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Abstract. We analyze portfolios constructed from the principal eigenvector of the equity returns’ correlation
matrix and compare these portfolios with the capitalization weighted market portfolio. It is well
known empirically that principal eigenportfolios are a good proxy for the market portfolio. We
quantify this property through the large-dimensional asymptotic analysis of a spike model with
diverging top eigenvalue, comprising a rank-one matrix and a random matrix. We show that, in this
limit, the top eigenvector of the correlation matrix is close to the vector of market betas divided
componentwise by returns standard deviation. Historical returns data are generally consistent with
this analysis of the correspondence between the top eigenportfolio and the market portfolio. We
further examine this correspondence using eigenvectors obtained from hierarchically constructed
tensors where stocks are separated into their respective industry sectors. This hierarchical approach
results in a principal factor whose portfolio weights are all positive for a greater percentage of time
compared to the weights of the vanilla eigenportfolio computed from the correlation matrix. Returns
from hierarchical construction are also more robust with respect to the duration of the time window
used for estimation. All principal eigenportfolios that we observe have returns that exceed those of
the market portfolio between 1994 and 2020. We attribute these excess returns to the brief periods
where short holdings are more than a small percentage of portfolio weight.
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1. Introduction. A principal eigenportfolio is commonly constructed using the top eigen-
vector of the equity returns’ correlation matrix, and it has been known for some time (Plerou
et al. (1999); Potters, Bouchaud, and Laloux (2005); Avellaneda and Lee (2010)) to be a good
proxy for the capitalization-weighted market portfolio. In this paper, we provide a theoretical
analysis for why this is so using a diverging spike model for the returns. This spike model
consists of a deterministic rank-one matrix plus a random matrix whose bulk spectrum lies
well below the rank-one eigenvalue. In the asymptotic limit where the number of stocks and
observations tends toward infinity, we show that a stock’s market beta divided by its return
variance is proportional to its principal eigenportfolio weight (see Proposition 2.2). This the-
oretically obtained result is consistent with historical daily returns data of S&P500 stocks.
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Specifically, the eigenportfolio weights computed from the data are close to the weights pre-
dicted by the spike model; this is the main result of the paper. To gain a sense for why this
result is perhaps surprising and of broader interest, we may say informally that the princi-
pal eigenvector of the correlation matrix of equity returns, an entirely algebraic construct,
discovers market betas.

We further consider different structures for organizing the returns data and the effect they
have on the relationship between principal eigenportfolios and the market portfolio. These
data structures are based on industry sector classifications, which are determined by either
economic or market considerations. Using this additional structure we build a tensor whose
decomposition yields a principal eigenportfolio that behaves like the “vanilla” eigenportfolio
(i.e., the eigenportfolio computed from the standard correlation matrix without any tensor
structure), but with some key differences. First, principal eigenportfolio weights from our
tensor have fewer short positions than the other eigenportfolio constructions, which is a good
property to have in a primary market factor. Second, the tensor eigenportfolio’s weights are
not as close to the market portfolio betas, but when we regress these eigenportfolio returns
onto the market portfolio returns we obtain residuals that have lower kurtosis. We see this
reduced kurtosis for the tensor eigenportfolios consistently as we vary the length of the rolling
time window used for building the tensor. Thus, tensor eigenportfolios are a more robust
proxy for the market portfolio than their vanilla counterpart. One explanation is that the
additional structure in the tensors creates restrictions which render a close fit less likely while
acting as a regularizer that provides robustness. At present, these latter findings are empirical,
without theoretical analysis.

In this paper we perform backtests for three different principal eigenportfolios: the vanilla
construction, the hierarchical principal component analysis (HPCA) construction in Avel-
laneda (2020) and in Kakushadze (2015), and the tensor construction that we propose in what
follows. We observe that these eigenportfolios have significant excess returns between 1994
and 2020, but we also find evidence that these excess returns are caused by short positions. In
fact, if we censor most short positions, that is, if we regress the principal eigenportfolio onto
the market portfolio only on days where the eigenportfolio has short positions amounting to
less than 3%, then we don’t find significant excess returns. The finding of short positions in a
principal factor portfolio runs contrary to conventional portfolio theory, but this is precisely
the issue discussed in Brennan and Lo (2010) wherein it is argued that so-called impossible
frontiers are quite common and that mean-variance frontiers with at least one long-only port-
folio are an exception rather than the rule. Nonetheless, it remains valid to have a preference
for a long-only principal factor, which is why the tensor eigenportfolio we’ve constructed is
useful, as it has considerably fewer negative weights in comparison to the vanilla and HPCA
eigenportfolios.

1.1. Background. The literature on principal component analysis (PCA) and its applica-
tion to financial and other data is very extensive. Our interest here is in asymptotic methods
that explore consistency of eigenvalues and eigenvectors of large covariance and correlation
matrices when the data comes from an underlying model with a prominent low-rank structure
(i.e., a spike model). The two most important parameters in PCA are the number of features
N, i.e., the number of stocks here, and the number of time samples T, i.e., the number of
trading days here; both are taken to be large.
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When N is fixed and T tends to infinity, which is classical large sample theory, consistency
of PCA for sample covariances was carried out in Anderson (1963), and later came a more
involved analysis for correlations in Konishi (1978) and Kollo and Neudecker (1993). A central
limit theorem (CLT) for fluctuations is given as well.

When N and T are both large with N/T of order one, then we are in the regime of random
matrix theory (RMT). When the data matrix is populated with independent, identically
distributed random variables, then the spectrum of the normalized covariance converges to
the law shown in Marchenko and Pastur (1967) (which we denote as MP law). This basic result
was used with equity returns data and PCA (Plerou et al. (1999, 2002); Potters, Bouchaud,
and Laloux (2005); Avellaneda and Lee (2010)) in order to separate market information from
noise. That is, after projecting out roughly 10 to 20 eigenvectors corresponding to the largest
eigenvalues of the data correlation matrix, the remainder should have a spectrum close to the
MP law. The effective dimension of the market subspace, obtained empirically, varies with
time. It is high in normal times, indicating that there is a lot of market diversity, and it is
low when the markets are stressed.

To account for information-plus-noise data matrices, spike models were introduced (John-
stone (2001)), wherein covariance estimators are composed of a random part plus a finite-rank
deterministic part. In the limit, the deterministic eigenvalues will usually be above the MP
spectrum of the random part, thus allowing for principal eigenvalue detection. One important
result of the asymptotic analysis is that if the true eigenvalue is above the critical threshold,
then the sample eigenvalues of the deterministic part do not converge to those of the model,
that is, they are not consistent estimators (Bai and Silverstein (1998, 1999); Baik, Ben Arous,
and Péché (2005)). A more complete asymptotic theory for spike models is presented in Paul
(2007), Baik and Silverstein (2006), Benaych-Georges and Nadakuditi (2011), and Shi (2013),
including a CLT for the fluctuations of the eigenvalues and eigenvectors.

It is clear in empirical studies on equities data that the principal eigenvalue of the correla-
tion matrix is much larger than the rest (Potters, Bouchaud, and Laloux (2005)), and this is
what we study in this paper. An asymptotic theory of spike covariance models with diverging
principal eigenvalues was carried out by Shen, Shen, and Marron (2016) and Wang and Fan
(2017). One of the main results of their theory is that, as expected, the sample spike eigen-
values and eigenvectors are asymptotically consistent with the model. An analogous result
for correlation matrices is provided in this paper, but without requiring a detailed model for
the correlations; such models are usually needed when a fluctuation theory is carried out in
addition to proving consistency (Paul (2007)).

The theoretical literature on spike models almost always works with covariances—not
correlations—the idea being that the results are not so different with correlations, but the
analysis is more involved as in the classical large sample theory of PCA that we have already
cited. The empirical studies, however, are almost always done with correlations because inho-
mogeneities in financial data, for example, are incompatible with the homogeneity assumptions
of the theory. The differences between PCA with covariances versus correlations for very large
financial data sets are studied empirically in Conlon, Ruskin, and Crane (2010) and Zumbach
(2011). The overall conclusion is that the results with correlations are more stable, especially
for the principal eigenvalue and eigenvector, which interest us here. The results of Zumbach
(2011) provide empirical evidence that both supports the use of the asymptotic theory and
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helps in interpreting it correctly when applied to real data. An analysis of the asymptotic
properties of correlation matrices for spike models with nondiverging eigenvalues is carried out
in Morales-Jimenez et al. (2021) and one of the main results there is that the variance of the
fluctuations of the spike eigenvalues is smaller for correlations. This quantifies the stability
seen in the empirical study of Zumbach (2011).

So far we have cited literature mostly from statistics and econophysics. There is very
extensive econometrics literature addressing the issues that concern us here. Consistency and
fluctuation theory for eigenvalues and eigenvectors of sample covariances, or factors more
generally, is analyzed in Bai (2003) and Bai and Ng (2008, 2019). The large N and T limit
is studied but the ratio N/T is not fixed and the distinction of diverging eigenvalues in spike
covariance models is not applicable in their framework. The models can be time dependent
although the analysis is most often static, not evolutionary, and time is a parameter. Time
varying behavior more generally is treated extensively in the econometrics literature (Su and
Wang (2017)). The issue of estimating the number of significant factors is also analyzed
(Onatski (2010, 2012)), although it is a side issue here. It should be noted that in Onatski
(2012) there is an extensive discussion and assessment of the literature on spike covariance
models and there is a comparison with models in the econometrics literature such as Bai
and Ng (2008). The model proposed and analyzed in Onatski (2012) is different and is
particularly well suited for estimating the number of significant eigenvectors or factors when
the top eigenvalues are not very large, which is not the case for the principal eigenvector for
equities data but it is in general an important issue.

A basic question to ask is whether or not the principal eigenportfolio is mean-variance
efficient (Markowitz (1952)). If instead of the principal eigenportfolio we use the market
portfolio, then this question goes back to Sharpe (1964) and Lintner (1965), who argue that
the capitalization weighted portfolio should be mean-variance efficient or equivalently the
tangency portfolio. In Roll (1980) portfolios orthogonal to the market portfolio are studied
and in Boyle (2014) the principal eigenportfolio of correlations is taken as a proxy for the
market portfolio, because their returns are comparable, and orthogonal eigenportfolios are
discussed. The relation between PCA and mean-variance portfolios is considered in Steele
(1995) using a data set of monthly returns for about half of the Dow Jones 30 industrials
and it is found that with two principal components the weights of the mean-variance portfolio
appear to be unstable. The prevailing view in the 1990s and before was that PCA was to be
used for denoising before doing a mean-variance optimization and that it did not work well in
practice. The theory of PCA as denoising before a mean-variance optimization is considered
in Chen and Yuan (2016). What changed the outlook in denoising is the introduction of
shrinkage methods (Ledoit and Wolf (2004, 2012); Ledoit and Péché (2011)). These methods
are now being used extensively in econophysics (Bun, Bouchaud, and Potters (2017)). As for
using only the principal eigenvector of the correlation matrix when the principal eigenvalue is
large, then the mean-variance optimal portfolio is, asymptotically, the principal eigenportfolio.
This is not in Chen and Yuan (2016) but can be obtained from there.

Principal component methods for tensor data structures should be introduced when there
is a lot of diversity in the data, not just strong heterogeneity, and when it is not a good idea
to string out all the information in one long features vector (Tucker (1964, 1966)). The main
difficulty is that there is no analogue of the singular value decomposition (SVD) for tensors
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of dimension three or more, and reducing a tensor to a sum of rank-one tensors can only be
done approximately in general. This is the canonical polyadic decomposition (CPD) and the
computations are much more involved than the corresponding ones for matrices (Kolda and
Bader (2009)). There is a decomposition for tensors that is similar to SVD (De Lathauwer, De
Moor, and Vandewalle (2000); Cichocki et al. (2015)), the multilinear SVD (MLSVD), which
is relatively easy to implement because it uses the matrix SVD repeatedly, but it does not
produce a representation in the form of a sum of rank-one tensors. However, when there is a
dominant rank-one approximation of the tensor, then it can be obtained from the top rank-
one truncation of MLSVD (Cichocki et al. (2015)). When the top rank-one approximation
is dominant, then we may use a spike tensor model and try to show that as the dominance
increases the approximation becomes exact; this is done in Montanari and Richard (2014)
with an emphasis on the computational complexity of the approximation algorithms. What is
important in our empirical study of tensor methods here is the differences that emerge when
compared to the vanilla matrix PCA approach. The differences are not very big because the
data set is not overly heterogeneous, but we identify and discuss how these differences affect
portfolio performance.

1.2. Contributions of this paper. In this paper we identify and analyze mathematically
the relationship between the principal eigenportfolio and the market portfolio. That the
market portfolio is a good proxy for the eigenportfolio in that their returns over time are
close is well known (Potters, Bouchaud, and Laloux (2005); Boyle (2014)). We introduce
an asymptotic theory and we demonstrate, using historical market data, that the theory’s
predictions consistently model the behavior of the data regarding the eigenportfolio. The
significance of this theory is that we have shown the principal eigenportfolio’s connection with
well-known financial quantities, namely, the market betas.

To place the theoretical contribution into the broad context of PCA research that we just
reviewed, we note that we are dealing with correlations, with the principal eigenvalue being
of order N, the number of features (stocks), and with N and 7', the time interval, going to
infinity with N/T of order one. We show that in this diverging eigenvalue, large data, or
RMT limit the principal eigenvalue and eigenvector are consistent with a spike model. The
corresponding result for covariances is known (Shen, Shen, and Marron (2016); Wang and
Fan (2017)). Going to correlations is more involved, just as it is in classical large sample
theory for PCA as already noted, but the methodology is similar. The assumptions needed
for the diverging spike eigenvalue model are simpler here because we only show consistency
without a CLT for the fluctuations. The way the consistency is applied is to (a) calcu-
late the principal eigenvalue and eigenvector of the correlation matrix of the excess returns
data, then (b) calculate the betas of these returns with the market portfolio, the S&P500
index, and (c) show that the betas divided by returns variance are close to the principal
eigenvector. The importance of using correlations and not covariances is clearly seen in
the analysis of large financial data sets in Zumbach (2011): the principal eigenvalue and
the principal eigenvector of the correlation matrix are more stable over time and the gap
to the rest of the eigenvalues is wider during periods of market stress and narrower dur-
ing normal periods. Our empirical results for U.S. equity returns are consistent with this
behavior.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/22 to 152.14.136.32 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PRINCIPAL EIGENPORTFOLIOS FOR U.S. EQUITIES 707

Additionally, we consider alternative eigenportfolios based on hierarchical structures that
include each stock’s industry sector classification. We consider two principal eigenportfolio
constructions: one that is derived using multilinear tensor PCA and a second that uses the
HPCA method. We observe empirically that vanilla PCA (i.e., standard PCA without sector
classifications) and HPCA eigenportfolios have portfolio weights that align closely with the
market betas, as expected from the theoretical analysis of vanilla PCA. However, we also
observe vanilla and HPCA to have higher residual kurtosis when we regress the eigenportfolios’
returns onto the market returns. In contrast, the tensor PCA eigenportfolio has a significantly
noisier relationship with the market betas, but less kurtosis when we regressed the tensor
eigenportfolio returns onto the market returns. This is consistently the case as we adjust
the sliding window length between 20 and 40 days. In addition, the tensor approach more
frequently yields a long-only portfolio, which is a preferred property for a principal factor. In
summary, these findings indicate that there is a general robustness gained by using the tensor
structure and multilinear PCA.

The rest of the paper is organized as follows. In section 2 we introduce notation, present
vanilla PCA eigenportfolios, and use asymptotic theory to show the principal eigenportfolio’s
convergence under a spike model with diverging eigenvalue (see Theorem 2.1). In section 3
we define tensors using sector classification, discuss the use of polyadic decompositions (PDs),
and present results obtained using the MLSVD. Also in section 3, we present the HPCA
method, provide analysis to confirm that the matrix form is in fact positive definite, and give
a condition under which the eigenvectors of the HPCA correlation matrix can be computed
from the sectorwise components (see Proposition 3.2). Section 4 concludes. In Appendix A
we discuss in some detail the data that we use and their structure. Appendix B contains the
proof for the main theorem of section 2, and C a brief review of Markowitz portfolio theory.

2. Eigenportfolios. We consider a market consisting of N stocks where the return on
stock i at time ¢ is denoted by 7;(¢) for 1 <i < N and 1 <t < T, which we write as a vector,

r1(t)
1) ="
()
for each t. The population mean and variance for asset ¢ are denoted by
(2) pi = Eri(t) of = E(ri(t) — mi)”
where o; > 0 for all 4. In matrix/vector form
241 o1
(3) w=|"71. = ,
M‘N ON

where ¢ is a diagonal matrix. The returns are standardized to remove the effects of the
differing magnitudes of volatility across the portfolio of stocks and then stored in an N x T
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i

(4) R= [T"'(t) - “}
hi 1<i<N, 1<t<T

where
1 1 o .
(5) Y=g ;7‘1(75) ; hi=\|7—7 ;(n(t) —Ti)? .
In matrix/vector form
1 ha
©) =7 | ,
TN hn

where h is a diagonal matrix. The empirical covariance matrix ¥ can be computed as

T
~ 1 _ N
(7) Y=o > () = m)(r(t) =),
t=1
and the empirical correlation matrix
. 1 18, -1
(8) p=7 1RR h™Xh

Rather than calculating the eigenvalue decomposition of p, we extract the principal com-
ponents of R using the SVD. This SVD represents R as

(9) R=USV*,
where
(10) U=[U4U?%...,UN] e RV,

with orthonormal columns, S is an N x T diagonal matrix with the nonzero entries being R’s
singular values S1; > So0 > --- > 0, and

(11) V=[vhvi. . . vI]eR>T

with orthonormal columns. The eigenvalues of p are then related to the singular values by

1
12 Ni=——52
( ) T_1S’L’L

for i < N. Note also that since Trace(p) = N we have that Zf[ Ai = N.
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2.1. Construction of eigenportfolios. Using the SVD computed in (9), the left singular
vectors determine the portfolio’s weights 7* € RN for i = 1,2,..., N, with

7 hU?

where h is the diagonal matrix in (6), and U’ is the ith column of U. The principal eigen-

portfolio is 7!,

N
1
(13) mt = Eh—lU1 with  c=> "Ul/hi,
1=1

where ¢ normalizes so that the portfolio sums to unity and is assumed to be positive. For
example, if the covariance matrix has all positive entries, then the Perron—Frobenius theorem
ensures ¢ > 0. For U.S. equities, only a small proportion of stocks have negative correlation,
and these lead to negative weights in the principal eigenportfolio, that is, shorting, which can
have a significant effect on the returns.

The occurrence of short positions in mean-variance portfolios is considered in Brennan and
Lo (2010). When the principal eigenvalue is large compared to the rest, then the principal
eigenportfolio is close to a mean-variance portfolio (Chen and Yuan (2016)) and so it will very
likely have negative weights as noted by Brennan and Lo (2010). The assumption ¢ > 0 is
added here for completeness.

Figenportfolios are orthogonal in the sense that there is zero empirical covariance among
these portfolios’ returns,

(x') Sl oc (U)pU7 = N(U)' VI =0 for i # .

We denote by f(t) the principal eigenportfolio return at time ¢,

N
(14) 7 = rim!

i=1
which has mean f =Y, 7w} and variance
. I
W= g S () - () — 7't
t=1
_ 1 1\* *771
= (T—l)c2(U J*RR*U
A1
1 =2
(15) |

The principal eigenportfolio captures the most variance among all eigenportfolios and explains
the most variation in the cross section of returns. Letting rg denote the risk-free rate, we
introduce the cross-sectional regression,

(16) ri(t) =ro +bi(f(t) —ro) +&(t) ,
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where &;(t) is the residual left over after fitting with least squares. We can further compute
the empirical covariance,

T
cov(ry(t), f(1) = % > (ri(t) =) (f(1) = f)
t=1
RN t t)—7)mt
= T_lt;ei(r( )= 7)(r(t) —7)'w
hi * *
= T 1)eZRR Ut
_ hid L

where e; is the ith standard unit vector. This yields the regression coefficients,

(17) b = ﬁ’(”%’f@)) = chiU} .

We also note that the principal eigenportfolio’s standardized returns over the time interval
are proportional to the first right-hand singular vector,

(18) [f(t)_f] - 7VT—1R*U1 =VT-1V"',
hy 1<t<T St

where V! is the first column of the T x T matrix V of right singular vectors in (11).

Remark 2.1. Equation (18) is derived as follows. Using (13), the standardized factor
returns are

fO—f_ 1 ‘ 1 1L (RUY,
T = h—fZ(rz(t) — rz)wil = h—ff .

Using (12) and (15), we have h?c =\ /c? = 5% /(c*(T — 1)), and it follows that

fO—f _ (RUYe,
TR |c| = sign(c)
Then using the SVD in (9), R = USV*, we have (R*U'); = S11V}}, and the formula in (18)
follows since we have assumed that ¢ > 0.

(R*Ul)t
S

T-1.

2.2. Principal eigenportfolio, market returns, and the spike model. The representation
of the returns given by (16) is the one-factor PCA of the normalized data. An alternative
representation of the returns relates them to the market portfolio,

(19) Y’i(t) =70+ ,Bi(Tm(t) — 7'0) + Gi(t) s

where now 7, (t) is the return on the capitalization-weighted, or market, portfolio and €;(¢) is
a mean-zero noise that is uncorrelated from r,,(t). Equation (19) is the capital asset pricing

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/22 to 152.14.136.32 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PRINCIPAL EIGENPORTFOLIOS FOR U.S. EQUITIES 711

Table 1
Regression (23) for the principal eigenportfolio’s daily returns, f(t) —ro = a+ B(rm(t) — ro) +e(t). The
principal eigenvectors are computed using a 24-day sliding window with rebalancing every 10 days, from January
3, 1994, to December 31, 2020; the cap-weighted portfolio is also rebalanced every 10 days. The null hypotheses
for the t-statistics above are Ho : « = 0 and Ho : B = 1. The principal eigenportfolio has a B of .9588 which
is significantly different from 1, and an « of approzimately 2.4% per year which is significantly different from
zero at the 5% level.

Variable Estimate Standard error t-statistic p-value
a 9.6132e-05 4.9327e-05 1.9489 0.051351
B 0.9588 0.0041345 -9.9647 3.1383e-23

Number of observations: 6799, Error degrees of freedom: 6797
Root mean squared error: 0.00407

R?: 0.888; Adjusted R: 0.888

F-statistic vs. constant model: 5.38¢ + 04, p-value = 0
Residual excess kurtosis: 31.9361

model, which is reviewed briefly in C. The principal eigenportfolio returns and the market
portfolio returns share significant colinearity, as seen from Figure 13 and the linear regression
in Table 1 with the historical data. This relationship is also discussed in Avellaneda and
Lee (2010) and in Potters et al. (2005). As already noted in the introduction, the principal
eigenportfolio is constructed from the returns algebraically, without any financial insight,
while construction of the capitalization-weighted portfolio is warranted by economic theory
(see Lintner (1965); Ross (1976); Sharpe (1964)).
Letting ¥ represent the model covariance for the stock returns,

25 (t) = cov(ri(t), r5(t)),
using (19), we have the representation
(20) Y =var(r,(t)B6* + Q2 ,

where Q is the covariance matrix of the model residuals with Q;;(t) = cov(e;(t), €;(t)); this
is the same covariance matrix factorization that was considered in spike models (Johnstone
(2001)). We are interested in the case in which the principal eigenvalue dominates, as is the
case with the equities returns data where A1 in (12) does in fact stick out. This can be seen
in Figure 1.

We denote the estimator for the variance of the market portfolio r,,(t) in (19) by

T T
(21) B2 — % S (ran(t) = Fom)? o= =3 ().
t=1 t=1

N

We want to show that as N,T tend toward infinity, with N/T tending to a constant, the
large data limit, and when the top eigenvalue A; is large, then it and the top eigenvector
of p (defined in (8)) will be “close” to the normalized market betas, h2 |lc~1f3]|?> and o~!5,
respectively. For this we introduce the following assumptions in the form of conditions to be

met.
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Figure 1. The left panel shows the histogram of the low, bulk eigenvalues of the correlation of SE&P 500
daily returns for the year 2017. An empirically fitted Marchenko—Pastur density of the bulk is shown with a red
line. The right panel shows the full histogram, including the market (spike) eigenvalue on the far right, with a
red circle around it.

Condition 2.1. The population parameters of the returns processes ri(t) and the standard
deviation estimates h,, and the h;’s satisfy the following conditions:

1. +|lo1B|*> has a finite positive limit as N and T tend toward infinity with N/T —
n € (0,00),

2. for noise matriz ¢ € RY*T limsupy %E[Sup\\u\\zl u*o tee*o
with N/T — n € (0, 00),

3. the estimator h,, has a finite positive limit in mean square as N and T tend toward
infinity with N/T — n € (0,00),

4. the diagonal matriz ha~! converges to the identity in mean square (i.e., E||ho™" —
I||? — 0, where I is the identity in RN ) as N and T tend toward infinity with N/T —
n € (0,00).

lu) < 00 as N — oo

Items 1 and 2 of these conditions stipulate a large gap between the spike eigenvalue pro-
portional to [Jo~!A3||? in (20) and the spectrum of the residual, in this limit. For the S&P500
equity returns there is a large gap between the top eigenvalue and the other eigenvalues of
the correlation matrix, as seen in the right panel of Figure 1. The outlier behavior of the top
eigenvalue of the S&P500 correlations is well known, and in Potters, Bouchaud, and Laloux
(2005) this top eigenvalue is called the market eigenvalue because the principal eigenportfo-
lio captures the movements of the S&P500 index. In particular, item 2 in Condition 2.1 is
shown to be true for large covariance matrices of purely random matrices with independent,
identically distributed elements (Yin, Bai, and Krishnaiah (1988)). Here we assume this con-
dition without introducing a model for the noise matrix. Items 3 and 4 are clearly consistency
conditions with the needed uniformity.

We have the following theorem that connects the market betas with the principal eigen-
portfolio.
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Theorem 2.1. Assume Condition 2.1. Then for the first eigenvalue/eigenvector pair, \y =
S /(T — 1) and U, for the empirical correlation matriz of (8) as calculated using the SVD
of (9), we have the limits

)\1 2
E|l——— —h
lo-tgE 'm0
1 2
E|v" — —=gre8 =0
o-1a” Ol

as N,T — oo with N/T — n € (0,00).
Proof. See Appendix B. |

Remark 2.2 (main idea of Theorem 2.1). From (20) the population correlation matrix is
p=var(ry,(t))o BB 0t + o710t .
If we take u' = o=13/|jc1p||, then
() put = var(r(D) o812 + (u) 0~ Q0

For large markets of equities, it is reasonable to assume ||oc~!3|? is of order N. Moreover, if
we assume the ¢€;(t)’s are independent and identically distributed with bounded variance, then
Q2 is diagonal so that supj,|— uw*o 1o < 1. Therefore, we have the following heuristic:

1\ 1Nvar(rm(t)) —1.412
() pul & B g2

And, if we take any @ | u! with ||i]| = 1, we have
Wpu=0u 0 Qo <.

This suggests that for large N, p’s top eigenvector is “close” to u', that the top eigenvalue
behaves like var(r,,(t))||lc~18||?, and that higher-order eigenvalues are significantly smaller
than N. The effect we see is that the principal eigenvalue will “stick out” from the bulk.

This heuristic argument for the population model is what motivates us to write Condi-
tion 2.1, parts 1, 2. Condition 2.1, parts 3 and 4, are consistency conditions that are used to
carry through the proof for the empirical correlation matrix, as done in Appendix B.

The implications of Theorem 2.1 are perhaps better captured by the following proposition.

Proposition 2.2. Assuming Condition 2.1 and that the population standard deviations sat-
isfy limsupy [|o~t|| < oo, then for the principal eigenportfolio weights 7' given in (13) we
1 o B

have
ol 7
’ Zz 51’/%2

in probability as N — oo, where w is the vector of principal eigenporfolio weights given by
(13).

2
— 0,
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Proof. Condition 2.1, part 4, has ||ho~! —I|| converging to zero in mean square, E||ho~! —
I]|? = 0, and we have that

Ih™ro — 1| = | o (I — o~ h)l| < W ol — o~ Al .
From here, by using the reverse triangle inequality on ||h~'o — I||, we have

1
1=l

Ih~ o — 1|

-1
10| < -0 h|| =0

0<‘1—

in probability. Therefore, ||h~lo| — 1 in probability, and ||h~te — I|| — 0 in probability. In
addition, if limsupy |[c~!|| < oo, then ||~ —a7L|| < |lo=!||[|h 1o — I|| = 0, in probability
as N — oo.
From (13) and (17) we see that
=T h-1Ut

m = =

Zi bi/hz2 Ez Uil/hi ’

where in the numerators we have h~'U", for which

| o' H
Hh A P
—1 —1
= Hh <U1 - ||Ulgu>‘ * H(hl s 1?1\ H
< ol o) o = 2 |+ 1t =

—0

in probability as N — oo, which follows from Theorem 2.1 provided that limsup [Jo ™| < co.
Convergence of the denominator follows from similar calculations, and hence convergence of
the ratio follows and proves the statement of the proposition. |

Proposition 2.2 tells us that, in the large data limit, the principal eigenportfolio weights
behave like the market betas divided by variance and normalized. We will see in the next
section, and as seen in Figures 3 through 9, that the equity returns data give results that are
consistent with Theorem 2.1 and Proposition 2.2, with Condition 2.1 being sufficient for this
theory.

Denote the asymptotic market beta of the principal eigenportfolio as (3, which from
Proposition 2.2 is

Zi (61 / g i)2
> Bifo?
Figure 2 shows a time series plot of the 5, from 1994 to 2020, estimated using a 24-day sliding

window, with reestimation every 10 days. As can be seen in the plot, 8, appears to be near
1, but the distribution of estimators is skewed upward, which means that there is likely to be

(22) /87r =
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Figure 2. The time series of the principal eigenportfolio’s estimated market beta. The theoretical value
Br is given by (22). The estimators are computed using a 24-day sliding window, with reestimation every 10
days, from January 1994 to December 2020. The distribution’s median is near to 1, but the upward skew is an
indication that there will be some tracking error with the market portfolio.

some tracking error between the principal eigenportfolio and the market portfolio. To explain
the relationship between eigenportfolios and the market portfolio, we paraphrase a similar
comment from Avellaneda et al. (2020) for implied volatilities. Suppose that market betas are
estimated using data points {1,2,...,T}, and assume for any ¢’ ¢ {1,2,...,T} that €(t’) is
independent of the estimation data. Using Proposition 2.2, and assuming limsupy || 07! ||<
oo, the residual between the principal eigenportfolio and the market portfolio is

N N
(Bi/o)? / /
— T B — el (V) + Y et
S (vt ) @)+ 2
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where (') = limy_00 Zf\il mie;(t'), in probability. Thus, in the limit, the principal eigen-
portfolio has a market beta of S given by (22), plus a residual. In this paper, we will
see empirically that this residual will be small, that is, the R? after regressing the principal
eigenportfolio onto the market portfolio will be around .9. B B

Similarly, returns of orthogonal portfolios, i.e., portfolios such that 7 oc h~'U with U €
span(U2,U3,...,U N ), tend toward a limit that has zero correlation with the market portfolio
(i.e., the limit is market neutral). That is, any portfolio

7 e span(h U2, WUB, . hTIUY)

(i.e., any orthogonal portfolio) will tend toward market neutrality,

N N N
Z %iri(t,) = (Z %zﬁz) 7”m(t,) + Z%iei(t,) - g(t/)’
=1 =1 =1

where E(') = limy 00 S0, Ties (1)
We end this section with the following remark that connects the principal eigenportfolio
to the market betas in another way.

Remark 2.3. From C it is apparent that the market betas are given by 3; = ﬁ where

ro is the risk free rate, u; is given by (2), and p,, = Erp,(¢). It follows from Proposition 2.2

that for a fixed 7 < oo,

i —T0
B
05

+ “noise”,

where “noise” tends toward zero as N — oo. In other words, the entries of the principal eigen-
vector U! are proportional to the optimal allocation ratios (u; —79)/0? as N grows (recall from
(13) that 7! oc h71UY). We may say that for N large and fixed, the principal eigenportfolio
is equivalent to solving N-many scalar optimizations for each asset and then combining them
for a global portfolio. Another way to say this is that the principal eigenportfolio “discovers”
the optimal allocation ratios of the equity returns in the large data limit of Proposition 2.2.

2.3. Principal eigenportfolio regression onto market returns. In the previous sections
we took a theoretical, modeling point of view that led to some interesting asymptotic relations
between the principal eigenportfolio of returns and the market portfolio. We now consider
how these theoretical results hold up for the U.S. equities daily returns data as described in
Appendix A.

Figures 3 through 9 show the sorted principal eigenportfolio weights 7!, red line, given by
(13) and plotted alongside the estimated f;/ 01-2 ’s, blue dots, sorted according to the ranking
indices of the eigenportfolio. The estimator of each 5; is

~

) T
Bi = W (T—1) g(m(t) = 7)) (rm(t) = Tm)

t=1

with T = 24 days, where 7!, E , and h are recalculated every 10 days. In a given plot, each blue
dot shown in Figures 3-9 is proportional to the /3;/ h? for some i. According to Proposition 2.2,
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Figure 3. Median of sorted eigenportfolio weights (solid line), 10% and 90% quantiles of sorted eigenport-
folio weights (dashed lines), and the median of B;/o? ’s sorted with the same index as the sorted eigenportfolios.
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Figure 4. Median of sorted eigenportfolio weights (solid line), 10% and 90% quantiles of sorted eigenport-
folio weights (dashed lines), and the median of B;/o? ’s sorted with the same index as the sorted eigenportfolios.
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Figure 5. Median of sorted eigenportfolio weights (solid line), 10% and 90% quantiles of sorted eigenport-
folio weights (dashed lines), and the median of B;/o? ’s sorted with the same index as the sorted eigenportfolios.
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Figure 6. Median of sorted eigenportfolio weights (solid line), 10% and 90% quantiles of sorted eigenport-
folio weights (dashed lines), and the median of B;/o? ’s sorted with the same index as the sorted eigenportfolios.
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Figure 7. Median of sorted eigenportfolio weights (solid line), 10% and 90% quantiles of sorted eigenport-
folio weights (dashed lines), and the median of B;/o? ’s sorted with the same index as the sorted eigenportfolios.
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Figure 8. Median of sorted eigenportfolio weights (solid line), 10% and 90% quantiles of sorted eigenport-
folio weights (dashed lines), and the median of B;/o? ’s sorted with the same index as the sorted eigenportfolios.
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Figure 9. Median of sorted eigenportfolio weights (solid line), 10% and 90% quantiles of sorted eigenport-
folio weights (dashed lines), and the median of B;/o? ’s sorted with the same index as the sorted eigenportfolios.
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the eigenportfolio weights and their respective 3;/02’s should have similar rank. Figures 3-9
show orderings of the principal eigenportfolio weights that are consistent with the orderings
of the B;/c?’s,

Figure 11 plots the cumulative returns of the eigenportfolio, the cap-weighted portfolio,
and the SPY ETF (with dividends reinvested) from January 3, 1994, through to December
31, 2020. The SPY ETF with reinvested dividends is the benchmark to measure portfolio
returns. It is clear from these time series that the principal eigenportfolios have a systemic
excess return. The significance of these excess returns is evaluated with a linear regression of
the principal eigenportfolio returns f(¢) onto the market returns,

(23) f(t) =ro=a+B(rm(t) —ro) +(t) ,

where r,,(t) is the cap-weighted market portfolio from the data. Table 1 shows the results of
regression (23), where a 24-day sliding-window of data was used to calculate each eigenport-
folio, with rebalancing occurring every 10 days. The table shows an « that is significantly
different from zero at the 5% level and a 8 that is significantly different from 1 at the 10723
level.

The significance of this « raises an eyebrow because the theory we’ve presented thus far
has characterized the principal eigenportfolio as a factor—not as an a-producing portfolio.
However, we can explain this a by censoring the short positions. That is, on any given
day if Y, |7} 1120 > 3%, then we discard the eigenportfolio and use the capitalization
weights instead (iz.e., we censor returns from negative positions). The results from the censored
regression are shown in Table 4 and the counts of days with over 3% shorting per year are shown
in Table 5. The « of the censored regression is no longer significant, which is an indication
that short positions were responsible for the excess return. Visually, the cumulative censored
returns can be seen in Figure 12, wherein the days with more than 3% shorting the portfolio
uses the cap-weighted portfolio instead.

The impact of negative positions in the eigenportfolio (along with the significance of the
«) raises the question of whether or not the principal eigenportfolio is in fact meaningful as
a principal factor. Traditional mean-variance theory says that a principal factor should be a
long-only portfolio, but as shown in the Brennan and Lo (2010), it is entirely possible that
all frontier portfolios have at least one short position. Therefore, the negative weights we are
finding in the principal eigenportfolio are not a misspecification, but are within the framework
of a modernized portfolio theory that admits a tangency portfolio with short positions.

3. Portfolios from hierarchical data structures. In this section we want to consider the
same questions as in section 2 but with industry sector information taken into account. Our
approach is to separate the stocks into sectors and form tensor structures, and then construct
principal eigenportfolios from these structures. The relation of these eigenportfolios to the
market portfolio is essentially the same as that of the vanilla PCA results in the previous
sections but there are some interesting differences. Another reason that tensor structures are
of interest is because we may have other data in addition to returns, such as traded volumes.
This is the case with options data considered in Avellaneda et al. (2020), where the natural
data structures are tensors.

To introduce the tensor data structures, we recall that the data is described in Appendix
A and note that the CRSP database contains an industry classification for each stock. We will
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Sector Industry Group

10 Energy 1010 [Energy

15 Materials 1510 [Materials

20 Industrials 2010 |Capital Goods

2020 [Commercial & Professional Services

2030 |Transportation
25 Consumer Discretionary |2510 |Automobiles & Components
2520 [Consumer Durables & Apparel

2530 [Consumer Services

2550 [Retailing

30 Consumer Staples 3010 |[Food & Staples Retailing

3020 |[Food, Beverage & Tobacco
3030 [Household & Personal Products

35 Health Care 3510 [Health Care Equipment & Services
3520 |Pharmaceuticals, Biotechnology & Life Sciences
40 Financials 4010 |Banks

4020 |Diversified Financials
4030 |Insurance

45 Information Technology |4510 [Software & Services
4520 |Technology Hardware & Equipment
4530 [Semiconductors & Semiconductor Equipment

50 Communication Services |5010 |Telecommunication Services
55 Utilities 5510 |Utilities
60 Real Estate 6010 [Real Estate

Figure 10. GICS sectors and industry groups as provided by MSCI. These are the 11 sectors that we use
for the hierarchical tensor and the HPCA methods in section 3. These sectors are assigned by market mediators
and while they may be somewhat arbitrary they are used throughout the finance industry and therefore provide
a useful reference for the purposes of this paper. Eigenportfolios based on sector/clusters statistically estimated
from the data were not considered here.

use this to assign each stock/company to a sector. While these assignments are not always
perfect due to some companies having much in common with companies in more than one
sector, they nonetheless represent a reasonable allocation of stocks to industry sectors.

For the case of U.S. equities there are 11 industry sectors, details of which are provided in
Figure 10, and we index these sectors by k = 1,2,..., M (e.g., M = 11). Let sector k contain
Ny stocks so that the total number of assets N = N; + No + --- + Njs. Once again let T
be the number of trading days in the sample. We can define a coordinate mapping from the
space of indices for a given sector k to the space of indices for the entire set of stocks as

Tk:{l,...,Nk}%{l,...,N},

i.e., the ith stock in the kth sector is the 74(i)th stock in the whole space. Let R* be the
N x T matrix of standardized returns in sector k,
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— - HPCA
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SPY
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0 T | | | | | | | | | | | | | | | | | | | | | |
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Figure 11. The eigenportfolios obtained from vanilla PCA, the hierarchical tensor, HPCA, and a vanilla
PCA on the 11-sector ETFs. The portfolio weights are computed using a 24-day sliding window, from 1994
through 2020, with rebalancing every 24 days. Also shown is the cap-weighted portfolio, which is also rebalanced
every 10 days.

k_ e (t) — Tr
it h

Tk(i)

for1<i<Nyand1l<t<T, where7 = %Zthl Tz (1) and h%k() =+ Zzzl(er(i) (t)—

FTW))2. For each k let T}, = min(T, Ni). The compact SVD of RF is

(24) RF = UkSk (VR

where U* and V¥ are Nj, x T}, and T x T}, matrices, respectively, given by
Ub = U U, U
V= [V VR VTR
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Figure 12. The same as Figure 11, but with an eigenportfolio taking capitalization weights on the days
where its short positions exceed 3% of total portfolio weight. These returns are similar to those analyzed in
Table 4, except that days exceeding 3% are replaced with the returns of the cap-weighted portfolio, as opposed
to being discarded like they are in the regression tables.

each with columns orthonormal to one another (note that columns of U* are not assumed to

be orthogonal to columns of V*), and S* is a T} x T}, matrix with nonzero entries only along

the main diagonal with those being the sorted singular values, S’{"l > 5’52 > 00> S;’}ka > 0.
Let us define the following sector index functions:

(25) I(i) = k if the ith stock is in the kth sector.
We extend the sectorwise singular vectors to the larger space RY, defining them as
Uk, i I(5) =k,

(26) W;fk = TG
0 otherwise.
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There is orthogonality among these extended vectors,

(WY = 1 ifi=jand k=2¢,
0 otherwise ,
which is easy to check. Within each sector we have a principal factor portfolio with returns,

N

1
(27) == Z W) with F =YW /h

i=1
fork=1,2,..., M.
We will next construct normalized returns tensors using the sector notation and quantities
we have introduced.

3.1. The hierarchical returns tensor. We define an N x T x M tensor R such that

R’jl,cl(_)’t if 1(i) =k,
——~———— otherwise,
RI(@)
where f¥ = % LS T R, vF = \/ﬁ ST (fR(t) — £%)2, and where I(i) is the sector index

function defined in (25). This is referred to as the “hierarchical tensor.” This tensor has a
sector number k as the third index, and if the sector of stock i is not equal to k, then the
tensor’s entry is the standarized returns of sector I(i)’s principal factor portfolio. We recall
that a tensor’s PD is its representation as the sum of rank-one tensors. Utilizing the SVD in
(24) and the formula from (18) for each sectorwise factor’s standardized returns, a PD for the
returns tensor is

M Ty M M
200 R=3 sk (W““ oViko ek) +VT =13 sign(c) (14 oV¥o ek) ,
k=1 i=1 k=1 ¢=1
ik
where e € RM is the kth canonical basis vector, “o” denotes vector outer product, and

iy {1 if 1(i) =k,

7 ]0 otherwise.

The expression in (29) is a sum of Y 4" (T}, + M — 1) rank-one tensors, and it is possible that
the rank of R is S0 | (Ty, + M — 1), but in general the rank of a tensor with a decomposition
as given in (29) will be less.

Definition 3.1 (tensor rank). Let X denote a tensor in RVNXT*M  The rank of X is the
minimal integer d needed to write X as a sum of rank-one tensors,

d
(30) X =) X"oX?oX",
=1

where X' € RN, X2 ¢ RT, and X*® € RM for each i.
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A PD as given by Definition 3.1 is referred to as canonical (a CPD) when d is equal to
the rank of X (Kolda and Bader (2009)). In general it is an NP-hard problem to determine
the rank of a tensor of dimension 3 or greater and so we cannot be sure that the PD for R
in (29) is minimal and hence (29) is unlikely to be a CPD. Nonetheless, (29) is still useful to
us when we search for low-rank decompositions of the tensor, which is done by solving the
following optimization:

. 2
(31) Xnel%ln HR - XHfro
s.t

R" :{X € RVXTXM lrank(X) < n} ,

where n is the predetermined rank.

The best rank-one approximation can be used for a principal eigenportfolio. We prefer
to use the MSVD of the next section, however, even though for the U.S. equities data dif-
ferences between CPD and MLSVD are insignificant when it comes to constructing principal
eigenportfolios.

Multilinear singular value decomposition. The tensor analogue of SVD is the MLSVD,
which is a decomposition of the form

N T M
(32) R = S(i, t, k) (U<“> o UM o U<k3>) :

i=1 t=1 k=1
where UM = [UD @) UWNVD] € RV*N is a matrix with orthonormal columns, U =
002y U] ¢ RT™T is a matrix with orthonormal columns, and U®) = [(13),
U (23), LU (M 3)] € RMXM ig 5 matrix also with orthonormal columns. The decomposition in

(32) is an MLSVD with basis elements U®), U®) U®) and tensor core S € RN*T*M  The
third-order tensor S is not diagonal anymore, in general. However, it has the property of all
orthogonality,

(33) > S(it, k)S( ¢, k) =0,

where the indices (i, ¢, k) and (¢/, ¢, k") are equal except for one of the three components and the
sum is over the two equal components. This means that distinct “slices” of each orientation
are orthogonal. Moreover, the indices can be permuted so that the sums of squares over
all except for one index are ordered by size. The MLSVD representation (32) is exact and
is obtained from the application of SVDs to all the possible flattenings of the tensor and
organizing the output suitably to get the result; see Kolda and Bader (2009), De Lathauwer,
De Moor, and Vandewalle (2000), and Cichocki et al. (2015). The MLSVD can be used for
solving problems like (31) for low n (e.g., n = 1 or n = 11). From the MLSVD the top
component for constructing a principal eigenportfolio should be X = U and hence the
portfolio weights are
. hflU(ll)

S

s
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This is the same method for computing an eigenportfolio that was used in Avellaneda et al.
(2020) for eigenportfolios of implied volatilities.

Results with equity returns data. The middle columns of Figures 3-9 display the
eigenportfolio weights for the hierarchical tensor against the estimated 3;/ a? as predicted by
Theorem 2.1; the leftmost column in the same plots are the analogous plot for vanilla PCA.
There is a good correspondence between the weights predicted by the theory, assumed to carry
over to tensors, and those extracted from the data, but there is more dispersion evident in
the cloud-like formation of the estimates around the sorted eigenportfolio.

Compared with the vanilla eigenportfolio, the MLSVD rank-one estimation results in
an eigenportfolio that is more relaxed. One possible explanation for this is that the tensor
approach adds noise to weights as a way to create a stabilizing effect, similar to the addition
of noise in an underdetermined linear system for a stable solution. In comparison, the vanilla
PCA weights are in closer alignment with the Bi/a?’s.

We also observe that the MLSVD eigenportfolio is more frequently long only compared
to the vanilla eigenportfolio; Table 5 displays the counts of days with over 3% shorting per
year, which are noticeably lowered for the MLSVD eigenportfolio. Similar to the vanilla re-
gression shown in Table 1, there is a significant excess return when the MLSVD-constructed
eigenportfolio is regressed onto the market returns (see Table 2), but this significance dis-
appeared when we ran the 3% censored regression (see Table 4). Indeed, the cumulative
returns of the hierarchical-tensor eigenportfolio can be seen in Figure 11 and the cumulative
3% censored returns in Figure 12, and in the latter there is no noticeable excess return for
the MLSVD-constructed eigenportfolio.

Finally, we observe that returns from the MLSVD eigenportfolio have systemically less
kurtosis in their residuals after regression onto the market portfolio. That is, we regressed the
returns from the eigenportfolios constructed using the various methodologies onto the market
portfolio’s returns. We did this for varying sliding-window lengths and rebalancing intervals.
What we see in Table 3 is that the MLSVD construction systematically shows residuals with
the lowest excess kurtosis among the different methodologies. We can also see the residual
outliers visually in Figure 13 for the eigenportfolios computed using a 24-day sliding window
with rebalancing every 10 days. Bearing in mind that each block of returns is an out-of-sample
test, it therefore may be the case that vanilla PCA is overfitting, whereas the tensor PCA,
because it considers interdependence at the sector level, is producing a coarse-grained vector
that works better out-of-sample.

3.2. Hierarchical PCA. HPCA is used in Avellaneda (2020) for a similar equities data
set. The HPCA method uses the natural separation by sector to organize the data matrix
in a way that focuses on the principal component of each sector. The idea is to impose the
following block correlation structure to the returns:

L (g1 (RIO)y: it (i) = I(j
o (RO@YYy) i 16) = 10),
bib;

(34) corr(r(t),rj(t)) = o 1) - |
hmjcov(f (), 19O i 16) £ 1),
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Table 2
Regression (23) for tensor PCA, HPCA, and sector ETF eigenportfolios’ daily returns, f(t) —ro = o+
B(rm(t) —10) + &(t). The principal vectors are computed using a 24-day sliding window with rebalancing every
10 days, from January 3, 1994, to December 31, 2020; the cap-weighted portfolio is also rebalanced every 10
days. The null hypotheses for the t-stats above are Ho : « = 0 and Hy : 8 = 1. This table should be compared
with Table 1, which contains the results for vanilla PCA.

Tensor PCA regressions

Variable Estimate Standard error t-statistic p-value
@ 6.7672e-05 4.007e-05 1.6889 0.091291
15} 0.93555 0.0033586 -19.189 5.7629e-80

Number of observations: 6799; error degrees of freedom: 6797
Root mean squared error: 0.0033

R?: 0.919; adjusted R*: 0.919

F-statistic vs. constant model: 7.76e + 04, p — value = 0
Residual excess kurtosis: 18.3381

HPCA regression

Variable Estimate Standard error t-statistic p-value
a 0.00010382 6.0133e-05 1.7265 0.084303
B 0.9504 0.0050402 -9.8411 1.0616e-22

Number of observations: 6799; error degrees of freedom: 6797
Root mean squared error: 0.00496

R?: 0.84; adjusted R?: 0.839

F-statistic vs. constant model: 3.56e + 04, p — value = 0
Residual excess kurtosis: 177.6654

Sector ETF PCA regression

Variable Estimate Standard error t-statistic p-value
e 1.3242¢-05 3.8467e-05 0.34423 0.73068
B 0.90728 0.0032243 -28.756 1.0494e-171

Number of observations: 6799; error degrees of freedom: 6797
Root mean squared error: 0.00317

R?: 0.921; adjusted R?: 0.921

F-statistic vs. constant model: 7.92e + 04, p — value = 0
Residual excess kurtosis: 58.3926

where each f* is the sectorwise factor given by (27), the ith return’s loading on its respective
factor is b; = h;c*W¥ (recall the b; computed in (17)) with W'¥ given by (26). The structure
of the HPCA correlation matrix (34) is a block matrix with the same index separations as
the tensor (28), but differs because it imposes a specific covariance structure between stocks
across sectors. Using the SVD RF = UFSF(V*)* from (24), the covariance between the kth
and the ¢th factors is

N Sk Sg Vlk *VM
cov(fk(t),fg(t)) = 11(T11—( 1)0205

where V¥ € RT and V¥ € RT are each proportional to the time series of their respective
standardized factor returns, as given in (18) for the entire market factor f(¢). The off-block
structure leads to the following block-matrix structure for the correlation matrix:
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Table 3

Robustness: tensor PCA eigenportfolio never results in high excess kurtosis because it has no outliers
relative to the cap-weighted returns.

Excess kurtosis of residuals

Training window Rebalancing period Vanilla Tensor HPCA  Sector ETFs
20 5 444.81 21.96 1495.36 125.44
20 10 69.36 25.56 506.85 28.89
20 20 73.78 26.49 155.13 26.21
24 5 29.85 18.67 150.40 122.92
24 10 31.94 18.34 177.67 58.39
24 20 23.17 18.24 41.51 29.14
28 5 228.58 14.83 1572.81 53.73
28 10 207.84 15.08 1171.70 31.51
28 20 13.34 13.30 14.87 25.10
32 5 15.45 18.46 20.36 44.01
32 10 16.82 18.73 22.07 34.64
32 20 18.74 20.19 27.31 42.48
36 5 16.16 13.88 1367.43 27.54
36 10 16.72 13.85 885.74 26.05
36 20 22.22 13.45 598.87 31.33
40 5 14.62 17.55 15.36 20.91
40 10 14.38 17.89 15.45 20.85
40 20 14.23 18.58 15.51 23.71

r ﬁRl(Rl)* G12U11(U12)* GlMUll(UlM)*'

G21U12(U11)* ﬁRZ(Rz)* G2MU12(U1M)*

(35) 7= ,
_GMlUlM(UH)* GMQUIM(Ulz)* ﬁRM(RM)* |

where G € RM*M with

Ge = @v( (1), f(1))ehe’ = 7 St SH VIV

The matrix G will be used the prove the following proposition.

Proposition 3.2. The block matriz p? given in (35) is positive semidefinite, and strictly
positive definite if and only if SE > 0 for all i < Ty and for all k. If ﬁZﬁl(Sfl)Q >
maxy<pr(S5)2, then the principal eigenvector of p™ is Zkle apyW, where a € RM is the
principal (normalized) eigenvector of G.

Proof. Consider any vector a € RM with |la|]| = 1 that is an eigenvector of matrix G.
Then Zi\il ap W™ is an eigenvector of p*,

M

M M
ﬁH Z alek = Z Qaf Z GMWM
k=1

k=1 (=1

M
=2 aW
k=1
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(a) Eigenportfolio generated by Tensor PCA ap- (b) Eigenportfolio generated by HPCA applied to
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(c) Eigenportfolio generated by Vanilla PCA ap- (d) Eigenportfolio generated by Vanilla PCA ap-
plied to the sector ETFs plied to the entire market

Figure 13. Returns of eigenportfolios versus returns of the cap-weighted portfolio, for each of the individual
methods for principal eigenportfolio construction. The tensor PCA in panel (a) clearly provides a closer fit to
the market than the alternative approaches and this finding is consistent across estimation windows of different
lengths

where A is the eigenvalue such that Ga = Aa. The matrix G has all nonnegative eigenvalues
because it is the covariance matrix of the ¢* f*(¢)’s constructed from (27). Hence, A > 0. For
the remaining EkM:1(Tk — 1) orthogonal W%’s, we have

. 1 .
piwik = ﬁ(sgg-fwzk for i > 2,

which shows that any W% with i > 2 is an eigenvector with nonnegative eigenvalue. Hence,

pH is positive semidefinite, and strictly positive definite if and only if Sfi >0forall 1 <i<Ty
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Table 4
Regression (23) with 3% censored data for vanilla PCA, tensor PCA, and HPCA eigenportfolios’ daily
returns, f(t) —ro = a+ B(rm(t) — o) +(t). Censoring at 3% means the regression excludes days where short
portfolio exceeds 3%, if Y, |mi|lx,<0 > 3%. The principal eigenvectors are computed using a 24-day sliding
window with rebalancing every 10 days, from January 3, 1994, to December 31, 2020; the cap-weighted portfolio
1s also rebalanced every 10 days. The null hypotheses for the t-stats above are Hy : « =0 and Ho : B = 1.

Vanilla PCA regression (short less than 3%)

Variable Estimate Standard error t-statistic p-value
@ 1.4178e-05 4.0001e-05 0.35445 0.72301
15} 0.97226 0.0032337 -8.4557 3.4758e-17

Number of observations: 5791; error degrees of freedom: 5789
Root mean squared error: 0.00304

R?: 0.94; adjusted R*: 0.94

F-statistic vs. constant model: 9.05e + 04, p — value = 0
Residual excess kurtosis: 16.1060

Tensor PCA regression (short less than 3%)

Variable Estimate Standard error t-statistic p-value
a 3.7959e-05 3.7609e-05 1.0093 0.31287
B 0.93859 0.0031097 -19.748 2.6789e-84

Number of observations: 6366; error degrees of freedom: 6364
Root mean squared error: 0.003

R?: 0.935; adjusted R*: 0.935

F-statistic vs. constant model: 9.11e + 04, p — value = 0
Residual excess kurtosis: 15.5670

HPCA Regression (short less than 3%)

Variable Estimate Standard error t-statistic p-value
@ 3.8705e-05 4.1533e-05 0.93191 0.35142
B 0.95955 00.0033675 -12.012 7.2178e-33

Number of observations: 6044; error degrees of freedom: 6042
Root mean squared error: 0.00323

R?: 0.931; adjusted R*: 0.931

F-statistic vs. constant model: 8.12e + 04, p — value = 0
Residual excess kurtosis: 18.5770

and for all k. Finally, if -, Zk L(SF)? > maxy<s(S%,)?, then for A the top eigenvalue of G
we have

M
1 1
/\ Z Mtrace(G) E Sll > (522) \V%
k‘:l

and thus \ is the principal eigenvalue of pf. |

Remark 3.1. In all the backtesting runs with equity returns that we did in this paper,
taking M = 11 for the 11 industry sectors, the condition =7 >, (S%)? > max;(S5,)? from
Proposition 3.2 never failed to be true.

Results with equity returns data. The rightmost columns of Figures 3-9 show the

sorting of the HPCA eigenportfolio weights along with the estimated (;/0?’s. The sortings
are tighter than the noisy-banded sorting for tensors in the middle columns, but are not as
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Table 5
The number of days in each year for which the proportion of the tensor eigenportfolio with short positioning
was greater than or equal to 5%/3%.

Short positions

Vanilla EP Tensor EP
Year | Days > 5% Days > 3% | Days > 5% Days > 3%
1994 30 70 0 0
1995 110 160 10 20
1996 20 40 10 20
1997 0 0 0 0
1998 10 30 0 10
1999 42 52 20 40
2000 112 142 40 62
2001 60 88 50 70
2002 10 10 0 10
2003 0 0 0 0
2004 0 0 0 0
2005 0 0 0 0
2006 0 20 0 0
2007 0 0 0 0
2008 0 10 0 0
2009 0 0 0 0
2010 0 0 0 0
2011 0 0 0 0
2012 0 0 0 0
2013 0 0 0 0
2014 0 10 0 0
2015 0 0 0 0
2016 50 70 30 30
2017 81 91 40 71
2018 60 80 10 30
2019 62 62 20 40
2020 63 73 30 30

tight as the sortings for vanilla PCA in the leftmost columns. Our conclusion after obervation
of the HPCA eigenportfolio for varying sliding-window and reblancing lengths is that it is
the least stable among the methodologies we examined. We ran the regression of the HPCA
returns onto the market portfolio’s, for which we see the results in Table 2 for 24-day sliding
window with 10-day rebalancing. The HPCA eigenportfolio behaved similarly to the vanilla
and the tensor eigenportfolios: there is a significant excess return that becomes insignificant
when we censor with a 3% shorting threshold (see censored regression in Table 4 and the
censored cumulative returns in Figure 12). But what is most striking is what we see in Table
3, namely, the consistently outsized kurtosis of the HPCA regression residuals compared to
the other methodologies. In addition, the scatter plot for HPCA in Figure 13 (upper right)
shows that the HPCA has outliers that are roughly of the same magnitude as vanilla PCA
and the sector ETFs’ eigenportfolio.

To summarize, both for this section and the results of sections 2.3 and 3.1, we have exam-
ined four methodologies, vanilla PCA, HPCA, tensor PCA, and vanilla PCA on the 11 sector
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ETFs described in Appendix A. We find that vanilla, tensor, and HPCA eigenportfolios have
an excess return that can be attributed to short positions, which we censor using a 3% thresh-
old and we rerun regressions to find insignificant a’s. Overall, each of these methodologies
agrees with the predicted portfolio-weight behavior of Theorem 2.1, but it is perhaps the ten-
sor portfolio that is the best candidate to use as a factor, as our empirical analyses indicate
that it is more robust than the others. Moreover, if there is a concern over the amount of
shorting in the factor portfolio, then the tensor eigenportfolio is better because it seems to
result in the fewest short positions over time. In any case, the tensor construction is certainly
better than the HPCA construction, the latter of which has considerably more kurtosis in its
residuals after regression onto the market returns.

4. Summary and conclusions. We have analyzed the relationship between the principal
eigenportfolio of equity returns and the associated capitalization weighted market portfolio.
In section 2.2 we introduced a spike model for the returns data and showed in Theorem
2.1 that in a large data limit and large principal eigenvalue the weights of the principal
eigenportfolio are close to the market betas divided by variance. The significance of this is
that the results with the U.S. equities returns data are consistent with the asymptotic theory
of the spike model, as seen in Figures 3 through 9. It is also significant in that this result
provides a clear and somewhat surprising connection between the capitalization weighted
portfolio and the principal eigenportfolio that comes from a purely algebraic construction.
In the second part of the paper in section 3 the principal eigenportfolio is constructed from
tensor forms of the data. The main differences with the vanilla PCA results of section 2
are looser consistency between the tensor eigenportfolio weights and the market betas over
variance, a more frequently long-only portfolio, and when regressed onto the market portfolio
the tensor has residuals with lower kurtosis. We may say that the tensor structure of the data
relaxes the in-sample relation between the principal eigenportfolio weights and the market
betas over variance, and is more robust over time. Quantifying this empirical observation
remains a challenge. We should point out that option eigenportfolios can also be constructed
from natural tensor structures as shown is Avellaneda et al. (2020). An important issue there
is to find an analogue of the capitalization weighted portfolio of equities, which turns out to
be an open-interest weighted portfolio of options.

Appendix A. The data. For our analysis we created 27 data sets, each one consisting
of the constituents of the S&P500 index in January for each year from 1994 to 2020. From
the Center for Research in Security Prices (CRSP) database we then retrieved, for each year,
the sector information and the time series of adjusted daily returns from the first trading day
in January to the last in December for each constituent. When creating the data set for a
particular year we dropped any names that did not have returns available for all of the trading
days in that year. For U.S. equities there are 11 sectors (see sector classifications in Figure
10).

Additionally, we obtained the returns for the 11 major sector ETFs, for the period 2005—
2020, which we computed using daily adjusted close price provided by Yahoo! Finance. These
ETFs represent the 11 GICS' sectors of the S&P500 (energy, materials, industrials, consumer

!General Industry Classification Standard.
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discretionary, consumer staples, health care, financials, technology, communication services,
utilities, and real estate). For the years 1994 to 2004 we computed synthetic ETFs using the
returns and GICs in our CRSP data.

Using the 11 sector ETFs we can perform PCA to obtain an eigenportfolio using the same
approach as we used for individual stocks. If we plot this eigenportfolio alongside the SPY we
will see that it tracks the SPY and a regression reveals an « not significantly different from
zero (see Table 2). Figure 11 shows the eigenportfolio and cap-weighted portfolios alongside
the SPY ETF. The eigenportfolio is computed using a 24-day sliding window, which is slightly
longer than one month of business days, and is rebalanced every 10 days. The same frequency
is also used to rebalance the cap-weighted portfolio.

Appendix B. Proof of Theorem 2.1.  Based on the model in (19), the empirical covariance
matrix ¥ given by (7) can be written as

T T
_ 1 . 1 L _ )
36) S = B35+ 33 D2 v(09 0+ 77 3 (om0 @)+ om0 =P (05°)
where v(t) = €(t) — 7 Z;le €(t) and 7y, is the market returns’ sample mean as given in (21).
Using i the empirical correlation matrix is p = h_lf]h_l, where h is the diagonal matrix of
empirical standard deviations given by (5).

Throughout we will denote

fo=T8]

which are a deterministic sequence of unit vectors indexed by N, with u! € RN for each N.
The proof follows from some lemmas beginning with the next one.

(37) ut

Lemma B.1. For u' given by (37) we have the limit

1
lo=1B]1?

(38) E (uh)*o 'Sl —n2| =0,

as N — oo.

Proof. For any deterministic u € RY with ||u|| = 1, using (36) we have

o' So - h%l(u*a_lﬁ)Q‘

T
1 2
=\|7= 1u*aflul/*a*1u + 71 tg_l(rm(t) — P )u* o AU (H) o
T
1 * * —1 2 * _—1 *
< o vt U+ ——— (rm(t) — Tm)u* o™ pr*(t)o” u
T— T— pt
T T
2T 1 1
S v o™t + 1 T;(Tm(t) Tm)? Ttzz;(u*a_lﬁz/*(t)a‘lu)2
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1, . 2Tt lBl | 1w ) e

= F—uo Yo~ + ’T — | T 1tgl('r”,qq,(t) — Tm)? T tgl(u*(t)a—lu)2
1 2T hyp |u*o ™1

=7 1u*aflyu*aflu+ W —wu*o~lvvro~lu.

If we take u' defined by (37), then it follows that

1 Ty —19 1.1 2
W(U ) g ZO' u _h‘m
1 11 1 2T o, \/1
< o (uw)vwreTu + ———m———— 1 = (u o lvvro Tyl
R v R GE T
1 1 g 2T o, \/1
< — o (u)'wreTu + =\ = (ul)*o T leer o lut
(T = 1)||o=13]]2 (T =1Dlle 1BV T
(39) —0,

in probability as N — oo, where in (39) for the term with the product we have

(Ha‘lﬂﬂ\/ (ut)*o~lee*o—tul > 5)
!0‘1ﬁ\|\/ (w)ro et ]

1 1 1
< Z, IR 2 E Nk +—1 % +—1,,1
< 5\/ [h2] [Ha_lﬁ||2T(u Vo~ lee*ro~lu ]

—0,

_(5

which follows from Condition 2.1. |
Lemma B.2. For u! given by (37) we have the limit

1

(40) Eoar

(uh*put —hZ| =0

)

as N — oo.

Proof. First notice that p = hilaaflfla*lahfl, and then using similar steps as those for
proving (38), we have

1
(') (5= b2, 81T )

llo=1B8]?
1
= oo (L~ ho ko) (= Bl BIPT) (I = ho b !
g
2 — * —
< forig (L~ ho ™'Y FU — ho ™t
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2 _ ol ~ _ _
+ omagp (o) (5= W™ BIPT) (o
2 _ K~ _
= W((I— hO' l)ul) p(I— hO' l)ul
2 1\* —li —1_h2 —1 2 —1h2 —1 1
+ g ) (07180 — ilo T P %0 Ju
2N||I — ho™1|? 2 of 1o _
<ot g (o715 o)
+ 2h2 (ul)* (I - 0_1h20_1>u1
_ 2N||I — hot||? 2 T —1S 1 2 —1a127). 1
= ot o) (oS ke AR
(41) +2h2 (1 = ||oth|)?) .

The first and third terms in (41) converge to zero in expectation because of Condition 2.1,
and the second term converges to zero in mean using (38). [ |

It is also useful to note that for any sequence of random vectors U such that U L u' and
|U|l =1 for all N, using (36) we have

1 s~ 17
1 —1~\k~p —1~
< WE ~SJl_1p1 (ho™ a)*pho™ "
fafl=1
= L E | sup @* [ailw/*a*l] U
(T=Dlo™'BI* | arut
Ll[all=1
< L E | sup (o tu)*vv* (0" u)
(T =DleBIP T =1
< L E | sup (o u)*ee* (07 u)
T (T =Dle=BIP T =1

(42) -0,

as N — oo, where (T_I)HWE[sup”u”:l(Uﬁlu)*ee*(aflu)] — 0 follows from Condition 2.1.

Note that because the quantity is positive, (42) implies that

(43) W(ha_lﬁ)*ﬁha_lﬁ —0

in probability as N — oc.
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Lemma B.3. For any sequence of random vectors U such that U L u' and ||U|| = 1 for all
N, we have

(44) li B ‘(Ul)*ha_lff‘ —0,
where U € RN is the top eigenvector of p.

Proof. For U' and any sequence of random vectors U such that U L u! and ||U|| = 1 for
all N, we have

At e o107
< g | 0]
1 1Nk~ _—177
:W‘(U o0l
1 I\xA7T71 177\ ~—177
VA1 =
— oI5 (ho=tU)*pho—1U
UV —
S W (hU_lU)*phU_lU

(45) -0,

in probability as N — oo, where limy \ﬁ A € (0,00) by Condition 2.1 and

[Ea

1 ~ ~
\/W(hU_IU)*phU_lU —0 s

in probability follows from (43).

Now we proceed by contradiction. Suppose there is a subsequence N, for which
(U Yrho=lU | does not converge to zero in probability. There exists a further subsequence
Ny, under which the limit of A, holds almost surely, and where the limits in (40) and (45)
hold almost surely. Then, for this subsequence we have

. A1 IN*7 —177
O:hr?vsupWQ'_IBHQ’(U) ho U’
nj
A
>hm1nf<” g - h%) (') ho™ 1U‘—|—hmsuph ! ha_lU‘
o
Uy put
= hmlnf <(” )IZW h3n> ’(Ul) ho™ IU‘ +11msuph ‘ ‘
o
> hmlnf <|(| )IZT2 - h2> ‘(Ul) hJ_IU‘ +11msuph ‘ hO'_lU‘
o
—hmsuph ) ha_lU‘
(46) >0
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This contradicts our supposed nonconvergence to zero, and thus, limsupy, —|(U 1)*h0_1ﬁ |=0
- J
because lim sup N, h2, > 0 by Condition 2.1, and thus, |(UY)*ho~1U| — 0 in probability.

Meansquare integrability of ho~! is given by Condition 2.1, and hence, convergence in mean
follows for |(U)*ho~1U|. [ ]

Finally, we are ready to prove the two limits stated in Theorem 2.1. Using Lemma B.3
we have

~ 12
limE ‘(Ul)*U‘
N
~ ~ |2
—~ lmE ‘(Ul)*(l — ho™HU + (Ul)*ha—lU)
~ |2
< 2WmE|I — ho |2+ 2lim E ‘(Ul)*ha_lU‘
=0 ,

as N — 0o, where ho~! — I in meansquare from Condition 2.1. Hence, the top eigenvector
converges close to u?,
E[|U' —u' > =0,

which along with (40) shows the top eigenvalue convergence,

A1

— K2
Jo-1gE '
1 I\k~r7l 2
= |Jorpp W)Y
= 1o |6 - wle s e
lo- 181 m
e Y I o s ey 7 PS5 A
= o1 m Ve m
—0 by (40)
2H/A’—h2 HU*15H2IH 1 1012 2 ~ 21 —1an2m1/2 1|2
< m Ut = s || 5= kAl B D |
ogE | I+ forap m
2(N + R2 o7 817 111 1112 2 2 —1anzni/2 12
< = U'—u —|—7H —hmaﬁI/uH
oigE | 1"+ forgp |17 = i 81°0)

=0

in probability as N — oo; this final limit also holds in expectation via a generalized dominated
convergence theorem.

Appendix C. Review of Markowitz porfolio theory. Consider a market with n-many
assets with returns r; such that

Er; = p; and cov(ri,rj) = Xy
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forall 1 <i,7 < N. Markowitz theory (see Markowitz (1952)) looks to optimize mean-variance

preferences,
1 1
min <7T*Z7T - w*u)
P 2 0%
st. 71 =1,

where v > 0 is investor risk aversion and 1 is an RY vector of all 1’s. Solutions to this
problem form a hyperbola in the two-dimensional plane, opening to the right, with portfolio
standard deviation along the horizontal axis and portfolio expected return along the vertical.
The top half of this hyperbola is the efficient frontier. Mean-variance optimization can also
be formulated with a risk-free rate and without constraints,

1 1
min (W*Zw — —(m* 4 ro(l — 7T*1))> ,
T 2 %
where rg is the risk-free rate. The solution is
1
=" u—-re1).

Y
The variance of one of these optimal portfolios is

1 S
73 = 3= 1o)== rod),

and the expected return is

1 N
m7=7“0+;(u—7"01) =7 (1 —1o1)

=10+ /(1 —101)* T — 1rol) x 0.

Hence, expected return is a linear function of standard deviation, and forms the so-called
capital market line (CML). The portfolio that is both on the CML and on the efficient frontier
(i.e., the portfolio at the point where CML is tangent to the frontier) is called the tangency
portfolio. The 1-fund theorem points out that any optimal portfolio will be some linear
combination of the risk-free asset and the tangency portfolio. Equilibrium theory suggests
that the tangency portfolio is the capitalization-weighted market portfolio (see Lintner (1965),
Sharpe (1964)).

The capital asset pricing model (CAPM) is derived from the Markowitz theory in the
following way. Let X,,, = >, 7% (r; — ro) = 7, (r — rol) denote the excess return on the
tangency portfolio, and let X = 7*(r — r91) denote excess returns on some other (possibly
suboptimal) portfolio. The variance of X, is

o2 = L(u —rol)*T 7 (= rol) = iIEXm ,

m 2

m m
where 7,, is the risk aversion of the tangency investor. The covariance between X and X, is
(X, X)) = 7% 1) Im_px
cov = —7a"(u—rol) = .
y Am Y 2 0 EXm
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Rearranging this expression yields

X, X
EX = Lz’m)ﬂg X,
o-m
This suggests the CAPM model
X = BXm + €,
where € is a mean-zero noise uncorrelated with X,,, and 8 = %. For the individual

assets the CAPM model is the expression in (19).
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