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Abstract

The purpose of this study was to investigate urban heat
island (UHI) effects on building energy consumption and
energy costs for dwellings in a neighbourhood of Des
Moines, Iowa, USA. The innovation we present is a
sensitivity analysis rather than a traditional simulation.
Parameters in this analysis included building materials,
trees, and two sets of weather data, which we analysed
using the Urban Modelling Interface. Including the UHI
effect decreased annual heating loads by 7.5% for
buildings with trees present, and increased annual cooling
load by 21.2 %. In naturally-ventilated buildings, UHI
effects reduced annual heating load by 8.5%.

Key Innovations

e Impact of UHI on building energy consumption
was analysed.

e Remote sensing was used to provide weather
data for urban heat island (UHI) effects on
building energy consumption.

e A sensitivity analysis was conducted to
determine which parameters are important in
controlling model behaviour.

Practical Implications

This study can support designers and policymakers in
understanding the effect of the urban heat island (UHI) on
urban climate and building energy consumption. This
study assesses the effect of the urban heat island (UHI) in
a climate with cold winters and warm, humid summers.
The results can be used by decision-makers and designers
to prioritize mitigation strategies.

Introduction

Investigations of urban heat island (UHI) impact on
building energy consumption are of central importance to
sustainable development in a changing climate. Warmer
urban areas lead to increases in cooling loads, and those
loads in turn increase carbon dioxide emissions.
Reviewing previous research, Li et al. (2019) reported
that UHI could result in a median increase of 19.0% in
cooling energy consumption and a median decrease of
18.7% in heating energy consumption based on multiple
studies. Different approaches have been used to assess the
UHI effect on building energy consumption predictions
via modelling and simulation. Souza et al. (2009) used
actual measurements taken at 40 urban reference points in
a study area, a medium-sized city, and compared their

results to rural temperature data collected at an urban
meteorological station. Doddaballapur and colleagues
(2011) gathered and processed annual recorded weather
data for the period 1950-2005 to study the impact of
naturally  increasing night-time minimum low
temperatures in the severely hot summer months on
typical buildings in the Phoenix metropolitan area. The
study simulations were based on 56 years of weather data
(actual measured data) and typical meteorological year
data (TMY1, TMY2, and TMY3). They also used three
additional climate change timeline scenarios (extending
t0 2020, 2050 and 2080) to understand the predicted effect
of climate change in the study area. Streutker (2003)
adopted a novel approach of using thermal satellite
imagery (a remote sensing technique) to evaluate the
level, expansion, spatial extent, seasonal and diurnal
pattern of the UHI for Houston, TX, USA for the period
1985 to 2001. Li and co-workers (2009) used an
integrated geographic information system and remote
sensing  (GIS-RS) approach, including spatial
autocorrelation and  semi-variance analyses to
quantitatively characterize patterns of recent UHI effects
in the Shanghai, China metropolitan area for the period
1997 to 2004.

Wang et al. (2019) used a Linear Spectral Mixture Model
to extract land cover information. They used this model to
study the effects of urban land cover types on land surface
temperature (LST) and heat budget components based on
Landsat 8 remote sensing images of Shenzhen, China.
Litardo et al. (2020) quantified the UHI effect in Duran,
Ecuador, an example of a tropical climate study area.
They used the k-means clustering technique, a statistical
method to classify 28 randomly-sampled urban areas.
Based on this method, they classified the areas into four
clusters. They then determined parameters for urban area
characteristics (ratios for site cover, fagade-to-site,
weighted average building height, tree cover, and
vegetation cover), thermal properties of building
materials (mainly albedo), and non-building sensible
anthropogenic heat (primarily from traffic). They also
used the Urban Weather Generator (UWG) tool to
estimate the UHI intensity of each cluster. Finally, the
impact of UHI on energy consumption of buildings was
presented using TRNSYS 17 software. In an additional
study, Hashemi and colleagues (2020) used a novel
method to investigate the effect of UHI on building
energy consumption prediction. Their findings indicated
UHI effects on building energy consumption in the early
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stages of the design process. Their method coupled use of
the Local Climate Zones (LCZs) classification scheme
and the Urban Weather Generator (UWG) model to
predict UHI effects on energy consumption for different
building types in the local climate zone in Philadelphia,
PA, USA.

Previous studies varied in terms of investigators’
consideration of the UHI effect and the need to use a
secondary tool, such as an urban weather generator, to
create/simulate weather data. The contribution of this
paper is to use remote sensing-derived data to develop the
Energy Plus Weather (EPW) input file to compute UHI
effects on building energy consumption. The study
presented here is based on integration of gridded daily
datasets of maximum and minimum air temperature,
which were created using geographically weighted
regression models driven by gap-filled daily land surface
temperature (LST) and elevation data. First, daily 1-km
resolution seamless Moderate Resolution Imaging
Spectroradiometer (MODIS) LSTs were built using a
hybrid gap-filling method. Then, geographically
weighted regression models, driven by measured air
temperature at weather stations and gap-filled daily LSTs
and elevations were used to estimate daily maximum and
minimum air temperature for 1-km grids (Lietal., 2018a;
Lietal., 2018b).

The goal of this study was to optimize an approach to
accurately include UHI in weather data preparation for
urban energy models. The current study is based on a
sensitivity analysis approach. The primary goal for
conducting a sensitivity analysis is to determine which of
the parameters are important in controlling model
behaviour (Reed et al., 1984). Sensitivity analysis is
particularly useful to assess the effect of different
variables influencing building energy consumption. To
identify the source for the majority of variation in the
simulation results, our study considered these variables:
building materials, outdoor vegetation and weather data.
In addition, buildings were divided into two groups: air-
conditioned (AC) and naturally ventilated (NV)
structures. Sensitivity analysis is used here to refer to the
generic approach of using different techniques to quantify
how variability in model output can be apportioned to
changes in model input parameters (e.g., Kristensen et al.,
2016).

Understanding how systems respond to input values can
reveal the effect of UHI on building energy consumption,
in essence serving as a quality assurance tool. Confidence
in the model will increase if it responds as expected to
changes in parameter values. Unexpected behaviour, on
the other hand, could lead to re-evaluation and
modification of the model and its parameters. Sensitivity
analysis can reveal the relationships between input
parameters and predictions, and provide an opportunity to
examine model behaviour under a variety of conditions
(e.g., Reid etal., 1993). In the present study, we introduce
the use of satellite-based weather data for estimating the
UHI effect. Two sets of simulations were preformed using
data for a residential neighbourhood in the US, Midwest

using the Urban Modelling Interface (umi) to investigate
how UHI affects annual heating and cooling loads.

We sought to describe effects of the UHI on energy
consumption and energy bills in a study area which is
representative of regions characterized by cold winters
and warm, humid summers. Future studies could also
compare the effect of changes in climate conditions.

Methods

This project is a part of an interdisciplinary research effort
to create a system-of-systems analytical framework to
integrate social and biophysical models for urban Food-
Energy-Water System (FEWS). We use an innovative co-
simulation approach to describe current and predict future
conditions, with an emphasis on local (urban and urban-
adjacent) food production. In the research presented here,
the effect of UHI on building energy consumption was
investigated to complement previous research (Koupaei et
al., 2020). In this case study, the impacts of UHI on
buildings in the Capitol East neighbourhood (Des Moines,
Iowa, USA) are investigated through a sensitivity analysis
(Figure 1). This neighbourhood is bounded by an
interstate highway (I-235) on the North, railroad tracks on
the east and south, and E.14th Street on the west. There
are 340 buildings in the portion of the neighbourhood we
included in our study. Weather data collected in 2010 are
used in this simulation. The annual weather summary for
Iowa in 2010 shows that this was the 66th coolest and
second wettest year among 138 years of state records
(Iowa Department of Agriculture and Land Stewardship,
2021). As noted earlier, several scholars have evaluated
the effect of UHI on building energy consumption. This
study focuses on how UHI affects energy consumption
and residential energy costs under this set of climate
conditions. In general, the Képpen Climate Classification
subtype for this region is "Dfa" (Hot Summer Continental
Climate). The average temperature for the year in Des
Moines is 50.9°F (10.5°C). The warmest month is July,
with an average temperature of 76.3°F (24.6°C). The
coolest month is January, with an average temperature of
22.6°F (-5.2°C). The highest recorded temperature in Des
Moines was 108.0°F (42.2°C), recorded in August 2020.
The lowest recorded temperature was -26.0°F (-32.2°C)
in February 2020 (Des Moines, lowa Koppen Climate
Classification, 2021).
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Figure 1: Capitol East Neighborhood, Des Moines, IA.
Image created by S. Ghiasi based on City of Des Moines
GIS data (City of Des Moines, GIS Data, 2021)

We used Grasshopper 3-D, a Meerkat plug-in, and Arc-
GIS Pro to create a 3-D model of the neighbourhood
(Figure 2).

Figure 2: A 3-D model of the study portion of the
neighborhood created in Rhino-Grasshopper

We used the urban modelling interface (umi) for
simulation of energy consumption. This modeling
program uses a Windows-based NURBS modeler
(Rhinoceros) and EnergyPlus for thermal calculations
(Reinhart et al., 2013; DOE, 2021). The first step to
develop the 3-D model of the neighbourhood was to
obtain basic information for building properties based on
GIS shapefiles acquired from the City of Des Moines
Assessor’s office. That included the building footprints,
elevations, material characteristics, thermal conditioning
systems (HVAC), and year of construction for the
structure on each parcel. Trees were modelled based on
the shape and size of their canopies, trunk height, species,
and their exact position per a spatially explicit
comprehensive inventory that was used to integrate tree
inventory data into an urban energy model for the same

study area (Hashemi et al., 2018). In this study, trees were
considered as a simple shading source. Simulations were
initiated by assigning a template to the 340 buildings
under consideration. Of these, 259 buildings were
equipped with an active air-conditioning (AC) system,
and 81 were naturally ventilated (NV). All buildings were
heated with natural gas. In order to develop the templates
for simulation, insulating material resistances (R-value)
between 1 and 4 m2 K/W were assigned to the templates,
as were air infiltration rates, which varied between 0.34
and 0.75 ACH (also per Hashemi et al., 2018). Based on
data obtained from City of Des Moines Assessor’s office,
we categorized buildings according to their construction
material. We then defined 28 different building templates
that included information on heating and cooling systems
as well as shade from nearby trees ( Figure 3).

City of
Des Detailed tree Weather data
Moines inventory il I
Assessor’s data ) [Urban zone
parcel data (Hashemi et ith (Z1
al.,2018) | | Wit (ZD) | 1Ryral zone
T and without (Z10)
- e (Z10) UHI
Buildings Trees effects
AV O &
3-D model Characterization of
in Rhino neighborhood in UM
I
Comparison of results Sensitivity analysis

Figure 3: A workflow for our study process

To represent UHI effects, the City of Des Moines was
divided into ten concentric thermal zones starting at the
urban core and extending to nearby rural areas (Figure 4).
The weather data sets for all zones were developed using
satellite-based techniques previously described (Li et al.,
2018a; Li et al., 2018b). One location was selected within
each zone, with Z1 nearest to the study area, and Z10
nearer to a rural area. Two major scenarios were
developed for estimating UHI effect on energy
consumption for the area of study (Figure 5). Both
scenarios were simulated with and without trees. All
simulations were based on the ASHRAE 90.1 standard for
building occupation schedules. Simulations were
performed using two weather datasets: For the first
simulation we used only weather data for the rural zone
(Z10). For the second simulation we used weather data for
the urban zone (Z1).
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Figure 4: Des Moines, 1A is divided into 10 zones from
the urban core to rural areas. In each zone one
representative location was selected. Image prepared
by S. Ghiasi.
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Figure 5: Scenarios used for simulations to estimate the
effect of UHI on energy consumption for the study area.

Results

We conducted umi simulations for heating and cooling
loads with and without the UHI effect for air-conditioned
buildings (Figure 6). we used these results for estimating
the rate of natural gas and electricity use in the
neighbourhood. For the different building templates,
heating loads were decreased and the cooling loads were
increased in scenarios that included the UHI effect.
Heating demand and cooling loads with and without UHI
effects were also tabulated for our umi-generated models
for both AC and NV buildings (Table 1).

100.00

50.00

ANNUAL LOAD (KWH/M2)

0.00

AC-1  AC2 AC- AC4  ACS5 ACe
TEMPLATE
m Heating- with irees and considering UHI effect

# Heating - With Trees-without considering UHI
# Cooling - With Trees- without considering UHI
B Cooling- With trees and considering UHI effect

Figure 6. Results of umi simulation with trees and
weather data for UHI (Z1), and without UHI (Z10)

Table 1: Heating and cooling with or without UHI.

Annual load Annual load

UHIL [ (kWh/m?) (KWh/m?)
Unit VS,
type rural | Heat- | Cool- [ Heat- | Cool
area | With with no no
trees trees trees trees

UHI 90.3 20.6 88.8 21.4

AC
Rural 97.6 17.0 96.1 17.6
UHI 90.4 0.0 88.5 0.0
NV
Rural 98.8 0.0 96.4 0.0

The umi output for two scenarios, including annual

heating and cooling load for rural and urban weather data

for air-conditioned residential buildings and naturally

ventilated residential buildings show large variations

(Figure 7). The effect of UHI on annual energy costs was
also visualized in umi simulations (Figure 8).
(2) Air-Conditioned Residential Buildings
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Figure 7: Results of umi simulations for two scenarios,
including annual heating and cooling loads for rural
and urban-influenced weather data for a) air-
conditioned residential buildings, and b) naturally
ventilated residential buildings.
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(b) Naturally Ventilated Residential Buildings
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Figure 8: Simulations with umi indicate UHI can affect
energy expenditures for annual heating and cooling for
a) air-conditioned residential buildings, b) naturally
ventilated residential buildings.

We measured important changes in percent of annual
heating and cooling load due to the UHI effect (Table 2).

Table 2: Change in annual cooling load and heating
load due to the UHI effect- output from the UMI model.

Annual load Annual load
(kWh/m?) (kWh/m?)
Unit
type Heating | Heating | Cooling | Cooling
with without with without
trees trees trees trees
AC -7.47% -7.59 % 21.17% | 21.59 %
NV -8.50% -8.19% NA NA
Discussion

We considered 28 templates with different construction
materials to integrate tree shade and UHI effects in
estimation of building energy consumption. For this
group of simulations, annual heating load (kWh/m?) with
shading from trees ranges from 86.80 to 94.11 kWh/m?,
and without trees it ranges between 88.45 and 93.88
kWh/m2.  Annual cooling load with tree shade ranges
from 20.45 to 21.28 kWh/m? The annual cooling load
without tree shade effect is between 21.44 and 22.42
kWh/m2. For NV residential buildings, annual heating
load with trees was from 86.61 kWh/m? to 95.04 kWh/m?,
and without was between 84.86 and 93.01 kWh/m>.

The UHI effect decreases annual heating load by about
7.6% and increases annual cooling load by 21.6%.
Considering effects of both trees and UHI, annual cooling
load can be increased by 21.2% and annual heating load
can be decreased by 7.5%. For buildings with AC, annual
expenditures for natural gas with tree shade will be
decreased by 7.5% and for electricity expenditures will be
increased by 7.1%. Without trees, annual cost for natural
gas will decrease by 7.5% and for electricity will increase
by 7.6%. In naturally-ventilated buildings, annual cost for
natural gas will decrease by 8.5% with trees and will
decreased by 8.2% without trees. For naturally-ventilated
buildings annual cost for electricity would not change.

Conclusion

We conducted a sensitivity analysis to investigate the
effect of trees and UHI on energy building consumption.
The interdisciplinary nature of this research included
consideration of trees and the UHI phenomenon. The UHI
effect indicates the potential for significant increases in
the annual cooling load by and decreases in the annual
heating load. If trees are present these effects are slightly
mitigated. Annual costs for electricity will also increase
for buildings with AC. Without trees the UHI effect
notably increases the annual cost for electricity, adding to
costs for residents and the necessity for demand
management by the energy provider. Preventive
mitigation programs, such as tree plantings, could help
residents reduce the impact of UHI on their energy use.

In this study we considered trees as simply providing
shade. Future studies will include consideration of evapo-
transpirational cooling by trees to refine estimates for
building energy consumption, and to further increase
accuracy of modelling results.

Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

2106
https://doi.org/10.26868/25222708.2021.30873



INTERNATIONAL
BUILDING
PERFORMANCE
SIMULATION
ASSOCIATION

Acknowledgments

The authors would like to thank Carolan Hoffman,
Oluwatobiloba Fagbule, and Yating Chen from Iowa
State University for their support. This material is based
upon work supported by the US National Science
Foundation (NSF) under Grant No. 1855902. Funding
was also provided by the University of lowa’s Center for
Global and Regional Environmental Research. Any
opinions, findings, and conclusions, or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF or CGRER.

References

City of Des Moines GIS Data. (2021).
https://www.dsm.city/city of des moines_gis data/i
ndex.php

Des Moines, Iowa Koppen Climate Classification
(Weatherbase). (2021). Retrieved January 11, 2021,
https://www.weatherbase.com/weather/weather-
summary.php3?s=64527&cityname=Des+Moines,
+Iowa,+United+States+of+America

Doddaballapur, S., Bryan, H., Reddy, A., & Addison, M.
(2011). Analysis of the Impact of Urban Heat
Island on Energy consumption of Buildings in
Phoenix. A Thesis Presented in Partial Fulfilment
of the Requirements for the Degree Master of
Science. Arizona State University.

Hashemi, F., Marmur, B.L., Passe, U, & Thompson, J. R.
(2018). Developing a workflow to integrate tree
inventory data in urban energy models. Proceeding
from SimAUD . Delft ( Netherlands), June 2018

Hashemi, F., Poerschke, U., & Domenica, L. (2020). A
novel approach for investigating urban heat island
effects on building energy performance: A case
study of Center City of Philadelphia, PA.
Proceeding  from  AIA/ACSA  Intersections
Research. Virtual, Nov 2020.

Iowa Department of Agriculture and Land Stewardship.
(2021). https://iowaagriculture.gov/

Keith Reid, J. A., & Corbett, B. J. (1993). Stochastic
sensitivity analysis of the biosphere model for
Canadian nuclear fuel waste management. Waste
Management, 13(2), 181-194.

Koupaei, D. M., Geraudin, M., & Passe, U. (2020).
Lifetime energy performance of residential
buildings: A sensitivity analysis of energy modeling
parameters. Proceedings from 11th Annual
Symposium on Simulation for Architecture and
Urban Design. Vienna (Austria), 25-27 May 2020.

Kristensen, M. H., & Petersen, S. (2016). Choosing the
appropriate sensitivity analysis method for building

energy model-based investigations. Energy and
Buildings(130), 166-176.

Li, J., Wang, X.W., Wang, X. J., Ma, W., & Zhang, H.
(2009). Remote sensing evaluation of urban heat
island and its spatial pattern of the Shanghai
metropolitan area, China. Ecological
Complexity(6), 413—420.

Li, X., Zhou, Y., Asrar, G. R., & Zhu, Z. (2018). Creating
a seamless 1 km resolution daily land surface
temperature dataset for urban and surrounding areas
in the conterminous United States. Remote Sensing
of Environment(206), 84-97.

Li, X., Zhou, Y., Asrar, G. R, & Zhu, Z. (2018).
Developing a 1 km resolution daily air temperature
dataset for urban and surrounding areas in the
conterminous United States. Remote Sensing of
Environment(215), 74-84.

Li, X., Zhou, Y., Yu, S., Jia, G, Li, H., & Li, W. (2019).
Urban heat island impacts on building energy
consumption: A review of approaches and findings
. Energy(174), 407-419.

Litardo, J., Palme, M., Borbor-Cordova, M., Caiza, R.,
Macias, J., Hidalgo-Leon, R., & Soriano, G. (2020).
Urban Heat Island intensity and buildings’ energy
needs in Duran, Ecuador: Simulation studies and
proposal of mitigation strategies. Sustainable Cities
and Society (62), 102387.

Reed, K. L., Rose, K. A., & Whitmore, R. C. (1984). Latin
hypercube analysis of parameter sensitivity in a
large model of outdoor recreation demand.
Ecological Modelling, 24(3—4), 159-169.

Reinhart, C. F., Dogan, T., Jakubiec, A., Rakha, T., &
Sang, A. (2013). umi - An urban simulation
environment for building energy use, daylighting
and walkability. Proceedings from BS 2013: 13th
Conference of the International Building
Performance Simulation Association, Chambery
(France) 26-28 August 2013.

Souza, L. C. L., Postigo, C. P., Oliveira, A. P., & Nakata,
C. M. (2009). Urban heat islands and electrical
energy consumption. International Journal of
Sustainable Energy, 28(1-3), 113—-121.

Streutker, D. R. (2003). A study of the urban heat island
of Houston, Texas. International Journal of Remote
Sensing(23), 2595 - 2608.

Wang, W., Liu, K., Tang, R., & Wang, S. (2019). Remote
sensing image-based analysis of the urban heat
island effect in Shenzhen, China. Physics and
Chemistry of the Earth(110), 168—175.

Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

2107
https://doi.org/10.26868/25222708.2021.30873



INTERNATIONAL
BUILDING
PERFORMANCE
SIMULATION
ASSOCIATION

Proceedings of the 17th IBPSA Conference 2108
Bruges, Belgium, Sept. 1-3, 2021 https://doi.org/10.26868/25222708.2021.30873





