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Abstract 
The purpose of this study was to investigate urban heat 
island (UHI) effects on building energy consumption and 
energy costs for dwellings in a neighbourhood of Des 
Moines, Iowa, USA. The innovation we present is a 
sensitivity analysis rather than a traditional simulation. 
Parameters in this analysis included building materials, 
trees, and two sets of weather data, which we analysed 
using the Urban Modelling Interface. Including the UHI 
effect decreased annual heating loads by 7.5% for 
buildings with trees present, and increased annual cooling 
load by 21.2 %. In naturally-ventilated buildings, UHI 
effects reduced annual heating load by 8.5%. 
Key Innovations 

• Impact of UHI on building energy consumption 
was analysed.  

• Remote sensing was used to provide weather 
data for urban heat island (UHI) effects on 
building energy consumption. 

• A sensitivity analysis was conducted to 
determine which parameters are important in 
controlling model behaviour. 

Practical Implications 
This study can support designers and policymakers in 
understanding the effect of the urban heat island (UHI) on 
urban climate and building energy consumption. This 
study assesses the effect of the urban heat island (UHI) in 
a climate with cold winters and warm, humid summers. 
The results can be used by decision-makers and designers 
to prioritize mitigation strategies. 
Introduction 
Investigations of urban heat island (UHI) impact on 
building energy consumption are of central importance to 
sustainable development in a changing climate. Warmer 
urban areas lead to increases in cooling loads, and those 
loads in turn increase carbon dioxide emissions. 
Reviewing previous research, Li et al. (2019) reported 
that UHI could result in a median increase of 19.0% in 
cooling energy consumption and a median decrease of 
18.7% in heating energy consumption based on multiple 
studies. Different approaches have been used to assess the 
UHI effect on building energy consumption predictions 
via modelling and simulation. Souza et al. (2009) used 
actual measurements taken at 40 urban reference points in 
a study area, a medium-sized city, and compared their 

results to rural temperature data collected at an urban 
meteorological station. Doddaballapur and colleagues 
(2011) gathered and processed annual recorded weather 
data for the period 1950-2005 to study the impact of 
naturally increasing night-time minimum low 
temperatures in the severely hot summer months on 
typical buildings in the Phoenix metropolitan area. The 
study simulations were based on 56 years of weather data 
(actual measured data) and typical meteorological year 
data (TMY1, TMY2, and TMY3). They also used three 
additional climate change timeline scenarios (extending 
to 2020, 2050 and 2080) to understand the predicted effect 
of climate change in the study area. Streutker (2003) 
adopted a novel approach of using thermal satellite 
imagery (a remote sensing technique) to evaluate the 
level, expansion, spatial extent, seasonal and diurnal 
pattern of the UHI for Houston, TX, USA for the period 
1985 to 2001. Li  and co-workers (2009) used an 
integrated geographic information system and remote 
sensing (GIS-RS) approach, including spatial 
autocorrelation and semi-variance analyses to 
quantitatively characterize patterns of recent UHI effects 
in the Shanghai, China metropolitan area for the period 
1997 to 2004.  
Wang et al. (2019) used a Linear Spectral Mixture Model 
to extract land cover information. They used this model to 
study the effects of urban land cover types on land surface 
temperature (LST) and heat budget components based on 
Landsat 8 remote sensing images of Shenzhen, China. 
Litardo et al. (2020) quantified the UHI effect in Duran, 
Ecuador, an example of a tropical climate study area. 
They used the k-means clustering technique, a statistical 
method to classify 28 randomly-sampled urban areas. 
Based on this method, they classified the areas into four 
clusters. They then determined parameters for urban area 
characteristics (ratios for site cover, façade-to-site, 
weighted average building height, tree cover, and 
vegetation cover), thermal properties of building 
materials (mainly albedo), and non-building sensible 
anthropogenic heat (primarily from traffic). They also 
used the Urban Weather Generator (UWG) tool to 
estimate the UHI intensity of each cluster. Finally, the 
impact of UHI on energy consumption of buildings was 
presented using TRNSYS 17 software. In an additional 
study, Hashemi and colleagues (2020) used a novel 
method to investigate the effect of UHI on building 
energy consumption prediction. Their findings indicated 
UHI effects on building energy consumption in the early 
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stages of the design process. Their method coupled use of 
the Local Climate Zones (LCZs) classification scheme 
and the Urban Weather Generator (UWG) model to 
predict UHI effects on energy consumption for different 
building types in the local climate zone in Philadelphia, 
PA, USA. 
Previous studies varied in terms of investigators’ 
consideration of the UHI effect and the need to use a 
secondary tool, such as an urban weather generator, to 
create/simulate weather data. The contribution of this 
paper is to use remote sensing-derived data to develop the 
Energy Plus Weather (EPW) input file to compute UHI 
effects on building energy consumption. The study 
presented here is based on integration of gridded daily 
datasets of maximum and minimum air temperature, 
which were created using geographically weighted 
regression models driven by gap-filled daily land surface 
temperature (LST) and elevation data. First, daily 1-km 
resolution seamless Moderate Resolution Imaging 
Spectroradiometer (MODIS) LSTs were built using a 
hybrid gap-filling method. Then, geographically 
weighted regression models, driven by measured air 
temperature at weather stations and gap-filled daily LSTs 
and elevations were used to estimate daily maximum and 
minimum air temperature for 1-km grids  (Li et al., 2018a; 
Li et al., 2018b). 
The goal of this study was to optimize an approach to 
accurately include UHI in weather data preparation for 
urban energy models. The current study is based on a 
sensitivity analysis approach. The primary goal for 
conducting a sensitivity analysis is to determine which of 
the parameters are important in controlling model 
behaviour (Reed et al., 1984). Sensitivity analysis is 
particularly useful to assess the effect of different 
variables influencing building energy consumption. To 
identify the source for the majority of variation in the 
simulation results, our study considered these variables: 
building materials, outdoor vegetation and weather data. 
In addition, buildings were divided into two groups: air-
conditioned (AC) and naturally ventilated (NV) 
structures. Sensitivity analysis is used here to refer to the 
generic approach of using different techniques to quantify 
how variability in model output can be apportioned to 
changes in model input parameters (e.g., Kristensen et al., 
2016). 
Understanding how systems respond to input values can 
reveal the effect of UHI on building energy consumption, 
in essence serving as a quality assurance tool. Confidence 
in the model will increase if it responds as expected to 
changes in parameter values. Unexpected behaviour, on 
the other hand, could lead to re-evaluation and 
modification of the model and its parameters. Sensitivity 
analysis can reveal the relationships between input 
parameters and predictions, and provide an opportunity to 
examine model behaviour under a variety of conditions 
(e.g., Reid et al.,  1993). In the present study, we introduce 
the use of satellite-based weather data for estimating the 
UHI effect. Two sets of simulations were preformed using 
data for a residential neighbourhood in the US, Midwest 

using the Urban Modelling Interface (umi) to investigate 
how UHI affects annual heating and cooling loads.  
We sought to describe effects of the UHI on energy 
consumption and energy bills in a study area which is 
representative of regions characterized by cold winters 
and warm, humid summers. Future studies could also 
compare the effect of changes in climate conditions.  
Methods 
This project is a part of an interdisciplinary research effort 
to create a system-of-systems analytical framework to 
integrate social and biophysical models for urban Food-
Energy-Water System (FEWS). We use an innovative co-
simulation approach to describe current and predict future 
conditions, with an emphasis on local (urban and urban-
adjacent) food production. In the research presented here, 
the effect of UHI on building energy consumption was 
investigated to complement previous research (Koupaei et 
al., 2020). In this case study, the impacts of UHI on 
buildings in the Capitol East neighbourhood (Des Moines, 
Iowa, USA) are investigated through a sensitivity analysis 
(Figure 1). This neighbourhood is bounded by an 
interstate highway (I-235) on the North, railroad tracks on 
the east and south, and E.14th Street on the west. There 
are 340 buildings in the portion of the neighbourhood we 
included in our study. Weather data collected in 2010 are 
used in this simulation. The annual weather summary for 
Iowa in 2010 shows that this was the 66th coolest and 
second wettest year among 138 years of state records 
(Iowa Department of Agriculture and Land Stewardship, 
2021). As noted earlier, several scholars have evaluated 
the effect of UHI on building energy consumption. This 
study focuses on how UHI affects energy consumption 
and residential energy costs under this set of climate 
conditions. In general, the Köppen Climate Classification 
subtype for this region is "Dfa" (Hot Summer Continental 
Climate). The average temperature for the year in Des 
Moines is 50.9°F (10.5°C). The warmest month is July, 
with an average temperature of 76.3°F (24.6°C). The 
coolest month is January, with an average temperature of 
22.6°F (-5.2°C). The highest recorded temperature in Des 
Moines was 108.0°F (42.2°C), recorded in August 2020. 
The lowest recorded temperature was -26.0°F (-32.2°C) 
in February 2020 (Des Moines, Iowa Köppen Climate 
Classification, 2021). 
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Figure 1: Capitol East Neighborhood, Des Moines, IA. 

Image created by S. Ghiasi based on City of Des Moines 
GIS data (City of Des Moines, GIS Data, 2021)  

We used Grasshopper 3-D, a Meerkat plug-in, and Arc- 
GIS Pro to create a 3-D model of the neighbourhood 
(Figure 2). 

 
Figure 2:  A 3-D model of the study portion of the 

neighborhood created in Rhino-Grasshopper 
We used the urban modelling interface (umi) for 
simulation of energy consumption. This modeling 
program uses a Windows-based NURBS modeler 
(Rhinoceros) and EnergyPlus for thermal calculations 
(Reinhart et al., 2013; DOE, 2021). The first step to 
develop the 3-D model of the neighbourhood was to 
obtain basic information for building properties based on 
GIS shapefiles acquired from the City of Des Moines 
Assessor’s office. That included the building footprints, 
elevations, material characteristics, thermal conditioning 
systems (HVAC), and year of construction for the 
structure on each parcel. Trees were modelled based on 
the shape and size of their canopies, trunk height, species, 
and their exact position per a spatially explicit 
comprehensive inventory that was used to integrate tree 
inventory data into an urban energy model for the same 

study area (Hashemi et al., 2018). In this study, trees were 
considered as a simple shading source. Simulations were 
initiated by assigning a template to the 340 buildings 
under consideration. Of these, 259 buildings were 
equipped with an active air-conditioning (AC) system, 
and 81 were naturally ventilated (NV). All buildings were 
heated with natural gas. In order to develop the templates 
for simulation, insulating material resistances (R-value) 
between 1 and 4 m2 K/W were assigned to the templates, 
as were air infiltration rates, which varied between 0.34 
and 0.75 ACH (also per Hashemi et al., 2018). Based on 
data obtained from City of Des Moines Assessor’s office, 
we categorized buildings according to their construction 
material. We then defined 28 different building templates 
that included information on heating and cooling systems 
as well as shade from nearby trees ( Figure 3). 
 

 
Figure 3: A workflow for our study process 

To represent UHI effects, the City of Des Moines was 
divided into ten concentric thermal zones starting at the 
urban core and extending to nearby rural areas (Figure 4). 
The weather data sets for all zones were developed using 
satellite-based techniques previously described (Li et al., 
2018a; Li et al., 2018b). One location was selected within 
each zone, with Z1 nearest to the study area, and Z10 
nearer to a rural area. Two major scenarios were 
developed for estimating UHI effect on energy 
consumption for the area of study (Figure 5). Both 
scenarios were simulated with and without trees. All 
simulations were based on the ASHRAE 90.1 standard for 
building occupation schedules. Simulations were 
performed using two weather datasets: For the first 
simulation we used only weather data for the rural zone 
(Z10). For the second simulation we used weather data for 
the urban zone (Z1). 
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Figure 5: Scenarios used for simulations to estimate the 
effect of UHI on energy consumption for the study area. 
Results 
We conducted umi simulations for heating and cooling 
loads with and without the UHI effect for air-conditioned 
buildings (Figure 6). we used these results for estimating 
the rate of natural gas and electricity use in the 
neighbourhood. For the different building templates, 
heating loads were decreased and the cooling loads were 
increased in scenarios that included the UHI effect.  
Heating demand and cooling loads with and without UHI 
effects were also tabulated for our umi-generated models 
for both AC and NV buildings (Table 1). 

  
Figure 6: Results of umi simulation with trees and 
weather data for UHI (Z1), and without UHI (Z10) 
Table 1: Heating and cooling with or without UHI. 

Unit 
type 

UHI 
vs. 
rural 
area 

Annual load 
(kWh/m2) 

Annual load 
(kWh/m2) 

Heat - 
with 
trees 

Cool - 
with 
trees 

Heat - 
no 
trees 

Cool 
no  
trees 

AC 
UHI 90.3 20.6 88.8 21.4 

Rural 97.6 17.0 96.1 17.6 

NV 
UHI 90.4 0.0 88.5 0.0 

Rural 98.8 0.0 96.4 0.0 

The umi output for two scenarios, including annual 
heating and cooling load for rural and urban weather data 
for air-conditioned residential buildings and naturally 
ventilated residential buildings show large variations 
(Figure 7).   The effect of UHI on annual energy costs was 
also visualized in umi simulations (Figure 8).  

 

Figure 4: Des Moines, IA is divided into 10 zones from 
the urban core to rural areas. In each zone one 

representative location was selected.  Image prepared 
by S. Ghiasi. 
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Figure 7:  Results of umi simulations for two scenarios, 

including annual heating and cooling loads for rural 
and urban-influenced weather data for a) air-

conditioned residential buildings, and b) naturally 
ventilated residential buildings. 

 

      

                                                                      
Figure 8:  Simulations with umi indicate UHI can affect 
energy expenditures for annual heating and cooling for 

a) air-conditioned residential buildings, b) naturally 
ventilated residential buildings. 

We measured important changes in percent of annual 
heating and cooling load due to the UHI effect (Table 2). 

Table 2:  Change in annual cooling load and heating 
load due to the UHI effect- output from the UMI model. 

Unit  
type 

Annual load 
(kWh/m2) 

Annual load 
(kWh/m2) 

Heating 
with 
trees 

Heating 
without 

trees 

Cooling 
with 
trees 

Cooling 
without 

trees 

AC -7.47% -7.59 % 21.17 % 21.59 % 

NV -8.50% -8.19 % NA NA 

Discussion 
We considered 28 templates with different construction 
materials to integrate tree shade and UHI effects in 
estimation of building energy consumption. For this 
group of simulations, annual heating load (kWh/m2) with 
shading from trees ranges from 86.80 to 94.11 kWh/m2, 
and without trees it ranges between 88.45 and 93.88 
kWh/m2.  Annual cooling load with tree shade ranges 
from 20.45 to 21.28 kWh/m2. The annual cooling load 
without tree shade effect is between 21.44 and 22.42 
kWh/m2. For NV residential buildings, annual heating 
load with trees was from 86.61 kWh/m2 to 95.04 kWh/m2, 
and without was between 84.86 and 93.01 kWh/m2. 
The UHI effect decreases annual heating load by about 
7.6% and increases annual cooling load by 21.6%.  
Considering effects of both trees and UHI, annual cooling 
load can be increased by 21.2% and annual heating load 
can be decreased by 7.5%. For buildings with AC, annual 
expenditures for natural gas with tree shade will be 
decreased by 7.5% and for electricity expenditures will be 
increased by 7.1%. Without trees, annual cost for natural 
gas will decrease by 7.5% and for electricity will increase 
by 7.6%. In naturally-ventilated buildings, annual cost for 
natural gas will decrease by 8.5% with trees and will 
decreased by 8.2% without trees. For naturally-ventilated 
buildings annual cost for electricity would not change. 
Conclusion 
We conducted a sensitivity analysis to investigate the 
effect of trees and UHI on energy building consumption. 
The interdisciplinary nature of this research included 
consideration of trees and the UHI phenomenon. The UHI 
effect indicates the potential for significant increases in 
the annual cooling load by and decreases in the annual 
heating load. If trees are present these effects are slightly 
mitigated. Annual costs for electricity will also increase 
for buildings with AC. Without trees the UHI effect 
notably increases the annual cost for electricity, adding to 
costs for residents and the necessity for demand 
management by the energy provider. Preventive 
mitigation programs, such as tree plantings, could help 
residents reduce the impact of UHI on their energy use. 
In this study we considered trees as simply providing 
shade. Future studies will include consideration of evapo-
transpirational cooling by trees to refine estimates for 
building energy consumption, and to further increase 
accuracy of modelling results. 
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