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ABSTRACT

We simulate the execution of a large stock order with real data and a general power
law in the Almgren and Chriss model. The example we consider is the liquidation
of a large position executed over the course of a single trading day in a limit order
book. Transaction costs are incurred because large orders walk the order book (that
is, they consume order book liquidity beyond the best bid/ask price). We model the
order book with a power law that is proportional to trading volume, and thus trans-
action costs are inversely proportional to a power of the trading volume. We obtain
a policy approximation by training a long short-term memory (LSTM) neural net-
work to minimize the transaction costs accumulated when execution is carried out
as a sequence of smaller suborders. Using historical Standard & Poor’s 100 price
and volume data, we evaluate our LSTM strategy relative to strategies based on the
time-weighted average price (TWAP) and volume-weighted average price (VWAP).
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For execution of a single stock, the input to the LSTM is the cross-section of data
on all 100 stocks, including prices, volumes, TWAPs and VWAPs. By using this
data cross-section, the LSTM should be able to exploit interstock codependence in
volume and price movements, thereby reducing transaction costs for the day. Our
tests on Standard & Poor’s 100 data demonstrate that in fact this is so, as our LSTM
strategy consistently outperforms TWAP- and VWAP-based strategies.

Keywords: price impact; order books; optimal execution; long short-term memory (LSTM)
networks; trading volume.

1 INTRODUCTION

Institutional investors must consider transaction costs when trading large amounts
of stock. For example, a multi-billion-dollar mutual fund may execute several large
stock orders each month when rebalancing their stock holdings. In the US stock
market, a large order would be to sell 1 million shares of a stock with a typical daily
trading volume of 25 million shares. A naive strategy is to place a single, very large
market sell order on the exchange. This single order will consume so much of the
liquidity available in the limit order book that there will be an average price per
share that is considerably lower than the best bid (if the order gets filled at all). A
better strategy is to divide the trade into smaller suborders, which then get executed
over the course of a fixed time period. In this paper, we cast this subdividing of
large trades as an optimal control problem, and then we obtain an optimal policy for
execution by training a long short-term memory (LSTM) neural network (Hochreiter
and Schmidhuber 1997) to minimize losses to transaction costs.

Stock market liquidity is made available by market makers who submit limit orders
at the different price ticks in the order book. Liquidity is consumed when a trader sub-
mits a market order to buy or sell. A market order that is not too big will get filled by
limit orders at the best available prices. A large market buy (sell) order will “walk the
order book” (that is, it will consume all liquidity at multiple ticks). Walking the order
book results in an average price per share that is equal to the initial best ask (bid) plus
(minus) a transaction cost. Statistical studies of order book data have shown that the
depth to which a large order walks the order book is approximately a concave power
law of the number of shares (Almgren et al 2005; Weber and Rosenow 2005). Simple
calculation will show that subdividing a large order into a sequence of suborders will
reduce these transaction costs, but optimal subdivision is more complicated because
there are several (stochastic) variables to consider when designing a policy.

It is common practice to evaluate a policy in terms of the average price over the
entire trade. Average prices to consider are the time-weighted average price (TWAP)
and the volume-weighted average price (VWAP). In general, an optimal suborder
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policy will minimize the expected value of transaction costs. Strategies that aim
to achieve TWAP or VWAP can be optimal for executing large orders (Cartea and
Jaimungal 2016; Kato 2015).

Our approach to the design of an optimal execution policy is to consider the prob-
lem amid the uncertainty of real market data. Machine learning and deep neural net-
works are very good at learning policies directly from data without the assistance of
models. For large-cap US stocks (eg, the constituents of the Standard & Poor’s 100
(S&P 100)), there is plenty of data available upon which to train a network and con-
duct backtests. In this paper we perform these backtests, and conclude that neural
networks can be effective for improvement of large-order execution strategies. Our
implementation uses LSTM networks, which are a good candidate for constructing a
policy function because

(a) they do not require a model for the distribution of the market (we can learn
directly from the data),

(b) they can handle Markov or non-Markov states,

(c) they are well suited to learn in the episodic environment of single-day execu-
tion, and

(d) they can provide a policy with the required temporal dynamic.

Of particular relevance in this paper is the possible presence of interstock co-
dependence in price and volume movements. The execution problem is posed for
a single stock, but the input to the network includes information from all stocks
in the data set, which allows the LSTM network to learn interstock dependencies
that may provide better prediction of prices and volumes, thereby improving the
execution prices achieved by the policy. Inputting such a large amount of data might
be problematic for more parsimonious policy functions, but the LSTM is more than
capable of handling this high dimensionality; indeed, from our results on S&P 100
stocks, it appears that LSTM does learn useful patterns in this data set.

1.1 Background and literature review

A prototypical model for optimal execution was introduced by Almgren and Chriss
(2001). In short, they assume that liquidity consumed by a market order refills
quickly in the time between scheduled suborders, and therefore a simple formula-
tion of the problem will consider only the temporary impact on price. The speed
of impacted-price reversion is studied by Huberman and Stanzl (2005), who discuss
how faster reversion rates affect the aggressiveness of trade execution. Some models,
eg, those using Hawkes processes, consider price impact with a slower reversion of
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impacted price (Alfonsi and Blanc 2016; Amaral and Papanicolaou 2019; Bacry et
al 2015). Obizhaeva and Wang (2013) show that an optimal execution policy should
start with a large order to disrupt the order book’s supply and demand balance and
then begin trading continuously as the order book refills.

Power laws have been observed in stock markets in the United Kingdom, China
and the United States (Bouchaud et al 2002; Gould et al 2013; Gu et al 2008;
Maskawa 2007; Potters and Bouchaud 2003; Zovko and Farmer 2002). Almgren et
al (2005) estimated the power-law exponent to be around 0.67, which they obtained
from a large data set from Citibank. Closely related to our paper are the work of
Hendricks and Wilcox (2014), which uses a reinforcement approach to approximate
the solution to the problem studied by Almgren and Chriss (2001), and the deep
Q-Learning approach to optimal execution, studied by Ning et al (2021).

Recently, there has been some progress on the development of machine learn-
ing algorithms for order book modeling and price execution (Lin and Beling 2021;
Nevmyvaka et al 2006; Zainal et al 2021; Zhang et al 2019). In addition, Schnaubelt
(2022) implements reinforcement learning for optimal limit order placement in
crypto markets.

1.2 Results

The main result in this paper is the improved execution strategies we find by using
LSTM. We assume that limit order depth at each tick is proportional to volume and
increases by a power law across ticks as we move farther from the best bid/ask.
A major advantage of our LSTM approach is that the network’s input includes the
cross-section of market data, thereby utilizing any interstock codependence that may
be present in volume or price changes. To evaluate the efficacy of our approach, we
implement LSTM execution on historical minute-by-minute stock market data from
January 2020 to July 2022. Our results indicate that, when executing a block trade
of S&P 100 stocks, execution with a trained LSTM network can save between 1 and
2 basis points (bps) per stock on a given day compared with the TWAP and VWAP
strategies.

2 ORDER BOOK MODEL AND OPTIMAL POLICIES

Let S; and V; denote the mid price and volume, respectively, of a stock at time
t. Following the model described by Platania et al (2018) and Rogers and Singh
(2010), the order book has a limit order distribution p(z,s) = 0, where the units of
s are ticks relative to S;. Ticks with limit sell orders correspond to s > 1, ticks with
s € (0, 1) correspond to limit buy orders and the mid price corresponds to s = 1. An
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order of a shares consumes liquidity up to a relative price r;(a) such that

r¢(a)
a= [ o(t,s)ds. 2.1)
1

A simple form for p has limit orders distributed continuously in s and proportionally
to volume with the following power law:

B (2.2)

V,
p(t,s) = —|s —1
£

where § € [0, 00), ¢ > 0 is a scaling parameter and V; is the trading volume at time
t. In this paper, we seek to optimize the execution of a large order over the course
of a single trading day, in which case each V; will be the total volume of trades that
occurred in the fth minute. The impact function in (2.2) is similar to the power law
considered by Almgren (2020a,b).

When the relative price r;(a) in (2.1) is computed with the distribution p(z, s)
from (2.2), we see a price that is a concave function of order size divided by volume:

1/(B+1)
re(@) =1+ sgn(a)(—g('BV—i_ D |a|) . (2.3)
t
The quantity S;7;(a) can be thought of as the impacted price. If the impacted price
is assumed to be a linear function of a, then the implication is that 8 = 0, so that
the order book has equal liquidity at all ticks. The prevailing conclusion in many
empirical studies is that impacted price is a sublinear concave function (Almgren et
al 2005; Bershova and Rakhlin 2013; Bouchaud 2010; Cont ef al 2014), such as the
square root function corresponding to the 8 = 1 case. Cases where f is less than
zero are not considered because this would imply decreasing liquidity in successive
ticks beyond the best bid/ask, which is rarely the case for liquid, large-cap stocks.
The transaction costs incurred by walking the order book, as described by (2.1)—
(2.3), will be a convex function of trade size. The US dollar amount of trading loss

due to the price impact is computed as follows:

r¢(a)
[ sp(t,s)ds —a
1

= G, p Sy (V)" B+D | B2/ (B+1) 2.4)

loss(t,a) = S;

where

Cep = 0 2(8(ﬂ + 1))(5+2)/(ﬂ+1)'

From the convexity of (2.4) with respect to |a| it is clear that very large orders should
be divided into suborders to reduce transaction costs.
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REMARK 2.1 (Cost of paying the spread) This order book model ignores the bid—
ask spread. For liquid stocks the bid—ask spread is usually one tick, or equivalently
1¢. For such stocks the transaction costs for market orders filled at the best bid/ask
can be proxied by US$0.005. This amounts to a flat fee for execution of an order and
will remain constant for all the strategies that we test in this paper. Therefore, we
omit the cost of the spread.

REMARK 2.2 (Exchange fees) Typically, there are exchange fees that may be pro-
portional to the US dollar amount traded for smaller orders. In this paper we do not
consider these fees because the problem we are considering is from the perspec-
tive of a large institutional investor, for whom fees are structured differently, usually
decreasing percentagewise as the trade size increases.

REMARK 2.3 (Permanent impact) We do not consider permanent impact in this
paper. The assumption is that we are trading in highly liquid stocks for which the
order book is replenished very quickly after a suborder. It would certainly be inter-
esting to consider execution with permanent price impact, but in this paper we focus
our effort on finding policies that are able to optimize amid the stochasticity and
uncertainty in real-life historical price and volume data.

2.1 Optimal execution policy

Let us work on a probability space (£2, ¥, (¥1)¢=0,1,2...., P), where ¥; denotes the
o-algebra representing all information known to us at time 7. Assume that times
t =0,1,2,3,... are equally spaced. Let the initial inventory be a number of shares
x, and consider the situation where this inventory needs to be completely liquidated
by terminal time 7'; in the example we present, the times t = 0 and t = T are
the open and close of the trading day, respectively. Let X; denote the number of
remaining unexecuted shares at time ¢ fort = 1,2,3,..., T Initially, we have X( =
x. An execution policy is a sequence of ¥;-adapted suborders a; such that X; =
Xi—1 + as—; (that is, a,_ is this execution policy’s suborder placed at time r — 1
and executed at time ¢); these suborders are chosen so that X7 = 0. Using the loss
function given in (2.4), an optimal execution policy is the minimizer of the expected
loss,

T

minE ) "loss(t.a,—1) suchthat X; = X,y +a,—1. Xr =0, Xo =x. (2.5)
a

=1
where the minimization is carried out over the family of #;-measurable policies
a;. In (2.5) we are allowing for broad generality of the processes (S;, V;), aside
from them being well defined on probability space (£2, ¥, (¥1):=o0,1,2...., P), and
also assuming that our trading does not affect them. Later on we will narrow the
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family of policies to those a; that are given by an LSTM network, but still this
narrowing of policies will permit broad generality in the distribution of (S;, V%),
such as being non-Markovian and having nonlinear dependence on volume.

The loss function in (2.5) is a risk-neutral optimization in the sense that there
is no penalty on variance or risk. The optimization in (2.5) results in a policy that
is on the frontier constructed by Almgren and Chriss (2001), which is formed by
minimizing implementation shortfall with a penalty on its variance. The objective
in (2.5) is similar to the objective of Kato (2015), which is risk neutral and also
volume dependent.

2.2 TWAP and VWAP strategies

Before we approach solving (2.5) with full generality in (S;, V), we first discuss
the two industry-standard benchmarks for large order execution (namely TWAP and
VWAP) and how they are related to (2.5).

DEFINITION 2.4 (Time-weighted average price) The TWAP is

1 T
Sr=—Y §,.
T Tg;t

The TWAP is a target for some execution policies because it is often used as an
average execution price benchmark for large orders. A common execution strategy is
the so-called TWAP strategy, wherein the policy is to subdivide the order into equally
sized deterministic suborders:

m:—% fort =0.1.....T —1. (2.6)

The TWAP is easy to implement, as it is guaranteed to satisfy the terminal condition
X7 = 0 and does not require any parameter estimation. However, the TWAP strat-
egy ignores volume and any other pertinent information acquired during the trading
period. Indeed, volume is often a concern when it comes to evaluating trades, which
is why execution policies often target the VWAP (see Cartea and Jaimungal (2016)
for more on VWAP targeting).

DEFINITION 2.5 (Volume-weighted average price) The VWAP is
Sy — i ViSi.
it Vi
A VWAP strategy is to subdivide proportionally to moments of the volume:

xVig1

ay = I
Zt=1 Vi

fort =0,1,2...,.T — 1, 2.7
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FIGURE 1 The U-shaped pattern of daily volume for Apple Inc. (AAPL).

—— Mar 1, 2021
—— Mar 2, 2021
3 —— Mar 3, 2021
—— Mar 4, 2021
—— Mar 5, 2021

) w I 1,,5‘,1

HLN

) m;‘q'&&ll‘{lﬁl 'J ).. :1'3 ll 4‘1 vM,'a,»m. ‘WO

& U o ‘ )‘4 ww i

W tw
10:00 12.00 14.00 15:59

n& ,Mﬁ

w ‘(, ‘utw 'k“

4y

Source: data obtained from Reuters.com.

where V, = (E(V;)~Y/B+D)=(B+1) (see Kato 2015). This VWAP strategy can be
effective for single-day execution because volume follows a somewhat predictable
U-shaped curve (see Figure 1). In practice, the building of a VWAP strategy requires
some prior data to determine the typical evolution of volume over a trading period.
For example, if we observe a history of volumes from past trading days, then we can
use historically estimated V, values in (2.7).

In general, the TWAP strategy (2.6) and the VWAP strategy (2.7) do not mini-
mize the loss in (2.5). However, with some simplification of the volume process and
minimal assumptions on S;, we can show that VWAP is optimal if V; is a determin-
istic function of ¢, and we can show that TWAP is optimal if V; is deterministic and
constant in .

PROPOSITION 2.6 (Deterministic volume) Suppose V; = EV; = |72 for all t
(that is, volume is a deterministic function of t). Also assume that S; is a martin-
gale with respect to the filtration (F;)i=o,1,2,... Then the VWAP strategy (2.7) is
optimal, and if V; is constant in t, then the TWAP strategy (2.6) is optimal.

PROOF For a deterministic volume, and omitting constant C, g, the optimization
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in (2.5) for stock i can be posed as

T
minE[ S S, (7)), |(ﬁ+2)/(ﬁ+1)}
a
t=1

suchthat X; = X;_1 +a;—1, Xr =0, Xo=x.

This optimization can be written as a Lagrangian,

T-1
E Z (St+1(17t+1)_1/(ﬁ+1)|at|(ﬁ+2)/(ﬁ+1) +A(Xi41 — Xy — at))
t=0
T-1

= E|: Z (St+1(l7t+l)_1/(ﬂ+l)|at|('B+2)/(ﬂ+1) - (Az+1 — At)Xt—{—l — Atat)
=0
+Ar Xt — AOX0i|’
with terminal condition X7 = 0, initial condition Xy = x and where A; is an

Ft-adapted Lagrange multiplier process. First-order conditions in a; and X;4; yield
the following co-state equations:

B+2
B+1

|at| 1/(B+1)
Et[sgn(a,)S,H(_—) :|—)tt=0 fortr =0,1,2...,T —1,
Vi1

At_EtAt—l—l:O forl:0,1,2...,T—2,

with E, denoting expectation conditional on ¥;. For x > 0 the optimal policy is the
VWAP strategy,

XI;H-I B+2 X 1/(B+1)
ar = —27 o At=_13_i_1 T & E:Stt1,
Zt:l VI Zt:l Vl

where the martingale property S; = [E; S+, ensures that A; = E;A,4;. Further, this
optimal policy is the TWAP strategy if V; is constant in ¢. An analogous proof holds
forx < 0. (]

Kato (2015) presents results similar to Proposition 2.6 and also a theorem suggest-
ing that, under certain Markovian assumptions, a deterministic VWAP is the optimal
Ft-adapted policy for stochastic volume. The following proposition shows how the
VWAP strategy (2.7) can be optimal under certain assumptions on S; and V7.

PROPOSITION 2.7 (Stochastic volume) Define

—1 1)\—
M, — (EVt /(B+ )) 1
th/(ﬂ-i-l)
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and assume M, is a martingale with respect to the filtration (¥;)i=0,1,2,.... Also
assume that S; is a martingale with respect to the filtration (¥;):=o.12,..., indepen-
dent of M;. Then the VWAP strategy (2.7) is optimal.

PROOF Taking the Lagrangian approach as we did in the proof of Proposition 2.6,
we arrive at the following co-state equations:

ﬂ+2 |a| 1/(B+1)
/3 + I]Et Sgn(af)St-f‘l Vtij_l _A't = Oa

A.t - }Etkt-f—l =0.

For x > 0 we make the ansatz that a; < 0, which gives us

+2 a 1/(ﬂ+1)
At=—ﬁ Et[st—i—l(l tl) ],
B+1 Vit

and if we insert the VWARP strategy (2.7) we see that

1/(B+1)
a
Et[stﬂ(l tl) ]
Vit1
_gE |:( |ay| )1/(ﬁ+1):|
= Sty
Vit1

( 1/(ﬂ+1) |:((E(Vt+1)—l/(ﬂ+l))—(ﬂ+l))1/(ﬂ+1):|

1/(B+1)
( ) SiE:M;q

1/(B+1)
= (_) StMl7
K

ng

Vit1

where X is the denominator of a; in (2.7). Thus, when VWAP strategy (2.7) is used
we have

B+ g o 5
A’t - — i ﬂ + StMt
X B+1

1/(B+1)

+2

=—| = P ——E: S 1 Miqq
K B+1

= Edr41,
thereby confirming is an optimal policy. An analogous proof holds for x < 0. O

An example of the martingale M; in Proposition 2.7 is the lognormal volume
log(Vit1/ Vi) = e + 0:Z41 (see, for example, Kato 2015), where (Z;);=1

geee
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is a sequence of standard normals independent of the past and where w; and o, are
deterministic functions of ¢ calibrated so that V; adheres to a U-shape over the course
of a trading days; it is straightforward to check if parameters j; and o; allow for M;
to be a martingale. At this point, however, rather than pursue the specification of
the underlying stochastic processes, we instead choose to leave the data distribution
unspecified and then proceed to train an LSTM to trade optimally based on historical
observations of financial data.

3 LONG SHORT-TERM MEMORY EXECUTION POLICY:
EXPERIMENTAL SETUP

A policy approximation for the optimal solution of (2.5) can be obtained by training
a neural network on historical market data. Our approach is to train an LSTM neural
network to minimize the objective in (2.5), and then compare this strategy with the
TWAP strategy (2.6) and the VWAP strategy (2.7). The choice of LSTM rather than a
convolutional neural network or a recurrent neural network is based on the following
two considerations. First, the problem in (2.5) is time dependent, requiring the neu-
ral network to memorize prior information. A convolutional neural network is static
and thus cannot memorize prior information for use in backpropagation, whereas a
recurrent neural network can memorize prior information but suffers from the gradi-
ent vanishing problem (Hochreiter 1998). The LSTM is able to handle both of these
considerations.

The backtests we conduct will have a fixed number of suborders and a fixed
submission time. We will submit suborders every 5 minutes, yielding a total of
78 suborders over the 390 minutes of the trading day. Each of the strategies we
test (namely the TWAP, VWAP and LSTM strategies) will execute in the same five-
minute intervals, thus ensuring a fair comparison. To be as realistic as possible, we
also assume the LSTM lags one minute behind the real-time market (ie, the input of
the LSTM network only includes the data up to and including the prior minute when
the suborder is executed) to prevent the LSTM from having any foresight bias.

Figure 2(a) shows the structure of a single LSTM unit. We refer to the internal
parameters of the LSTM unit as the state. At a particular time ¢, the LSTM unit
updates its state to state; using the old state, state;_p, and the new input, input,. The
LSTM unit also generates an output, output,. While state; is then used to update
state; 1, output, is used for other calculation purposes. Figure 2(b) shows the struc-
ture of the LSTM network used: it has two LSTM layers with 50 LSTM units in
each. With fewer or smaller LSTM layers the network tends to underfit, whereas the
performance of larger, more complex LSTM networks is comparable with that of our
architecture but with increased computational complexity. The input has length 401,
which comprises the current minute, the S&P 100 stocks’ prices, their volumes and
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FIGURE 2 The structure of (a) the LSTM unit and (b) the LSTM network used.
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the remaining inventories in each stock under both TWAP and VWAP strategies. By
including the current inventories remaining under TWAP and VWAP strategies in
the input, the LSTM strategy performs no worse than TWAP or VWAP, as the LSTM
can simply replicate them. The LSTM state also contains the current level of inven-
tory in stock i, and after passing the results through a sigmoid activation function,
the network outputs the updated inventory remaining in each stock i for the current
time. The total number of network parameters is 116 100.

3.1 Data and parameter estimation

Our data was obtained from FirstRate Data and consists of minute-by-minute prices
and volumes from January 2, 2020 through July 1, 2022, for the S&P 100 stocks
as listed on March 21, 2022. The data was split into nine groups for training and
testing the LSTM networks, as shown in Table 1. The S&P 100 contains the largest
100 companies in the US stock market by market capitalization. The limit order
book for each of these stocks is extremely deep at all times, meaning that there
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TABLE 1 The data sets and their sizes.

Fold Training data Days Testing data Days

1 Jan 2, 2020 to Mar 27,2020 60 Mar 30, 2020 to Jun 3, 2020 45
2  Mar 30,2020 to Jun 23,2020 60 Jun 24,2020 to Aug 27,2020 45
3 Jun24,2020to Sep 17,2020 60 Sep 18,2020 to Nov 20, 2020 45
4 Sep18,2020to Dec 11,2020 60 Dec 14,2020 to Feb 19,2021 45
5 Jan 4, 2021 to Mar 30,2021 60 Mar 31, 2021 to Jun 4, 2021 45
6  Mar 31, 2021 to Jun 24, 2021 60  Jun 25, 2021 to Aug 30, 2021 45
7 Jun 25, 2021 to Sep 20, 2021 60 Jun 21,2021 to Nov 23, 2022 45
8 Sep21,2021toDec 14,2021 60 Dec 15,2021 to Feb 18,2022 45
9 Jan 3, 2022 to Mar 29,2022 60 Mar 30, 2022 to Jun 3, 2022 45

is plenty of liquidity and it is very unlikely that a suborder will not get filled. For
these liquid stocks, the simulated performance of the LSTM policy will be a realistic
characterization of how it will perform in real-life trading.
For the power law in (2.2), we take B = 0.67 so that the impact in (2.3) has
a power of 0.6, as suggested by Almgren et al (2005). However, we will conduct
backtests with both constant 8 and stochastically fluctuating 8, the latter being a
more realistic description of real-life order books. We set € so that the transaction cost
equals 0.01-0.02% (ie, 1-2bps) of the value traded, which is realistic for S&P 100
stocks. For example, when trading 1 million shares, an appropriate ¢ would be 0.003.
Then,
1

T Bt2

For i = 1,2,...,100 let S! and V; denote the price and volume for the ith
stock in the data set. The o-algebra ¥; is generated by Ui{(SL, VJ Ju=0,1,....13- We
separately train the neural network to execute optimally for each individual stock,

Cep (e(B + 1) BHD/B+D 787 x 107>, (3.1)

but the inputs to the network include the vectors of all prices and volumes at time
t, which we denote by S; = (S}, S2,...,8!%%) and V, = (V,},V7?,...,V}199),
respectively.

3.2 Algorithm and LSTM training

Because suborders are executed every five minutes, the total number of executions
during the trading day is 390/5 = 78. The output of the LSTM is X ; , which repre-
sents the remaining inventory for stock 7 at time ¢. We train the LSTM network on
each of the nine folds for each of the S&P 100 stocks. The total number of trained
LSTM networks for all nine folds is 100 x 9 = 900. The loss function used to train
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the LSTM network for stock i is the following empirical approximation of (2.5):

78
L' =C,p ZSéZ(V;Z)_I/(ﬂH)m;‘é—l|(ﬂ+2)/(ﬂ+l)
(=1
= Cop > S, (Vi) VEID XL, — xI, (JEDIEED (3
(=1

Define the LSTM network weights as w. Then the training problem becomes

w* = arg min L’ (w)
w

78
= arg min C, g Z SL (Vi) VY XL () — XL, (w)| B+ D,
v =1
ALGORITHM 3.1 (LSTM architecture training for optimal execution every 5 min-
utes in a 390-minute trading day for stock i)

—Initialize parameters of LSTM units w
for £ = 1 to NUM_EPOCH do
Xy =xb, L' =0,t =1,8 =0.67,1r = 0.001, i, = None
while ¢ < 390 do
XL hi =LSTM(hi_,, 1,8, Vi, X/, XT)
if mod(z, 5) = O then
Li 4= Ce,ﬁSf(Vti)_l/(ﬂ"'l)|X," _ Xti_5|(l3+2)/([3+1)
end if
t+=1
end while
#### Close all the positions ###H#
X§9o =0
L' += Cep S§9O(V3i9o)_l/(ﬂ+l)|xé9o - X§85|(ﬁ+2)/(ﬁ+1)
#### Update the LSTM weights ####
w = Adam(L’, Ir, w)
end for

Algorithm 3.1 shows the training procedure for stock i ’s LSTM network. For each
training we loop for 10 000 epochs, which allows us to train a single LSTM in less
than 20 minutes using graphics processing units (using the central processing unit,
the runtime is around 10 hours). We initialize the LSTM state /4’ as “None”. We also
initialize A’ with random numbers but observe little difference. Adam is used as the
optimization algorithm, with a learning rate (Ir) of 0.001. The initial inventory is 5%
of the stock’s average daily volume: that is, x}, = 0.05A4", where A’ is the sample
mean of daily volume for stock i.
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FIGURE 3 Graphs of —a; (in units of 10* shares) and X; (in units of 105 shares) for
selected stocks.
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— LSTM — TWAP VWAP

Parts (a) and (d) show MRNA. Parts (b) and (e) show JNJ. Parts (c) and (f) show NVDA.

We also train for a fixed amount of shares for each stock (ie, xé = 10°). Note
that, although time increments of 5 minutes are used, the data in between trade times
is still seen by the LSTM, which means the strategy makes full use of the available
information. The trading day has exactly 390 minutes, and so the first trade occurs
at time ¢t = 5, and the final trade occurs at minute 390 when the market closes.
The LSTM networks are trained on nine folds, each comprising 60 days of one-
minute data, as described in Table 1 for the S&P 100 stocks. We consider the days
to be independent of each other. Therefore, the shape of the LSTM training input
is (60,390, 401). The ratio of training data size (60 x 390 x 401 = 9383400) to
trained parameter size (116 100) is over 80. Therefore, over-fitting is highly unlikely
to occur.

The X and X in Algorithm 3.1 represent the remaining inventories for the
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FIGURE 4 Performance of LSTM in the noiseless order book case.

(a) (b)

Transaction Costs (unit: 10°$) Transaction Costs (unit: 106$)
12| mmm LSTM g | == LSTM
1.0{ =Em VWAP = VWAP
0.8 TWAP 6 TWAP
0.6 4
0.4 5
0.2
0.0 0
1 2 3 45 6 7 8 9 ave 1 2 3 4 5 6 7 8 9 ave
Fold ' Fold '
Savings by LSTM vs. VWAP in S&P100 Savings by LSTM vs. VWAP in S&P100
12 Ave. 0.26 60 Ave. 4.03
g 10 W Std. 031 |y 50 Std. 13.02
g 8 8 40
26 230
% 4 % 20
2 I 10
0 I I | 1 0 we . i . . .
0.0 0.5 1.0 15 2.0 0 20 40 60 80 100
VWAP L - LSTM L (unit: 10%$) VWAP L - LSTM L (unit: 103$)
Savings by LSTM vs. TWAP in S&P100 Savings by LSTM vs. TWAP in S&P100
25
Ave. 1.28 40 Ave. 10.28
w20 . gi4.228 |, W Std. 24.66
3 $ 30
815 S
wv wv
‘s 10 w5 20
+*
5 * 10
0 L r 10 1 ! T I | T i T T - i 0 u' . . . . . .
0.0 25 50 7.5 10.0 12.5 15.0 17.5 0 25 50 75 100 125 150 175
TWAP L - LSTM L (unit: 10%$) TWAP L - LSTM L (unit: 103$)
(a) xo = 0.054. (b) xo = 10°.
S&P 100 stocks by using VWAP and TWAP strategies at minute ¢; ie,
x7T = xl_ixl 100_ix100
¢ =\ Yo~ 7t Xo 7Y )
3.3)

t 71 t 17100
1% =1 =1
Xt (xl J J 1 100 J J xlOO) .

0 =7 %005 Xo T =1000
2= Ve =1 Ve

The TWAP strategy does not require the estimation of any parameters. As for the

VWAP strategy, we used the 60 days’ training volume data to estimate Vti for each

fold and stock i as described in (2.7), which is V/ = (E(V/)~V/#B+D)=(B+D Agan
example, Figure 3 shows the evolution of the actions and remaining inventories for
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FIGURE 5 Transaction cost (in units of 10°US$) with execution time for the noiseless
order book case with xo = 0.054.

(a)

(c)

151 15F 151
[] [ 0
[%2] [%2] [%2]
o o o
o010 o210 o210
C c c
ks} s} ©
il o o
=5t 5 / = 5|
© © ©
g / 5 S
~ [ [
0 1 1 1 0 1 1 1 0 1 1 1
0 2 50 75 0 2 50 75 0 25 50 75
Execution time Execution time Execution time
(d) (e) (f)
151 15 151
[2] [2] [2]
[%2] [%2] [%2]
o o o
g>10 F 8’10 g10 F
© he] ko]
i g &
- 5r =5 - 5r
© © ©
° o o
|_ 1 1 1 |_ 0 1 1 1 '_ 1 1 1
0 0 25 50 75 0 25 50 75 0 0 25 50 75
Execution time Execution time Execution time
(9) (h) (i)
151 15F 15
7 173 173
o o o
o010 o210 10
C c c
ks] s} s}
il 8 o
Z5r =5t =5
© © ©
° ° °
'_ 1 1 1 |_ 0 1 1 1 |_ 1 1 1
0 0 25 50 75 0 25 50 75 00 25 50 75

Execution time

Execution time

Execution time

—LSTM —VWAP—TWAP

(a) Fold 1. (b) Fold 2. (c) Fold 3. (d) Fold 4. (e) Fold 5. (f) Fold 6. (g) Fold 7. (h) Fold 8. (i) Fold 9.

the three strategies for three different stocks. During testing, the LSTM strategy is
compared with the TWAP and VWAP strategies in (3.3).
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TABLE 2 The 10 stocks with highest savings and the 10 stocks with lowest savings
under LSTM compared with the VWAP strategy for the noiseless order book case with
xo = 0.054 (5% of average volume) and the stock with the median saving.

Equity
Daily  value of
volume traded VWAP LSTM Savings
Ticker| (millions) (US$m) (10°US$) (bps) (103US$) (bps) (10°US$) (bps)
AMZN 4265  329.26 55.98 (1.70) 53.81 (1.63) 2.18 (0.07)
TSLA 28.20  909.89 16277 (1.79)  161.49 (1.77) 1.29 (0.01)
MSFT 20.61 256.82 35.02 (1.36) 33.87 (1.32) 1.16 (0.04)
AAPL 87.88  570.61 77.39 (1.36) 76.24 (1.34) 1.14 (0.02)
GOOG 0.62 66.42 12.20 (1.84) 11.11 (1.67) 1.08 (0.16)
NFLX 3.85 93.59 18.52 (1.98) 17.73 (1.89) 0.78 (0.08)
UNH 2.07 39.53 6.82 (1.73) 6.17 (1.56) 0.65 (0.16)
TMO 0.93 22.87 4.33 (1.89) 3.75 (1.64) 0.57 (0.25)
NVDA 3257 27419 39.69 (1.45) 39.12 (1.43) 0.56 (0.02)
META 1587  219.53 31.12 (1.42) 30.59 (1.39) 0.54 (0.02)
PM 3.24 13.50 2.09 (1.55) 1.93 (1.43) 0.17 (0.12)
AlG 4.07 8.88 1.43 (1.61) 1.37 (1.54) 0.06 (0.07)
DUK 1.93 8.90 1.33 (1.50) 1.27 (1.43) 0.06 (0.07)
COP 6.52 18.26 2.61 (1.43) 2.55 (1.40) 0.06 (0.03)
SO 3.12 9.28 1.32 (1.42) 1.27 (1.37) 0.05 (0.06)
CL 2.94 11.28 1.61 (1.43) 1.56 (1.38) 0.05 (0.05)
EXC 5.72 9.33 1.35 (1.45) 1.30 (1.40) 0.04 (0.05)
WBA 4.62 10.07 1.49 (1.48) 1.45 (1.44) 0.04 (0.04)
PG 4.69 31.84 4.29 (1.35) 4.25 (1.34) 0.04 (0.01)
DD 3.24 10.72 1.90 (1.77) 1.87 (1.75) 0.03 (0.02)
BK 3.88 8.69 1.29 (1.48) 1.27 (1.46) 0.01 (0.02)

4 LONG SHORT-TERM MEMORY EXECUTION POLICY:
EXPERIMENTAL RESULTS

4.1 Evaluation metrics

The metric used to compare our LSTM strategy with the VWAP and TWAP strategies
is the transaction cost L. As in (3.2), a smaller L’ means better performance of
the selected execution strategy for stock i. We consider the following scenarios: the
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TABLE 3 The 10 stocks with highest savings and the 10 stocks with lowest savings
under LSTM compared with the TWAP strategy for the noiseless order book case with

An optimal control strategy for execution of large stock orders using LSTMs

xo = 0.054 (5% of average volume) and the stock with the median saving.

Equity
Daily  value of
volume traded TWAP LSTM Savings
Ticker| (millions) (US$m) (10°US$) (bps) (103US$) (bps) (10°US$) (bps)
TSLA 2820 909.89 180.43(1.98)  161.49 (1.77) 18.94 (0.21)
AMZN 4265 329.26 64.19 (1.95) 53.81 (1.63) 10.38 (0.32)
AAPL 87.88  570.61 84.61 (1.48) 76.24 (1.34) 8.37 (0.15)
NVDA 32,57  274.19 44.06 (1.61) 39.12 (1.43) 4.94 (0.18)
MSFT 20.61  256.82 38.40 (1.50) 33.87 (1.32) 4.53 (0.18)
NFLX 3.85 93.59 21.47 (2.29) 17.73 (1.89) 3.73 (0.40)
META 15.87  219.53 34.09 (1.55) 30.59 (1.39) 3.50 (0.16)
BA 14.42  139.82 26.20 (1.87) 23.01 (1.65) 3.19 (0.23)
GOOG 0.62 66.42 13.14 (1.98) 11.11 (1.67) 2.02 (0.30)
PYPL 7.05 70.38 13.17 (1.87) 11.34 (1.61) 1.83 (0.26)
ORCL 8.61 30.58 5.21 (1.70) 4.50 (1.47) 0.71 (0.23)
AlG 4.07 8.88 1.71 (1.92) 1.37 (1.54) 0.34 (0.38)
EMR 2.12 8.54 1.61 (1.89) 1.28 (1.50) 0.33 (0.39)
MET 3.72 9.63 1.70 (1.76) 1.38 (1.44) 0.31 (0.32)
DUK 1.93 8.90 1.58 (1.78) 1.27 (1.43) 0.31 (0.35)
SO 3.12 9.28 1.57 (1.70) 1.27 (1.37) 0.31 (0.33)
CL 2.94 11.28 1.86 (1.65) 1.56 (1.38) 0.29 (0.26)
DOW 3.72 9.69 1.62 (1.67) 1.36 (1.41) 0.25 (0.26)
BKNG 0.22 22.54 3.96 (1.75) 3.70 (1.64) 0.25 (0.11)
WBA 4.62 10.07 1.70 (1.68) 1.45 (1.44) 0.25 (0.25)
BK 3.88 8.69 1.51 (1.73) 1.27 (1.46) 0.23 (0.27)

noiseless order book case with xé = 0.05A4 and a fixed amount of shares xé = 10°;
and the noisy order book case (ie, f is stochastic) with x} = 0.054" and x, = 10°.!

4.2 Noiseless order book case

We test the trained LSTM models on the data sets shown in Table 1. The parameter
¢ in (3.1) is set to 0.006 for xo = 0.054 and is set to 0.003 for xo = 10° so that

! For notational simplicity, from here onward we drop the superscript i except where it is necessary

to show our results.
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TABLE 4 The 10 stocks with highest savings and the 10 stocks with lowest savings under
LSTM compared with the VWAP strategy for the noiseless order book case with xg = 108
and the stock with the median saving.

Equity
Daily  value of
volume traded VWAP LSTM Savings
Ticker| (millions) (US$m) (10°US$) (bps) (103US$) (bps) (10°US$) (bps)
GOOG 0.62 2150.54 1046.09 (4.86)  947.77 (4.41)  98.32 (0.46)
BKNG 022 2076.48 1741.56(8.39) 1671.94 (8.05)  69.62 (0.34)
BLK 0.46  707.64 439.79 (6.21)  394.23 (5.57)  45.57 (0.64)
TMO 2.98 49396 194.35(3.93) 171.52(3.47)  22.82(0.46)
AVGO 1.08 43577 149.75(3.44) 133.44(3.06) 16.32(0.37)
CHTR 0.61 616.99 289.98 (4.70) 278.15(4.51)  11.83(0.19)
ADBE 1.43 49480 140.58 (2.84) 129.16 (2.61)  11.42(0.23)
LMT 0.96 36599 126.62(3.46) 117.34 (3.21) 9.28 (0.25)
UNH 2.89  381.23 84.43 (2.21) 75.98 (1.99) 8.45 (0.22)
ACN 117 276.23 81.30 (2.94) 72.95 (2.64) 8.35 (0.30)
ABT 4.05 111.71 14.13 (1.27) 13.58 (1.22) 0.55 (0.05)
BA 14.42 193.90 12.90 (0.67) 12.82 (0.66) 0.08 (0.00)
BK 3.88 44.78 5.83 (1.30) 5.75 (1.28) 0.08 (0.02)
GM 13.78 44.10 2.48 (0.56) 2.43 (0.55) 0.05 (0.01)
C 18.34 56.97 2.74 (0.48) 2.69 (0.47) 0.05 (0.01)
AAPL 87.88 129.86 2.40 (0.18) 2.36 (0.18) 0.04 (0.00)
WFC 14.04 37.81 1.46 (0.39) 1.43 (0.38) 0.03 (0.01)
XOM 27.13 53.12 2.25 (0.42) 2.23 (0.42) 0.03 (0.01)
PFE 25.04 40.06 1.59 (0.40) 1.57 (0.39) 0.02 (0.01)
BAC 47.20 34.29 0.95 (0.28) 0.93 (0.27) 0.02 (0.01)
F 70.81 11.81 0.26 (0.22) 0.26 (0.22) 0.00 (0.00)

the transaction cost is approximately 1-2bps of the traded equity values. The top
row of Figure 4 shows the average daily transaction cost for each fold. On average,
over the nine folds, the daily transaction cost is US$811433 for the LSTM strat-
egy, US$843 248 for the VWAP strategy and US$939 695 for the TWAP strategy for
the xo = 0.05A4 case. For the fixed initial shares case, the daily transaction cost is
US$5748 601 for the LSTM, US$6 135958 for the VWAP and US$6 760903 for
the TWAP. Figure 5 shows how the daily transaction cost evolves with execution
time for the xo = 0.05A4 case. The LSTM strategy tends to incur large transaction
costs toward the end of the trading session, whereas the VWAP strategy tends to
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TABLE 5 The 10 stocks with highest savings and the 10 stocks with lowest savings under
LSTM compared with the TWAP strategy for the noiseless order book case with xg = 108
and the stock with the median saving.

Equity
Daily  value of
volume traded TWAP LSTM Savings

Ticker| (millions) (US$m) (10°US$) (bps) (103US$) (bps) (10°US$) (bps)

GOOG 0.62 2150.54 1126.70 (5.24) 947.77 (4.41) 178.93 (0.83)
BKNG 0.22  2076.48 1805.40 (8.69) 1671.94 (8.05) 133.46 (0.64)
BLK 0.46  707.64 476.08(6.73) 394.23 (557)  81.85(1.16)
CHTR 0.61 616.99 337.32(5.47) 278.15(4.51)  59.17 (0.96)
AVGO 1.08 43577 177.81(4.08) 133.44 (3.06)  44.37 (1.02)
T™MO 0.93  493.96 214.06(4.33) 171.52(3.47)  42.53 (0.86)
ADBE 143 49480 161.14(3.26) 129.16 (2.61)  31.97 (0.65)
LIN 1.07  270.08 109.40 (4.05)  79.80 (2.95)  29.59 (1.10)
LMT 096 36599 14476 (3.96) 117.34(3.21)  27.41(0.75)
COoST 145 40442 124.43(3.08) 102.18 (2.53)  22.24 (0.55)
INJ 4.49 156.07  19.59 (1.26)  17.23 (1.10) 2.36 (0.15)
c 18.34 56.97 3.08 (0.54) 2.69 (0.47) 0.39 (0.07)
INTC 22.63 51.50 2.50 (0.48) 2.11 (0.41) 0.38 (0.07)
GM 13.78 44.10 2.78 (0.63) 2.43 (0.55) 0.35 (0.08)
XOM 5.87 53.12 2.52 (0.47) 2.23 (0.42) 0.29 (0.05)
AAPL 87.88 129.86 2.62 (0.20) 2.36 (0.18) 0.26 (0.02)
PFE 25.04 40.06 1.82 (0.46) 1.57 (0.39) 0.25 (0.06)
WFC 4.62 37.81 1.65 (0.44) 1.43 (0.38) 0.22 (0.06)
BAC 47.20 34.29 1.08 (0.32) 0.93 (0.27) 0.15 (0.04)
T 45.78 19.94 0.61 (0.30) 0.55 (0.27) 0.06 (0.03)
F 70.81 11.81 0.30 (0.26) 0.26 (0.22) 0.04 (0.03)

incur large transaction costs in the morning and the TWAP strategy incurs transac-
tion costs fairly consistently throughout the day. However, the LSTM has an overall
lower transaction cost. Similar execution behavior for the three strategies is observed
in the fixed initial shares case.

The second row in Figure 4 shows the transaction costs saved by using the LSTM
strategy compared with the VWAP strategy for each stock over the nine testing folds.
The LSTM strategy outperforms the VWAP by having a smaller transaction cost for
all the stocks in xo = 0.054 case and the average saving by LSTM is US$260 for
each stock. As for the fixed initial shares case, the average savings become US$4030.
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FIGURE 6 Performance of LSTM in the noisy order book case.
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(a) xo = 0.054. (b) xo = 10°.

The third row shows the transaction costs saved by using the LSTM strategy com-
pared with the TWAP strategy for each stock over the nine testing folds. Similarly,
the LSTM is able to save US$1280 in the percentage of daily volume case and
US$10 280 in the fixed initial shares case.

Tables 2 and 3 list the top 10 stock cases, for which the LSTM saves the most,
and the bottom 10 stock cases, for which LSTM saves the least compared with the
VWAP and TWAP strategies, respectively, for xo = 0.054. Most of the stocks in
which the LSTM saves the most are large capitalization tech companies. The median
savings are approximately US$170 if LSTM is used rather than the VWAP strategy,
and US$710 if LSTM is used rather than the TWAP strategy. Tables 4 and 5 list the
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TABLE 6 The 10 stocks with highest savings and the 10 stocks with lowest savings under
LSTM compared with the VWARP strategy for the noisy order book case with xg = 0.054
(5% of average volume) and the stock with the median saving.

Equity
Daily  value of
volume traded VWAP LSTM Savings
Ticker| (millions) (US$m) (10°US$) (bps) (103US$) (bps) (10°US$) (bps)
AMZN 42.65  329.26 59.85 (1.82) 57.41 (1.74) 2.44 (0.07)
TSLA 0.93  909.89 171.62(1.89) 170.47 (1.87) 1.15 (0.01)
GOOG 13.78 66.42 12.25 (1.84) 11.11 (1.67) 1.14 (0.17)
AAPL 87.88  570.61 83.39 (1.46) 82.29 (1.44) 1.11 (0.02)
MSFT 854  256.82 36.59 (1.42) 35.48 (1.38) 1.11 (0.04)
NFLX 6.03 93.59 18.77 (2.00) 18.05 (1.93) 0.71 (0.08)
UNH 28.20 39.53 6.92 (1.75) 6.24 (1.58) 0.68 (0.17)
NVDA 460 27419 42.02 (1.53) 41.41 (1.51) 0.62 (0.02)
META 372 21953 32.52 (1.48) 31.96 (1.46) 0.57 (0.03)
TMO 45.78 22.87 4.36 (1.91) 3.80 (1.66) 0.56 (0.25)
GD 1.88 7.79 1.45 (1.86) 1.29 (1.66) 0.16 (0.20)
KHC 10.87 8.63 1.46 (1.70) 1.41 (1.63) 0.06 (0.07)
TGT 2.96 28.09 4.82 (1.71) 4.76 (1.69) 0.06 (0.02)
MS 8.03 31.26 4.76 (1.52) 4.71 (1.51) 0.05 (0.02)
DIS 1.66 66.71 10.72 (1.61) 10.67 (1.60) 0.05 (0.01)
coP 2.31 18.26 2.67 (1.46) 2.62 (1.43) 0.05 (0.03)
AlG 4.07 8.88 1.46 (1.64) 1.40 (1.58) 0.05 (0.06)
DUK 3.72 8.90 1.35 (1.52) 1.30 (1.46) 0.05 (0.05)
MO 1.69 14.41 2.24 (1.56) 2.20 (1.52) 0.05 (0.03)
WBA 5.69 10.07 1.52 (1.51) 1.48 (1.47) 0.04 (0.04)
SO 5.93 9.28 1.34 (1.44) 1.30 (1.40) 0.04 (0.04)

top (bottom) 10 stocks in which the LSTM saves the most (least) compared with
the VWAP and TWAP strategies, respectively, for xo = 10°. A median saving of
approximately US$550 is achieved by using LSTM rather than the VWARP strategy,
and US$2360 by using LSTM rather than the TWAP strategy.

4.3 Noisy order book shape

The B = 0.67 estimated by Almgren et al (2005) is an average. In any given minute
the limit order books may have a different power law near to but not equal to 0.67.
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TABLE 7 The 10 stocks with highest savings and the 10 stocks with lowest savings under
LSTM compared with the TWAP strategy for the noisy order book case with xg = 0.054
(5% of average volume) and the stock with the median saving.

Equity
Daily  value of
volume traded TWAP LSTM Savings
Ticker| (millions) (US$m) (10°US$) (bps) (103US$) (bps) (10°US$) (bps)
TSLA 2820  909.89 189.50 (2.08)  170.47 (1.87)  19.03 (0.21)
AMZN 42.65 329.26 67.78 (2.06) 57.41 (1.74) 10.37 (0.31)
AAPL 87.88 570.61 91.02 (1.60) 82.29 (1.44) 8.73 (0.15)
NVDA 3257 27419  46.33 (1.69) 41.41 (1.51) 4.92 (0.18)
MSFT 20.61  256.82  40.02 (1.56) 35.48 (1.38) 453 (0.18)
NFLX 3.85 93.59  21.74 (2.32) 18.05 (1.93) 3.69 (0.39)
META 15.87  219.53 35.39 (1.61) 31.96 (1.46) 3.43 (0.16)
BA 14.42  139.82  27.06 (1.94) 23.84 (1.70) 3.22 (0.23)
GOOG 0.62 66.42  13.09 (1.97) 11.11 (1.67) 1.97 (0.30)
BAC 47.20 80.93  13.73(1.70) 11.88 (1.47) 1.85 (0.23)
FDX 1.88 21.55 4.20 (1.95) 3.51 (1.63) 0.69 (0.32)
COP 6.52 18.26 2.95 (1.62) 2.62 (1.43) 0.33 (0.18)
KHC 5.07 8.63 1.74 (2.01) 1.41 (1.63) 0.33 (0.39)
AlG 4.07 8.88 1.73 (1.95) 1.40 (1.58) 0.32 (0.36)
EMR 2.12 8.54 1.62 (1.90) 1.31 (1.53) 0.32 (0.37)
CcL 2.94 11.28 1.87 (1.66) 1.57 (1.40) 0.30 (0.27)
MET 3.72 9.63 1.72 (1.78) 1.42 (1.47) 0.30 (0.31)
SO 3.12 9.28 1.59 (1.72) 1.30 (1.40) 0.29 (0.31)
DUK 1.93 8.90 1.59 (1.79) 1.30 (1.46) 0.29 (0.32)
DOW 3.72 9.69 1.64 (1.69) 1.39 (1.43) 0.25 (0.26)
WBA 4.62 10.07 1.72 (1.71) 1.48 (1.47) 0.24 (0.24)
To model this variation, we consider § to be stochastic: that is,
Bt = 0.67 + 1y, “4.1)

where 7; is a random variable with a uniform distribution on (—0.3, 0.3). The range
of noise is 0.6/0.67 ~ 0.9. The trading loss then becomes

78
L = Z Cs,ﬁsgsse(vsé)_l/(ﬂse—i_l)|X5£ _ X5£_5|(ﬂse+2)/(ﬂse+1)’ 4.2)
(=1

where C g, is the stochastic version of Cy g obtained by substituting 85 into (3.1).
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TABLE 8 The 10 stocks with highest savings and the 10 stocks with lowest savings under
LSTM compared with the VWAP strategy for the noisy order book case with xo = 108 and
the stock with the median saving.

Equity
Daily  value of
volume traded VWAP LSTM Savings

Ticker| (millions) (US$m) (10°US$) (bps) (103US$) (bps) (10°US$) (bps)

GOOG 0.62 2150.54 1084.43 (5.04) 974.45(4.53) 109.98 (0.51)
BKNG 0.22 2076.48 1795.88 (8.65) 1734.05(8.35)  61.83 (0.30)
BLK 0.46  707.64 45480 (6.43) 417.02(5.89)  37.78 (0.53)
T™MO 4578 49396 201.56 (4.08) 179.50 (3.63)  22.06 (0.45)
AVGO 1.08 43577 155.41(3.57) 141.31(3.24)  14.09 (0.32)
ADBE 143 49480 14513 (2.93) 133.28 (2.69)  11.85(0.24)
CHTR 0.61 616.99 299.32 (4.85)  290.13 (4.70) 9.19 (0.15)
LMT 096 36599 130.78 (3.57)  121.84 (3.33) 8.94 (0.24)
UNH 2820 38123  87.05(2.28)  79.21 (2.08) 7.84 (0.21)
GD 0.90 17348  70.89 (4.09)  63.23 (3.64) 7.65 (0.44)
cvs 5.27 77.55 8.99 (1.16) 8.59 (1.11) 0.40 (0.05)
BA 1442 19390  13.29(0.69)  13.22(0.68) 0.07 (0.00)
EXC 5.72 32.63 3.41 (1.05) 3.35 (1.03) 0.06 (0.02)
KHC 5.07 34.06 4.41 (1.30) 4.36 (1.28) 0.06 (0.02)
GM 13.78 44.10 2.55 (0.58) 2.50 (0.57) 0.05 (0.01)
AAPL 87.88  129.86 2.47 (0.19) 2.43 (0.19) 0.04 (0.00)
c 18.34 56.97 2.82 (0.50) 2.79 (0.49) 0.03 (0.01)
BK 3.88 4478 6.02 (1.34) 5.99 (1.34) 0.03 (0.01)
WFC 5.69 37.81 1.51 (0.40) 1.48 (0.39) 0.03 (0.01)
XOM 4.62 53.12 2.32 (0.44) 2.29 (0.43) 0.02 (0.00)
BAC 47.20 34.29 0.99 (0.29) 0.97 (0.28) 0.02 (0.01)

The first row in Figure 6 shows the average daily transaction cost L for each fold
in the noisy order book case. On average over the nine folds, the daily transaction
cost is US$847 328 for the LSTM strategy, US$871 606 for the VWAP strategy and
US$973 718 for the TWAP strategy for xo = 0.054. As for xo = 10°, the daily
transaction cost is US$5 975930 for the LSTM, US$6 344 318 for the VWAP, and
US$6 946 579 for the TWAP. Compared with the noiseless order book shape case,
the transaction costs increase for all the strategies. However, the LSTM strategy has
a consistently smaller transaction cost than the VWAP and TWAP strategies. Note
that the LSTM networks used are the same as in the noiseless order book shape
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TABLE 9 The 10 stocks with highest savings and the 10 stocks with lowest savings under
LSTM compared with the TWAP strategy for the noisy order book case with xg = 108 and
the stock with the median saving.

Equity
Daily  value of
volume traded TWAP LSTM Savings

Ticker| (millions) (US$m) (10°US$) (bps) (103US$) (bps) (10°US$) (bps)

GOOG 0.62 2150.54 1157.61(5.38) 974.45(4.53) 183.16 (0.85)
BKNG 0.22 2076.48 1856.14 (8.94) 1734.05(8.35) 122.09 (0.59)
BLK 0.46  707.64 48879 (6.91) 417.02(5.89)  71.77 (1.01)
CHTR 0.61 616.99 34658 (5.62) 290.13 (4.70)  56.45 (0.91)
AVGO 1.08 43577 182.79 (4.19)  141.31(3.24)  41.47 (0.95)
T™MO 0.93  493.96 219.81 (4.45) 179.50 (3.63)  40.31 (0.82)
ADBE 143 49480 165.55(3.35) 133.28 (2.69)  32.27 (0.65)
LIN 1.07 27008 112.32(4.16)  83.64 (3.10)  28.68 (1.06)
LMT 0.96 36599 148.46 (4.06) 121.84(3.33)  26.62(0.73)
COST 145 40442 127.93(3.16) 107.02 (2.65)  20.91 (0.52)
QCOM 620 13065  14.88(1.14)  12.82(0.98) 2.07 (0.16)
KO 12.37 51.75 3.78 (0.73) 3.25 (0.63) 0.53 (0.10)
vZ 5.69 52.80 3.35 (0.63) 2.93 (0.55) 0.42 (0.08)
C 18.34 56.97 3.16 (0.55) 2.79 (0.49) 0.37 (0.07)
INTC 22.63 51.50 2.56 (0.50) 2.19 (0.43) 0.37 (0.07)
GM 13.78 4410 2.85 (0.65) 2.50 (0.57) 0.35 (0.08)
XOM 5.87 53.12 2.58 (0.49) 2.29 (0.43) 0.29 (0.05)
AAPL 87.88  129.86 2.69 (0.21) 2.43 (0.19) 0.26 (0.02)
PFE 25.04 40.06 1.87 (0.47) 1.63 (0.41) 0.24 (0.06)
WFC 4.62 37.81 1.70 (0.45) 1.48 (0.39) 0.22 (0.06)
BAC 47.20 34.29 1.11 (0.32) 0.97 (0.28) 0.14 (0.04)

case. Therefore, the LSTM strategy is robust to noise perturbations in 8. We observe
empirically that the difference in daily transaction cost between LSTM and VWAP
decreases with the increase in noise intensity, as expected. The second row in Fig-
ure 6 shows the transaction costs saved by using the LSTM strategy rather than the
VWAP and TWAP strategies for each stock: the average savings become smaller than
in the noiseless order book case. Similarly, Tables 6 and 7 show the top (bottom) 10
stock cases in which the LSTM saves the most (least) transaction costs compared
with the VWAP and TWAP strategies, respectively, for xo = 0.05A4. The median
savings are around US$160 for the VWAP case and US$690 for the TWAP case.
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Tables 8 and 9 show the top 10 and bottom 10 stock cases for xo = 10°. The median
savings are around US$400 for the VWAP case and US$2070 for the TWAP case.

5 CONCLUSION

We showed how LSTM can be used for the optimal execution of large stock orders in
a limit order book. Our backtests demonstrated that LSTM can outperform TWAP-
and VWAP-based strategies in order book models with both a noiseless and a noisy
power-law parameter. It is possible that the improved performance of the LSTM is
due to its ability to aggregate across multiple stocks and to exploit codependence in
the price and volume time series. There are a variety of future avenues for continuing
this work. One such avenue is to include the permanent price impact and see how
LSTM can adjust to early suborders adversely affecting the price. Another avenue
would be to consider the optimal length of the trading period and the frequency of
trading, both of which were static hyperparameters in this paper.
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