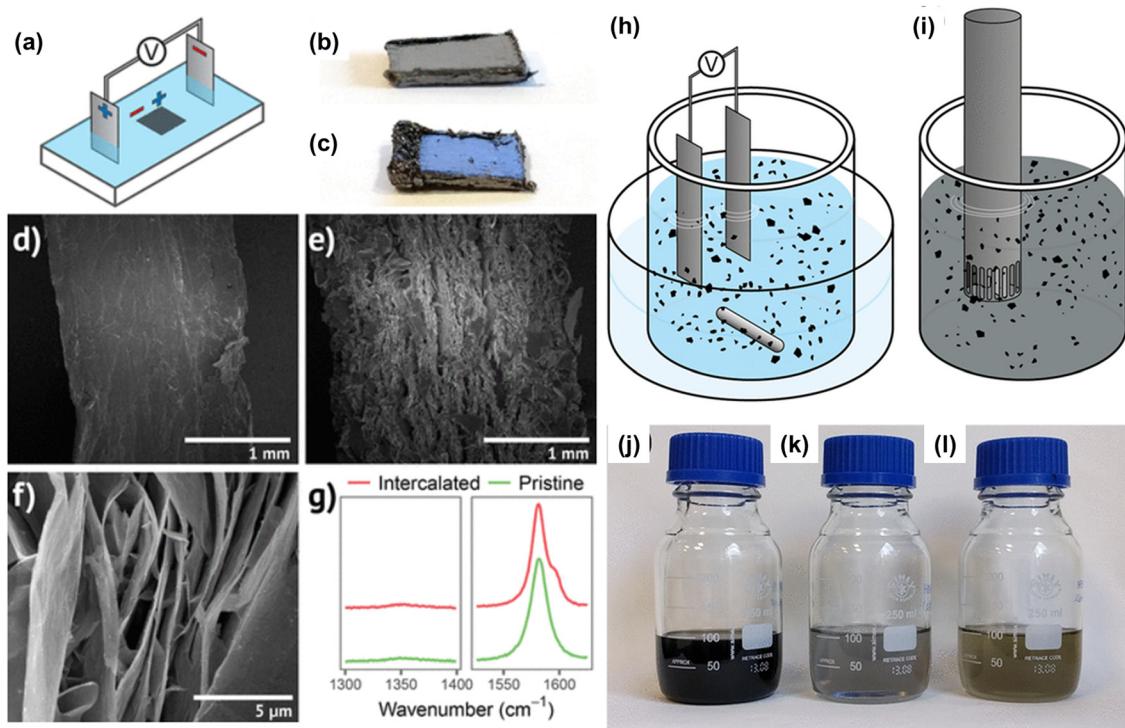

FIG. 6. (a) Schematic illustration of the cathodic delamination of MoS₂ in aqueous alkali metal-based electrolytes. [(b)–(g)] Microscopic characterization of MoS₂ cathodically exfoliated in 4 M KCl aqueous solution. [(b)–(d)] STEM, (e) AFM, and [(f) and (g)] HR-TEM images of MoS₂ nanosheets. (h) Raman spectra of the MoS₂ nanosheets. XPS spectra of high-resolution (i) Mo 3d and (j) S 2p core levels of cathodically exfoliated and bulk MoS₂ nanosheets. Reprinted with permission from Li *et al.*, *Nat. Mater.* **20**(2), 181–187 (2021). Copyright 2019 American Chemical Society.

reduction at the cathodic pole. Implementing this principle, Allagui *et al.* reported a single-step, single-cell preparation for exfoliating and depositing partially reduced graphene oxide using bipolar electrochemistry.^{165,166} In these studies, a graphite rod was placed between two stainless steel FEs in a low-conductivity solution.¹⁶⁵ A static

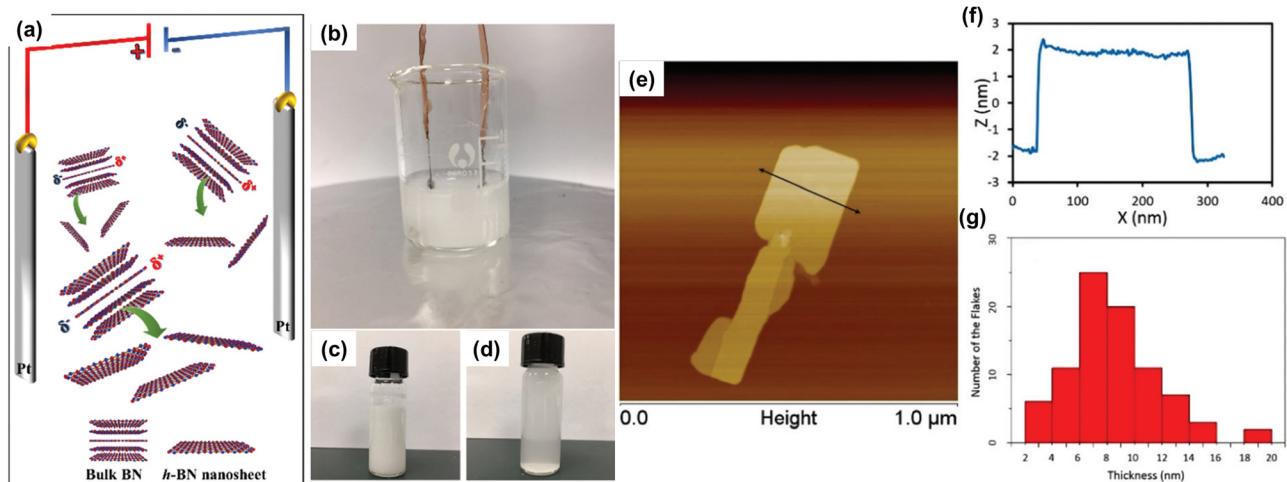
voltage of 15 V cm⁻¹ was set between the stainless steel FEs spaced 3 cm apart.¹⁶⁵ The electric field induced a potential difference of 9 V across the two ends of the graphite substrate, sufficient to promote coupled redox reactions at both the cathodic and anodic poles.¹⁶⁵ The authors achieved the rGO films on the positive side of stainless steel by

TABLE II. A summary of cathodic exfoliation. Note: TMA: tetramethylammonium; TEA: tetraethylammonium; TBA: tetrabutylammonium; BMPTF2N: N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide; MeCN: acetonitrile; THA: tetraheptylammonium.

Working electrode	Salt	Solvent	Voltage	Thickness	Ref.
HOPG	LiClO ₄	PC	-15 ± 5 V	1–5 layers	59
Graphite foil	LiClO ₄	PC	-5 V	1–5 layers	140
Graphite rods	NaCl, thionin acetate	H ₂ O/DMSO	5 V	~7 layers	149
HOPG	TMA·ClO ₄ , TEA·BF ₄ , TBA·BF ₄	NMP	-5 V (vs. Ag/AgClO ₄)	2–5 layers	142
HOPG, graphite rod	BMPTF ₂ N	...	15–30 V	2–5 layers	150
HOPG	TBA·ClO ₄	DMF/MeCN	-2.2–-2.8 V (vs. Ag/Ag ⁺)	1–2 layers	151
MoS ₂ crystals	THA·Br	MeCN	-5–10 V	3.8 ± 0.9 nm	152
MoS ₂ crystals	TBA·HSO ₄	PC	-5 V	6–10 layers	153
VSe ₂ crystals	TPA·Cl	PC	-4–-2 V	1–5 layers	154
Sb crystals	Na ₂ SO ₄	H ₂ O	-10 V	3.5 nm	118
Sb crystals	Na ₂ SO ₄	H ₂ O	-6 V	31.6 nm	155
NiPS ₃ crystals	TBA·BF ₄	DMF	-3 V	1–5 layers	82
NbSe ₂ , NbTe ₂ , TaS ₂ , TaSe ₂ , TiSe ₂ , and MoTe ₂	TBA·BF ₄	PC	-5 V (vs. Pt)	1–5 layers	146
BP crystals	TBA·HSO ₄	PC	-8 V	3.7 ± 1.3 nm	144
BP crystals	TBA·PF ₆	DMF	-5 V	1–5 layers	156
BP crystals	TBA·BF ₄	DMSO	-5 V	5 layers	145


FIG. 7. Schematic illustration of dual exfoliation of graphene based on electrochemical intercalation of both anion and cation. [(b)–(i)] Morphology and thickness distribution of exfoliated graphene. Reproduced with permission from Zhang and Yu, *Adv. Funct. Mater.* **29**(37), 1902171 (2019). Copyright 2018 John Wiley and Sons.⁹⁰

setting the cumulative total cell voltage limit to 15 mA h, and the thickness of the films was estimated in the nanometer range.¹⁶⁵ Later, the Wang group applied an apparent potential difference of 35 V on the two graphite rods as BE and successfully deposited exfoliated graphene on both the positive and negative sides of stainless steel.¹⁶⁷


Unlike other electrochemical exfoliation processes that require direct electrical contact, the wireless configuration offers the ability to treat the bipolar electrode in the form of small powders, flakes, and particles. Bjerglund *et al.* first reported the bipolar electrochemical exfoliation of graphite powder with the aid of mechanical high-shear exfoliation [Figs. 8(b)–8(g) and 8(j)–8(l)].¹⁶⁸ The exfoliation process involved cathodic electrochemical intercalation of tetrabutylammonium ions and required an extremely high voltage of 1100 V [Figs. 8(h) and 8(i)].¹⁶⁸ Later, Hashimoto *et al.* also demonstrated bipolar anodic exfoliation of graphite powder at a constant current of 2450 A m⁻².⁹² Small graphite powders (particles size 20–500 μm)

were placed between two platinum FEs in dilute sulfuric acid.⁹² The voltage rapidly increased at first and then settled to a steady value of ~60 V, much lower than cathodic exfoliation.⁹² The exfoliation products were apparently GO nanosheets with C/O ratios of 3.6–5.3.⁹²

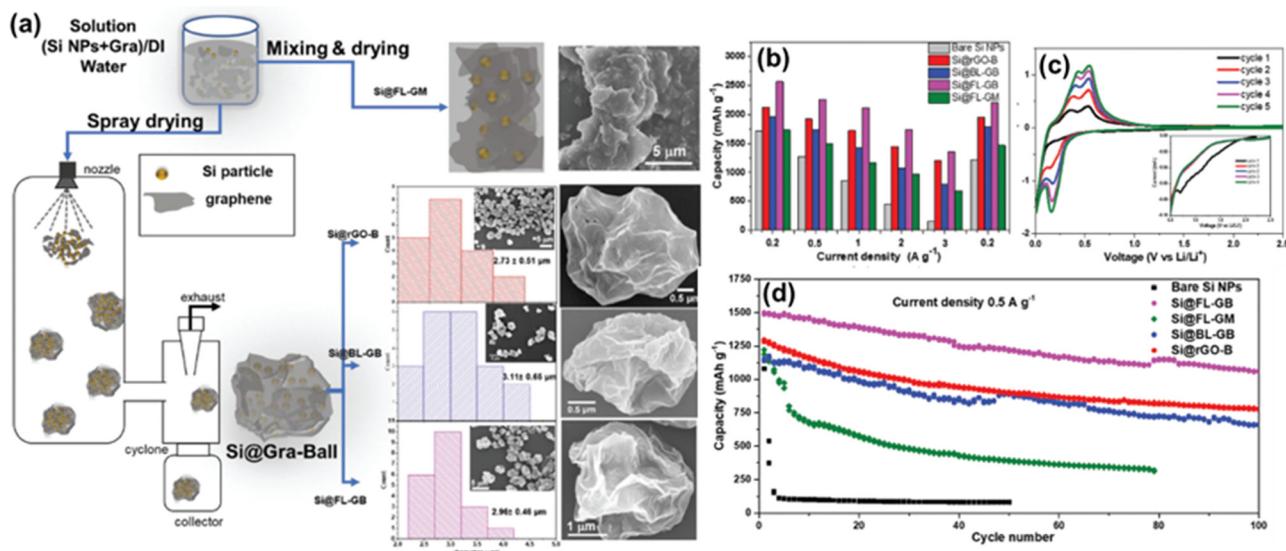
In addition to graphite, Pumera *et al.* employed the bipolar electrochemical exfoliation process for WS₂,^{53,169} black phosphorus,¹⁷⁰ MoSe₂,¹⁷¹ and hexagonal boron nitride (*h*-BN) [Figs. 9(a)–9(d)].¹⁷² The applied potential of 10 V across the Pt FEs in 0.5 M Na₂SO₄ was sufficient to induce Faradaic reactions at the surface of the electrodes, eventually leading to the exfoliation of the bulk materials into nanosheets or nanoparticles.¹⁷² For bipolar exfoliation of *h*-BN, sodium sulfate was added as a supporting electrolyte to increase the current through the solution.¹⁷² When the concentration of the supporting electrolyte decreases, inefficient exfoliation was observed, whereas when the concentration is increased, a damaged chemical structure of *h*-BN was obtained.¹⁷² The *h*-BN nanosheets obtained in 0.5 M

FIG. 8. (a) Schematic illustration of a bipolar electrochemical cell. Photographs of (b) pristine graphite foil and (c) Bu_4N^+ intercalated graphite foil. SEM images of the edges of (d) pristine graphite foil and (e,f) Bu_4N^+ intercalated graphite foil. (g) Raman spectra of the pristine and Bu_4N^+ intercalated graphite foil. Schematic illustration of the experimental setups for (h) high voltage bipolar electrochemistry and (i) subsequent high-shear exfoliation of intercalated graphite. Graphene dispersion in N-methyl-2-pyrrolidone (NMP) solvent from (j) both bipolar intercalation and high-shear exfoliation, (k) high-shear exfoliation with no electrochemical intercalation, and (l) combined bipolar electrochemistry and high-shear exfoliation without using Bu_4NBF_4 salt in the electrolyte. Reproduced with permission from Bjerglund *et al.*, ACS Omega 2(10), 6492–6499 (2017). Copyright 2017 American Chemical Society.¹⁶⁸

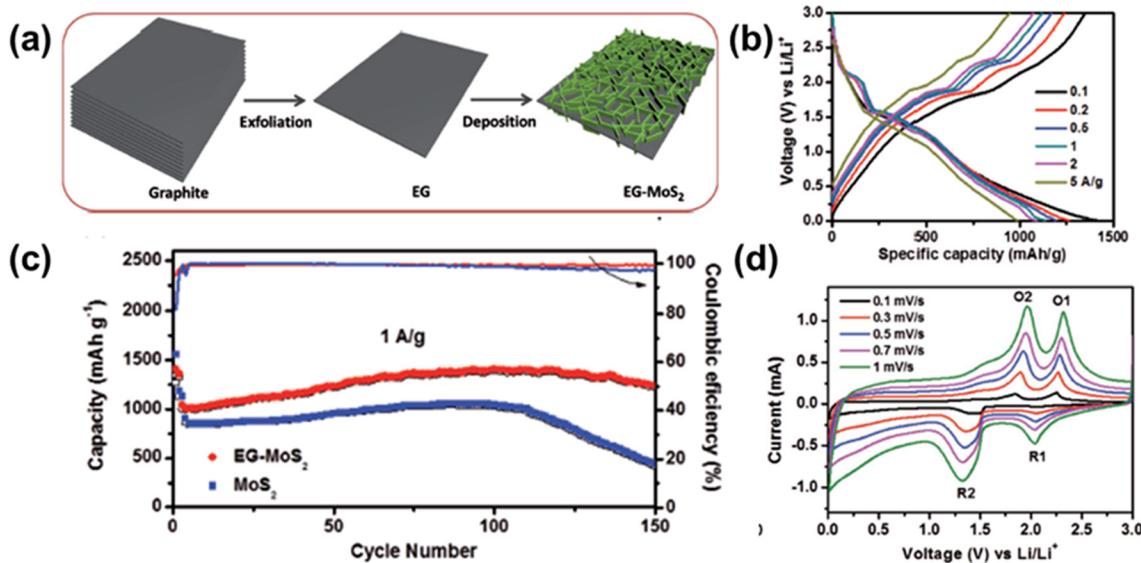
FIG. 9. (a) Schematic illustration and (b) photograph of bipolar electrochemical exfoliation of h-BN. (c) Pristine h-BN solution and (d) h-BN nanosheet obtained from bipolar electrochemical exfoliation. (e) AFM image of h-BN nanosheets obtained from bipolar exfoliation. (f) Corresponding height profiles of h-BN nanosheets from the black arrows in the AFM images. (g) Statistic analysis of the thickness distribution of exfoliated h-BN. Reproduced with permission from Wang *et al.*, Nanoscale 10(15), 7298–7303 (2018). Copyright 2009 RSC Publishing.¹⁷²

Na_2SO_4 had an average later size of $1.27 \mu\text{m}$ with a mean thickness of 8.4 nm [Figs. 8(e)–8(g)].¹⁷² Although the size reduction mechanism of non-conductive material is not clearly understood, this work paved the way for the scalability of the electrochemical exfoliation system for not only the conducting materials, but also the layered insulators as well.¹⁷²

III. APPLICATION AS ENERGY STORAGE DEVICES


The rapid growth of consumer electronics, electric vehicles, and grid integration of renewable energy sources has created enormous demand for energy storage devices that are safe, low cost, and capable of high power and energy output.¹⁷³ At the same time, efficient and green energy storage technologies are also critical to overcoming the environmental issues of fossil fuels as well as the availability of scarce natural resources used in batteries.¹⁷⁴ As electrochemical energy storage (EES) materials, 2D materials offer numerous advantageous features, including large active surface area, fast surface redox reactions, and shortened ion transport pathways. Existing literature has demonstrated that these properties can lead to improved charge storage capacity and rate capability of 2D materials in various EES systems, despite limitations posed by their restacking tendencies.^{49,175} As an efficient method for synthesizing high-quality 2D materials, electrochemical exfoliation has been exploited to prepare electrodes for various alkali-metal ion batteries and supercapacitors.

A. Electrochemically exfoliated graphene-based electrodes


Electrochemically exfoliated graphene electrodes have been investigated as anode materials for metal-ion batteries due to their facile synthesis and low working potential.^{64,176–179} For example, Jamaluddin *et al.* utilized electrochemically exfoliated graphene to encapsulate silicon (Si) nanoparticles and synthesized Si at graphene

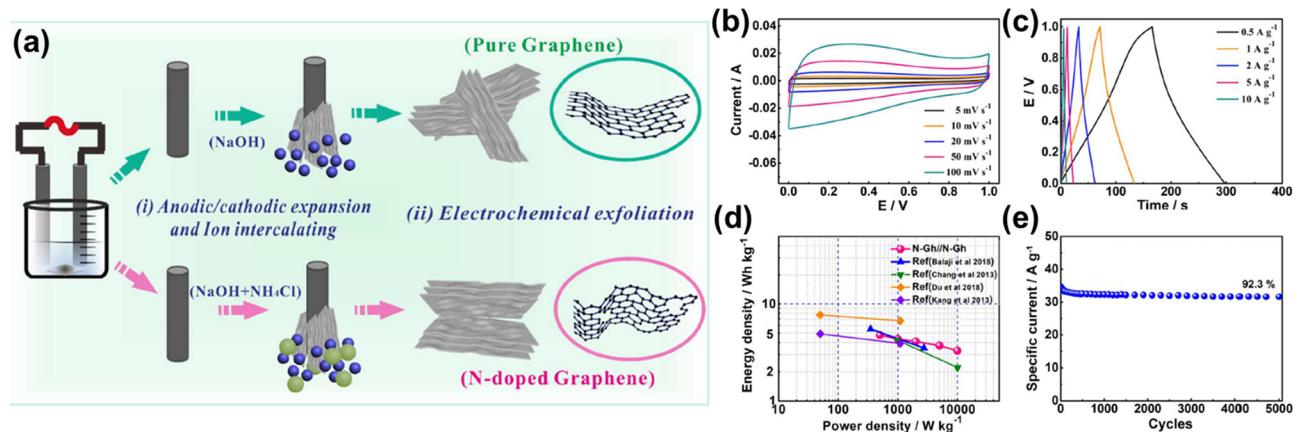
composites with a core-shell structure.¹⁷⁶ The Si at graphene composites was prepared via a spray-drying process using an aqueous suspension, in which a microsphere structure was formed *in situ* as graphene crumpled around Si nanoparticles [Fig. 10(a)].¹⁷⁶ This study revealed that the void space between graphene and Si can serve as a buffer to contain the volumetric expansion of Si nanoparticles within the core-shell structure, and the exfoliated graphene also provides high electrical conductivity and mechanical flexibility that improve rate performance and cycling stability.¹⁷⁶ In addition, the effect of graphene layers on the composite structure was investigated, and it was found that using graphene oxide or bi-layer and few-layered graphene as the shell material affected the electrical conductivity and capacity of the composite electrode.¹⁷⁶ As the best-performing combination, the Si at few-layered graphene (Si at FL-GB) anode delivered the highest initial discharge capacity up to $2882.3 \text{ mA h g}^{-1}$ at 0.2 A g^{-1} as well as the highest initial Coulombic efficiency of 86.9% and excellent cycling stability of $1063.2 \text{ mA h g}^{-1}$ at 0.5 A g^{-1} after 100 cycles with 70.9% capacity retention [Figs. 10(b)–10(d)].¹⁷⁶

Wang *et al.* demonstrated vertically aligned MoS_2 nanosheets grown on electrochemically exfoliated graphene (EG) via solvothermal synthesis [Fig. 11(a)].¹⁷⁹ The vertically aligned structure on the graphene substrate increased the exposure of the active material and enhanced the charge transport kinetics through the vertical channels. The EG- MoS_2 anode delivered the capacities of 970 mA h g^{-1} at a high rate of 5 A g^{-1} and 1250 mA h g^{-1} after 100 cycles at 1 A g^{-1} . In a sodium-ion battery (SIB), the EG- MoS_2 anode also exhibited 509 mA h g^{-1} at 1 A g^{-1} after 250 cycles and 423 mA h g^{-1} at 2 A g^{-1} [Figs. 11(b)–11(d)].¹⁷⁹ Sun *et al.* also demonstrated a practical Li-ion full cell assembled with a $\text{LiNi}_{0.6}\text{Co}_{0.2}\text{Mn}_{0.2}\text{O}_2$ cathode and an exfoliated graphene (EG) anode, which was exfoliated in $0.1 \text{ M} (\text{NH}_4)_2\text{SO}_4$ aqueous solution at 10 V .¹⁷⁷ Due to the thin layers ($\sim 1.5 \text{ nm}$ on average) and the high porosity of the exfoliated graphene sheets, the

FIG. 10. (a) Schematic illustration for spray drying method for Si at Gra-balls preparation with SEM images and particle size distribution. (b) Electrochemical performance of Si nanoparticles and Si at Gra composites. (c) CV curves of Si at FL-GB at a scan rate of 0.1 mV s^{-1} . (d) Cycling stability of Si and Si at Gra composite electrodes at a current density of 0.5 A g^{-1} . Reproduced with permission from Jamaluddin *et al.*, *Nanoscale* **12**(17), 9616–9627 (2020). Copyright 2009 RSC Publishing.

FIG. 11. (a) Schematic illustration of EG-MoS₂ preparation. The electrochemical performance curves. (b) Charge-discharge profiles of EG-MoS₂. (c) Cycling stability of EG-MoS₂ and MoS₂ at 1 A g⁻¹. (d) CV curves of EG-MoS₂ at different scan rates. Reproduced with permission from Wang *et al.*, *Adv. Energy Mater.* 8(8), 1702254 (2018). Copyright 2017 John Wiley and Sons.

prelithiated EG anode delivered a reversible specific capacity of 360 mA h g⁻¹ at 0.1 C and maintained a capacity of 206 mA h g⁻¹ at a high current rate of 10 C.¹⁷⁷ At a low temperature of 0°C, the EG anode still retained a capacity of ~100 mA h g⁻¹ at 5 C.¹⁷⁷ The full cell also exhibited a high energy density of ~278 W h kg⁻¹ and 100% capacity retention over 300 cycles.¹⁷⁷


Similar approaches have also been explored for supercapacitor applications.^{180–183} For example, Hamra *et al.* synthesized supercapacitor electrodes directly from electrochemically exfoliated graphene via vacuum filtration.¹⁸² The graphene electrode was exfoliated using 1 M HNO₃ as an oxidizing agent, and 2 M KOH in polymer gel was used as an electrolyte. The supercapacitor delivered a specific capacitance of 2524.54 F g⁻¹ at a current density of 0.5 A g⁻¹ and retained >100% capacity after 1000 cycles.¹⁸² Chih *et al.* also demonstrated an all-screen-printable method for fabricating all-solid and flexible microsupercapacitors (MSCs) with composite electrodes consisting of electrochemically exfoliated graphene and single-walled carbon nanotubes (CNTs).¹⁸¹ In the hybrid electrode, CNTs serve as intermediates between graphene flakes to prevent restacking of graphene layers and promote ion transport. MSCs were prepared using a screen-printing process in which a pre-patterned screen was used to transfer the pattern to the underlying substrate, followed by electrolyte coating. As-synthesized flexible MSCs exhibited capacitances of 7.7 mF cm⁻² and 77.3 F cm⁻³, with >99% capacity retention after 15 000 cycles, and negligible capacitance loss with bending.¹⁸¹

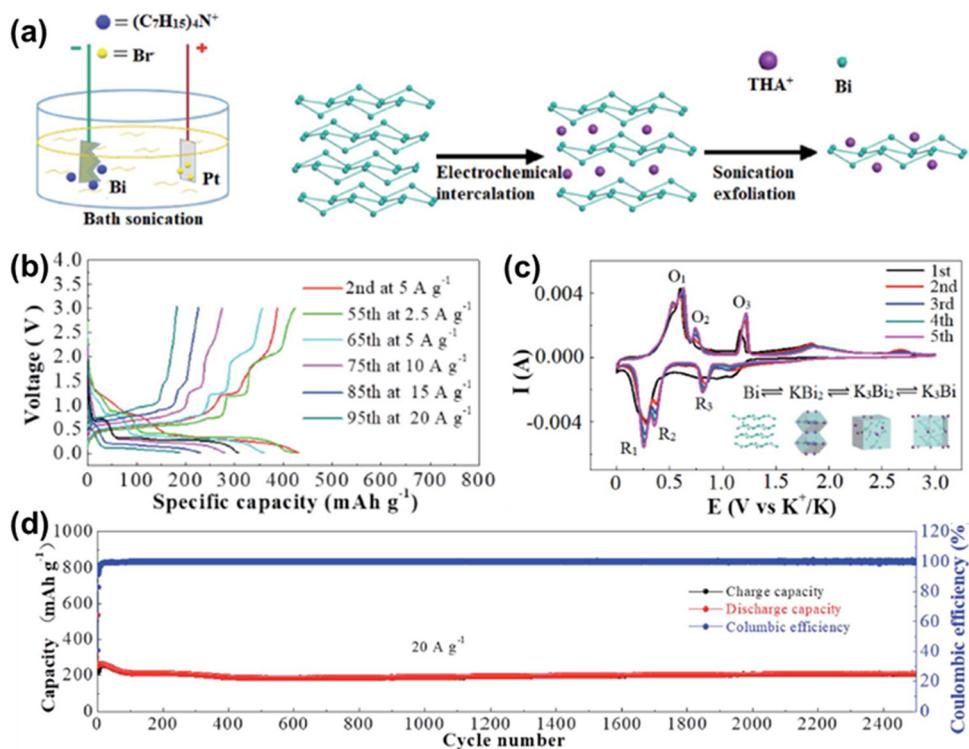
Heteroatom-doped graphene electrodes such as nitrogen, boron, sulfur, and fluorine have also been studied by adjusting the electrolyte during exfoliation to achieve improved electrochemical performance.^{83,111,180,184,185} For example, Jing and colleagues synthesized nitrogen-doped graphene (N-Gh) via alternating voltage electrochemical exfoliation at 5 V, where nitrogen doping was achieved with ammonium chloride and NaOH aqueous solution in the two-electrode system for exfoliation as shown in Fig. 12(a).¹⁸⁴ It was found that the

nitrogen-doped graphene with 4.5% N atoms is much larger in size than the pristine graphene sheets and exhibits a more defective structure, probably due to the fast stripping and nitrogen-doping process.¹⁸⁴ In electrochemical tests, nitrogen doping also led to improvement in the specific capacitance and high-rate performance of N-Gh due to the additional pseudocapacitance from the nitrogen redox-active sites and the reduced restacking of graphene layers. The symmetrical N-Gh//N-Gh supercapacitor delivered an energy density of 4.76 W h kg⁻¹ at a power density of 500 W kg⁻¹ and retained 92.3% of its capacity after 5000 cycles [Figs. 12(b)–12(e)].¹⁸⁴ A similar effect achieved by fluorine doping of electrochemically exfoliated graphene was also investigated by Zhou *et al.*¹¹¹ Incorporation of fluorine has been shown to induce redox-active, semi-ionic C-F bonds, which also provide additional pseudocapacitance and improve charge storage performance as flexible microsupercapacitor electrodes. Muthu and Tatiparti also synthesized boron-incorporated reduced graphene oxide (B-rGO) via potentiostatic exfoliation using 0.1 M (NH₄)₂SO₄ + 0.5 M B(OH)₃ electrolyte.¹⁸⁵ Electron-deficient boron introduced a p-doping effect into B-rGO as shown by XPS, Raman and valence band spectra. The electrochemical performance of the B-rGO electrode was studied using 6 M KOH electrolyte in a three-electrode setup, where the rGO and B-rGO electrodes exhibited specific capacitances of 163 and 446 F g⁻¹ at 0.1 A g⁻¹, and 111 and 284 F g⁻¹ at 20 A g⁻¹, respectively.¹⁸⁵ B-rGO also showed excellent cycling stability with a capacity retention of 95.6% and a Coulombic efficiency of 97.4% after 2000 cycles.¹⁸⁵ The enhanced specific capacitance can be attributed to the p-doping effect of boron in B-rGO, which can accommodate more charge storage.

B. Other 2D atomic layer material-based electrodes

In addition to graphene, other 2D atomic layer materials produced by electrochemical exfoliation have also been successfully

FIG. 12. (a) Schematic illustration of the electrochemical exfoliation of pure graphene and nitrogen-doped graphene (N-Gh) samples. The electrochemical performance curves of N-Gh. (b) The CV profiles of N-Gh at various scan rates. (d) Galvanostatic charge-discharge profiles of N-Gh/N-Gh with varying current densities. (d) Ragone plots of N-Gh/N-Gh. (e) Cycling stability of N-Gh/N-Gh at a current density of 0.5 A g^{-1} . Reproduced with permission from Jing *et al.*, *Front. Chem.* **8**, 428 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) License.¹⁸⁴


incorporated into energy storage devices.^{67,146,156,186–189} For example, the cathodic exfoliation of bulk antimony (Sb) to porous antimonene was investigated by Yang and co-workers.¹⁹⁰ The exfoliation process was carried out in a two-electrode cell under a voltage of -5 V in 1 M tetramethylammonium hydroxide (TMAOH) aqueous solution.¹⁹⁰ This study suggests that Sb exfoliated in an alkaline solution is more stable than using organic electrolytes and Na_2SO_4 , which leads to the formation of aggregated nanoparticles.¹⁹⁰ As an anode material in SIBs, the antimonene electrode delivered a high specific capacity of $569.1 \text{ mA h g}^{-1}$ upon 200 cycles at 0.1 A g^{-1} and maintained $277.8 \text{ mA h g}^{-1}$ at 5 A g^{-1} .¹⁹⁰ Huang *et al.* also utilized electrochemical cationic intercalation to prepare large few-layered phosphorene flakes without surface functional groups.¹⁵⁶ The authors successfully controlled the phosphorene thickness between 2 and 11 layers by adjusting the intercalation rate of the tetraalkylammonium cations with different applied potentials (-5 – 15 V).¹⁵⁶ The phosphorene anode in SIBs delivered a high capacity of 1968 mA h g^{-1} at a current density of 100 mA g^{-1} and retained $603.3 \text{ mA h g}^{-1}$ after 100 cycles at 1.5 A g^{-1} .¹⁵⁶ Ultrasonication-assisted electrochemical exfoliation of few-layered bismuthene nanosheets (FBNs) was investigated by Shen and colleagues.¹⁹¹ As shown in Fig. 13(a), the intercalation reaction was performed in a sonication bath using a two-electrode setup consisting of a bismuth crystal working electrode and a platinum counter electrode for 8 h.¹⁹¹ Owing to the exfoliated 2D architecture, the exfoliated FBNs possess a larger active surface area, improved K-ion kinetics, and higher structural stability against volume changes during the potassiation/depotassiation process [Fig. 13(c)].¹⁹¹ The FBN anode in a potassium ion battery (KIB) exhibited a charge–discharge capacity of 423 mA h g^{-1} at a current density of 2.5 A g^{-1} and impressive cycling stability by maintaining 201 mA h g^{-1} at 20 A g^{-1} over 2500 cycles [Figs. 13(b) and 13(d)].¹⁹¹

Li *et al.* presented a novel anodic and cathodic simultaneous exfoliation method for synthesizing composite 2D materials.¹⁸⁷ This method combines anodic exfoliation of graphene and cathodic exfoliation of other 2D materials including MoS_2 , MnO_2 , and graphitic carbon nitride ($\text{g-C}_3\text{N}_4$) in a one-pot setup [Figs. 14(a)–14(c)].¹⁸⁷

Notably, the incorporation of conductive additives into the electrodes was demonstrated to enable the exfoliation of 2D nanomaterials regardless of the conductivity of the bulk precursor.¹⁸⁷ Among the various combinations, the MnO_2 and graphene composite ($\text{MnO}_2\text{-G}$) was tested in symmetrical all-solid-state supercapacitors using a polyvinyl alcohol/ H_3PO_4 gel electrolyte.¹⁸⁷ The supercapacitor delivered the specific capacitances of 265 F g^{-1} at 2.5 A g^{-1} and 212 F g^{-1} at 50 A g^{-1} with capacitance retention of 94% over 5000 cycles, comparable to other state-of-the-art devices based on MnO_2 –carbon composites [Figs. 14(d) and 14(e)].¹⁸⁷ MoS_2 –graphene and $\text{g-C}_3\text{N}_4$ –graphene composite films were also demonstrated to be effective hydrogen evolution catalysts.¹⁸⁷ Hu *et al.* also studied the electrochemically exfoliated MoS_2 electrode in supercapacitors.¹⁸⁶ MoS_2 powder fixed with carbon cloth was exfoliated in a 0.5 M Na_2SO_4 solution at 10 V to obtain 1 – $3 \mu\text{m}$ MoS_2 nanosheets with an average thickness of 3 nm (~ 4 layers).¹⁸⁶ In a three-electrode test system with 0.5 M KOH electrolyte, MoS_2 nanosheets showed superior performance compared to bulk MoS_2 , delivering 285 F g^{-1} at 2 A g^{-1} and 83.8% capacitance retention after 500 cycles.¹⁸⁶ Finally, Yang *et al.* obtained few-layered BP nanoflakes from bulk BP crystals by applying $+10 \text{ V}$ in 0.5 M Na_2SO_4 aqueous solution.¹¹⁹ The free-standing BP films exhibited an energy density of $3.63 \text{ mW h cm}^{-3}$, a power density of 10.1 W cm^{-3} , and a capacity retention of 94.3% after 50 000 cycles at a current density of 0.2 A cm^{-3} .¹¹⁹

IV. CONCLUSIONS AND FUTURE OUTLOOK

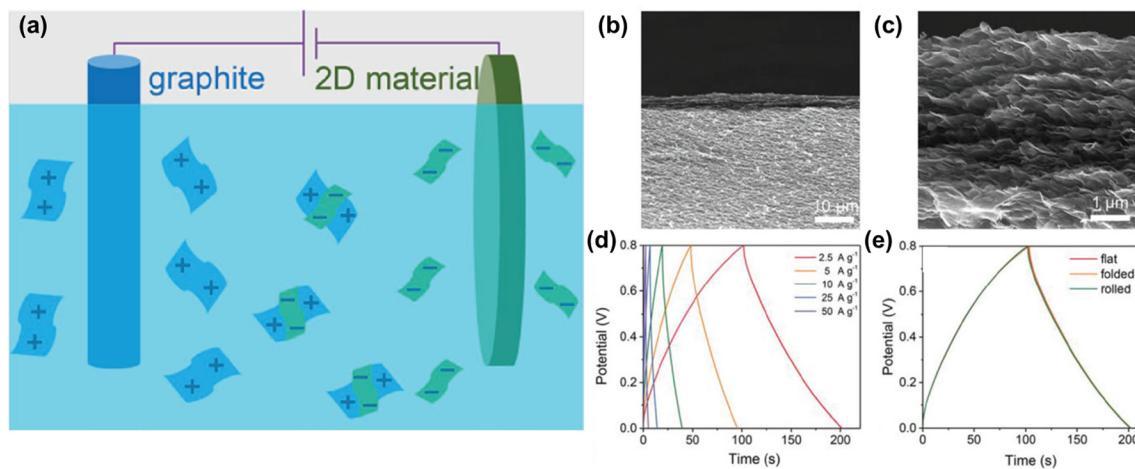

Electrochemical exfoliation techniques are gaining momentum with the increasing demand for 2D atomic layer materials with superior electrochemical properties and the growing importance of their industrial-level scalability. This review has comprehensively summarized recent research advances in the electrochemical exfoliation of 2D materials, including four different techniques and their unique characteristics, as well as the applications of exfoliated 2D materials for various energy storage devices. A high percentage of few-layered atomically thin 2D materials with relatively large sizes can be obtained via the aqueous-phase anodic exfoliation process. Cathodic exfoliation

FIG. 13. (a) Schematic illustration of electrochemical exfoliation for FBN production. (b) Galvanostatic charge and discharge curves of FBNs at various current densities. (c) Cyclic voltammetry of FBNs at a scan rate of 0.1 mV s^{-1} with the illustration of potassiation–depotassiation processes. (d) Cycling performance for 2500 cycles. Reproduced from Shen *et al.*, *J. Mater. Chem. A* 8(1), 453–460 (2020). Copyright 2020 RSC publishing.

offers a promising route to fabricate 2D materials with negligible oxidation and high crystallinity. Dual exfoliation combines both anodic and cathodic exfoliation processes simultaneously, allowing fast and efficient exfoliation of 2D materials. Finally, the bipolar method allows

the exfoliation of layered materials in various forms such as foils, rods, and even powders. The bipolar configuration allows the exfoliation of semiconducting 2D materials and electrical insulators (i.e., h-BN and TMDs), but with long reaction times and low exfoliation yield.

FIG. 14. (a) Schematic illustration of simultaneous electrochemical exfoliation. [(b) and (c)] SEM images of cross-sectional MnO₂-G film. Galvanostatic charge–discharge curves of the planar, symmetric all-solid-state supercapacitor device (d) at different current densities and (e) at a current density of 2.5 A g^{-1} at different mechanical conditions. Reproduced from Li *et al.*, *Adv. Energy Mater.* 8(12), 1702794 (2018). Copyright 2018 John Wiley and Sons.

An ideal electrochemical exfoliation method would be to fabricate 2D materials in a highly controllable manner, allowing the fabrication of materials with structural and property tuning for specific target applications. Therefore, the main challenge in the exfoliation process is to precisely control the structures of the exfoliated products such as the number of layers, size, oxidation, and defects, as well as solvent residues and contamination. In addition, recent studies have shown that specific functional groups can be incorporated into exfoliated 2D material during the electrochemical process, providing another opportunity to tailor the structure and properties of 2D materials.^{80,81,192,193} A fundamental understanding of the electrochemical exfoliation mechanisms can contribute to improving the production efficiency of 2D materials and controlling their structures and properties. The electrochemical exfoliation process of 2D layered materials is a collective phenomenon consisting of several reactions, including ion intercalation, gas evolution, interlayer expansion, and irreversible exfoliation. These reactions do not necessarily occur sequentially and occur non-uniformly within the material, resulting in non-uniform exfoliation products. However, a comprehensive understanding of the mechanical details of each reaction and the role of each reaction in controlling the structure of 2D materials are still lacking. Given interconnected multiple reactions in the electrochemical process, computer simulation and *operando* (or *in situ*) monitoring of the process are extremely helpful in understanding the complex exfoliation mechanisms. For example, *in situ* AFM studies of graphite during ion intercalation successfully demonstrated potential-dependent interlayer expansion due to ion intercalation and gas evolution.^{194,195} Another study using *in situ* optical and Raman spectroscopy suggested that the two characteristic stages, nondestructive intercalation and subsequent gas evolution, are key steps in an efficient exfoliation process.¹⁹⁶ Moreover, a recent study has correlated the exfoliation efficiency of graphene in the anodic exfoliation system with the binding energy of electrolyte anions on graphene.¹⁰² Understanding and predicting phenomena through computer simulation is a step forward from optimizing parameters through iterative experiments and is expected to accelerate the development of electrochemical stripping processes.

Electrochemical exfoliation techniques often require post-treatment to further reduce the number of layers and stably disperse the 2D materials. However, prolonged post-treatment processes such as sonication and delithiation can compromise the quality of the final product. Therefore, direct electrochemical exfoliation of bulk layered crystals into single or few 2D materials without post-treatment is highly required to improve overall manufacturing efficiency and cost. In addition, conventional electrochemical exfoliation processes mainly rely on large bulk crystals and large amounts of electrolytes, which are expensive for large-scale industrial applications. Therefore, there is an urgent need to develop new electrochemical setups that can utilize low-cost power and small amounts of electrolyte to minimize the manufacturing cost of 2D materials. In summary, understanding the mechanical details of the electrochemical exfoliation mechanism and realizing the electrochemical setup for producing cost-effective, structure-controlled 2D material are critical for the commercialization of 2D materials in a variety of electrochemical applications, including catalysis, electrochemical sensors, and energy storage devices.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No. 1751693.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Ho Young Lee: Conceptualization (equal); Funding acquisition (lead); Investigation (equal); Project administration (lead); Supervision (lead); Writing – original draft (equal); Writing – review & editing (equal).

Shikai Jin: Conceptualization (equal); Investigation (equal); Writing – original draft (equal); Writing – review & editing (equal). **Jiyong Chung:** Investigation (equal); Writing – original draft (equal); Writing – review & editing (equal).

Minsu Kim: Investigation (supporting); Writing – original draft (supporting); Writing – review & editing (equal). **Seung Woo Lee:** Conceptualization (equal); Funding acquisition (lead); Investigation (supporting); Project administration (lead); Supervision (lead); Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES

- 1 K. S. Novoselov *et al.*, “Electric field effect in atomically thin carbon films,” *Science* **306**(5696), 666–669 (2004).
- 2 D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, “Mechanical properties of graphene and graphene-based nanocomposites,” *Prog. Mater. Sci.* **90**, 75–127 (2017).
- 3 A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” *Nat. Mater.* **10**(8), 569–581 (2011).
- 4 T. V. Cuong *et al.*, “Optoelectronic properties of graphene thin films prepared by thermal reduction of graphene oxide,” *Mater. Lett.* **64**(6), 765–767 (2010).
- 5 M.-S. Cao, X.-X. Wang, W.-Q. Cao, and J. Yuan, “Ultrathin graphene: Electrical properties and highly efficient electromagnetic interference shielding,” *J. Mater. Chem. C* **3**(26), 6589–6599 (2015).
- 6 X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” *Proc. Natl. Acad. Sci.* **112**(15), 4523–4530 (2015).
- 7 S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” *Nat. Rev. Mater.* **2**(8), 17033 (2017).
- 8 B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, “2D metal carbides and nitrides (MXenes) for energy storage,” *Nat. Rev. Mater.* **2**(2), 16098 (2017).
- 9 K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, “Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications,” *J. Mater. Chem. C* **5**(46), 11992–12022 (2017).
- 10 J. W. Colson *et al.*, “Oriented 2D covalent organic framework thin films on single-layer graphene,” *Science* **332**(6026), 228–231 (2011).
- 11 J. R. Schaibley *et al.*, “Valleytronics in 2D materials,” *Nat. Rev. Mater.* **1**(11), 16055 (2016).
- 12 R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, and F. Zamora, “2D materials: To graphene and beyond,” *Nanoscale* **3**(1), 20–30 (2011).
- 13 A. Gupta, T. Sakthivel, and S. Seal, “Recent development in 2D materials beyond graphene,” *Prog. Mater. Sci.* **73**, 44–126 (2015).
- 14 K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” *Science* **353**(6298), aac9439 (2016).

¹⁵D. S. Schulman, A. J. Arnold, and S. Das, "Contact engineering for 2D materials and devices," *Chem. Soc. Rev.* **47**(9), 3037–3058 (2018).

¹⁶K. Chen, S. Song, F. Liu, and D. Xue, "Structural design of graphene for use in electrochemical energy storage devices," *Chem. Soc. Rev.* **44**(17), 6230–6257 (2015).

¹⁷R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, "The role of graphene for electrochemical energy storage," *Nat. Mater.* **14**(3), 271–279 (2015).

¹⁸A. F. Khan, D. A. C. Brownson, E. P. Randviir, G. C. Smith, and C. E. Banks, "2D hexagonal boron nitride (2D-hBN) explored for the electrochemical sensing of dopamine," *Anal. Chem.* **88**(19), 9729–9737 (2016).

¹⁹H. Ilatikhameneh, Y. Tan, B. Novakovic, G. Klimeck, R. Rahman, and J. Appenzeller, "Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials," *IEEE J. Explor. Solid-State Comput. Devices Circuits* **1**, 12–18 (2015).

²⁰B. Mendoza-Sánchez and Y. Gogotsi, "Synthesis of two-dimensional materials for capacitive energy storage," *Adv. Mater.* **28**(29), 6104–6135 (2016).

²¹B. Deng, Z. Liu, and H. Peng, "Toward mass production of CVD graphene films," *Adv. Mater.* **31**(9), 1800996 (2019).

²²C. Backes *et al.*, "Production and processing of graphene and related materials," *2D Mater.* **7**(2), 022001 (2020).

²³W. A. de Heer *et al.*, "Epitaxial graphene," *Solid State Commun.* **143**(1), 92–100 (2007).

²⁴P. W. Sutter, J.-I. Flege, and E. A. Sutter, "Epitaxial graphene on ruthenium," *Nat. Mater.* **7**(5), 406–411 (2008).

²⁵L. Gao, J. R. Guest, and N. P. Guisinger, "Epitaxial graphene on Cu(111)," *Nano Lett.* **10**(9), 3512–3516 (2010).

²⁶G. Li *et al.*, "Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds," *Chem. Soc. Rev.* **47**(16), 6073–6100 (2018).

²⁷J. L. Zhang *et al.*, "2D phosphorene: Epitaxial growth and interface engineering for electronic devices," *Adv. Mater.* **30**(47), 1802207 (2018).

²⁸L. Zhang, P. Peng, and F. Ding, "Epitaxial growth of 2D materials on high-index substrate surfaces," *Adv. Funct. Mater.* **31**(29), 2100503 (2021).

²⁹M. Choucair, P. Thordarson, and J. A. Stride, "Gram-scale production of graphene based on solvothermal synthesis and sonication," *Nat. Nanotechnol.* **4**(1), 30–33 (2009).

³⁰A. V. Murugan, T. Muraliganth, and A. Manthiram, "Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage," *Chem. Mater.* **21**(21), 5004–5006 (2009).

³¹D. Deng *et al.*, "Toward N-doped graphene via solvothermal synthesis," *Chem. Mater.* **23**(5), 1188–1193 (2011).

³²L. Chen, Y. Hernandez, X. Feng, and K. Müllen, "From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis," *Angew. Chem. Int. Ed.* **51**(31), 7640–7654 (2012).

³³S. Eigler *et al.*, "Wet chemical synthesis of graphene," *Adv. Mater.* **25**(26), 3583–3587 (2013).

³⁴G. Huang *et al.*, "Graphene-like MoS₂/graphene composites: Cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium," *Small* **9**(21), 3693–3703 (2013).

³⁵C. Berger *et al.*, "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," *J. Phys. Chem. B* **108**(52), 19912–19916 (2004).

³⁶E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, "Evidence for graphene growth by C cluster attachment," *New J. Phys.* **10**(9), 093026 (2008).

³⁷E. Moreau *et al.*, "Graphene growth by molecular beam epitaxy on the carbon-face of SiC," *Appl. Phys. Lett.* **97**(24), 241907 (2010).

³⁸C.-L. Song *et al.*, "Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene," *Phys. Rev. B* **84**(2), 020503 (2011).

³⁹J. M. Garcia *et al.*, "Graphene growth on h-BN by molecular beam epitaxy," *Solid State Commun.* **152**(12), 975–978 (2012).

⁴⁰K. S. Kim *et al.*, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," *Nature* **457**(7230), 706–710 (2009).

⁴¹Y. Zhang, L. Zhang, and C. Zhou, "Review of chemical vapor deposition of graphene and related applications," *Acc. Chem. Res.* **46**(10), 2329–2339 (2013).

⁴²H. F. Liu, S. L. Wong, and D. Z. Chi, "CVD growth of MoS₂-based two-dimensional materials," *Chem. Vap. Deposition* **21**(10–12), 241–259 (2015).

⁴³X. Li, L. Colombo, and R. S. Ruoff, "Synthesis of graphene films on copper foils by chemical vapor deposition," *Adv. Mater.* **28**(29), 6247–6252 (2016).

⁴⁴S. M. Kim *et al.*, "Synthesis of large-area multilayer hexagonal boron nitride for high material performance," *Nat. Commun.* **6**(1), 8662 (2015).

⁴⁵H. Yu *et al.*, "Wafer-scale growth and transfer of highly-oriented monolayer MoS₂ continuous films," *ACS Nano* **11**(12), 12001–12007 (2017).

⁴⁶J. Shim *et al.*, "Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials," *Science* **362**(6415), 665–670 (2018).

⁴⁷Z. Gao *et al.*, "Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene," *Nat. Commun.* **11**(1), 546 (2020).

⁴⁸M. Wang *et al.*, "Single-crystal, large-area, fold-free monolayer graphene," *Nature* **596**(7873), 519–524 (2021).

⁴⁹X. Zhang, L. Hou, A. Ciesielski, and P. Samori, "2D materials beyond graphene for high-performance energy storage applications," *Adv. Energy Mater.* **6**(23), 1600671 (2016).

⁵⁰W. S. Hummers, Jr. and R. E. Offeman, "Preparation of graphitic oxide," *J. Am. Chem. Soc.* **80**(6), 1339–1339 (1958).

⁵¹G. Eda, H. Yamaguchi, D. Voity, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from chemically exfoliated MoS₂," *Nano Lett.* **11**(12), 5111–5116 (2011).

⁵²M. Yi and Z. Shen, "A review on mechanical exfoliation for the scalable production of graphene," *J. Mater. Chem. A* **3**(22), 11700–11715 (2015).

⁵³J. N. Coleman *et al.*, "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," *Science* **331**(6017), 568–571 (2011).

⁵⁴Y. Hernandez *et al.*, "High-yield production of graphene by liquid-phase exfoliation of graphite," *Nat. Nanotechnol.* **3**(9), 563–568 (2008).

⁵⁵K. R. Paton *et al.*, "Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids," *Nat. Mater.* **13**(6), 624–630 (2014).

⁵⁶E. Varrla *et al.*, "Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender," *Nanoscale* **6**(20), 11810–11819 (2014).

⁵⁷G. Guan *et al.*, "Protein induces layer-by-layer exfoliation of transition metal dichalcogenides," *J. Am. Chem. Soc.* **137**(19), 6152–6155 (2015).

⁵⁸J. Liu, J.-X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, "One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids," *ACS Nano* **3**(8), 2367–2375 (2009).

⁵⁹J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, "High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte," *J. Am. Chem. Soc.* **133**(23), 8888–8891 (2011).

⁶⁰J. Huang *et al.*, "Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction," *Angew. Chem. Int. Ed.* **57**(17), 4632–4636 (2018).

⁶¹J. Lee, S. Noh, N. D. Pham, and J. H. Shim, "Top-down synthesis of S-doped graphene nanosheets by electrochemical exfoliation of graphite: Metal-free bifunctional catalysts for oxygen reduction and evolution reactions," *Electrochim. Acta* **313**, 1–9 (2019).

⁶²Y. Zhang, X. Zhang, Y. Ling, F. Li, A. M. Bond, and J. Zhang, "Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO₂ reduction performance," *Angew. Chem. Int. Ed.* **57**(40), 13283–13287 (2018).

⁶³S. X. Leong, C. C. Mayorga-Martinez, X. Chia, J. Luxa, Z. Sofer, and M. Pumera, "2H → 1T phase change in direct synthesis of WS₂ nanosheets via solution-based electrochemical exfoliation and their catalytic properties," *ACS Appl. Mater. Interfaces* **9**(31), 26350–26356 (2017).

⁶⁴X. Zhao *et al.*, "Electrochemical exfoliation of graphene as an anode material for ultra-long cycle lithium ion batteries," *J. Phys. Chem. Solids* **139**, 109301 (2020).

⁶⁵Y. Munaiah, P. Ragupathy, and V. K. Pillai, "Single-step synthesis of halogenated graphene through electrochemical exfoliation and its utilization as electrodes for zinc bromine redox flow battery," *J. Electrochem. Soc.* **163**(14), A2899–A2910 (2016).

⁶⁶H. Shuai *et al.*, "Electrochemically exfoliated phosphorene–graphene hybrid for sodium-ion batteries," *Small Methods* **3**(2), 1800328 (2019).

⁶⁷Y. Yang *et al.*, "Controllable fabrication of two-dimensional layered transition metal oxides through electrochemical exfoliation of non-van der Waals metals for rechargeable zinc-ion batteries," *Chem. Eng. J.* **408**, 127247 (2021).

⁶⁸A. Jamaluddin *et al.*, "Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries," *Carbon* **197**, 141–151 (2022).

⁶⁹A. Ejigu *et al.*, "On the role of transition metal salts during electrochemical exfoliation of graphite: Antioxidants or metal oxide decorators for energy storage applications," *Adv. Funct. Mater.* **28**(48), 1804357 (2018).

⁷⁰Z. Liu, Z.-S. Wu, S. Yang, R. Dong, X. Feng, and K. Müllen, "Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene," *Adv. Mater.* **28**(11), 2217–2222 (2016).

⁷¹Z. Dou, Z. Qin, Y. Shen, S. Hu, N. Liu, and Y. Zhang, "High-performance flexible supercapacitor based on carbon cloth through in-situ electrochemical exfoliation and re-deposition in neutral electrolyte," *Carbon* **153**, 617–624 (2019).

⁷²P. Das, L. Zhang, S. Zheng, X. Shi, Y. Li, and Z.-S. Wu, "Rapid fabrication of high-quality few-layer graphene through gel-phase electrochemical exfoliation of graphite for high-energy-density ionogel-based micro-supercapacitors," *Carbon* **196**, 203–212 (2022).

⁷³M. B. Erande, M. S. Pawar, and D. J. Late, "Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets," *ACS Appl. Mater. Interfaces* **8**(18), 11548–11556 (2016).

⁷⁴G. Maccaferri *et al.*, "Highly sensitive amperometric sensor for morphine detection based on electrochemically exfoliated graphene oxide. Application in screening tests of urine samples," *Sens. Actuators, B* **281**, 739–745 (2019).

⁷⁵J. Li *et al.*, "Electrochemical exfoliation of naturally occurring layered mineral stibnite (Sb₂S₃) for highly sensitive and fast room-temperature acetone sensing," *Adv. Mater. Interfaces* **9**(19), 2200605 (2022).

⁷⁶P. Shukla, P. Saxena, D. Madhwal, N. Bhardwaj, and V. K. Jain, "Battery-operated resistive sensor based on electrochemically exfoliated pencil graphite core for room temperature detection of LPG," *Sens. Actuators, B* **343**, 130133 (2021).

⁷⁷M. U. Arshad *et al.*, "Multi-functionalized fluorinated graphene composite coating for achieving durable electronics: Ultralow corrosion rate and high electrical insulating passivation," *Carbon* **195**, 141–153 (2022).

⁷⁸K. Parvez *et al.*, "Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics," *ACS Nano* **7**(4), 3598–3606 (2013).

⁷⁹Y. Kim, Y. J. Kwon, J.-Y. Hong, M. Park, C. J. Lee, and J. U. Lee, "Spray coating of electrochemically exfoliated graphene/conducting polymer hybrid electrode for organic field effect transistor," *J. Ind. Eng. Chem.* **68**, 399–405 (2018).

⁸⁰A. Ejigu, I. A. Kinloch, and R. A. W. Dryfe, "Single stage simultaneous electrochemical exfoliation and functionalization of graphene," *ACS Appl. Mater. Interfaces* **9**(1), 710–721 (2017).

⁸¹Y. Zhuo, I. A. Kinloch, and M. A. Bissett, "Simultaneous electrochemical exfoliation and chemical functionalization of graphene for supercapacitor electrodes," *J. Electrochem. Soc.* **167**(11), 110531 (2020).

⁸²S. Fang, Y. Lin, and Y. H. Hu, "Recent advances in green, safe, and fast production of graphene oxide via electrochemical approaches," *ACS Sustainable Chem. Eng.* **7**(15), 12671–12681 (2019).

⁸³N. Parveen, M. O. Ansari, S. A. Ansari, and M. H. Cho, "Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials," *J. Mater. Chem. A* **4**(1), 233–240 (2016).

⁸⁴X. Lu and C. Zhao, "Controlled electrochemical intercalation, exfoliation and in situ nitrogen doping of graphite in nitrate-based protic ionic liquids," *Phys. Chem. Chem. Phys.* **15**(46), 20005–20009 (2013).

⁸⁵V. Thirumal *et al.*, "Single pot electrochemical synthesis of functionalized and phosphorus doped graphene nanosheets for supercapacitor applications," *J. Mater. Sci.: Mater. Electron.* **26**(8), 6319–6328 (2015).

⁸⁶P. Shi *et al.*, "Simultaneously exfoliated boron-doped graphene sheets to encapsulate sulfur for applications in lithium-sulfur batteries," *ACS Sustainable Chem. Eng.* **6**(8), 9661–9670 (2018).

⁸⁷A. Ejigu, B. Miller, I. A. Kinloch, and R. A. W. Dryfe, "Optimisation of electrolytic solvents for simultaneous electrochemical exfoliation and functionalisation of graphene with metal nanostructures," *Carbon* **128**, 257–266 (2018).

⁸⁸W. Wu, C. Zhang, and S. Hou, "Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets," *J. Mater. Sci.* **52**(18), 10649–10660 (2017).

⁸⁹Y. Fang *et al.*, "Janus electrochemical exfoliation of two-dimensional materials," *J. Mater. Chem. A* **7**(45), 25691–25711 (2019).

⁹⁰Y. Zhang and Y. Xu, "Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene," *Adv. Funct. Mater.* **29**(37), 1902171 (2019).

⁹¹M. H. Dalal, C.-Y. Lee, and G. G. Wallace, "Simultaneous anodic and cathodic exfoliation of graphite electrodes in an aqueous solution of inorganic salt," *ChemElectroChem* **8**(16), 3168–3173 (2021).

⁹²H. Hashimoto, Y. Muramatsu, Y. Nishina, and H. Asoh, "Bipolar anodic electrochemical exfoliation of graphite powders," *Electrochem. Commun.* **104**, 106475 (2019).

⁹³S. M. Tan, C. C. Mayorga-Martinez, Z. Sofer, and M. Pumera, "Bipolar electrochemistry exfoliation of layered metal chalcogenides Sb₂S₃ and Bi₂S₃ and their hydrogen evolution applications," *Chem. Eur. J.* **26**(29), 6479–6483 (2020).

⁹⁴A. Rabiei Baboukani, I. Khakpour, V. Drozd, A. Allagui, and C. Wang, "Single-step exfoliation of black phosphorus and deposition of phosphorene via bipolar electrochemistry for capacitive energy storage application," *J. Mater. Chem. A* **7**(44), 25548–25556 (2019).

⁹⁵G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao, "Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation," *Carbon* **47**(14), 3242–3246 (2009).

⁹⁶C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, and L.-J. Li, "High-quality thin graphene films from fast electrochemical exfoliation," *ACS Nano* **5**(3), 2332–2339 (2011).

⁹⁷F. Kang, Y. Leng, and T.-Y. Zhang, "Influences of H₂O₂ on synthesis of H₂SO₄-GICs," *J. Phys. Chem. Solids* **57**(6), 889–892 (1996).

⁹⁸K. Parvez *et al.*, "Exfoliation of graphite into graphene in aqueous solutions of inorganic salts," *J. Am. Chem. Soc.* **136**(16), 6083–6091 (2014).

⁹⁹F. Beck, J. Jiang, and H. Krohn, "Potential oscillations during galvanostatic overoxidation of graphite in aqueous sulphuric acids," *J. Electroanal. Chem.* **389**(1), 161–165 (1995).

¹⁰⁰F. Beck, H. Junge, and H. Krohn, "Graphite intercalation compounds as positive electrodes in galvanic cells," *Electrochim. Acta* **26**(7), 799–809 (1981).

¹⁰¹C. A. Goss, J. C. Brumfield, E. A. Irene, and R. W. Murray, "Imaging the incipient electrochemical oxidation of highly oriented pyrolytic-graphite," *Anal. Chem.* **65**(10), 1378–1389 (1993) (in English).

¹⁰²H. Lee, J. I. Choi, J. Park, S. S. Jang, and S. W. Lee, "Role of anions on electrochemical exfoliation of graphite into graphene in aqueous acids," *Carbon* **167**, 816–825 (2020).

¹⁰³S. Yang *et al.*, "Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene," *J. Am. Chem. Soc.* **137**(43), 13927–13932 (2015).

¹⁰⁴C.-H. Chen, S.-W. Yang, M.-C. Chuang, W.-Y. Woon, and C.-Y. Su, "Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation," *Nanoscale* **7**(37), 15362–15373 (2015).

¹⁰⁵E. H. Joo *et al.*, "Electrochemically preparation of functionalized graphene using sodium dodecyl benzene sulfonate (SDBS)," *Adv. Mater. Res.* **747**, 246–249 (2013).

¹⁰⁶J. P. Mensing *et al.*, "Facile preparation of graphene–metal phthalocyanine hybrid material by electrolytic exfoliation," *J. Mater. Chem.* **22**(33), 17094–17099 (2012).

¹⁰⁷P. Khanra, T. Kuila, S. H. Bae, N. H. Kim, and J. H. Lee, "Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application," *J. Mater. Chem.* **22**(46), 24403–24410 (2012).

¹⁰⁸N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, "One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite," *Adv. Funct. Mater.* **18**(10), 1518–1525 (2008).

¹⁰⁹S. Pei, Q. Wei, K. Huang, H.-M. Cheng, and W. Ren, "Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation," *Nat. Commun.* **9**(1), 145 (2018).

¹¹⁰A. Ambrosi and M. Pumera, "Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications," *Chem. Eur. J.* **22**(1), 153–159 (2016).

¹¹¹F. Zhou *et al.*, "Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors," *J. Am. Chem. Soc.* **140**(26), 8198–8205 (2018).

¹¹²K. S. Rao, J. Senthilnathan, Y.-F. Liu, and M. Yoshimura, "Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite," *Sci. Rep.* **4**(1), 4237 (2014).

¹¹³Z. Liu *et al.*, "Water-dispersed high-quality graphene: A green solution for efficient energy storage applications," *ACS Nano* **13**(8), 9431–9441 (2019).

¹¹⁴S. Yang *et al.*, "Ultrafast delamination of graphite into high-quality graphene using alternating currents," *Angew. Chem. Int. Ed.* **56**(23), 6669–6675 (2017).

¹¹⁵X. You, N. Liu, C. J. Lee, and J. J. Pak, "An electrochemical route to MoS₂ nanosheets for device applications," *Mater. Lett.* **121**, 31–35 (2014).

¹¹⁶N. Liu, P. Kim, J. H. Kim, J. H. Ye, S. Kim, and C. J. Lee, "Large-area atomically thin MoS₂ nanosheets prepared using electrochemical exfoliation," *ACS Nano* **8**(7), 6902–6910 (2014).

¹¹⁷A. Ambrosi, Z. Sofer, and M. Pumera, "Electrochemical exfoliation of layered black phosphorus into phosphorene," *Angew. Chem. Int. Ed.* **56**(35), 10443–10445 (2017).

¹¹⁸F. Li *et al.*, "Unlocking the electrocatalytic activity of antimony for CO₂ reduction by two-dimensional engineering of the bulk material," *Angew. Chem. Int. Ed.* **56**(46), 14718–14722 (2017).

¹¹⁹J. Yang *et al.*, "Free-standing black phosphorus thin films for flexible quasi-solid-state micro-supercapacitors with high volumetric power and energy density," *ACS Appl. Mater. Interfaces* **11**(6), 5938–5946 (2019).

¹²⁰A. Ambrosi, Z. Sofer, J. Luxa, and M. Pumera, "Exfoliation of layered topological insulators Bi₂Se₃ and Bi₂Te₃ via electrochemistry," *ACS Nano* **10**(12), 11442–11448 (2016).

¹²¹S. Yang *et al.*, "Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system," *Angew. Chem. Int. Ed.* **57**(47), 15491–15495 (2018).

¹²²W. Wu, C. Zhang, L. Zhou, S. Hou, and L. Zhang, "High throughput synthesis of defect-rich MoS₂ nanosheets via facile electrochemical exfoliation for fast high-performance lithium storage," *J. Colloid Interface Sci.* **542**, 263–268 (2019).

¹²³X. Pan *et al.*, "Electrochemically exfoliating MoS₂ into atomically thin planar-stacking through a selective lateral reaction pathway," *Adv. Funct. Mater.* **31**(8), 2007840 (2021).

¹²⁴A. Kumar and P. K. Ahluwalia, "Electronic structure of transition metal dichalcogenides monolayers 1H-MX₂ (M = Mo, W; X = S, Se, Te) from ab initio theory: New direct band gap semiconductors," *Eur. Phys. J. B* **85**(6), 186 (2012).

¹²⁵J. E. Padilha, H. Peelaers, A. Janotti, and C. G. Van de Walle, "Nature and evolution of the band-edge states in MoS₂: From monolayer to bulk," *Phys. Rev. B* **90**(20), 205420 (2014).

¹²⁶H. Liu *et al.*, "Phosphorene: An unexplored 2D semiconductor with a high hole mobility," *ACS Nano* **8**(4), 4033–4041 (2014).

¹²⁷H. Liu, Y. Du, Y. Deng, and P. D. Ye, "Semiconducting black phosphorus: Synthesis, transport properties and electronic applications," *Chem. Soc. Rev.* **44**(9), 2732–2743 (2015).

¹²⁸L. Li *et al.*, "Direct observation of the layer-dependent electronic structure in phosphorene," *Nat. Nanotechnol.* **12**(1), 21–25 (2017).

¹²⁹E. Gaufrès *et al.*, "Momentum-resolved dielectric response of free-standing mono-, bi-, and trilayer black phosphorus," *Nano Lett.* **19**(11), 8303–8310 (2019).

¹³⁰M. Naguib *et al.*, "Two-dimensional nanocrystals produced by exfoliation of Ti₃AlC₂," *Adv. Mater.* **23**(37), 4248–4253 (2011).

¹³¹M. W. Barsoum, "The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates," *Prog. Solid State Chem.* **28**(1), 201–281 (2000).

¹³²M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, "25th anniversary article: MXenes: A new family of two-dimensional materials," *Adv. Mater.* **26**(7), 992–1005 (2014).

¹³³M. Naguib *et al.*, "Two-dimensional transition metal carbides," *ACS Nano* **6**(2), 1322–1331 (2012).

¹³⁴M. Alhabeb *et al.*, "Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti₃C₂T_x MXene)," *Chem. Mater.* **29**(18), 7633–7644 (2017).

¹³⁵W. Sun *et al.*, "Electrochemical etching of Ti₂AlC to Ti₂CT_x (MXene) in low-concentration hydrochloric acid solution," *J. Mater. Chem. A* **5**(41), 21663–21668 (2017).

¹³⁶T. Yin *et al.*, "Synthesis of Ti₃C₂F_x MXene with controllable fluorination by electrochemical etching for lithium-ion batteries applications," *Ceram. Int.* **47**(20), 28642–28649 (2021).

¹³⁷J. R. Dahn, R. Fong, and M. J. Spoon, "Suppression of staging in lithium-intercalated carbon by disorder in the host," *Phys. Rev. B* **42**(10), 6424–6432 (1990).

¹³⁸Z. Zeng *et al.*, "Single-layer semiconducting nanosheets: High-yield preparation and device fabrication," *Angew. Chem. Int. Ed.* **50**(47), 11093–11097 (2011).

¹³⁹W. Zhang, L. Sun, J. M. V. Nsanzimana, and X. Wang, "Lithiation/delithiation synthesis of few layer silicene nanosheets for rechargeable Li–O₂ Batteries," *Adv. Mater.* **30**(15), 1705523 (2018).

¹⁴⁰Y. L. Zhong and T. M. Swager, "Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization," *J. Am. Chem. Soc.* **134**(43), 17896–17899 (2012).

¹⁴¹Y. Yang *et al.*, "Electrochemically triggered graphene sheets through cathodic exfoliation for lithium ion batteries anodes," *RSC Adv.* **3**(36), 16130–16135 (2013).

¹⁴²A. J. Cooper, N. R. Wilson, I. A. Kinloch, and R. A. W. Dryfe, "Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations," *Carbon* **66**, 340–350 (2014).

¹⁴³Y. Zhang, Y. Xu, and R. Liu, "Regulating cations and solvents of the electrolyte for ultra-efficient electrochemical production of high-quality graphene," *Carbon* **176**, 157–167 (2021).

¹⁴⁴S. Yang *et al.*, "A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes," *Angew. Chem. Int. Ed.* **57**(17), 4677–4681 (2018).

¹⁴⁵J. Li *et al.*, "Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene," *Chem. Mater.* **30**(8), 2742–2749 (2018).

¹⁴⁶J. Li *et al.*, "Printable two-dimensional superconducting monolayers," *Nat. Mater.* **20**(2), 181–187 (2021).

¹⁴⁷M. H. Dalal, C.-Y. Lee, and G. G. Wallace, "Cathodic exfoliation of graphite into graphene nanoplatelets in aqueous solution of alkali metal salts," *J. Mater. Sci.* **56**(4), 3612–3622 (2021).

¹⁴⁸S. García-Dalí *et al.*, "Aqueous cathodic exfoliation strategy toward solution-processable and phase-preserved MoS₂ nanosheets for energy storage and catalytic applications," *ACS Appl. Mater. Interfaces* **11**(40), 36991–37003 (2019).

¹⁴⁹M. Zhou, J. Tang, Q. Cheng, G. Xu, P. Cui, and L.-C. Qin, "Few-layer graphene obtained by electrochemical exfoliation of graphite cathode," *Chem. Phys. Lett.* **572**, 61–65 (2013).

¹⁵⁰Y. Yang, F. Lu, Z. Zhou, W. Song, Q. Chen, and X. Ji, "Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties," *Electrochim. Acta* **113**, 9–16 (2013).

¹⁵¹I. Jeon, B. Yoon, M. He, and T. M. Swager, "Hyperstage graphite: Electrochemical synthesis and spontaneous reactive exfoliation," *Adv. Mater.* **30**(3), 1704538 (2018).

¹⁵²Z. Lin *et al.*, "Solution-processable 2D semiconductors for high-performance large-area electronics," *Nature* **562**(7726), 254–258 (2018).

¹⁵³P. Zhang *et al.*, "Electrochemically exfoliated high-quality 2H-MoS₂ for multi-flake thin film flexible biosensors," *Small* **15**(23), 1901265 (2019).

¹⁵⁴W. Yu *et al.*, "Chemically exfoliated VSe₂ monolayers with room-temperature ferromagnetism," *Adv. Mater.* **31**(40), 1903779 (2019).

¹⁵⁵L. Lu *et al.*, "Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: A promising optical Kerr media with enhanced stability," *Adv. Opt. Mater.* **5**(17), 1700301 (2017).

¹⁵⁶Z. Huang, H. Hou, Y. Zhang, C. Wang, X. Qiu, and X. Ji, "Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode," *Adv. Mater.* **29**(34), 1702372 (2017).

¹⁵⁷M. Mao, M. Wang, J. Hu, G. Lei, S. Chen, and H. Liu, "Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids," *Chem. Commun.* **49**(46), 5301–5303 (2013).

¹⁵⁸J. C. Bradley, J. Crawford, K. Ernazarova, M. McGee, and S. G. Stephens, "Wire formation on circuit boards using spatially coupled bipolar electrochemistry," *Adv. Mater.* **9**(15), 1168–1171 (1997) (in English).

¹⁵⁹S. E. Fosdick, K. N. Knust, K. Scida, and R. M. Crooks, "Bipolar electrochemistry," *Angew. Chem. Int. Ed.* **52**(40), 10438–10456 (2013).

¹⁶⁰N. Shida, Y. Zhou, and S. Inagi, "Bipolar electrochemistry: A powerful tool for electrifying functional material synthesis," *Acc. Chem. Res.* **52**(9), 2598–2608 (2019).

¹⁶¹F. Mavré *et al.*, "Bipolar electrodes: A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems," *Anal. Chem.* **82**(21), 8766–8774 (2010).

¹⁶²J. F. L. Duval, G. K. Huijs, W. F. Threels, J. Lyklema, and H. P. van Leeuwen, "Faradaic depolarization in the electrokinetics of the metal–electrolyte solution interface," *J. Colloid Interface Sci.* **260**(1), 95–106 (2003).

¹⁶³J. F. L. Duval, M. Minor, J. Cecilia, and H. P. van Leeuwen, "Coupling of lateral electric field and transversal faradaic processes at the conductor/electrolyte solution interface," *J. Phys. Chem. B* **107**(17), 4143–4155 (2003).

¹⁶⁴J. F. L. Duval, J. Buffel, and H. P. van Leeuwen, "Quasi-reversible Faradaic depolarization processes in the electrokinetics of the metal/solution interface," *J. Phys. Chem. B* **110**(12), 6081–6094 (2006).

¹⁶⁵A. Allagui, M. A. Abdelkareem, H. Alawadhi, and A. S. Elwakil, "Reduced graphene oxide thin film on conductive substrates by bipolar electrochemistry," *Sci. Rep.* **6**(1), 21282 (2016).

¹⁶⁶A. Allagui, J. M. Ashraf, M. Khalil, M. A. Abdelkareem, A. S. Elwakil, and H. Alawadhi, "All-solid-state double-layer capacitors using binderless reduced graphene oxide thin films prepared by bipolar electrochemistry," *ChemElectroChem* **4**(8), 2084–2090 (2017).

¹⁶⁷I. Khakpour, A. Rabiei Baboukani, A. Allagui, and C. Wang, "Bipolar exfoliation and in situ deposition of high-quality graphene for supercapacitor application," *ACS Appl. Energy Mater.* **2**(7), 4813–4820 (2019).

¹⁶⁸E. T. Berglund, M. E. P. Kristensen, S. Stambula, G. A. Botton, S. U. Pedersen, and K. Daasbjerg, "Efficient graphene production by combined bipolar electrochemical intercalation and high-shear exfoliation," *ACS Omega* **2**(10), 6492–6499 (2017).

¹⁶⁹C. C. Mayorga-Martinez, B. Khezri, A. Y. S. Eng, Z. Sofer, P. Ulbrich, and M. Pumera, "Bipolar electrochemical synthesis of WS₂ nanoparticles and their application in magneto-immunosandwich assay," *Adv. Funct. Mater.* **26**(23), 4094–4098 (2016).

¹⁷⁰C. C. Mayorga-Martinez, N. Mohamad Latiff, A. Y. S. Eng, Z. Sofer, and M. Pumera, "Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation," *Anal. Chem.* **88**(20), 10074–10079 (2016).

¹⁷¹R. J. Toh, C. C. Mayorga-Martinez, Z. Sofer, and M. Pumera, "MoSe₂ Nanolabels for electrochemical immunoassays," *Anal. Chem.* **88**(24), 12204–12209 (2016).

¹⁷²Y. Wang, C. C. Mayorga-Martinez, X. Chia, Z. Sofer, and M. Pumera, "Nonconductive layered hexagonal boron nitride exfoliation by bipolar electrochemistry," *Nanoscale* **10**(15), 7298–7303 (2018).

¹⁷³M. Armand and J. M. Tarascon, "Building better batteries," *Nature* **451**(7179), 652–657 (2008).

¹⁷⁴Y. L. Liang and Y. Yao, "Positioning organic electrode materials in the battery landscape," *Joule* **2**, 1690–1706 (2018).

¹⁷⁵J. X. Nan *et al.*, "Nanoengineering of 2D MXene-based materials for energy storage applications," *Small* **17**(9), 1902085 (2021).

¹⁷⁶A. Jamaluddin, B. Umesh, F. M. Chen, J. K. Chang, and C. Y. Su, "Facile synthesis of core-shell structured Si at graphene balls as a high-performance anode for lithium-ion batteries," *Nanoscale* **12**(17), 9616–9627 (2020) (in English).

¹⁷⁷Z. H. Sun *et al.*, "A practical Li-ion full cell with a high-capacity cathode and electrochemically exfoliated graphene anode: Superior electrochemical and low-temperature performance," *ACS Appl. Energy Mater.* **2**(1), 486–492 (2019).

¹⁷⁸D. L. Vu, Y. J. Kwon, S. C. Lee, J. U. Lee, and J. W. Lee, "Exfoliated graphene nanosheets as high-power anodes for lithium-ion batteries," *Carbon Lett.* **29**(1), 81–87 (2019) (in English).

¹⁷⁹G. Wang *et al.*, "Vertically aligned MoS₂ nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage," *Adv. Energy Mater.* **8**(8), 1702254 (2018).

¹⁸⁰T. N. J. I. Edison *et al.*, "Electrochemically exfoliated graphene sheets as electrode material for aqueous symmetric supercapacitors," *Surf. Coat. Technol.* **416**, 127150 (2021).

¹⁸¹J.-K. Chih, A. Jamaluddin, F. Chen, J.-K. Chang, and C.-Y. Su, "High energy density of all-screen-printable solid-state microsupercapacitors integrated by graphene/CNTs as hierarchical electrodes," *J. Mater. Chem. A* **7**(20), 12779–12789 (2019).

¹⁸²A. A. B. Hamra, H. N. Lim, W. K. Chee, and N. M. Huang, "Electro-exfoliating graphene from graphite for direct fabrication of supercapacitor," *Appl. Surf. Sci.* **360**, 213–223 (2016).

¹⁸³T. Huang *et al.*, "Boosting capacitive sodium-ion storage in electrochemically exfoliated graphite for sodium-ion capacitors," *ACS Appl. Mater. Interfaces* **12**(47), 52635–52642 (2020).

¹⁸⁴M. Jing, T. Wu, Y. Zhou, X. Li, and Y. Liu, "Nitrogen-doped graphene via in-situ alternating voltage electrochemical exfoliation for supercapacitor application," *Front. Chem. Original Res.* **8**, 428 (2020) (in English).

¹⁸⁵R. N. Muthu and S. S. V. Tatiparti, "Electrode and symmetric supercapacitor device performance of boron-incorporated reduced graphene oxide synthesized by electrochemical exfoliation," *Energy Storage* **2**(4), e134 (2020).

¹⁸⁶R. Hu, Z. Huang, B. Wang, H. Qiao, and X. Qi, "Electrochemical exfoliation of molybdenum disulfide nanosheets for high-performance supercapacitors," *J. Mater. Sci.-Mater. Electron.* **32**(6), 7237–7248 (2021).

¹⁸⁷F. Li *et al.*, "Advanced composite 2D energy materials by simultaneous anodic and cathodic exfoliation," *Adv. Energy Mater.* **8**(12), 1702794 (2018).

¹⁸⁸S. Mukherjee *et al.*, "Exfoliated transition metal dichalcogenide nanosheets for supercapacitor and sodium ion battery applications," *R. Soc. Open Sci.* **6**(8), 190437 (2019).

¹⁸⁹J. W. Yan *et al.*, "Multilayer graphene sheets converted directly from anthracite in the presence of molten iron and their applications as anode for lithium ion batteries," *Synth. Met.* **263**, 116364 (2020) (in English).

¹⁹⁰Y. Yang, S. Leng, and W. Shi, "Electrochemical exfoliation of porous antimonene as anode materials for sodium-ion batteries," *Electrochem. Commun.* **126**, 107025 (2021).

¹⁹¹C. Shen *et al.*, "Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries," *J. Mater. Chem. A* **8**(1), 453–460 (2020).

¹⁹²L. He *et al.*, "Electrochemical exfoliation and functionalization of black phosphorene to enhance mechanical properties and flame retardancy of water-borne polyurethane," *Composites, Part B* **202**, 108446 (2020).

¹⁹³L. Mei *et al.*, "Simultaneous electrochemical exfoliation and covalent functionalization of MoS₂ membrane for ion sieving," *Adv. Mater.* **34**(26), 2201416 (2022).

¹⁹⁴D. Alliata, R. Kötz, O. Haas, and H. Siegenthaler, "In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte," *Langmuir* **15**(24), 8483–8489 (1999).

¹⁹⁵F. P. Campana, H. Buqa, P. Novák, R. Kötz, and H. Siegenthaler, "In situ atomic force microscopy study of exfoliation phenomena on graphite basal planes," *Electrochim. Commun.* **10**(10), 1590–1593 (2008).

¹⁹⁶Z. Xia, V. Bellani, J. Sun, and V. Palermo, "Electrochemical exfoliation of graphite in H₂SO₄, Li₂SO₄ and NaClO₄ solutions monitored in situ by Raman microscopy and spectroscopy," *Faraday Discuss.* **227**, 291–305 (2021).