

1
2 TITLE

3 Neural responses to pup calls and pup odors in California mouse fathers and virgin males

4

5 ABSTRACT

6 The onset of mammalian maternal care is associated with plasticity in neural processing of
7 infant-related sensory stimuli; however, little is known about sensory plasticity associated with
8 fatherhood. We quantified behavioral and neural responses of virgin males and new fathers to
9 olfactory and auditory stimuli from young, unfamiliar pups in the biparental California mouse
10 (*Peromyscus californicus*). Each male was exposed for 10 minutes to one of four combinations
11 of a chemosensory stimulus (pup-scented or unscented cotton [control]) and an auditory stimulus
12 (pup vocalizations or white noise [control]). Behavior did not differ between fathers and virgins
13 during exposure to sensory stimuli or during the following hour; however, males in both groups
14 were more active both during and after exposure to pup-related stimuli compared to control
15 stimuli. Fathers had lower expression of Fos in the main olfactory bulbs (MOB) but higher
16 expression in the medial preoptic area (MPOA) and bed nucleus of the stria terminalis medial
17 division, ventral part (STMV) compared to virgins. Lastly, males had higher Fos expression in
18 MPOA when exposed to pup odor compared to control stimuli, and when exposed to pup odor
19 and pup calls compared to pup calls only or control stimuli. These findings suggest that the onset
20 of fatherhood alters activity of MOB, MPOA and STMV and that pup odors and vocalizations
21 have additive or synergistic effects on males' behavior and MPOA activation.

22

23 KEY WORDS

24 Paternal behavior, olfaction, vocalizations, Fos, main olfactory bulb, medial preoptic area, bed
25 nucleus of stria terminalis *Peromyscus californicus*

26

27 INTRODUCTION

28 In female mammals, the onset of parenthood can be associated with pronounced changes in the
29 mother's behavioral responses to young, which may shift from avoidance or aggression to
30 attraction and nurturance (Numan et al. 2006; Duarte-Guterman et al. 2019). The onset of
31 motherhood is also accompanied by plasticity in neural circuits subserving sensory processing,
32 cognition, affect, motivation and reward (Kinsley et al. 2008; Leuner et al. 2010; Lambert 2012;
33 Numan 2012; Glasper et al. 2019; Rogers and Bales 2019; Tasaka et al. 2020). This plasticity is
34 mediated largely by the neuroendocrine changes that occur during pregnancy, parturition and
35 lactation (Levy et al. 2004; Marlin et al. 2015; Dunlap and Liu 2018) and facilitates the
36 expression of appropriate behavioral responses to offspring (Numan and Insel 2003; Kinsley et
37 al. 2008).

38 In the 5-10% of mammalian species in which both mothers and fathers provide care for
39 their young (i.e., biparental species; Kleiman and Malcom 1981), males, like females, may
40 exhibit pronounced changes in their behavioral responses to infants as they become parents. For
41 example, in several biparental rodents, pup-naïve virgin males may behave affiliatively,
42 indifferently or aggressively when tested with infants, whereas fathers are consistently attracted
43 to and nurturant toward both related and unrelated infants (California mouse, *Peromyscus*
44 *californicus*: de Jong et al. 2009; Chauke et al. 2012; Jasarevic et al. 2013; Rosenfeld et al. 2013;
45 Horrell et al. 2017; Mongolian gerbil, *Meriones unguiculatus*: Elwood and Ostermeyer 1984;
46 dwarf hamster, *Phodopus campbelli*: Wynne-Edwards 1995; Mandarin vole, *Microtus*

47 *mandarinus*: Yuan et al. 2019). The mechanisms underlying this shift in behavioral responses to
48 infants are not well understood. However, fatherhood-associated neural plasticity has been
49 described in several biparental rodents and is likely mediated in part by the neuroendocrine
50 changes associated with copulation, cohabitation with a pregnant or parturient female, and/or
51 exposure to pups (reviewed in Dulac et al. 2014; Elwood and Stolzenberg 2020; Horrell et al.
52 2021).

53 An important determinant of behavior toward infants is detection and processing of
54 infant-related sensory stimuli, especially odors and vocalizations (Hofer et al. 2001; Levy et al.
55 2004; Levy and Keller 2009; Shair 2018). Chemosensory stimuli can act through both the
56 accessory and main olfactory systems to influence the activation of maternal care (Levy and
57 Keller 2009), but the exact nature of this influence differs among species. For example,
58 hyposmia, induced by various experimental procedures, reduces latency to maternal behaviors in
59 virgin female rats (*Rattus norvegicus*) and rabbits (*Oryctolagus cuniculus*) but increases the
60 likelihood that virgin female house mice (*Mus*) will behave aggressively towards pups (reviewed
61 in Levy and Keller 2009). In addition to odors, rodent pups emit ultrasonic vocalizations that
62 elicit parental care (Blumberg and Sokoloff 2001; Ehret 2005).

63 Few studies have sought to compare the salience of olfactory versus acoustic stimuli for
64 parental care, but those that do have shown that pup chemosensory and acoustic cues can have
65 synergistic effects on maternal behavior. In C57BL/6 mice, for example, the presence of both
66 stimuli, but not either stimulus alone, elicits approach by mothers (Okabe et al. 2013), and
67 female Australian sea lions (*Neophoca cinerea*) are more likely to approach a pup model
68 accompanied by pup odors and pup vocalizations compared to a model accompanied by pup
69 vocalizations alone (Wierucka et al. 2018). The relative importance of chemosensory and

70 auditory stimuli for parental behavior has not been investigated in California mice, the species
71 used in the present study; however, both sensory modalities are known to play important roles in
72 other forms of social behavior in this species (Pultorak et al. 2017; Kalcounis-Rueppell et al.
73 2018; Rieger et al. 2021; Bester-Meredith et al. 2022). Moreover, in rodents, both olfactory and
74 acoustic information are processed in brain regions important for the expression of parental
75 behavior (Cohen et al. 2011; Choi et al. 2018).

76 The onset of maternal care in female rodents is associated with plasticity in the circuitry
77 involved in processing sensory stimuli from infants and assigning hedonic value to them
78 (Kinsley and Bridges 1990; Olazábal et al. 2013; Dulac et al. 2014; Marlin et al. 2015; Schiavo
79 et al. 2020). For example, house mouse mothers are better able to detect pup calls, and are more
80 attracted to pup calls, compared to virgins (Ehret et al. 1987; Tasaka et al. 2020). Additionally,
81 house mouse mothers show extensive plasticity in the olfactory bulbs, which is thought to
82 enhance mothers' ability to discriminate pup odors, and they are more attracted to pup odors
83 compared to virgin females (Levy et al. 2004; Liu et al. 2006; Belnoue et al. 2016; Vinograd et al
84 2017).

85 The role of infant odors and vocalizations in parental care by fathers has received less
86 attention than in mothers, but these stimuli appear to be important for paternal care. In the
87 biparental prairie vole (*Microtus ochrogaster*), MOB lesions in virgin males increase aggression
88 towards pups, which is usually a rare behavior even in virgin males of this species (Kirkpatrick
89 et al. 1994a). Furthermore, in the uniparental house mouse, fathers housed with their mate and
90 pups prefer sounds similar to pup ultrasonic vocalizations over control sounds (Ehret and Koch
91 1989; Ehret 2005). Several brain regions that process sensory information also play key roles in
92 the activation of paternal behavior. Through different pathways, responses to chemosensory and

93 acoustic stimuli are conveyed to the amygdala, which projects to the bed nucleus of the stria
94 terminalis (BNST) and medial preoptic area of the hypothalamus (MPOA) (Dulac et al. 2014;
95 Horrell et al. 2019). These latter two regions are activated in response to pups in male rodents
96 (Numan 1988, 1990; Rosenblatt and Ceus 1998; Sheehan and Numan 2002; Numan and Insel
97 2003; de Jong et al. 2009; Dulac et al. 2014; Horrell et al. 2017, 2018) and, along with the
98 amygdala, have been shown by lesion studies to play a causal role in parental behavior (reviewed
99 in Bales and Saltzman 2016). The MPOA is also connected to areas of the reward circuitry, (e.g.,
100 nucleus accumbens [NAcc], Li and Fleming 2003; Horrell et al. 2019; Numan 2012, 2020),
101 suggesting that the MPOA acts to promote parental behavior through increased motivation. Very
102 little is known, however, about plasticity in males' behavioral and neural responses to pup-
103 related stimuli in males of biparental species, or about potential interactions among pup stimuli
104 in different sensory modalities.

105 In this study we assessed effects of fatherhood on behavioral and neural responses to
106 olfactory and acoustic cues from pups in the California mouse, a monogamous, biparental rodent.
107 Fathers provide extensive care for their offspring, engaging in all the same types of parental
108 behavior as mothers except for lactation (Dudley 1974; Gubernick and Alberts 1987), and care
109 from both parents can have important consequences for offspring survival and development
110 (Dudley 1974; Gubernick et al. 1993; Cantoni and Brown 1997; Gubernick and Teferi 2000;
111 Wright and Brown 2002; Frasier et al. 2006). However, whereas fathers exhibit strong attraction
112 and nurturant behavior toward both familiar and unfamiliar pups, virgin males show highly
113 variable responses to experimentally introduced pups, ranging from nurturance to avoidance to
114 aggression (de Jong et al. 2009, Chauke et al. 2012; Jasarevic et al. 2013; Rosenfeld et al. 2013;
115 Horrell et al. 2017). Correspondingly, after exposure to unfamiliar pups, fathers show greater

116 activation of the MPOA and BNST compared to virgin males, as indicated by higher expression
117 of Fos, the protein product of the immediate-early gene c-fos, (de Jong et al. 2009; but see
118 Horrell et al. 2017). The role of sensory plasticity in mediating these effects of fatherhood is
119 unknown. Therefore, we tested the hypotheses that 1) fathers are attracted to acoustic and
120 olfactory stimuli from pups compared to control stimuli, whereas this attraction is less
121 pronounced or absent in virgin males, 2) differential behavioral responses to pup stimuli in
122 fathers and virgin males are associated with differences in neural responses to these cues in brain
123 regions associated with paternal care, reward, and/or fear and anxiety, and 3) pup calls and pup
124 odors act additively or synergistically on behavioral and neural responsiveness.

125

126 METHODS

127 **Animals**

128 We used California mice that were bred at the University of California, Riverside (UCR) and
129 were descended from mice purchased from the Peromyscus Genetic Stock Center (University of
130 South Carolina, Columbia, USA). Mice were housed in 44 x 24 x 20 cm polycarbonate cages
131 with aspen shavings for bedding and cotton for nesting material and had *ad libitum* access to
132 food (Purina 5001 Rodent Chow) and water. The ambient temperature was maintained at
133 approximately 23 °C, humidity was at approximately 65%, and lights were on a 14:10 h cycle
134 (lights on at 2300 h). All procedures were approved by UCR's Institutional Animal Care and Use
135 Committee and were conducted in accordance with the recommendations of the *Guide for the*
136 *Care and Use of Laboratory Animals*. UCR is accredited by the Association for Assessment and
137 Accreditation of Laboratory Animal Care.

138 At weaning age (27-31 days), prior to the birth of younger siblings, mice were removed
139 from their parents' cage and housed in single-sex groups of 2 to 4 age-matched mice until they
140 were used in this study. We used 64 males and 64 females that originated from 27 families.

141

142 **Surgeries and Pairing**

143 At 85-135 days of age, males were paired with unrelated females that had undergone
144 ovariectomies (virgin males) or sham ovariectomies (fathers) 10 days earlier. As previously
145 described (Zhao et al. 2018), females were anesthetized with 2.5% isoflurane vapor, and an
146 approximately 1cm midline incision was made. The right and left ovaries were located and, for
147 ovariectomies, removed using microscissors. The abdominal muscle was closed using absorbable
148 sutures, and the skin was sealed using tissue glue. Females were given 5 mg/kg carprofen
149 (Carprieve [Norbrook Laboratories; Overland Park, KS, USA]) S.C. every 12 h for 48 h for
150 analgesia and housed in isolation for 7 days to allow for recovery. Females were then housed
151 with their original same-sex cage mates for 3 days before being paired with a male.

152 Fathers and virgins were paired when they were 104.03 ± 2.19 and 99.67 ± 2.22 days old
153 (mean \pm SE), respectively (t-test: $t = -1.40$, $df = 59$, $P = 0.17$). Each male was randomly assigned
154 to either the virgin group (i.e., housed with an ovariectomized female) or the father group
155 (housed with a sham ovariectomized female) except that if two males from the same litter were
156 used, they were assigned to different groups. Opposite-sexed pair mates were no more closely
157 related than first cousins. All pair cages were checked daily for the presence of pups.

158

159 **Stimulus Exposure**

160 Each male underwent a single stimulus-exposure test, after which it was perfused and its brain
161 collected for immunohistochemistry (see below). Fathers were tested when their first litter of
162 pups was between 4 and 6 days old, and virgin males were tested at a matched time point to
163 ensure that age and time since pairing did not differ between the groups. In each test, the mouse
164 was exposed to one olfactory stimulus (pup-scented cotton or clean cotton; see below) and one
165 acoustic stimulus (pre-recorded pup vocalizations or white noise), which produced 4 stimulus
166 combinations: Control (clean cotton and white noise), Call (clean cotton and pup vocalizations),
167 Odor (pup-scented cotton and white noise), and Call + Odor (pup-scented cotton and pup
168 vocalizations). Fathers and virgins had been pair-housed with females for 50.19 ± 13.56 days and
169 49.93 ± 10.13 days (mean \pm SE), respectively, at the time of testing (t-test: $t = -0.08$, $df = 61$, $P =$
170 0.93). Mice were assigned to stimulus treatments randomly.

171 Between 0800 and 0900 h (during the light phase of the cycle) on the day of testing, the
172 male mouse was placed individually in a $12 \times 7.5 \times 5.25$ cm polycarbonate cage with shavings,
173 food and water. The cage was placed in a corner of a black acrylic open-field arena ($1 \times 1 \times .5$ m)
174 in a sound-attenuated and anechoic room. In each corner of the arena, the floor contained a circle
175 ($\varnothing: 6.5$ cm) of 5-mm holes. The arena was raised 10 cm off the floor, and a speaker
176 (UltraSoundGate BL Pro, Avisoft Bioacoustics, Glienecke, Germany) was positioned beneath
177 the holes in the corner of the arena that contained the test cage. Stimulus exposure began 110
178 minutes after the mouse was placed in the cage, to allow for dissipation of any peaks in Fos
179 expression in the brain related to home-cage events or handling (de Jong et al. 2009).

180 We prepared olfactory stimuli within 5 minutes before use. To avoid introducing spurious
181 odors, the experimenter wore fresh gloves and selected a cotton ball from a sealed storage area.
182 If the male was to be exposed to a control olfactory stimulus (clean cotton), the cotton ball was

183 placed in a stainless-steel wire-mesh tea ball (\varnothing : 6 cm), which was stored in a clean, sealed
184 container until the test began. If the male was to be exposed to a pup-odor stimulus, the cotton
185 ball was wiped 30 times across the ventrum and anogenital region of an unrelated, 3- to 7-day-
186 old pup (mean \pm SE = 4.38 ± 1.03 days). The cotton ball was rotated after each wipe. The cotton
187 ball was then placed in a tea ball, identical to the one used for clean cotton, which was stored in a
188 clean, sealed container until the test began.

189 Acoustic stimuli were prepared in advance of the study. The control stimulus consisted of
190 a 25-s sound loop of 6 pulses of white noise followed by a 1-s pause, which is consistent with the
191 calling pattern of young California mouse pups (Johnson et al. 2017; Wilson et al. 2022). The
192 pup acoustic stimulus consisted of a 25-s sound loop of an isolated 4-day-old pup, unrelated to
193 the male subjects, recorded using a BAT miniMIC (Binary Acoustic Technology, Tuscon, AZ;
194 USA) and Spectr III software (Spectral Analysis, Digital Tuning, and Recording Software;
195 Binary Acoustic Technology, Tuscon, AZ, USA). Acoustic stimuli were played through the
196 speaker located under the test cage at 68 dB SPL measured 1 inch from the speaker, which is
197 consistent with the normal volume of California mouse pup calls at the same distance (pers.
198 obs.).

199 To begin the stimulus exposure, the cotton-containing tea ball (i.e., the “odor ball”) was
200 placed in a standardized position in the front left corner of the cage above the speaker, and the
201 acoustic playback was immediately started. Both the olfactory and the acoustic stimuli were
202 presented to the male for 10 minutes. The acoustic playback was then turned off, and the odor
203 ball was quickly removed from the cage. Sixty minutes after the end of the stimulus exposure,
204 the mouse was deeply anesthetized with pentobarbital (Fatal-Plus solution, Vortech
205 Pharmaceuticals, Dearborn, MI, USA) and perfused transcardially with 0.1 M phosphate

206 buffered saline (PBS) followed by 4% paraformaldehyde. The brain was removed rapidly and
207 fixed in 4% paraformaldehyde for 2 days at 4 °C. The brain was then cryoprotected in 30%
208 sucrose and frozen in cryoprotectant (30% sucrose, 30% ethylene glycol) at -20 °C. Because
209 production of fecal boli is often used as a metric of anxiety (Archer 1973; Gentsch et al. 1981),
210 the shavings from each male's test cage were saved, and fecal boli were collected and counted.

211

212 **Immunohistochemistry**

213 Immunohistochemistry protocols were adapted from methods previously established in our lab
214 for this species (de Jong et al. 2009; Horrell et al. 2017). Immunohistochemistry was performed
215 in batches containing one brain from each of the 8 reproductive status x stimulus treatment
216 groups. Three to 5 days prior to slicing, brains were thawed and transferred into 30% sucrose at 4
217 °C. Brains were sectioned (40 µm) using a Leica CM1950 cryostat (Leica Biosystems, Deer
218 Park, IL, USA) set at -20 °C. Brain sections were incubated overnight with polyclonal rabbit
219 anti-cFos (1:2,500; Synaptic Systems, Göttingen, Germany) followed by incubation with goat
220 anti-rabbit IgG, Alexa Fluor 555 (1:500; Thermo Fisher Scientific, Waltham, MA, USA) for 90
221 minutes. Procedures using Alexa Fluor and all subsequent procedures were conducted with
222 minimal ambient light. Sections were mounted on slides with EMS Shield Mount with DABCO
223 (Electron Microscopy Sciences, Hatfield, PA, USA) and stored covered at 4 °C. Images of the
224 brain regions of interest were taken between 16 and 22 h after tissue was mounted, using a Zeiss
225 LSM 880 inverted microscope (Carl Zeiss Microscopy, LLC, White Plains, NY, USA).

226 Fos immunoreactivity was quantified in regions associated with sensory relay (main
227 olfactory bulb [MOB] granule cell layer, basolateral amygdaloid nucleus [BLA] and basomedial
228 amygdaloid nucleus [BMA]), parental behavior (bed nucleus of the stria terminalis medial

229 division, ventral part [STMV], medial preoptic area [MPOA]), reward (nucleus accumbens
230 [NAcc] shell), and fear/anxiety (anterior hypothalamic nucleus [AHN]) (reviewed in Horrell et
231 al. 2019). Brain regions were located by cross-referencing *The Mouse Brain in Stereotaxic*
232 *Coordinates* (Paxinos and Franklin 2013) for *Mus musculus* and images of Nissl-stained
233 California mouse sections (Mikula et al. 2007 [<http://brainmaps.org>]). QuPath 3.0 (Bankhead et
234 al. 2017) was used to quantify the number of Fos-positive cells by outlining in each brain region
235 of interest a 200 x 200 μm square in the area with the highest density of Fos-positive cells.
236 Scorers were blind to parenthood status and stimulus treatment during quantification of Fos
237 immunoreactivity. Data for each region for each male were averaged from two sections from
238 each hemisphere. Technical problems resulted in a small number of unusable images (see Fig. 1
239 for final sample sizes).

240

241 **Behavior Measurements**

242 Mice were video-recorded throughout the 10-minute stimulus-exposure period as well as the
243 subsequent 60 minutes. Video recordings were scored using Behavioral Observation Research
244 Interactive Software (BORIS53) (Friard and Gamba 2016). All behaviors scored were mutually
245 exclusive of one another. For the 10 minutes of stimulus exposure, we scored behavior
246 continuously to quantify latencies to listen (ears perked in the direction of the acoustic stimulus),
247 sniff the odor ball (nose < 4 cm from the ball, with whiskers moving up and down), and handle
248 the odor ball (front paw(s) on ball), and the total durations of time spent listening, sniffing the
249 ball, and handling the ball. Additionally, we measured the total time spent in active behaviors
250 (i.e., locomoting, autogrooming and nest building) and resting (lying down with little or no head
251 movement). Durations of active and resting behaviors did not include time spent interacting with

252 stimuli as specified above. For the hour following stimulus exposure we performed instantaneous
253 scans every 5 minutes and scored the subject's behavior as either active or resting. Because the
254 exact amount of time that stimuli were presented varied slightly across tests, the time spent in
255 each activity was normalized across all recordings by dividing the total time of the activity by the
256 duration of stimulus exposure and multiplying by 600 seconds ($[\Sigma$ behavior (s) / stimulus
257 presentation (s)] * 600 s).

258

259 **Statistical Analyses**

260 Analyses were performed in STATA 15 (StataCorp LP, College Station, TX, USA).
261 Assumptions for linear mixed-effects models (LMMs) and ANOVAs were checked by
262 evaluating quantile-quantile plots and through Shapiro-Wilk analyses. Fos expression in MOB,
263 NAcc, MPOA, AHN, BLA, and BMA, and fecal bolus counts, were square root transformed, and
264 Fos expression in STMV was log transformed to meet assumptions for parametric tests.
265 Significance was assessed based on $\alpha = 0.05$ (two-tailed).

266 LMMs were used to assess the effects of male reproductive status (father vs virgin),
267 stimulus treatment (Control, Call, Odor, Call + Odor), and their interaction on Fos expression in
268 the brain regions of interest (see above). Immunohistochemistry batch (the group with which
269 each brain underwent immunohistochemistry) was included as a random variable for analyses of
270 Fos expression. Two-way ANOVAs were used to assess the effects of the same independent
271 variables on latency to interact with the pup stimuli (listen, sniff the odor ball, handle the odor
272 ball) and on number of fecal boli. Non-significant ($P > 0.05$) interactions were removed from the
273 final models for both Fos expression and fecal bolus counts.

274 Durations of each behavior during stimulus exposure and counts of behaviors in the 60
275 minutes following stimulus exposure were analyzed using non-parametric tests because measures
276 did not meet parametric assumptions and were resistant to transformation. Mann-Whitney U tests
277 were used to compare behavior between fathers and virgin males, and Kruskal-Wallis tests were
278 used to compare behavior among stimulus treatments. When results were significant, Dunn's
279 pairwise comparisons were performed. Lastly, Pearson's correlations were used to assess
280 associations between Fos expression and behavior for fathers and virgin males separately.

281

282 RESULTS

283 **Behavior**

284 All males spent time in close proximity (less than 4 cm) to the odor ball, and all males exposed
285 to pup odors sniffed the ball, although latency to approach the ball and time in proximity to the
286 ball were highly variable. Neither reproductive status nor stimulus treatment influenced latency
287 to sniff the odor ball (two-way ANOVA: $F_{31,4} = 1.15, P = 0.35$; reproductive status: $z = 1.04, P =$
288 0.32 ; stimulus treatment: $z = 1.20, P = 0.33$), latency to handle the odor ball ($F_{22,4} = 0.55, P =$
289 0.93 ; reproductive status: $z = 0.01, P = 0.93$; stimulus treatment: $z = 0.73, P = 0.55$) or latency to
290 listen ($F_{22,4} = 0.26, P = 0.90$; reproductive status: $z = 0.31, P = 0.58$; stimulus treatment: $z =$
291 $0.22, P = 0.88$; Table 1). The interaction between reproductive status and stimulus treatment was
292 not significant for any behavioral latencies. Fathers and virgin males did not differ in the amount
293 of time they spent sniffing the odor ball (Mann-Whitney, $z = 0.61, P = 0.54$), handling the odor
294 ball ($z = 1.05, P = 0.29$) or listening ($z = 0.48, P = 0.63$). Similarly, stimulus treatment did not
295 affect the amount of time mice spent sniffing (Kruskal-Wallis, $\chi^2 = 5.66, P = 0.13$) or handling
296 ($\chi^2 = 3.30, P = 0.35$) the odor ball or listening ($\chi^2 = 4.04, P = 0.34$; Table 1).

297 Active behaviors observed during stimulus exposure included behaviors that would be
298 expected had a live pup been emitting cues: males often appeared to be searching the cage
299 (perhaps for a pup), and would sometimes shred or pile shavings, as is observed when captive
300 California mice build nests (Gubernick and Alberts 1987). Fathers and virgin males did not differ
301 in the amount of time they were active (Mann-Whitney, $z = -0.27, P = 0.79$) or resting ($z = -0.48,$
302 $P = 0.63$) during the stimulus exposure or the number of 5-minute scan samples in which they
303 were active ($z = -1.14, P = 0.26$) during the 60 minutes following stimulus exposure. Stimulus
304 treatment, in contrast, influenced the amount of time males rested during stimulus exposure
305 (Kruskal-Wallis, $\chi^2 = 8.44, P = 0.038$) and tended to influence the amount of time males were
306 active during stimulus exposure ($\chi^2 = 6.94, P = 0.074$). During exposure, males in the Control
307 treatment rested more than males in the Call, Odor and Call + Odor treatments (Dunn's post-hoc
308 P 's ≤ 0.02) and tended to be less active than males in the Odor and Call + Odor treatments
309 (Dunn's post-hoc P 's ≤ 0.03). Stimulus treatment also influenced the number of 5-minute scan
310 samples in which males were active after stimulus exposure ($\chi^2 = 11.63, P = 0.009$): males in the
311 Call + Odor treatment were more active than males in the other three treatments ($P \leq 0.003$).
312

313 **Fos Expression**

314 Reproductive status influenced Fos expression in the MOB (LMM, model: $\chi^2 = 14.76, P =$
315 0.005), STMV (model: $\chi^2 = 36.72, P < 0.0001$), MPOA (model: $\chi^2 = 118.74, P < 0.0001$), and
316 BLA (model: $\chi^2 = 9.88, P = 0.043$). Virgin males had higher Fos expression than fathers in the
317 MOB (effect of reproductive status: $\chi^2 = 13.44, P = 0.0002$), whereas fathers had higher Fos
318 expression than virgins in the STMV (effect of reproductive status: $\chi^2 = 3.63, P < 0.0001$) and

319 MPOA (effect of reproductive status: $\chi^2 = 108.70, P < 0.0001$) and tended to have higher
320 expression in the BLA (effect of reproductive status: $\chi^2 = 3.52, P = 0.061$) (Fig. 2).

321 Stimulus treatment influenced Fos expression in the MPOA (effect of treatment: $\chi^2 =$
322 11.32, $P = 0.01$): males in the Odor and Call + Odor treatments had higher MPOA Fos
323 expression than males in the Control treatment, and males in the Call + Odor treatment had
324 higher MPOA Fos expression than males in the Call treatment (Fig. 3). Stimulus treatment did
325 not affect Fos expression in the MOB, STMV, or BLA, and neither stimulus treatment nor
326 reproductive status influenced Fos expression in the NAcc (LMM, model: $\chi^2 = 1.81, P = 0.77$),
327 AHN ($\chi^2 = 9.26, P = 0.10$) or BMA ($\chi^2 = 4.48, P = 0.34$). There were no significant interactions
328 between reproductive status and stimulus treatment for any brain region.

329

330 **Fecal Boli**

331 The model for number of fecal boli produced across the entire 2-h test was not significant (two-
332 way ANOVA $df = 58, n = 63, z = 1.60, P = 0.19$). Although the main effect of reproductive
333 status was significant ($z = 5.39, P = 0.024$, square-root-transformed $X \pm SE$: fathers = $4.35 \pm$
334 0.19; virgins = 3.70 ± 0.20), stimulus treatment was not ($z = 0.33, P = 0.80$, square-root-
335 transformed $X \pm SE$: Control = 4.15 ± 0.29 ; Call = 3.81 ± 0.29 ; Odor = 4.04 ± 0.28 ; Call + Odor
336 = 4.15 ± 0.27).

337

338 **Correlations Between Behavior and Fos Expression**

339 Correlations between individual animals' behavioral and neural responses to stimulus exposure
340 differed between fathers and virgin males (Table 2). Numerous significant correlations were
341 found in fathers. Across all four stimulus treatments, fathers that spent more time sniffing the

342 odor ball had greater Fos expression in the NAcc, STMV and MPOA, and tended to have greater
343 Fos expression in the MOB. Fathers that spent more time handling the odor ball had greater Fos
344 expression in the BLA and BMA. Additionally, fathers that were more active during the stimulus
345 exposure tended to have higher Fos in the AHN, and fathers that rested more during the stimulus
346 exposure had lower Fos in the STMV and MPOA and tended to have lower expression in the
347 BMA (Table 2A). In virgin males, only one significant correlation was found: virgins that were
348 more active during the period of stimulus exposure had higher Fos expression in the MOB
349 (Table 2B).

350

351 DISCUSSION

352 Olfactory and acoustic plasticity in males of biparental species are likely to be similar to females,
353 in view of previous work demonstrating similarities in the neural basis of maternal and paternal
354 care (Leuner et al. 2010; Tachikawa et al. 2013; Rymer 2020). Studies of maternal behavior in
355 rodents indicate that neural plasticity in the medial preoptic area (MPOA) during the transition to
356 parenthood leads to changes in the valence of pup sensory cues such that these stimuli switch
357 from eliciting avoidance or aggression to eliciting an approach response (Lambert 2012; Rogers
358 and Bales 2019; Elwood and Stolzenberg 2020; Numan 2020). In our study, each male was
359 placed in a small cage to limit its ability to avoid the stimuli and presented with a combination of
360 a single acoustic cue and a single olfactory cue. We show that pup calls and pup odors elicit
361 comparable behavioral responses in this test paradigm but somewhat different neural responses
362 in male California mice, and that simultaneous exposure to pup calls and odors has more
363 pronounced effects on neural activation in the MPOA, a brain region associated with paternal
364 care, than exposure to pup calls alone.

365

366 **Effects of Reproductive Status**

367 Although California mouse fathers consistently engage in paternal behavior towards unrelated
368 pups under experimental conditions, pup-naïve virgin males behave less predictably, either
369 avoiding or attacking experimentally presented pups or engaging in paternal behavior
370 (Gubernick and Nelson 1989; de Jong et al. 2009; Horrell et al. 2017). Similarly, we recently
371 found that California mouse fathers and virgin males respond differently to sensory cues from
372 unrelated pups: when adult males were exposed to odors and/or vocalizations from unrelated
373 pups, in a large arena that afforded them greater behavioral flexibility than the test cages in the
374 current study, fathers, but not virgins, spent more time in proximity to and in contact with the
375 pup stimuli than with simultaneously presented control stimuli (Arquilla, A.M., Wilson, K.M.,
376 Razak K.A., Saltzman W., submitted). Despite these previous observations, we found that
377 reproductive status did not influence males' behavioral responses to sensory stimuli from
378 unrelated pups when the males were presented with a single stimulus combination in a small
379 cage. In contrast, reproductive status did affect neural activation as well as associations between
380 neural and behavioral responses to stimuli. Although several differences in Fos expression were
381 found between fathers and virgins, these differences were not specific to pup-stimulus exposure.
382 This opens the possibility that changes in neural processing that occur at the onset of fatherhood
383 lead to high activation of regions associated with parental behavior, even in the absence of
384 exposure to pups or pup-related stimuli.

385 Our finding that fathers had higher Fos expression in the bed nucleus of the stria
386 terminalis medial division, ventral part (STMV) and medial preoptic area (MPOA) across
387 treatment groups, compared to virgin males, is consistent with previous reports of the effects of

388 reproductive status on these regions. Although the entire bed nucleus of the stria terminalis
389 (BNST) has been implicated in parental care behaviors, there is strong evidence that the ventral
390 part in particular is important for the maintenance of parental behavior in mothers (reviewed in
391 Numan 2020). The importance of the BNST and MPOA in mediating the onset of pup attraction
392 and inhibition of pup avoidance in fathers has been established through studies of biparental
393 male rodents (Kirkpatrick et al. 1994b; Lambert et al. 2013), including previous studies in
394 California mice, which have shown that lesions to the MPOA reduce paternal behavior (Lee and
395 Brown 2002, 2007) and that fathers have higher STMV and MPOA Fos expression compared to
396 virgins when exposed to a live pup secured in a mesh ball (de Jong et al. 2009).

397 The MPOA and BNST are important for the expression of parental behaviors through
398 their role in suppressing avoidance of pups and activating attraction to pups (Bales and Saltzman
399 2016; Horrell et al. 2019; Rogers and Bales 2019). The MPOA and BNST receive information
400 about olfactory and auditory cues and project to the ventral tegmental area, which activates the
401 reward circuitry through mesolimbic dopaminergic projections to the nucleus accumbens (NAcc)
402 (reviewed in Horrell et al. 2017; Rogers and Bales 2019; Elwood and Stolzenberg 2020).
403 Additionally, the MPOA and BNST inhibit aversion to pups through GABAergic signaling
404 between these two regions as well as between the MPOA and the medial amygdala (Rogers and
405 Bales 2019, Numan 2020).

406 The mechanisms underlying neural plasticity in the MPOA and BNST in response to
407 fatherhood have been the focus of several studies in rodents, which have implicated both steroid
408 hormones and neuropeptides (see Horrell et al. 2021 for review). For example, in California
409 mice, fatherhood is associated with a reduction in progesterone, oxytocin and vasopressin
410 receptor mRNA in the BNST (Perea-Rodriguez et al. 2015) and increased activity of aromatase,

411 which converts testosterone to estrogen, in the MPOA (Trainor et al. 2003). Neural plasticity in
412 these regions can also be influenced by previous experience. For example, high-stress early-life
413 environments can alter estradiol-regulated RNA transcripts in the MPOA of male rats (Eck et al.
414 2022). In addition, neural plasticity can be influenced by experiences associated with the onset of
415 fatherhood, such as mating, cohabitation with a (gestating or lactating) female, and exposure to
416 pups (reviewed in Horrell et al. 2021). At the cellular level, plasticity can involve changes in
417 production, survival, morphology and gene expression of neurons (Horrell et al. 2021). These
418 general mechanisms of neural plasticity may contribute to plasticity in sensory systems. For
419 example, Seelke et al. (2018) explored differences in gene expression in the MPOA of prairie
420 vole fathers, virgin males and paired males and found differences in gene ontology annotations
421 for olfactory behavior, as well as for many other behaviors and neural functions.

422 Fathers in our study tended to have higher Fos expression than virgin males in the
423 basolateral amygdala (BLA), which is also important for mediating parental responsiveness to
424 offspring (Numan 2012). Neurons in the BLA are activated in response to environmental stimuli
425 that may or may not relate directly to stimuli from pups, such as novel environments and
426 approach/avoidance conflict (Hale et al. 2006; Reznikov et al. 2008). Mechanistically, the BLA
427 processes information received from the olfactory and auditory pathway (Numan 2012; Grimsley
428 et al. 2013; Gadziola et al. 2016; Rogers and Bales 2019). It plays an important role in assigning
429 valence to sensory information and relaying information to several regions, including the NAcc -
430 ventral pallidum reward circuit (Numan 2012; Dulac et al. 2014; Rogers and Bales 2019). The
431 trend toward greater activation of the BLA in fathers than in virgin males may reflect differences
432 in the valence of pup-related cues between fathers and virgins. This line of reasoning is further

433 supported by the finding that BLA activation and time spent handling the ball were positively
434 associated for fathers but not virgins.

435 Interestingly, we did not find a difference between fathers and virgin males in Fos
436 expression in the NAcc, which suggests that reproductive status might not influence the extent to
437 which pup calls and odors *per se* are rewarding. This result is in line with our previous finding
438 that NAcc Fos expression did not differ between California mouse fathers and virgin males that
439 had been exposed to a live pup in a mesh tea ball, which permitted exposure to auditory and
440 olfactory cues but prevented direct contact (de Jong et al. 2009). The NAcc is part of the
441 mesolimbic reward circuitry and may respond to pup sensory cues via projections from the
442 MPOA and STMV (Numan and Numan 1997; Kaufling et al. 2009). Although it is frequently
443 included in neural models of maternal care (e.g., Rogers and Bales 2019; Numan 2020), its role
444 across sexes and species has proven to be ambiguous (Horrell et al. 2019). For example, in
445 female Sprague-Dawley rats NAcc lesions cause significant disruptions to normal maternal
446 behavior (Li and Fleming 2003), while NAcc lesions in male California mice cause only minor
447 reductions in paternal behavior (Lee and Brown 2007). A possible explanation is that reward
448 may be derived from the behavior of caring for pups, which is initiated in response to sensory
449 cues, rather than from perception of the cues themselves. This possibility requires further
450 investigation.

451 Our decision to focus on the granule cell layer of the main olfactory bulbs (MOB) was
452 based on previous work showing high activity in this region in new house mouse fathers (Mak
453 and Weiss 2010). We also found, when blind to male reproductive status and treatment, that Fos
454 expression was much higher in this layer compared to others. The granule cell layer plays a role
455 in lateral inhibition, with GABA as the dominant neurotransmitter (Nagayama et al. 2014), and

456 plasticity in this region aids in odor discrimination (Gheusi et al. 2000; Mandairon and Linster
457 2009). Fathers had lower Fos expression in the MOB compared to virgins, even though the two
458 groups of males displayed comparable durations of sniffing and handling the odor ball. While
459 this pattern has not been reported previously for the MOB, others have reported lower activation
460 of the accessory olfactory system in house mouse fathers compared to virgins (Nakahara et al.
461 2016; Isogai et al. 2018). This finding, along with significant effects of reproductive status on
462 Fos expression in other brain regions (MPOA and STMV) in our study, strengthens the case that
463 the detection and/or perception of pup stimuli changes with fatherhood and does not necessarily
464 depend on the acute amount of stimulus exposure.

465

466 **Effects of Stimulus Modality**

467 As predicted, we found that some aspects of fathers' and virgins' behavioral and neural
468 responses to stimuli differed among treatment groups, with males exposed to the combination of
469 pup calls and pup odors exhibiting the highest number of significant differences compared to
470 mice exposed to neither pup calls nor pup odors. Mice rested less during the exposure period
471 when they were exposed to any pup stimuli (Call, Odor, Call + Odor) compared to no pup
472 stimuli, and mice exposed to Call + Odor remained significantly more active after the stimulus
473 exposure period compared to all other treatment groups. While studies evaluating possible causal
474 relationships are still needed, the effects of stimulus treatment on neural activity in the MPOA
475 complement these behavioral findings. Although Fos expression in the MPOA did not differ
476 between males exposed to the Call and Odor treatments, males in the Odor treatment, but not
477 those in the Call treatment, had higher MPOA Fos than those exposed only to control stimuli.
478 Moreover, the neural response to pup calls was potentiated by simultaneous exposure to pup

479 odor, as mice in the Call + Odor treatment had significantly higher Fos in the MPOA than those
480 in the Call treatment. In contrast, simultaneous exposure to calls did not affect the response to
481 odors, as MPOA Fos expression did not differ between males in the Call + Odor and Odor
482 treatments. These differences suggest that pup odor is a more potent stimulus than pup calls and,
483 together with the behavioral data, suggest that pup odor and pup calls can have an additive or
484 synergistic effect, rather than redundant effects, on behavior and neural activation of the MPOA
485 in males.

486 In house mice, isolated pup vocalizations elicit retrieval from mothers and fathers Ehret
487 and Koch1989), and mothers have better neural entrainment in the auditory cortex to acoustic
488 stimuli within the natural frequency range of pup vocalizations, compared to virgin females (Liu
489 et al. 2006). Given these previous results, we were somewhat surprised to find that pup calls did
490 not activate brain regions associated with paternal care unless paired with pup odor, although
491 pup calls alone elicited more active behavior in males during stimulus exposure compared to the
492 control. These findings could relate to differences in the functional role of pup calls versus pup
493 odors. Rodent pup calls reliably elicit parental approach, the appetitive component of reward
494 (Ehret 2005), but rodent pups stop vocalizing or reduce their vocalization rate with the
495 introduction of a parent or family odor (Shair 2018; Wilson et al. 2022). Thus, calls are not
496 associated with the consummatory component of reward (Ehret 2005), which may be more
497 relevant for the activation of brain regions important for parental care.

498 The main olfactory system has received little attention in relation to parental care in
499 males; however, studies of the accessory olfactory system have begun to elucidate potential
500 mechanisms through which perception of chemosensory cues differs with the onset of
501 fatherhood. Because the chemosensory stimulus was presented in an enclosed ball in this study,

502 the mice were not able to have direct contact with the stimulus and therefore might not have been
503 able to detect it with the vomeronasal organ (VNO) or, consequently, to process the stimulus in
504 the accessory olfactory system. However, the relative wealth of studies of the accessory olfactory
505 system provides good context for discussing the effects of pup olfactory stimuli observed in our
506 study. Genetic or surgical ablation of the VNO increases paternal care in virgin male house mice
507 (Tachikawa et al. 2013; Wu et al. 2014; Isogai et al. 2018), but olfactory bulb lesions, which
508 impact both chemosensory systems, increase aggression towards pups in virgin male prairie
509 voles (Kirkpatrick et al. 1994a, b).

510 The transition to fatherhood in house mice is accompanied by a dampening of the VNO
511 response to pups, which is likely mediated by the down-regulation of specific odorant receptors
512 within the VNO (Nakahara et al. 2016; Isogai et al. 2018). Specifically, when exposed to
513 unrelated pups, virgin male house mice have higher Fos expression in the VNO and lower Fos
514 expression in the MPOA than fathers (Tachikawa et al. 2013), which aligns with our findings of
515 higher Fos expression in the MOB and lower Fos expression in the MPOA in virgin males
516 compared to fathers. We also found that Fos expression in the STMV, MPOA and NAcc was
517 positively correlated with time spent sniffing the odor ball in fathers, while Fos expression in the
518 MOB was positively correlated with activity levels in virgins. These findings suggest that, like
519 the accessory olfactory system in male house mice, activity of the main olfactory system is
520 dampened during the transition to fatherhood in male California mice, an effect that might
521 facilitate the inhibition of aggression and activation of affiliation toward pups.

522 Based on their findings in house mice, Tachikawa et al. (2013) suggested that in males,
523 the accessory olfactory pathway processes aversive chemosensory stimuli from pups while the
524 MOB may process attractive chemosensory stimuli from pups. We find mixed support for this

525 hypothesis, since fathers that spent more time sniffing the odor ball had greater Fos expression in
526 the reward circuit (NAcc) and tended to have greater Fos expression in the MOB. However,
527 fathers also had lower Fos expression in the MOB compared to virgins, which seems to
528 contradict Tachikawa et al.'s (2013) hypothesis. The effect of male reproductive status on the
529 accessory olfactory pathway has not been explored in biparental rodents, and this is the first
530 study, to our knowledge, to explore neural responses to isolated pup stimuli in the MOB. Thus,
531 the relationship between the main and accessory olfactory pathways in mediating parental
532 behavior remains unclear but presents a promising avenue of research.

533 Our results in the MOB also contrast with findings by Mak and Weiss (2010), who
534 reported that house mouse fathers had more neurogenesis in the olfactory bulbs when they were
535 housed with their mate and first litter for the first two days after birth compared to fathers that
536 were removed shortly after parturition. However, there are key differences between Mak and
537 Weiss's (2010) study and ours. Most notably, we compared fathers to virgins, while Mak and
538 Weiss (2010) compared fathers housed with or without their mate and pups. The potential effects
539 of housing with a pregnant or parturient mate and/or initial interactions with pups could affect
540 results, since copulation alone can be enough to alter behavioral responses to pups (Elwood and
541 Stolzenberg 2020). Including a virgin male group in a similarly designed study would allow us to
542 test this possibility.

543 A more complete understanding of the effects of fatherhood on males' responses to
544 isolated sensory cues from pups will come from exploring additional mechanisms of neural
545 plasticity. This could be done, for example, by quantifying receptors for neuropeptides and
546 hormones thought to play a role in the onset of paternal care (e.g., testosterone, estrogen,
547 oxytocin, vasopressin) in regions that receive and integrate sensory information (reviewed in

548 Bales and Saltzman 2016; Horrell et al. 2019, 2021). Although we were unable to analyze
549 auditory structures in the brain for technical reasons, we would expect to see the transition to
550 fatherhood to affect, for example, the auditory cortex and inferior colliculus, based on their
551 neural connections to the MPOA, BNST, BLA, BMA and medial amygdala (Numan 2020) and
552 given the high degree of connectivity among primary cortices (Campi et al. 2019). Additional
553 work to further explore auditory brain regions, using techniques such as auditory brainstem
554 recordings and electrophysiology, is forthcoming. Such studies will shed additional light on the
555 present findings, in particular, the surprising finding that fathers had lower expression of Fos in
556 the MOB than virgins, despite positive correlations between sniffing behavior and activation of
557 paternal behavior and reward circuits. It would also be informative to examine effects of
558 additional environmental and experiential correlates of the transition to fatherhood, such as
559 formation of a pair bond, copulation, or cohabitation with a pregnant female.

560

561 REFERENCES

562 Archer, J. (1973). Tests for emotionality in rats and mice: A review. *Animal Behaviour* 21, 205–
563 235. [https://doi.org/10.1016/S0003-3472\(73\)80065-X](https://doi.org/10.1016/S0003-3472(73)80065-X).

564

565 Bales, K.L., and Saltzman, W. (2016). Fathering in rodents: Neurobiological substrates and
566 consequences for offspring. *Hormones and Behavior*, 77, 249–259.
567 doi.org/10.1016/j.yhbeh.2015.05.021

568

569 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D.,
570 McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., et al. (2017). QuPath: Open source

571 software for digital pathology image analysis. *Science Reports* 7, 16878.

572 <https://doi.org/10.1038/s41598-017-17204-5>.

573

574 Belnoue, L., Malvaut, S., Ladevèze, E., Abrous, D. N., and Koehl, M. (2016). Plasticity in the
575 olfactory bulb of the maternal mouse is prevented by gestational stress. *Scientific Reports*, 6, 1-
576 11. doi:10.1038/srep37615

577

578 Bester-Meredith, J. K., Burns, J. N., Dang, M. N., Garcia, A. M., Mammarella, G. E., Rowe, M.
579 E., and Spatacean, C. F. (2022). Blocking olfactory input alters aggression in male and female
580 California mice (*Peromyscus californicus*). *Aggressive Behavior*, 48(3), 290-297.

581

582 Blumberg, M.S., and Sokoloff, G. (2001). Do infant rats cry? *Psychological Review*, 108, 83–95.
583 doi.org/10.1037/0033-295X.108.1.83

584

585 Campi, K. L., Bales, K. L., Grunewald, R., and Krubitzer, L. (2010). Connections of auditory
586 and visual cortex in the prairie vole (*Microtus ochrogaster*): evidence for multisensory
587 processing in primary sensory areas. *Cerebral Cortex*, 20, 89-108.
588 doi.org/10.1093/cercor/bhp082

589

590 Cantoni, D., and Brown, R.E. (1997). Paternal investment and reproductive success in the
591 California mouse, *Peromyscus californicus*. *Animal Behaviour* 54, 377–386.
592 <https://doi.org/10.1006/anbe.1996.0583>.

593

594 Chauke, M., de Jong, T.R., Garland, T., and Saltzman, W. (2012). Paternal responsiveness is
595 associated with, but not mediated by reduced neophobia in male California mice (*Peromyscus*
596 *californicus*). *Physiology and Behavior*, 107, 65–75. doi.org/10.1016/j.physbeh.2012.05.012
597

598 Choi, I., Lee, J.-Y., and Lee, S.-H. (2018). Bottom-up and top-down modulation of multisensory
599 integration. *Current Opinion in Neurobiology*, 52, 115–122.

600 <https://doi.org/10.1016/j.conb.2018.05.002>

601

602 Cohen, L., Rothschild, G., and Mizrahi, A. (2011). Multisensory integration of natural odors and
603 sounds in the auditory cortex. *Neuron*, 72(2), 357–369.

604 <https://doi.org/10.1016/j.neuron.2011.08.019>

605

606 de Jong, T.R., Chauke, M., Harris, B.N., and Saltzman, W. (2009). From here to paternity:
607 Neural correlates of the onset of paternal behavior in California mice (*Peromyscus californicus*).
608 *Hormones and Behavior*, 56, 220–231. doi.org/10.1016/j.yhbeh.2009.05.001

609

610 Duarte-Guterman, P., Leuner, B., and Galea, L. A. (2019). The long and short term effects of
611 motherhood on the brain. *Frontiers in Neuroendocrinology*, 53, 100740.

612 doi.org/10.1016/j.yfrne.2019.02.004

613

614 Dudley, D. (1974). Paternal behavior in the California mouse, *Peromyscus californicus*.
615 *Behavioral Biology*, 11, 247–252. doi.org/10.1016/S0091-6773(74)90433-7

616

617 Dulac, C., O'Connell, L.A., and Wu, Z. (2014). Neural control of maternal and paternal
618 behaviors. *Science*, 345, 765–770. doi:10.1126/science.1253291

619

620 Dunlap, A.G., and Liu, R.C. (2018). Chapter 8 - Rodent ultrasonic vocalization as a window into
621 auditory cortical processing and plasticity. In *Handbook of Behavioral Neuroscience*, S.M.
622 Brudzynski, ed. (Elsevier), pp. 83–93. doi.org/10.1016/B978-0-12-809600-0.00008-1

623

624 Eck, S. R., Palmer, J. L., Bavley, C. C., Karbalaei, R., Ordoñes Sanchez, E., Flowers, J., Holley,
625 A., Wimmer, M.E., and Bangasser, D. A. (2022). Effects of early life adversity on male
626 reproductive behavior and the medial preoptic area transcriptome. *Neuropsychopharmacology*,
627 47, 1231-1239. doi:10.1038/s41386-022-01282-9

628

629 Ehret, G. (2005). Infant rodent ultrasounds -- a gate to the understanding of sound
630 communication. *Behavior Genetics*, 35, 19–29. doi: 10.1007/s10519-004-0853-8

631

632 Ehret, G., Koch, M., Haack, B., and Markl, H. (1987). Sex and parental experience determine the
633 onset of an instinctive behavior in mice. *Naturwissenschaften*, 74, 47. doi.org/10.18725/OPARU-
634 1273

635

636 Ehret, G., and Koch, M. (1989). Ultrasound-induced parental behaviour in house mice is
637 controlled by female sex hormones and parental experience. *Ethology*, 80, 81–93.
638 doi.org/10.1111/j.1439-0310.1989.tb00731.x

639

640 Elwood, R.W., and Ostermeyer, M.C. (1984). Infanticide by male and female Mongolian gerbils:
641 ontogeny, causation, and function. In: Hausfater, G., Hrdy, S.B. (eds) Infanticide: comparative
642 and evolutionary perspectives. Aldine, New York, pp 367–386. doi:
643 10.1101/csfperspect.a017640

644

645 Elwood, R.W., and Stolzenberg, D.S. (2020). Flipping the parental switch: from killing to caring
646 in male mammals. *Animal Behaviour* 165, 133–142.
647 <https://doi.org/10.1016/j.anbehav.2020.05.001>.

648

649 Frazier, C.R.M., Trainor, B.C., Cravens, C.J., Whitney, T.K., and Marler, C.A. (2006). Paternal
650 behavior influences development of aggression and vasopressin expression in male California
651 mouse offspring. *Hormones and Behavior*, 50, 699-707. doi: 10.1016/j.yhbeh.2006.06.035

652

653 Friard, O., and Gamba, M. (2016). BORIS: a free, versatile open-source event-logging software
654 for video/audio coding and live observations. *Methods in Ecology and Evolution* 7, 1325–1330.
655 <https://doi.org/10.1111/2041-210X.12584>.

656

657 Gadziola, M.A., Shanbhag, S.J., and Wenstrup, J.J. (2016). Two distinct representations of social
658 vocalizations in the basolateral amygdala. *Journal of Neurophysiology*, 115, 868-886.
659 doi.org/10.1152/jn.00953.2015

660

661 Gentsch, C., Lichtsteiner, M., and Feer, H. (1981). Locomotor activity, defecation score and
662 corticosterone levels during an openfield exposure: A comparison among individually and

663 group-housed rats, and genetically selected rat lines. *Physiology and Behavior* 27, 183–186.

664 [https://doi.org/10.1016/0031-9384\(81\)90320-6](https://doi.org/10.1016/0031-9384(81)90320-6).

665

666 Gheusi, G., Cremer, H., McLean, H., Chazal, G., Vincent, J. D., and Lledo, P. M. (2000).

667 Importance of newly generated neurons in the adult olfactory bulb for odor discrimination.

668 *Proceedings of the National Academy of Sciences*, 97, 1823-1828.

669 doi.org/10.1073/pnas.97.4.1823

670

671 Glasper, E.R., Kenkel, W.M., Bick, J., and Rilling, J.K. (2019). More than just mothers: The

672 neurobiological and neuroendocrine underpinnings of allomaternal caregiving. *Frontiers in*

673 *Neuroendocrinology*, 53, 100741. dxoi: 10.1016/j.yfrne.2019.02.005

674

675 Grimsley, J.M., Hazlett, E.G., and Wenstrup, J.J. (2013). Coding the meaning of sounds:

676 contextual modulation of auditory responses in the basolateral amygdala. *Journal of*

677 *Neuroscience*, 33, 17538-17548. doi.org/10.1523/JNEUROSCI.2205-13.2013

678

679 Gubernick, D.J., and Alberts, J.R. (1987). The biparental care system of the California mouse,

680 *Peromyscus californicus*. *Journal of Comparative Psychology*, 101, 169-177.

681 doi.org/10.1037/0735-7036.101.2.169

682

683 Gubernick, D.J., and Nelson, R.J. (1989). Prolactin and paternal behavior in the biparental

684 California mouse, *Peromyscus californicus*. *Hormones and Behavior* 23, 203–210.

685 [https://doi.org/10.1016/0018-506X\(89\)90061-5](https://doi.org/10.1016/0018-506X(89)90061-5).

686

687 Gubernick, D.J., and Teferi, T. (2000). Adaptive significance of male parental care in a
688 monogamous mammal. *Proceedings of the Royal Society of London B* 267, 147-150. doi:
689 10.1098/rspb.2000.0979.

690

691 Gubernick, D.J., Wright, S.L., and Brown, R.E. (1993). The significance of father's presence for
692 offspring survival in the monogamous California mouse, *Peromyscus californicus*. *Animal*
693 *Behaviour* 46, 539–546. <https://doi.org/10.1006/anbe.1993.1221>.

694

695 Hale, M.W., Bouwknecht, J.A., Spiga, F., Shekhar, A., and Lowry, C.A., 2006. Exposure to high
696 and low-light conditions in an open-field test of anxiety increases c-Fos expression in specific
697 subdivisions of the rat basolateral amygdaloid complex. *Brain Research Bulletin* 71, 174–182.
698 doi:10.1016/j.brainresbull.2006.09.001

699

700 Hofer, M.A., Shair, H.N., and Brunelli, S.A. (2001). Ultrasonic vocalizations in rat and mouse
701 pups. *Current Protocols in Neuroscience* 17, 8.14.1-8.14.16.
702 <https://doi.org/10.1002/0471142301.ns0814s17>

703

704 Horrell, N.D., Perea-Rodriguez, J.P., Harris, B.N., and Saltzman, W. (2017). Effects of repeated
705 pup exposure on behavioral, neural, and adrenocortical responses to pups in male California
706 mice (*Peromyscus californicus*). *Hormones and Behavior*, 90, 56–63.
707 doi:10.1016/j.yhbeh.2017.02.008

708

709 Horrell, N.D., Hickmott, P.W., and Saltzman, W. (2019). Neural regulation of paternal behavior
710 in mammals: sensory, neuroendocrine, and experiential influences on the paternal brain. In
711 Current Topics in Behavioral Neurosciences. (Springer, Berlin, Heidelberg) pp. 1–50. doi:
712 10.1007/7854_2018_55

713

714 Horrell, N.D., Acosta, M.C., and Saltzman, W. (2021). Plasticity of the paternal brain: Effects of
715 fatherhood on neural structure and function. *Developmental Psychobiology* 63, 1499–1520.
716 <https://doi.org/10.1002/dev.22097>.

717

718 Isogai, Y., Wu, Z., Love, M.I., Ahn, M.H.-Y., Bambah-Mukku, D., Hua, V., Farrell, K., and
719 Dulac, C. (2018). Multisensory logic of infant-directed aggression by males. *Cell* 175, 1827–
720 1841.e17. <https://doi.org/10.1016/j.cell.2018.11.032>.

721

722 Jasarevic, E., Bailey, D.H., Crossland, J.P., Dawson, W.D., Szalai, G., Ellersieck, M.R.,
723 Rosenfeld, C.S., and Geary, D.C. (2013). Evolution of monogamy, paternal investment, and
724 female life history in *Peromyscus*. *Journal of Comparative Psychology*, 127, 91–102.
725 doi.org/10.1037/a0027936

726

727 Johnson, S.A., Painter, M.S., Javurek, A.B., Murphy, C.R., Howald, E.C., Khan, Z.Z., Conard,
728 C.M., Gant, K.L., Ellersieck, M.R., Hoffmann, F., Schenk, A.K., Rosenfeld, C.S., (2017).
729 Characterization of vocalizations emitted in isolation by California Mouse (*Peromyscus*
730 *californicus*) pups throughout the postnatal period. *Journal of Comparative Psychology* 131, 30–
731 39. <https://doi.org/10.1037/com0000057>.

732

733 Kalcounis-Rueppell, M. C., Pultorak, J. D., and Marler, C. A. (2018). Ultrasonic vocalizations of
734 mice in the genus *Peromyscus*. In *Handbook of behavioral neuroscience* (Vol. 25, pp. 227-235).
735 Elsevier.

736

737 Kaufling, J., Veinante, P., Pawlowski, S.A., Freund-Mercier, M.J., and Barrot, M. (2009).
738 Afferents to the GABAergic tail of the ventral tegmental area in the rat. *Journal of Comparative*
739 *Neurology*, 513(6), 597-621. doi:10.1002/cne.21983

740

741 Kinsley, C.H., and Bridges, R.S. (1990). Morphine treatment and reproductive condition alter
742 olfactory preferences for pup and adult male odors in female rats. *Developmental Psychobiology*
743 23, 331–347. <https://doi.org/10.1002/dev.420230405>.

744

745 Kinsley, C.H., Bardi, M., Karelina, K., Rima, B., Christon, L., Friedenberg, J., and Griffin, G.
746 (2008). Motherhood induces and maintains behavioral and neural plasticity across the lifespan in
747 the rat. *Archives of Sexual Behavior*, 37, 43-56. doi:10.1007/s10508-007-9277-x

748

749 Kirkpatrick, B., Williams, J.R., Slotnick, B.M., and Carter, C.S. (1994a). Olfactory bulbectomy
750 decreases social behavior in male prairie voles (*M. ochrogaster*). *Physiology and Behavior* 55,
751 885–889. [https://doi.org/10.1016/0031-9384\(94\)90075-2](https://doi.org/10.1016/0031-9384(94)90075-2).

752

753 Kirkpatrick, B., Kim, J.W., and Insel, T.R. (1994b). Limbic system fos expression associated
754 with paternal behavior. *Brain Research* 658, 112–118. [https://doi.org/10.1016/S0006-8993\(09\)90016-6](https://doi.org/10.1016/S0006-8993(09)90016-6).

756

757 Kleiman, D.G., and Malcolm, J.R. (1981). The evolution of male parental investment in
758 mammals. In *Parental Care in Mammals*, D.J. Gubernick, and P.H. Klopfer, eds. (Boston, MA:
759 Springer US), pp. 347–387.

760

761 Lambert, K.G. (2012). The parental brain: transformations and adaptations. *Physiology and
762 Behavior* 107, 792–800. doi.org/10.1016/j.physbeh.2012.03.018

763

764 Lambert, K.G., Franssen, C.L., Hampton, J.E., Rzucidlo, A.M., Hyer, M.M., True, M., Kaufman,
765 C., and Bardi, M. (2013). Modeling paternal attentiveness: Distressed pups evoke differential
766 neurobiological and behavioral responses in paternal and nonpaternal mice. *Neuroscience* 234,
767 1–12. <https://doi.org/10.1016/j.neuroscience.2012.12.023>.

768

769 Lee, A.W., and Brown, R.E., 2002. Medial preoptic lesions disrupt parental behavior in both
770 male and female California mice (*Peromyscus californicus*). *Behavioral Neuroscience* 116, 968–
771 975. doi:10.1037//0735-7044.116.6.968

772

773 Lee, A.W., and Brown, R.E. (2007). Comparison of medial preoptic, amygdala, and nucleus
774 accumbens lesions on parental behavior in California mice (*Peromyscus californicus*).
775 *Physiology and Behavior* 92, 617–628. <https://doi.org/10.1016/j.physbeh.2007.05.008>.

776

777 Leuner, B., Glasper, E.R., and Gould, E. (2010). Parenting and plasticity. Trends in
778 Neurosciences 33, 465-473. doi:10.1016/j.tins.2010.07.003

779

780 Lévy, F., and Keller, M. (2009). Olfactory mediation of maternal behavior in selected
781 mammalian species. Behavioural Brain Research 200, 336–345.
782 <https://doi.org/10.1016/j.bbr.2008.12.017>.

783

784 Lévy, F., Keller, M., and Poindron, P. (2004). Olfactory regulation of maternal behavior in
785 mammals. Hormones and Behavior 46, 284–302. <https://doi.org/10.1016/j.yhbeh.2004.02.005>.

786

787 Li, M., and Fleming, A.S. (2003). The nucleus accumbens shell is critical for normal expression
788 of pup-retrieval in postpartum female rats. Behavioural Brain Research 145, 99–111.
789 doi:10.1016/s0166-4328(03)00135-9

790

791 Liu, R.C., Linden, J.F., and Schreiner, C.E. (2006). Improved cortical entrainment to infant
792 communication calls in mothers compared with virgin mice. European Journal of Neuroscience
793 23, 3087–3097. <https://doi.org/10.1111/j.1460-9568.2006.04840.x>.

794

795 Mak, G.K., and Weiss, S. (2010). Paternal recognition of adult offspring mediated by newly
796 generated CNS neurons. Nature Neuroscience 13, 753–758. <https://doi.org/10.1038/nn.2550>.

797

798 Mandairon, N., and Linster, C. (2009). Odor perception and olfactory bulb plasticity in adult
799 mammals. *Journal of Neurophysiology*, 101, 2204-2209. doi.org/10.1152/jn.00076.2009

800

801 Marlin, B.J., Mitre, M., D'amour, J.A., Chao, M.V., and Froemke, R.C. (2015). Oxytocin
802 enables maternal behaviour by balancing cortical inhibition. *Nature*, 520, 499-504.
803 doi:10.1038/nature14402

804

805 Mikula, S., Trotts, I., Stone, J.M., and Jones, E.G. (2007). Internet-enabled high-resolution brain
806 mapping and virtual microscopy. *Neuroimage* 35, 9-15. doi:10.1016/j.neuroimage.2006.11.053

807

808 Nagayama, S., Homma, R., and Imamura, F. (2014). Neuronal organization of olfactory bulb
809 circuits. *Frontiers in neural circuits*, 8, 98. doi.org/10.3389/fncir.2014.00098

810

811 Nakahara, T.S., Cardozo, L.M., Ibarra-Soria, X., Bard, A.D., Carvalho, V.M.A., Trintinalia,
812 G.Z., Logan, D.W., and Papes, F. (2016). Detection of pup odors by non-canonical adult
813 vomeronasal neurons expressing an odorant receptor gene is influenced by sex and parenting
814 status. *BMC Biology* 14, 12. https://doi.org/10.1186/s12915-016-0234-9.

815

816 Numan, M. (1988). Neural basis of maternal behavior in the rat. *Psychoneuroendocrinology* 13,
817 47–62. https://doi.org/10.1016/0306-4530(88)90006-6.

818

819 Numan, M. (1990). Neural control of maternal behavior. In N.A. Krasnegor and R.S. Bridges
820 (Eds.), *Mammalian Parenting: Biochemical, Neurobiological, and Behavioral Determinants*,
821 (New York, NY, US: Oxford University Press), pp. 231–259.

822

823 Numan, M. (2012). Maternal behavior: neural circuits, stimulus valence, and motivational
824 processes. *Parenting* 12, 105–114. <https://doi.org/10.1080/15295192.2012.680406>.

825

826 Numan, M. (2020). *The Parental Brain: Mechanisms, Development, and Evolution*. Oxford
827 University Press.

828

829 Numan, M., and Insel, T.R. (2003). *The Neurobiology of Parental Behavior* (New York:
830 Springer-Verlag).

831

832 Numan, M., and Numan, M.J. (1997). Projection sites of medial preoptic area and ventral bed
833 nucleus of the stria terminalis neurons that express Fos during maternal behavior in female rats.
834 *Journal of Neuroendocrinology* 9:369–384. doi:10.1046/j.1365-2826.1997.t01-1-00597.x

835

836 Numan, M., Fleming, A.S., and Levy, F. (2006). Maternal behavior. In J. D. Neill (Ed.), *Knobil
837 & Neill's Physiology of Reproduction* (pp. 1921–1993). New York, NY: Elsevier.

838

839 Okabe, S., Nagasawa, M., Kihara, T., Kato, M., Harada, T., Koshida, N., Mogi, K., and Kikusui,
840 T. (2013). Pup odor and ultrasonic vocalizations synergistically stimulate maternal attention in
841 mice. *Behavioral Neuroscience*. 127, 432–438. doi:10.1037/a0032395

842

843 Olazábal, D.E., Pereira, M., Agrati, D., Ferreira, A., Fleming, A.S., González-Mariscal, G.,
844 Lévy, F., Lucion, A.B., Morrell, J.I., Numan, M., Uriarte, N. (2013). New theoretical and
845 experimental approaches on maternal motivation in mammals. *Neuroscience and Biobehavioral*
846 *Reviews* 37, 1860–1874. <https://doi.org/10.1016/j.neubiorev.2013.04.003>.

847

848 Parker, K. J., Kinney, L. F., Phillips, K. M., and Lee, T. M. (2001). Paternal behavior is
849 associated with central neurohormone receptor binding patterns in meadow voles (*Microtus*
850 *pennsylvanicus*). *Behavioral Neuroscience*, 115, 1341–1348. <https://doi.org/10.1037/0735-7044.115.6.1341>

852

853 Paxinos, G., and Franklin, K.B. (2013). *The Mouse Brain in Stereotaxic Coordinates*. third ed.
854 Academic Press, New York

855

856 Pultorak, J. D., Matusinec, K. R., Miller, Z. K., and Marler, C. A. (2017). Ultrasonic vocalization
857 production and playback predicts intrapair and extrapair social behaviour in a monogamous
858 mouse. *Animal Behaviour*, 125, 13-23.

859

860 Reznikov, L.R., Reagan, L.P., Fadel, J.R. (2008). Activation of phenotypically distinct neuronal
861 subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and
862 repeated stress. *Journal of Comparative Neurology*. 508, 458–472. doi:10.1002/cne.21687

863

864 Rieger, N. S., Monari, P. K., Hartfield, K., Schefelker, J., and Marler, C. A. (2021). Pair-bonding
865 leads to convergence in approach behavior to conspecific vocalizations in California mice
866 (*Peromyscus californicus*). PLoS One, 16(8), e0255295.

867

868 Rogers, F.D., and Bales, K.L. (2019). Mothers, fathers, and others: neural substrates of parental
869 care. Trends in Neurosciences 42, 552–562. <https://doi.org/10.1016/j.tins.2019.05.008>.

870

871 Rosenblatt, J.S., and Ceus, K. (1998). Estrogen implants in the medial preoptic area stimulate
872 maternal behavior in male rats. Hormones and Behavior, 33, 23–30. doi:10.1006/hbeh.1997.1430

873

874 Rosenfeld, C.S., Johnson, S.A., Ellersieck, M.R., and Roberts, R.M. (2013). Interactions between
875 parents and parents and pups in the monogamous California mouse (*Peromyscus californicus*).
876 PLOS ONE, 8, e75725.

877

878 Rymer, T.L. (2020). The role of olfactory genes in the expression of rodent paternal care
879 behavior. Genes 11, 292. <https://doi.org/10.3390/genes11030292>.

880

881 Shair, H. N. (2018). Chapter 15 – Factors affecting the emission of infantile vocalizations and
882 vocal expression of emotional states. In (S. M. Brudzynski Ed.), Handbook of Ultrasonic
883 Vocalization: A Window into the Emotional Brain (pp. 129-137). Elsevier Academic Press.
884 <https://doi.org/10.1016/B978-0-12-809600-0.00015-9>

885

886 Sheehan, T., and Numan, M. (2002). Estrogen, progesterone, and pregnancy termination alter
887 neural activity in brain regions that control maternal behavior in rats. *Neuroendocrinology*, 75,
888 12–23. doi.org/10.1159/000048217

889

890 Schiavo, J. K., Valtcheva, S., Bair-Marshall, C. J., Song, S. C., Martin, K. A., and Froemke, R.
891 C. (2020). Innate and plastic mechanisms for maternal behaviour in auditory cortex. *Nature*, 587,
892 426-431. doi: 10.1038/s41586-020-2807-6

893

894 Tachikawa, K.S., Yoshihara, Y., and Kuroda, K.O. (2013). Behavioral transition from attack to
895 parenting in male mice: a crucial role of the vomeronasal system. *Journal of Neuroscience* 33,
896 5120–5126. <https://doi.org/10.1523/JNEUROSCI.2364-12.2013>.

897

898 Tasaka, G.I., Feigin, L., Maor, I., Groysman, M., DeNardo, L.A., Schiavo, J.K., Froemke, R.C.,
899 Luo, L. and Mizrahi, A. (2020). The temporal association cortex plays a key role in auditory-
900 driven maternal plasticity. *Neuron*, 10, 566-579. doi.org/10.1016/j.neuron.2020.05.004

901

902 Trainor, B. C., Bird, I. M., Alday, N. A., Schlinger, B. A., and Marler, C. A. (2003). Variation in
903 aromatase activity in the medial preoptic area and plasma progesterone is associated with the
904 onset of paternal behavior. *Neuroendocrinology*, 78, 36–44. <https://doi.org/10.1159/000071704>

905

906 Vinograd, A., Fuchs-Shlomai, Y., Stern, M., Mukherjee, D., Gao, Y., Citri, A., Davidson, I., and
907 Mizrahi, A. (2017). Functional plasticity of odor representations during motherhood. *Cell*
908 reports, 2, 351-365. doi:10.1016/j.celrep.2017.09.038

909

910 Wierucka, K., Pitcher, B. J., Harcourt, R., and Charrier, I. (2018). Multimodal mother–offspring
911 recognition: The relative importance of sensory cues in a colonial mammal. *Animal Behaviour*,
912 146, 135–142. <https://doi.org/10.1016/j.anbehav.2018.10.019>

913

914 Wilson, K.M., Wagner, V.A., and Saltzman, W. (2022). Specificity of California mouse pup
915 vocalizations in response to olfactory stimuli. *Developmental Psychobiology*, 64, e22261.
916 doi.org/10.1002/dev.22261

917

918 Wright, S.L., and Brown, R.E. (2002). The importance of paternal care on pup survival and pup
919 growth in *Peromyscus californicus* when required to work for food. *Behavioural Processes*, 60,
920 41–52. doi.org/10.1016/S0376-6357(02)00101-8

921

922 Wu, Z., Autry, A.E., Bergan, J.F., Watabe-Uchida, M., and Dulac, C.G. (2014). Galanin neurons
923 in the medial preoptic area govern parental behaviour. *Nature* 509, 325–330.
924 <https://doi.org/10.1038/nature13307>.

925

926 Wynne-Edwards, K.E. (1995). Biparental care in Djungarian but not Siberian dwarf hamsters
927 (*Phodopus*). *Animal Behaviour* 50, 1571–1585. [https://doi.org/10.1016/0003-3472\(95\)80012-3](https://doi.org/10.1016/0003-3472(95)80012-3).

928

929 Yuan, W., He, Z., Hou, W., Wang, L., Li, L., Zhang, J., Yang, Y., Jia, R., Qiao, H., and Tai, F.
930 (2019). Role of oxytocin in the medial preoptic area (MPOA) in the modulation of paternal
931 behavior in mandarin voles. *Hormones and Behavior* 110, 46–55. 10.1016/j.yhbeh.2019.02.014

932

933 Zhao, M., Garland Jr, T., Chappell, M.A., Andrew, J.R., Harris, B.N., and Saltzman, W. (2018).

934 Effects of a physical and energetic challenge on male California mice (*Peromyscus californicus*):

935 modulation by reproductive condition. *Journal of Experimental Biology*, 221, jeb168559.

936 doi.org/10.1242/jeb.168559

937

938

939 TABLES

940 Table 1. Total durations of behaviors during 10-min stimulus exposures and number of scan
 941 samples in which behavior was observed during the 60 min after stimulus exposure (median, 1st
 942 and 3rd quartiles). Bolded values are significantly different from all other stimulus treatments (P
 943 < 0.05).

944

Variable	Parenthood status			Stimulus treatment		
	Father (N=30)	Virgin (N=29)	Control (N=14)	Call (N=14)	Odor (N=14)	Call + Odor (N=17)
<u>During stimulus exposure</u>						
<u>Sniff ball (s)</u>						
	7.5 (0.0, 40.7)	14.7 (0.0, 67.7)	0.0 (0.0, 16.9)	10.3 (0.0, 77.7)	10.8 (1.7, 63.0)	25.7 (8.0, 45.7)
<u>Handle ball (s)</u>						
	0.0 (0.0, 31.4)	0.0 (0.0, 117.1)	0.0 (0.0, 0.0)	0.0 (0.0, 117.1)	0.0 (0.0, 27.0)	9.4 (0.0, 41.2)
<u>Listen (s)</u>						
	0.0 (0.0, 40.8)	0.0 (0.0, 48.4)	0.0 (0.0, 0.0)	6.5 (0.0, 48.4)	7.8 (0.0, 55.1)	8.5 (0.0, 49.1)
<u>Activity (s)</u>						
	0.0 (0.0, 52.1)	0.0 (0.0, 52.3)	0.0 (0.0, 0.0)	0.0 (0.0, 46.1)	31.4 (0.0, 82.9)	3.3 (0.0, 82.3)
<u>Rest (s)</u>						
	558.3 (170.5, 600.0)	429.8 (213.1, 599.0)	600.0 (583.1, 600.0)	427.5 (181.1, 600.0)	415.0 (77.9, 594.8)	523.9 (162.2, 592.0)
<u>After stimuli removed</u>						
<u>Activity (count)</u>						
	5.5 (1.0, 9.0)	9.0 (2.0, 12)	7.0 (2.0, 12.0)	8.5 (5.0, 12.0)	8.5 (1.0, 12.0)	2.0 (1.0, 7.0)

945

946

947

948

949

950

951

952

953 Table 2. Correlations between Fos expression (number of Fos-positive neurons per 200 x 200 μm
 954 square) and behavior duration (s) for (A) fathers and (B) virgin males. Significant correlations (P
 955 < 0.05) are indicated in bold, and non-significant trends ($0.05 < P < 0.07$) are indicated in italics.
 956 For each correlation, Pearson's r (top line) and P -value (bottom line) are shown.
 957

Fos-IR/ Behavior (s)	<u>MOB</u>	<u>NAcc</u>	<u>STMV</u>	<u>MPOA</u>	<u>AHN</u>	<u>BLA</u>	<u>BMA</u>
<u>A. Fathers</u>	N = 30	N = 29	N = 30	N = 30	N = 29	N = 27	N = 27
Sniff odor ball	0.346 0.061	0.420 0.024	0.804 <i>< 0.001</i>	0.569 0.001	0.070 0.717	0.100 0.619	0.196 0.327
Handle odor ball	0.015 0.939	-0.045 0.818	0.153 0.419	0.172 0.363	0.090 0.644	0.404 0.037	0.602 0.001
Listen	-0.074 0.697	-0.092 0.635	0.299 0.109	0.250 0.183	0.142 0.466	-0.192 0.341	-0.080 0.692
Activity	0.061 0.751	-0.036 0.853	0.182 0.337	0.158 0.403	<i>0.366</i> <i>0.051</i>	0.037 0.855	0.036 0.857
Rest	-0.246 0.190	-0.200 0.299	-0.507 0.004	-0.380 0.038	-0.293 0.123	-0.212 0.289	-0.379 <i>0.051</i>
<u>B. Virgin males</u>	N = 29	N = 29	N = 29	N = 29	N = 29	N = 25	N = 26
Sniff odor ball	-0.076 0.697	0.100 0.604	-0.134 0.489	-0.256 0.180	0.007 0.971	-0.272 0.189	0.089 0.666
Handle odor ball	0.004 0.985	-0.062 0.749	-0.105 0.587	-0.282 0.139	-0.217 0.259	-0.228 0.273	-0.047 0.820
Listen	0.052 0.790	-0.231 0.228	-0.020 0.917	0.077 0.6902	0.128 0.507	-0.040 0.851	0.228 0.263
Activity	0.481 0.008	-0.036 0.853	-0.086 0.658	0.162 0.401	0.004 0.985	-0.111 0.599	-0.855 0.678
Rest	-0.177 0.358	0.149 0.442	0.097 0.616	0.072 0.711	-0.005 0.980	0.265 0.201	-0.011 0.957

958
959

FIGURES

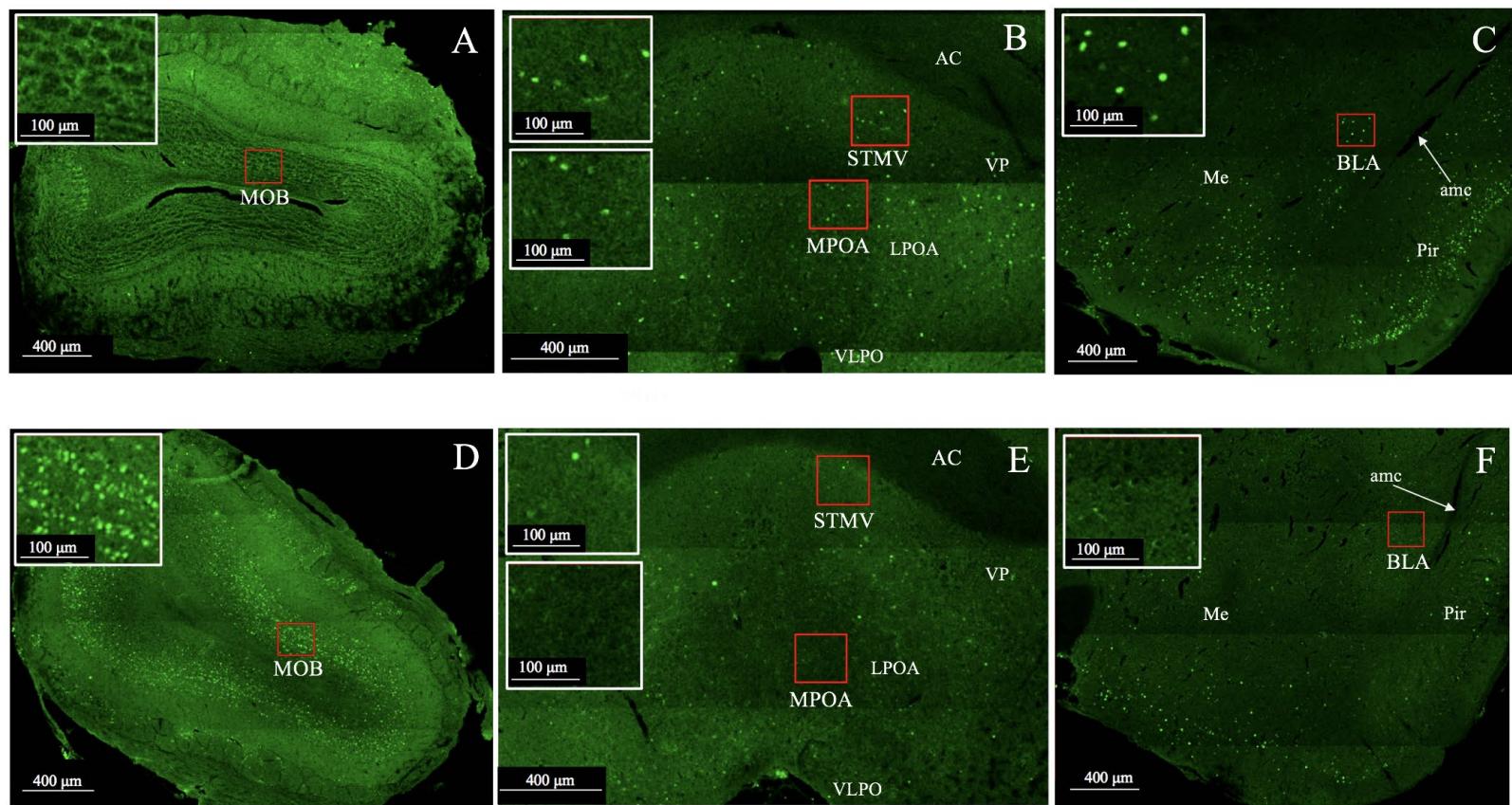


Figure 1. Representative photomicrographs of coronal brain sections (40 μm thick) showing Fos staining in the main olfactory bulbs (MOB; A and D), bed nucleus of the stria terminalis medial division, ventral part (STMV) and medial preoptic area (MPOA; B and E), and basolateral amygdala (BLA; C and F) of California mouse fathers (A-C) and virgin males (D-F). Magnified images are of the area outlined by the red box (200 \times 200 μm) in each photomicrograph. In images B and E, the top inset in each photomicrograph corresponds to the STMV and the bottom inset corresponds to the MPOA. AC = anterior commissure, amc = amygdalar capsule, LPOA = lateral preoptic area, Me = medial amygdaloid, Pir = piriform cortex, VLPO = ventrolateral preoptic nucleus, VP = ventral pallidum.

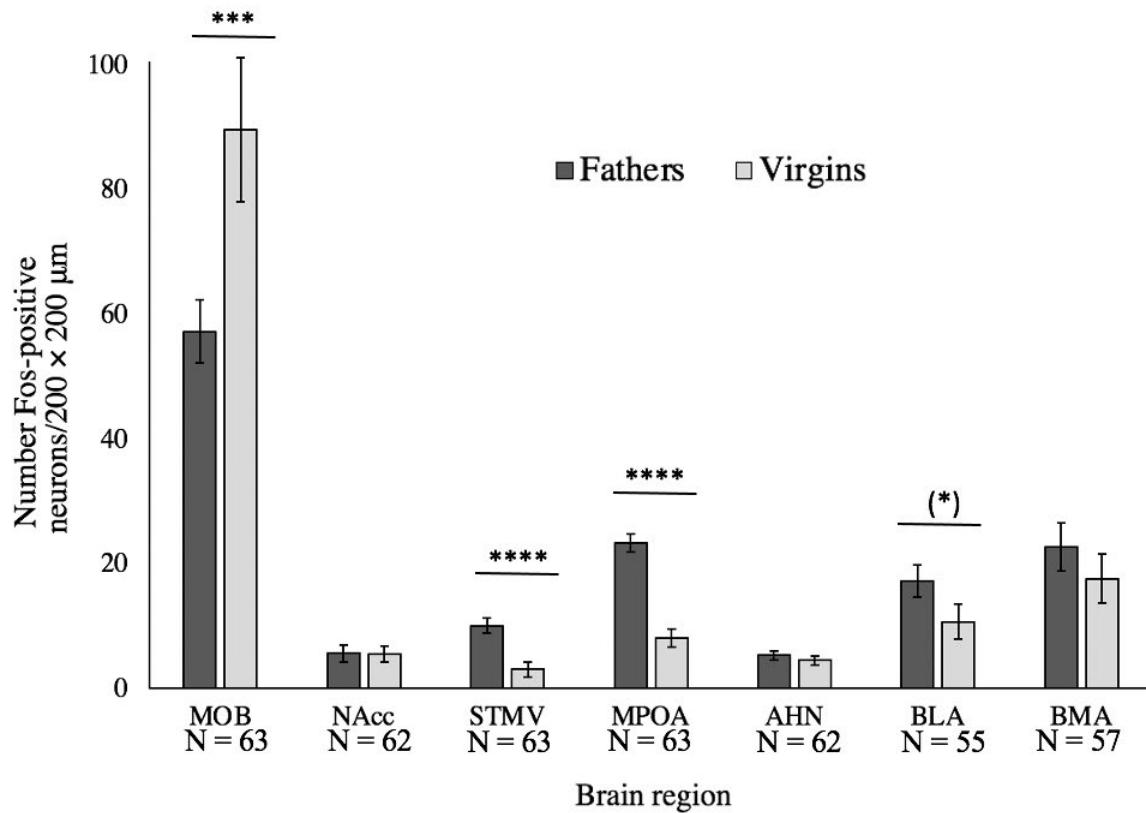


Figure 2. Fos expression (mean \pm SE) in fathers and virgin males collapsed across all four stimulus treatments. MOB^a = main olfactory bulbs, NAcc^a = nucleus accumbens, STMV = bed nucleus of the stria terminalis medial division, ventral part, MPOA^a = medial preoptic area, AHN^a = anterior hypothalamic nuclei, BLA = basolateral amygdala, BMA^a = basomedial amygdala. Data shown are not transformed. ^aImmunohistochemistry batch contributed significantly to the model. LMMs; (*) $P < 0.065$, *** $P < 0.001$ **** $P < 0.0001$.

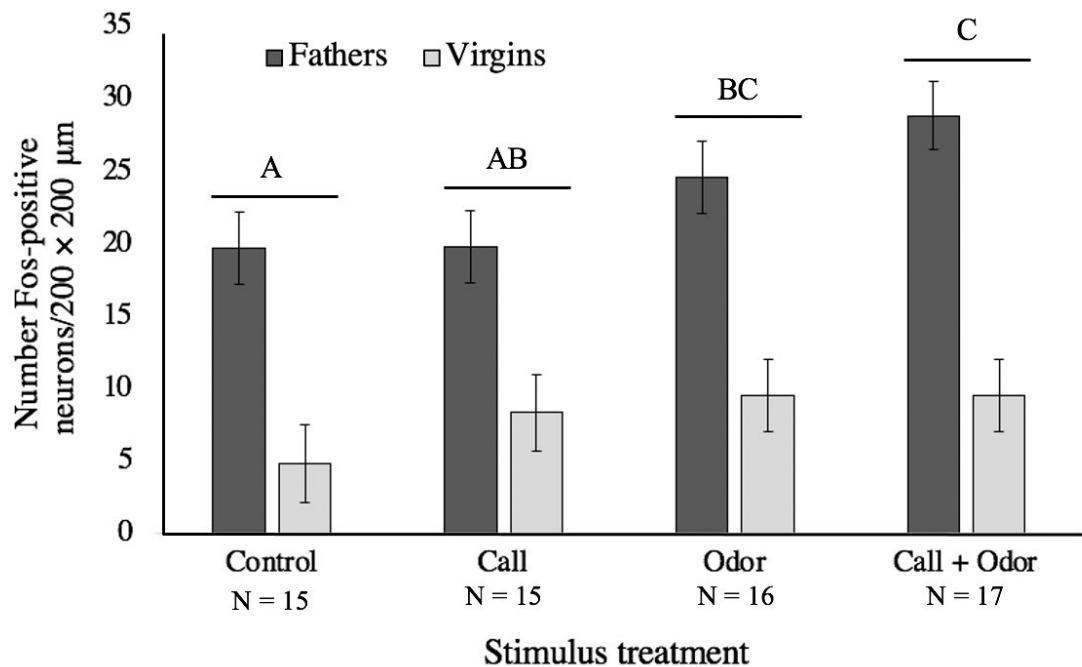


Figure 3. Fos expression (mean \pm SE) in the medial preoptic area by stimulus treatment for fathers and virgin males. Analysis of stimulus treatment (LMMs) included data from both fathers and virgins, but data are shown separately because fathers had significantly higher Fos expression in the MPOA than virgins across all stimulus treatments ($\chi^2 = 108.70, P < 0.0001$). Letters denote significant differences among treatments based on post-hoc pairwise comparisons: bars with the same letter do not differ significantly ($P < 0.05$). Data shown are not transformed.