
N a Q: L e v e r a gi n g N a r r ati o ns as Q u e ri es t o S u p e r vis e E pis o di c M e m o r y

S a nt h os h K u m a r R a m a k ris h n a n 1 Zi a d Al- H al a h 2 K rist e n G r a u m a n 1 ,3

1 U T A usti n 2 U ni v ersit y of Ut a h 3 F AI R, M et a AI

A bst r a ct

S e ar c hi n g l o n g e g o c e ntri c vi d e os wit h n at ur al l a n g u a g e
q u eri es ( N L Q) h as c o m p elli n g a p pli c ati o ns i n a u g m e nt e d
r e alit y a n d r o b oti cs, w h er e a fl ui d i n d e x i nt o e v er yt hi n g
t h at a p ers o n ( a g e nt) h as s e e n b ef or e c o ul d a u g m e nt h u m a n
m e m or y a n d s urf a c e r el e v a nt i nf or m ati o n o n d e m a n d. H o w-
e v er, t h e str u ct ur e d n at ur e of t h e l e ar ni n g pr o bl e m (fr e e-
f or m t e xt q u er y i n p uts, l o c aliz e d vi d e o t e m p or al wi n d o w
o ut p uts) a n d its n e e dl e-i n- a- h a yst a c k n at ur e m a k es it b ot h
t e c h ni c all y c h all e n gi n g a n d e x p e nsi v e t o s u p er vis e. We i n-
tr o d u c e N arr ati o ns- as- Q u eri es ( N a Q), a d at a a u g m e nt ati o n
str at e g y t h at tr a nsf or ms st a n d ar d vi d e o-t e xt n arr ati o ns i nt o
tr ai ni n g d at a f or a vi d e o q u er y l o c aliz ati o n m o d el. Vali-
d ati n g o ur i d e a o n t h e E g o 4 D b e n c h m ar k, w e fi n d it h as
tr e m e n d o us i m p a ct i n pr a cti c e. N a Q i m pr o v es m ulti pl e t o p
m o d els b y s u bst a nti al m ar gi ns ( e v e n d o u bli n g t h eir a c c u-
r a c y), a n d yi el ds t h e v er y b est r es ults t o d at e o n t h e E g o 4 D
N L Q c h all e n g e, s o u n dl y o ut p erf or mi n g all c h all e n g e wi n-
n ers i n t h e C V P R a n d E C C V 2 0 2 2 c o m p etiti o ns a n d t o p-
pi n g t h e c urr e nt p u bli c l e a d er b o ar d. B e y o n d a c hi e vi n g
t h e st at e- of-t h e- art f or N L Q, w e als o d e m o nstr at e u ni q u e
pr o p erti es of o ur a p pr o a c h s u c h as t h e a bilit y t o p erf or m
z er o-s h ot a n d f e w-s h ot N L Q, a n d i m pr o v e d p erf or m a n c e o n
q u eri es a b o ut l o n g-t ail o bj e ct c at e g ori es. C o d e a n d m o d-
els: h t t p : / / v i s i o n . c s . u t e x a s . e d u / p r o j e c t s / n a q .

1. I nt r o d u cti o n

H u m a n m e m or y c a n f ail us i n d a y-t o- d a y t hi n gs i n o ur
vis u al e x p eri e n c e. We mis pl a c e o bj e cts i n t h e h o us e ( w h er e
is m y p ass p ort ?), w e l os e tr a c k of w h at t as ks w e h a v e or
h a v e n ot d o n e ( di d I a d d t h e s alt alr e a d y ? ), w e f or g et w h er e
w e di d a gi v e n a cti vit y ( w h er e di d I b u y ti c k ets l ast ti m e ? ),
w e d o n ot n oti c e t h e st at e of a n o bj e ct i n o ur e n vir o n m e nt
(di d I l e a v e t h e g ar a g e d o or o p e n ? ). First- p ers o n or “ e g o-
c e ntri c ” p er c e pti o n o n a w e ar a bl e c a m er a c o ul d r e d u c e t h at
c o g niti v e o v erl o a d a n d pr o vi d e us wit h a s u p er h u m a n p er-
s o n al e pis o di c m e m or y — b y s e ei n g w h at w e s e e, a n d i n d e x-
i n g it i n m e a ni n gf ul a n d e as y-t o- a c c ess w a ys.

T his is t h e visi o n of t h e N at ur al L a n g u a g e Q u er y ( N L Q)

. . . . . .

Q u e r y: H o w m a n y e g gs di d I br e a k i nt o t h e b o wl ?

R es p o ns e

Fi g ur e 1. E pis o di c m e m or y wit h n at ur al l a n g u a g e q u eri es ( N L Q)
ai ms t o s e ar c h l o n g e g o c e ntri c vi d e os t o i d e ntif y t h e t e m p or al
“r es p o ns e ” wi n d o w r e v e ali n g t h e a ns w er t o a fr e e-f or m q u esti o n
a b o ut t h e c a m er a w e ar er’s p ast vis u al e x p eri e n c e.

t as k i n E g o 4 D’s E pis o di c M e m or y b e n c h m ar k [1 6 ]. Gi v e n
a n at ur al l a n g u a g e q u esti o n a n d a l o n g e g o c e ntri c vi d e o, t h e
N L Q t as k r e q uir es i d e ntif yi n g t h e pr e cis e t e m p or al wi n d o w
i n t h e c a m er a w e ar er’s p ast vi d e o t h at r e v e als t h e a ns w er.
S e e Fi g ur e 1 . S u c h f u n cti o n alit y c o ul d tr a nsf or m t h e e v er y-
d a y e x p eri e n c e of a n a u g m e nt e d r e alit y us er wit h al w a ys-
o n A R gl ass es. It c o ul d si mil arl y pl a y a r ol e f or a m o bil e
h o us e h ol d r o b ot, w h o m a us er m a y wis h t o q u er y a b o ut its
vis u al hist or y ( h a v e y o u s e e n m y k e ys ? ).

T h e N L Q c h all e n g e h as attr a ct e d s u bst a nti al att e nti o n
i n t h e r es e ar c h c o m m u nit y o v er t h e l ast y e ar [2 3 , 2 4 , 4 0 ]
as h a v e r el at e d vi d e o-l a n g u a g e eff orts f or q u esti o n a ns w er-
i n g [3 1 ,3 4 ,3 5 ,3 7 – 3 9 ]. T h e t e c h ni c al c h all e n g es ar e stri ki n g.
Q u eri es ar e fr e e-f or m n at ur al l a n g u a g e, r es p o ns e wi n d o ws
ar e ti n y sli v ers ( a f e w s e c o n ds or l ess) wit hi n a l o n g str et c h
of vi d e o, a n d w e ar a bl e c a m er a vi d e o is n ot ori o usl y n ois y
wit h its q ui c k h e a d m oti o ns a n d li mit e d fi el d of vi e w.

T o d a y’s m ost s u c c essf ul m et h o ds e m br a c e t h e vis u al-
l a n g u a g e as p e ct of t h e pr o bl e m. I n p arti c ul ar, i ns pir e d b y
t h e gr o wi n g s u c c ess of vis u al-li n g uisti c e m b e d di n gs [2 2 ,
2 5 ,2 9 ,3 3 ,3 7 ], t o p c o m p etit ors o n N L Q p erf or m l ar g e-s c al e
pr etr ai ni n g o n ⟨vi d e o cli p, t e xt d es cri pti o n ⟩ p airs mi n e d
fr o m t h e E g o 4 D d at as et’s pr o vi d e d n arr ati o ns [2 3 ], w hi c h
ar e ti m est a m p e d pl a y- b y- pl a y d es cri pti o ns of t h e c a m er a-
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C turns on the tap with her right hand C opens a drawer

C cracks an egg into the bowl C opens the third refrigerator door

Figure 2. Narration examples. “C” refers to the camera-wearer.

wearer’s activity (see Figure 2). The result is a video back-
bone enhanced by the semantics of grounded language.

While it is important to have strong video and text repre-
sentations, the downstream query localization models that
search the video for a response are also crucial to NLQ, yet
relatively starved for data. This is a direct consequence of
the difficulty in annotating a query-response pair (which en-
tails posing a creative question and scrolling the long video
to mark the temporal response window) versus the relative
ease in narrating a video (which entails pausing the video at
regular intervals and describing what happened). For exam-
ple, whereas Ego4D has 3,670 hours of data annotated with
narrations—more than 3.85M sentences in total—it offers
only 227 hours of NLQ query examples, for 19k total text
queries. Accordingly, existing methods risk failing to learn
about things that are poorly represented in training, such
as queries about objects in the long-tail or complex queries
involving interactions between multiple visual entities.

To address this issue, we introduce Narrations-as-
Queries (NaQ), a simple but exceptionally effective data
augmentation strategy for NLQ. NaQ is a novel strategy
that uses timestamped narrations to expand the supervision
available for training query-localization modules within an
episodic memory architecture. Our hypothesis is that nar-
rations provide descriptive information that is localizable in
long videos, and thus can benefit an episodic memory model
when used as training queries. Specifically, we derive
⟨video, language query, temporal window response⟩ anno-
tations from timestamped narrations, and augment the con-
ventional query-response data with these pseudo-queries.
Importantly, this allows us to influence the localization
module—the workhorse responsible for finding a needle in
a haystack—with multimodal data, as opposed to just the
video and text encoders.

Empirically, our idea has tremendous impact. Demon-
strating NaQ on the Ego4D Episodic Memory benchmark,
we find our simple augmentation strategy successfully com-
plements multiple existing state-of-the-art episodic memory

methods, achieving sizeable improvements (e.g., 32% to
125% relative jumps in accuracy) across query types, met-
rics, and methods. Notably, our gains hold even compared
to existing methods such as EgoVLP [23] that use the same
(or even more) narration annotations as our model, meaning
that NaQ’s success can be attributed to good modeling, not
more data. Moreover, NaQ even benefits video-language
grounding on exocentric videos, i.e., it is beneficial to aug-
ment its exocentric training with narrated egocentric videos.
To our knowledge, NaQ yields the very best results to date
on the NLQ challenge, strongly outperforming all the chal-
lenge winners from Ego4D CVPR’22 and ECCV’22, and
topping the current public leaderboard. Beyond achieving
state-of-the-art results, we perform a thorough analysis of
the strengths and weaknesses of NaQ, and demonstrate use-
ful properties such as benefits on long-tail object queries as
well as zero-shot and few-shot NLQ.

2. Related work

Egocentric video understanding. Prior work has devel-
oped video datasets and methods for egocentric percep-
tion [7, 11, 13, 16, 19]. Egocentric video offers a cam-
era wearer’s perspective of their activities over a long time
horizon and raises challenging research problems such as
human-object interactions [4, 8], activity recognition [19,
42], anticipation [1, 15], episodic memory [16], and video
summarization [9, 21]. In this work, we tackle the episodic
memory task. We leverage the Ego4D dataset [16], which
consists of 3,670 hours of video of daily-life activity cap-
tured by 931 camera wearers around the world.

Vision-language pretraining (VLP). VLP methods rely
on large-scale video-text datasets [3, 26] to learn transfer-
able representations for video-language tasks such as re-
trieval [10, 17], question-answering [31, 35] and video cap-
tioning [20, 41]. VideoBert learns joint video-text embed-
dings by discretizing video frames and performing BERT-
like pre-training [33]. HERO improves over this with a
hierarchical encoding of multi-modal inputs [22]. MIL-
NCE learns to match clips with temporally close captions
to address video-text misalignment in HowTo100M [25,
26]. While these methods primarily focus on third-person
videos, EgoVLP [23] adapts the InfoNCE objective to ego-
centric settings and uses video-narration annotations from
Ego4D [16] to learn video-text backbones for ego-video
understanding. Just-Ask [37] proposes a strategy to gener-
ate video question-answering data consisting of (short clips,
questions, text answers) from narrated YouTube videos.

While we take inspiration from such methods, our idea is
very different. Unlike prior work that learns representations
or video-QA systems from short video clips and (possibly
weakly) aligned text, we learn to temporally localize short
text queries in long untrimmed videos egocentric videos.
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Whereas Just-Ask’s data generation procedure [37] outputs
questions with text responses for short video clips, ours out-
puts temporal windows in long videos. Rather than pretrain-
ing a video/text backbone [22,23,25,33], our model injects
multimodal supervision to train a query-localization mod-
ule. Overall, our idea is complementary to prior video-text
pretraining efforts, as we will demonstrate in the results.

Video-language grounding. Prior work performs video-
language grounding (VLG) in exocentric videos [14,20,30,
38, 39]. The Ego4D episodic memory benchmark first in-
troduced NLQ, a new VLG task requiring temporal query
localization in long egocentric videos [16]. Existing VLG
methods like 2D-TAN [39] and VSLNet [38] have been
adapted to perform NLQ, while the recent ReLER [24]
model achieves state-of-the-art NLQ using a multi-scale
and cross-modal transformer with video-level data augmen-
tation. Our goal is to improve such methods via large-scale
data augmentation with narration-based queries. In addi-
tion, our proposed strategy performs query-level augmen-
tation and is complementary to the video-level data aug-
mentation from [24]. Recent work uses point-wise (aka
“glance”) annotations to reduce annotation costs for VLG
training [6, 36]. However, these are limited to exocentric
videos and assume task-specific point annotations, whereas
the Ego4D narrations are not specific to the NLQ task. As
we will demonstrate in experiments, our approach stacks
well when combined with prior NLQ methods [23, 24, 38],
and can even benefit exocentric VLG via an ego-exo trans-
fer of the egocentric narrations.

3. Approach

Our key insight is to leverage narrations as an additional
data source to improve a model’s ability to localize answers
in a long video when prompted with a natural language
query. To do this, we propose a strategy to convert narra-
tions and their timestamps into NLQ annotations. Our strat-
egy is automatic and simple which allows us to scale the
training data for episodic memory search by two orders of
magnitude.

We first define the episodic memory task (Sec. 3.1), then
our Narrations-as-Queries approach to convert narrations
into NLQ annotations (Sec. 3.2), and finally our training
strategy (Sec. 3.3).

3.1. Episodic memory with natural language query

The goal of episodic memory is to perform query-driven
reasoning about long-form egocentric videos. First intro-
duced in Ego4D [16], it is well-motivated by applications
discussed above, such as augmented reality assistants that
enable superhuman memory. The NLQ task has attracted
significant attention in the research community, with 10+
teams around the world competing on the benchmark over

the last year [23, 24, 40], organized challenges at CVPR’22
and ECCV’22, and an active public leaderboard.1

More formally, given an egocentric video V capturing
a camera wearer’s past experiences and a natural language
query Q in the form of a question, the task requires tempo-
rally localizing where the answer can be seen in the video,
i.e., a response window R = [ts, te]. For example, the
query could be Q =“What vegetables did I put in the soup
the last time I made it?”, and the model needs to search a
given video V to identify the time window [ts, te] that con-
tains the answer, i.e., the type of vegetables in the soup.
A data sample for this task is of the form ⟨video, query,
response⟩. The video can be several minutes long, and the
response to the query can appear in a time window that is
shorter than a second, making this a very challenging task.

3.2. Narrations-as-Queries

Prior NLQ methods are limited in performance due to
the lack of large-scale NLQ annotations of the form ⟨video,
query, response⟩. We address this limitation by proposing
a method to automatically transform narrations associated
with egocentric videos to a compatible form for NLQ. Nar-
rations are free-form sentences describing the current ac-
tivity performed by the camera-wearer (see Fig. 2). They
are time-stamped and temporally dense (e.g., there are 13.2
sentences per minute of video on average in Ego4D [16]).

These annotations are substantially cheaper to obtain
than NLQ annotations. For narrations, the annotators needs
to simply describe the activity that is seen in the video;
whereas for NLQ, first a meaningful, unambiguous ques-
tion needs to be formulated and then the annotator needs
to manually search the video back and forth to identify
the time window that shows the answer. Hence, narra-
tions can be annotated at a much larger scale compared to
NLQ (e.g., Ego4D has 3.85M narrations vs. 19k NLQ sam-
ples). Moreover, narrations have several applications be-
yond NLQ [2, 5, 23, 28], and are likely to be invested in on
a large-scale.

Our idea is to leverage this massive data source to aid
learning for the NLQ task. We achieve this by first generat-
ing a temporal window associated with each narration that
approximately captures when the activity described by the
narration started and ended. Then, we use these samples
(narrations coupled with temporal windows) as additional
supervision to train an NLQ localization model to identify
where these narrations happen in the video (see Fig. 3).
Next, we formally describe our approach in detail.

1. Generating temporal windows for narrations. Each
video narration consists of a textual sentence T , and a single
timestamp t marking the correspondence to the underlying
video (see Fig. 3, left). However, this is incompatible with

1Ego4D NLQ challenge: https://eval.ai/web/challenges/

challenge-page/1629/overview
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Figure 3. Narrations-as-Queries: We propose a simple-yet-effective data-augmentation strategy for natural language queries (NLQ).
The status-quo NLQ methods train in a supervised fashion on annotated (V: video, Q: query, R: response) tuples, where the response
is a (ts, te) temporal window (see right). This is severely limiting, since such task-specific data is expensive to obtain and is available
only on a small scale. We propose a narrations-as-queries pipeline to tackle this issue (see left). Our key idea is to leverage densely
annotated video narrations, where each narration Ti for video Vj is a textual description of the camera-wearer’s activity at time ti. We
propose “temporal response jittering”, a technique to convert timestamped narrations into natural language queries with temporal response
windows ⟨Vj , Ti,Ri⟩ and obtain the NaQ dataset, which contains 80× more samples when compared to the NLQ dataset. We then train
various NLQ models jointly on the NLQ and NaQ datasets to obtain significant gains across query types, architectures, and metrics.

NLQ task architectures which require queries and tempo-
ral response windows as supervision. To address this, we
propose temporal response jittering, a technique to convert
narration timestamps to temporal windows conditioned on
the video.

Temporal response jittering: Our goal is to convert a
narration timestamp ti from video Vj into a response win-
dow Ri = (ts, te). First, we use “contextual variable-
length clip pairing strategy” introduced in EgoVLP [23] to
obtain a video-conditioned seed temporal window centered
around ti:

R̄i = [ti − βj/2α, ti + βj/2α] (1)

where βj captures the average temporal length between
consecutive narrations in video Vj , and α is the average
of all βj across all videos (please see [23] for details).
While this offers a good starting point, it fails to address
the inherent noise in R̄i arising from the lack of explicit
human annotation. The responses generated are also typi-
cally short (less than a second) and do not match the dis-
tribution over NLQ response windows that are 10 seconds
long on average. To account for these factors, we transform
R̄i = (t̄s, t̄e) further using a randomized window expan-
sion and translation:

Ri = [(t̄c − δt)− s∆, (t̄c − δt) + s∆], (2)

where ∆ = (t̄e − t̄s)/2 is the half-width of R̄i, t̄c = (t̄s +
t̄e)/2 is the center of R̄i, s ∼ U [1, S] is an expansion factor,
and δt ∼ U [−T, T ] is a translation factor. Intuitively, the

translation factor δt randomly shifts R̄ to model uncertainty
in its estimate, and the scaling factor s randomly expands R̄
to match the distribution of NLQ response windows. S is a
hyperparameter selected through validation, and T is set as
(s − 1)∆ after sampling s to ensure that the seed temporal
window R̄i is contained within Ri.

Following this strategy, we can extract narrations and
their inferred temporal windows for all video clips with
available narrations (denoted by V) to obtain a dataset

D =
{
(N v

1 , · · · ,N v
n ) | ∀v ∈ V

}
, (3)

where N v
i =

(
Ti,Ri

)
is the transformed sample that con-

sists of a narration and its corresponding response window.
We apply this method to the video clips from the train
split of the Ego4D Episodic Memory benchmark to create a
dataset D that contains 850k samples of transformed narra-
tions from 4,851 video clips.

2. Generating episodic memory queries. Given the pre-
vious dataset of narrations with associated temporal win-
dows D, we now convert these to a dataset of NLQ queries.
Specifically, given a video Vj , we sample a narration Ni

from Vj and obtain the task input X = (Vj , Ti), where
Ti is the narration text, and the label Y = Ri which rep-
resents the start and end times for a narration as defined
in Eq. (2). In other words, the narration Ti becomes the
query that effectively asks the model to locate in Vj where
the activity described by Ti can be found, i.e., the response
window (tstarti , tendi ). We found that simply using narra-
tion text as the query to work well. This can be attributed
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to pretrained BERT query encoders used in NLQ mod-
els [23,24,38], which can effectively adapt to the difference
between declarative sentences and questions. However, it
would be interesting to study techniques to transform nar-
rations to questions in future work [37]. This dataset of
(X,Y ) pairs is our Narrations-as-Queries (NaQ ) dataset.
Next, we incorporate this dataset into the NLQ training
pipeline as a form of data augmentation.

3.3. Narrations-as-Queries training for NLQ

Our NaQ is model-agnostic: it stands to benefit any NLQ
model out of the box without any model-specific modifica-
tions. We demonstrate the universal advantage of NaQ by
benchmarking several baselines with NaQ in experiments.

Specifically, for a given NLQ model M, we train it with
NaQ in two stages. Let us denote the NaQ dataset as DNaQ
and the NLQ train dataset as DNLQ. First, we jointly train
M with both DNaQ and DNLQ, effectively treating NaQ as a
query augmentation strategy. Since NaQ expands the train-
ing dataset significantly (by 2 orders of magnitude in size),
we rely on large batch training with 2048 batch size and an
appropriately large initial learning rate of 0.001 on 4-8 A40
GPUs. We train in this large-batch setting for 200 epochs,
with early stopping when the validation performance satu-
rates. We then finetune the model on DNLQ with the default
small-batch training used for M, and perform a grid search
to determine the learning rate based on M performance on
the validation split.

4. Experiments
We evaluate our approach on the NLQ task from the

episodic memory benchmark from Ego4D [16]. This
benchmark has gained significant interest and has been the
subject of two Ego4D challenges held at CVPR 2022 and
ECCV 2022. The NLQ task contains 11.3k / 3.9k / 4k
queries annotated over 136/45/46 hours of train / val / test
videos. Each video clip is 8.2 minutes on average, and the
ground-truth query response is 10.5 seconds on average in
the train dataset. That means the response window occu-
pies only 2% of the input video on average. We primarily
perform experiments on Ego4D since it is consistent with
our episodic memory motivation and uniquely supports our
setting with a combination of ⟨egocentric videos, NLQ an-
notations, large-scale narrations⟩. We additionally experi-
ment on the TACoS dataset of exocentric kitchen videos to
test the generalization of our approach [30]. It contains 10k
/ 4.5k queries annotated over 75/25 train / val videos, and
offers long videos with short response windows.

Evaluation metrics. We measure performance on NLQ us-
ing metrics from the video-language grounding literature
and adapted for NLQ in [16]. We report the recall@k,
IoU=m metric, where k = {1, 5} and m = {0.3, 0.5}. This

measures the percentage of times where at least one of
the top-k predicted candidates have at least an intersection-
over-union (IoU) of m.

Baselines. We evaluate the impact of NaQ by combining it
with 3 existing methods in the literature.

(1) VSLNet treats natural-language grounding as a text-
based question answering problem [38]. It represents the
input video as a text passage and uses a span-based QA
framework [32] to localize responses to text queries. This
was adapted to perform the NLQ task in [16] by using Slow-
Fast features pretrained on Kinetics 400 [12].

(2) EgoVLP proposes to pretrain video and text back-
bones on the EgoNCE pretraining task [23]. By leverag-
ing large-scale video + text narrations from Ego4D, they
successfully transfer features to a variety of tasks includ-
ing NLQ. It was the runner-up entry for the Ego4D NLQ
challenge at CVPR 2022. This method replaces the Slow-
Fast features from the VSLNet baseline with the EgoVLP
pretrained backbones. This baseline is complementary to
our own approach where we use narrations to augment the
localization training for the NLQ task.

(3) ReLER adapts VSLNet to use a multi-scale cross-
modal transformer architecture [24]. It also proposes to
augment the training data using video-level augmentation
strategies like randomly sampling a subset of the video to
try and mitigate overfitting. This was the winning entry
of the Ego4D NLQ challenge at CVPR 2022. We aug-
ment ReLER with EgoVLP pretrained backbones to obtain
a stronger ‘ReLER∗’ baseline. Unlike ReLER, which aug-
ments the data at the video level, we propose to augment
the data at the query level. We will demonstrate that NaQ is
complementary and boosts the performance of ReLER.

Note that NaQ leverages the same narrations as EgoVLP
and ReLER∗, and requires no greater supervision or data.

Implementation details. For each baseline, we adapt the
authors’ code to train with NaQ data augmentation. For con-
sistency, we report the results of each method as reproduced
using the provided code, in addition to reporting the official
paper numbers. We train each method with NaQ augmenta-
tion for 200 epochs and stop training early when the vali-
dation performance saturates. We found that it was helpful
to finetune for up to 30 epochs on only the NLQ dataset.
Please see Sec. S1 in supp. for details.

4.1. Experimental results on Ego4D NLQ

We report results on the NLQ validation set in Tab. 1.
The poor performance of the VSLNet baseline on NLQ
highlights the difficulty of the task. It requires localizing re-
sponses typically shorter than 10 seconds in 8+ minute long
egocentric videos. The limited size of the training dataset
further exacerbates this problem, since there are only 11.3k
training queries. However, when augmented with NaQ ,
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IoU=0.3 IoU=0.5
Method Narrations R@1 R@5 R@1 R@5

1. VSLNet [38] ✗ 5.45 10.74 3.12 6.63
2. VSLNet† ✗ 5.21 11.19 2.78 6.72
3. VSLNet + NaQ ✓ 10.26 19.01 5.81 12.67

absolute gain +5.05 +7.82 +3.03 +5.95

4. EgoVLP [23] ✓ 10.84 18.84 6.81 13.45
5. EgoVLP† ✓ 10.40 19.33 6.18 13.03
6. EgoVLP + NaQ ✓ 15.90 26.38 9.46 17.80

absolute gain +5.50 +7.05 +3.28 +4.77

7. ReLER [24] ✗ 10.79 13.19 6.74 8.85
8. ReLER† ✗ 9.91 12.29 6.17 8.03
9. ReLER∗ ✓ 14.66 17.84 8.67 11.54
10. ReLER∗ + NaQ ✓ 19.31 23.62 11.59 15.75

absolute gain +4.65 +5.78 +2.92 +4.21

Table 1. Results on Ego4D NLQ dataset. ∗replace SlowFast with
EgoVLP features. †Results reproduced using authors’ code.

the performance across all metrics nearly doubles, indicat-
ing the effectiveness of NaQ in addressing these challenges.
This is a dramatic gain, though it comes at the cost of larger
narrations data that is not available to VSLNet.

When VSLNet is augmented with NaQ , it is already
competitive with EgoVLP, which pretrains video and text
backbones with Ego4D videos + narrations and uses the
same VSLNet query-localization architecture (rows 3 vs. 5).
When NaQ is combined with EgoVLP, it further improves
the performance by 3.2 - 7.1 points across metrics (rows 5
vs. 6). This confirms that NaQ augmentation for query lo-
calization training complements the EgoVLP pretraining of
video-text backbones. Importantly, our gain here comes at
no additional cost in data or annotations.

ReLER [24] uses SlowFast + CLIP video features. For
a fair comparison, we replace the SlowFast features with
EgoVLP features to obtain ReLER∗. This improves by a
large margin as expected, and gives us a stronger baseline
to compare with (rows 8 vs. 9). Recall that ReLER∗ uses
video-level data augmentation using variable-length sliding
windows and video splicing [24]. When ReLER∗ is aug-
mented with NaQ , the performance increases by a signifi-
cant margin. This confirms the complementary nature of the
query-level augmentation we propose in NaQ with video-
level augmentation in ReLER.

Overall, we find that NaQ augmentation greatly improves
the performance of all methods across all metrics. The ab-
solute gains across metrics are remarkably consistent re-
gardless of the underlying method. When averaged across
the methods, NaQ improves the absolute recall@1 perfor-
mance by 5.06 at IoU=0.3 and 3.08 at IoU=0.5, and the ab-
solute recall@5 performance by 6.88 at IoU=0.3 and 4.98
at IoU=0.5. This confirms the generality and effectiveness
of NaQ at expanding the limited NLQ annotations by boot-
strapping it with narrations, a relatively cheaper and more
abundant data source. More importantly, the insight in NaQ

Method R@1
IoU=0.3

R@1
IoU=0.5

Mean
R@1†

R@5
IoU=0.3

R@5
IoU=0.5

NaQ++ (ours)‡ 21.70 13.64 17.67 25.12 16.33

NaQ (ours) 18.46 10.74 14.59 21.50 13.74
InternVideo [5] 16.46 10.06 13.26 22.95 16.11
Badgers@UW-Mad. [27] 15.71 9.57 12.64 28.45 18.03
CONE [18] 15.26 9.24 12.25 26.42 16.51
ReLER [24] 12.89 8.14 10.51 15.41 9.94
EgoVLP [23] 10.46 6.24 8.35 16.76 11.29
VSLNet [38] 5.42 2.75 4.08 8.79 5.07

Table 2. Results on Ego4D NLQ challenge. †Primary metric for
the challenge. ‡Our leaderboard entry post CVPR ’23 acceptance.

is not simply that large-scale data benefits performance.
Rather, we emphasize how to use this data: we leverage nar-
rations as queries for query-localization network training.
This is evidenced by our experiments demonstrating major
gains on EgoVLP and ReLER∗, methods which also benefit
from large-scale pretraining on video-narrations data.

Ego4D NLQ challenge. We submitted our best perform-
ing method (ReLER∗ + NaQ ) to the Ego4D NLQ challenge
leaderboard, where the NLQ evaluation is performed on an
EvalAI server on a held-out set of test annotations [16].
Note that while the videos are available to participants, the
annotations (including narrations) are not accessible. The
results are shown in Tab. 2. VSLNet is the baseline provided
by the organizers. ReLER and EgoVLP were the winning
and runner-up entries from the CVPR 2022 edition of the
challenge. InternVideo [5], Badgers@UW-Madison [27],
and CONE [18] are the top three entries from the ECCV
2022 edition of the challenge. At the time of submission,
NaQ was the leading entry among all methods on the leader-
board. Post-acceptance, we combined NaQ with the ECCV
and CVPR challenge winners (i.e., ReLER architecture with
InternVideo features) to obtain NaQ++ . Our results set
the state-of-the-art for NLQ, outperforming prior work by
a large margin. NaQ++ is also the official baseline for the
CVPR 2023 Ego4D NLQ challenge.

TRJ ablation. We study the impact of using temporal re-
sponse jittering (TRJ) (Sec. 3.2) in an ablation study. We
observe that using TRJ improves the performance by up to
0.8 points in recall @ 1 metrics and 1.6 in recall @ 5 met-
rics consistently across all methods. Please see Sec. S3 for
the complete results.

4.2. Experimental results on TaCOS NLQ

Existing third-person (aka exo) video datasets for lan-
guage grounding lack large-scale narrations, which pre-
vents a direct analogue of our experiments in exo videos.
Therefore, we perform an ego-exo variant using the TACoS
dataset of exo kitchen videos [30], where we jointly train on
the NaQ dataset from Ego4D’s ⟨ego videos, narrations⟩ and
⟨exo videos, language queries⟩ from TACoS. See Tab. 3.
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VSLNet EgoVLP

IoU = 0.3 IoU=0.5 IoU = 0.3 IoU=0.5
NaQ R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

✗ 20.10 29.10 15.42 22.85 16.52 25.06 12.73 19.33
✓ 23.39 32.69 19.13 26.43 18.24 27.25 13.78 20.03

abs. gain +3.29 +3.59 +3.71 +3.58 +1.72 +2.19 +1.05 +0.70

Table 3. Results on TACoS dataset of third-person cooking videos.

NaQ benefits both VSLNet and EgoVLP. EgoVLP under-
performs VSLNet since its video features were pretrained
on ego videos, while VSLNet uses SlowFast features pre-
trained on Kinetics 400. Though the performance gains
from NaQ are lower than on Ego4D due to the ego/exo do-
main mismatch, these results reinforce our method’s gener-
ality.

4.3. Performance analyses

In the previous section, we verified the effectiveness
of our approach through a careful comparison with recent
state-of-the-art methods. We now ascertain the strengths
and weaknesses of our approach through a series of quan-
titative studies and discuss qualitative results in Fig. 4.
For performing analysis-specific experiments, we adopt the
EgoVLP + NaQ method since it requires lower computa-
tional cost and time to train.

(1) How does performance scale with narrations? One
of the key benefits of using narrations for pretraining is that
they are available on a large scale. We generated 850k nar-
rations as queries for the NLQ task, which is two orders
larger than the NLQ dataset containing 11.3k train queries.
We now study performance scaling as a function of the
amount of narrations used for training. For this, we addi-
tionally trained EgoVLP + NaQ with 10%, 25%, 50% of
the narrations. Fig. 5 shows the results on NLQ (val). The
0% performance represents EgoVLP and the 100% perfor-
mance represents the full EgoVLP + NaQ reported in Tab. 1.
When adding only 10% of our NaQ data, we already observe
good improvements on all metrics. The performance con-
tinues to linearly scale as we add more narrations for NaQ
augmentation, confirming the utility of our paradigm.

(2) What types of queries does NaQ benefit? Next, we
break down the NLQ performance across query types, i.e.,
the form of reasoning required by the query (e.g., where did
I put object X? who did I talk to while doing activity Y?).
The NLQ dataset was created by providing an initial set of
13 query templates [16]. For reliable evaluation, we select
10 out of the 13 templates which contain 100 or more sam-
ples in the validation split, and report results in Tab. S3 in
supplementary. We observe that using NaQ leads to signifi-
cant improvements (marked in green) on 8/10 templates for
at least 2/3 methods. However, it only has a limited impact
for ‘Where is object X?’ and ‘In what location did I see X?’
queries. These queries may require explicit spatial under-

High-shot Mid-shot Low-shot
Method IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

VSLNet 6.28 3.14 4.11 2.74 4.05 2.36
rcol+NaQ 9.72 5.53 11.42 6.85 10.30 5.57

EgoVLP 13.15 7.17 10.20 5.63 10.64 5.91
+NaQ 16.59 9.27 16.13 10.20 16.05 10.30

ReLER∗ 17.07 9.95 17.88 10.73 13.36 8.29
+NaQ 21.24 12.37 21.60 12.24 17.36 10.29

Table 4. Performance breakdown across object types. For ob-
ject type queries, we categorize objects into low-shot, mid-shot,
and high-shot objects based on their frequency of occurrence. We
report the recall@1 metric at IoU=0.3 and IoU=0.5. We highlight
cases where NaQ improves recall over the baseline.

standing to achieve better performance. Since all methods
perform poorly on those queries and do not benefit from
training on NaQ , it hints at the need to incorporate better
spatial understanding for video models.

(3) Does NaQ help respond about long-tail objects? The
NLQ dataset has a long-tail of objects that are the sub-
ject of queries due to the sparse nature of NLQ annota-
tions (1 query per 1.4 minutes of videos on average). How-
ever, since narrations are more densely annotated through-
out the video (20+ narrations per minute), they contain rich
information about objects that are rarely queried about. We
therefore study if pretraining NLQ localization models with
narrations can help respond to queries about long-tail ob-
jects. We divide objects from the NLQ train annotations
into 3 types (as shown in Fig. S1): 1. high-shot objects
which are queried more than 50 times (65 in total), 2. mid-
shot objects which are queried about 10 to 50 times (147 in
total), and 3. low-shot objects which are queried about be-
tween 2 to 10 times (967 in total). The results are in Tab. 4.
Overall, we observe that NaQ improves performance by a
large margin in most cases, and has the biggest gains on
mid-shot and low-shot objects. This indicates that using
narrations as queries helps mitigate some of the biases in
the NLQ data, and improves responses to queries about less-
frequently occurring objects.

(4) Does NaQ facilitate zero-shot / few-shot NLQ? Con-
sidering that NaQ enables better performance on long-tail
objects, we next study whether it can facilitate zero-shot or
few-shot learning for NLQ, i.e., given our large-scale NaQ
data and little to no NLQ task annotations, can we learn
good NLQ models? We are first to study this to the best of
our knowledge. We train EgoVLP + NaQ method with all of
NaQ and k% of NLQ train data, where k = {0, 10, 25, 35}.
k = 0 represents the zero-shot case, and the rest represent
few-shot learning. The results are in Fig. 6. The triangles
represent EgoVLP + NaQ with k% NLQ data, and the hor-
izontal line represents the EgoVLP baseline with no NaQ
data. It is interesting to observe that even with no NLQ data,
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Figure 4. Qualitative analysis. We show three examples of NLQ task predictions (one per column). In each column, the natural language
query is displayed at the top, the ground truth responses are in the central row, and the model predictions are on the first and last rows. The
temporal extents of the video and predicted time windows are shown right next to the images on each column. We compare ReLER∗ [24]
baseline (on the first row) against our NaQ method which augments the NLQ training for ReLER∗. Example 1: Our method successfully
identifies the response window showing how many funnels are on the shelf, while the baseline fails. The object ‘funnel’ is a low-shot
object with fewer than 10 training queries. This supports our experimental observation that NaQ has a strong advantage on low-shot objects
and counting-based queries (see Tabs. S3 and 4). Example 2: NaQ successfully recognizes the object ‘brake pad’ and is able to localize
where it was taken. ReLER* incorrectly identifies a spanner as the response. Example 3: This is a failure case for NaQ . While it correctly
identifies a sink, this particular sink does not contain the bottle and the model fails to respond.
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Figure 5. Data scaling analysis. We train EgoVLP + NaQ using
all NLQ and k% of NaQ dataset (k represented on the X-axis).
NLQ performance scales linearly with the size of the NaQ dataset.
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Figure 6. Zero-shot and few-shot learning for NLQ. We train
EgoVLP + NaQ using all NaQ and k% of the NLQ train data (k
on the X-axis). The dotted horizontal lines represent the EgoVLP
performance with 100% NLQ and no NaQ augmentation.

the model performs well using NaQ and competes closely
with EgoVLP on the R@5 metrics. This generalization is
facilitated by the use of BERT query-encoders that are pre-
trained on large-scale text corpora. When we inject 10% of
the NLQ dataset, we get comparable or better performance
on 2/4 metrics. At 25% of NLQ data, it matches or out-
performs EgoVLP on all metrics. Finally, at 35%, we out-

perform EgoVLP by a large margin. This study suggests
that we can leverage large-scale free-form narrations using
NaQ to compensate for the lack of NLQ annotations. While
these are not free to obtain, they are easier to annotate than
NLQ and can also be used for various purposes other than
the NLQ task itself [16], meaning that many research direc-
tions are likely to continue investing in them.

5. Conclusions

We propose Narrations-as-Queries, a simple data aug-
mentation technique that dramatically improves state-of-
the-art results on the Natural Language Queries task in the
Ego4D Episodic Memory benchmark. Our key insight is
to convert timestamped narrations in egocentric videos into
natural language query annotations and use them as addi-
tional data for training NLQ localization models. To con-
vert timestamped narrations into a form compatible with
NLQ, we propose a temporal response jittering technique
to convert a single timestamp into temporal windows. We
perform experiments to demonstrate that our approach can
be used as a simple plug-in to existing methods, massively
improves multiple top methods for this task, and yields the
very best performance to-date on the Ego4D NLQ bench-
mark. We hope that our approach serves as a useful tool for
future research on this problem. Code, data, and models are
available.
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S = 2.5 S = 5.0 S = 10.0 S = 20.0
R@1, IoU=0.5 8.64 9.46 8.08 8.47

Table S1. Varying TRJ scale S with EgoVLP (and NaQ stage 1).

Supplementary Materials
We now provide additional information about our exper-

imental settings, and qualitative and quantitative analyses to
support our experiments in the main paper.

S1. Implementation details
We perform joint NaQ + NLQ training with a large batch

sizes and high learning rates for accelerated convergence.
For VSLNet and EgoVLP methods, we use a batch size of
2048 and initial learning rate of 0.001 on 2 A40 GPUs with
a memory size of 46GB per GPU. For ReLER∗, we use a
batch size of 1536 and an initial learning rate of 0.001 on 8
A40 GPUs since it has larger memory and compute require-
ments. We train each method for up to 200 epochs on NaQ
+ NLQ training data, and then finetune them for up to 30
epochs on NLQ training data alone with a lower learning
rate. We found finetuning to be unnecessary for VSLNet.
For EgoVLP, we finetuned with the original hyperparame-
ter settings from [23] and a learning rate of 0.00001. For
ReLER∗, we finetuned with the original hyperparameter
setting from [24] and a learning rate of 0.0001. We per-
form early stopping in each case using the performance on
NLQ validation split.

For temporal random jittering (TRJ), we per-
formed a grid search with the expansion factor values
S={2.5, 5.0, 10.0, 20.0}. We found S=5.0 to work best
for EgoVLP based on the NLQ validation performance
(see Tab. S1). Similarly, we found S=2.5 to work best for
ReLER* and VSLNet.

S2. Long-tail of objects in NLQ
Fig. S1 shows the long-tail of objects queried about in

NLQ, and the split of low-shot, mid-shot, and high-shot ob-
jects used in Sec. 4.3. Note that for a given point x on X-
axis, the Y-axis shows the number of objects that have x
queries in the NLQ train dataset. For example, there are
more than 1000 objects with only 1 training sample.

S3. Ablation study for Temporal Response Jit-
tering

We study the impact of using temporal response jittering
(TRJ) described in Eq. (2). In Tab. S2, we measure the per-
formance of using NaQ with and without TRJ, where not us-
ing TRJ implies that the seed temporal window from Eq. (1)
is used. Overall, we observe a consistent improvement of up

Low-shot Mid-shot High-shot

Figure S1. Long-tail of objects in NLQ.

IoU=0.3 IoU=0.5
Method TRJ R@1 R@5 R@1 R@5

VSLNet + NaQ ✗ 9.80 18.05 5.27 11.05
VSLNet + NaQ ✓ 10.26 19.01 5.81 12.67

absolute gain +0.46 +0.96 +0.54 +1.62

EgoVLP + NaQ ✗ 15.25 26.15 9.12 17.63
EgoVLP + NaQ ✓ 15.90 26.38 9.46 17.80

absolute gain +0.65 +0.23 +0.34 +0.17

ReLER∗ + NaQ ✗ 18.51 23.23 11.36 15.44
ReLER∗ + NaQ ✓ 19.31 23.62 11.59 15.75

absolute gain +0.80 +0.39 +0.23 +0.31

Table S2. Ablation study of temporal random jittering (TRJ).

to 0.80 in R@1 metrics and 1.62 in R@5 metrics. This in-
dicates that TRJ is able to address the limitations of the seed
temporal window.

S4. Impact of two-stage NaQ training

As we stated in Sec. 4, we train models using NaQ
augmentation in two stages. In the first stage, we jointly
train models on the combined NaQ and NLQ dataset with
large batch training. In the second stage, we finetune the
models on only the NLQ dataset with standard training.
In Tab. S4, we study the impact of each stage of training.
The first stage helps the most. Stage 2 is not critical, but
useful nonetheless (except for VSLNet).

S5. Few-shot analysis

We perform a more detailed analysis of the few-shot per-
formance discussed in Sec. 4.3 and Fig. 6. Specifically, we
analyze the zero-/few-shot performance across the various
query templates in Tab. S5. When tested zero-shot, NaQ
already competes with or outperforms the baseline on ob-
ject/place templates such as ‘where did I put X?’, ‘what X
is Y?’, and ‘object state’. As we inject NLQ data into NaQ
training, the performance improves steadily on the remain-
ing templates, and outperforms the baseline on 9/10 tem-
plates.
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Object / place queries People queries

Method Where is X
before/after

Y?

Where did
I put X?

Where
is X?

What did I
put in X?

How many
X’s?

In what
location did

I see X?

What X
did I Y?

What X
is Y?

State? Who did I
interact with

during Y?

VSLNet 2.04 1.07 3.38 3.23 4.91 2.60 3.64 2.34 3.07 3.26
+NaQ 6.62 3.58 3.14 5.76 10.18 2.60 8.61 5.86 8.59 6.52

EgoVLP 5.77 3.58 4.11 9.45 9.82 2.97 7.62 5.08 7.98 8.70
+NaQ 10.70 6.44 4.83 13.13 15.79 2.60 11.59 7.03 12.88 13.04

ReLER* 9.63 6.87 5.82 10.71 14.33 5.46 11.54 6.54 10.12 4.90
+NaQ 13.98 11.34 6.04 12.39 21.00 4.78 15.38 6.54 14.29 7.84

Table S3. Performance over NLQ query types. We report recall@1 at IoU=0.5. We include query types with ≥ 100 val samples. We
highlight cases where NaQ improves recall by more than 0.5 points.

IoU = 0.3 IoU=0.5
Method R@1 R@5 R@1 R@5

VSLNet 5.21 11.19 2.78 6.72
VSLNet + NaQ stage 1 10.26 19.01 5.81 12.67

VSLNet + NaQ stage 1,2 9.34 17.66 5.29 11.85

EgoVLP 10.40 19.33 6.18 13.03
EgoVLP + NaQ stage 1 15.61 25.64 9.46 16.97

EgoVLP + NaQ stage 1,2 15.90 26.38 9.46 17.80

ReLER* 14.66 17.84 8.67 11.54
ReLER* + NaQ stage 1 18.28 22.95 10.38 14.82

ReLER* + NaQ stages 1,2 19.31 23.62 11.59 15.75

Table S4. Impact of two-stage NaQ training.

S6. Qualitative examples
In supplementary.html shared here, we link to qual-

itative videos for the following:

• Comparing annotations for NLQ vs. Narrations

• NaQ benefits performance on most query templates

• NaQ benefits performance on queries about long-tail
objects

• NaQ facilitates zero-shot NLQ

12

https://utexas.box.com/s/6b17fmxt89zqbnpvhoytdm3pyg5m1xey


Object / place queries People queries

% NLQ % NaQ Where is X
before/after

Y?

Where did
I put X?

Where
is X?

What did I
put in X?

How many
X’s?

In what
location did

I see X?

What X
did I Y?

What X
is Y?

State? Who did I
interact with
during Y?

100 0 5.77 3.58 4.11 9.45 9.82 2.97 7.62 5.08 7.98 8.70

0 100 3.88 3.83 2.68 2.31 5.00 1.37 4.17 5.23 7.14 2.94
10 100 7.45 5.11 2.46 4.62 6.00 1.02 3.53 4.90 5.95 3.92
25 100 9.63 4.63 3.13 5.46 7.67 1.37 4.81 5.23 5.95 3.92
35 100 8.54 4.95 3.58 7.14 13.33 4.10 7.37 6.54 7.74 4.90

100 100 10.70 6.44 4.83 13.13 15.79 2.60 11.59 7.03 12.88 13.04

Table S5. Few-shot analysis. We split the few-shot results from Fig. 6 in the main paper across the various query templates. We report
recall@1 at IoU=0.5. The first two columns show the percentage of the NLQ and NaQ data used for training. For example, the first row
with 100% NLQ and 0% NaQ is the baseline, the second row with 0% NLQ and 100% NaQ is our zero-shot setting, and so on.
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