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Abstract

We introduce the visual acoustic matching task, in which
an audio clip is transformed to sound like it was recorded
in a target environment. Given an image of the target envi-
ronment and a waveform for the source audio, the goal is to
re-synthesize the audio to match the target room acoustics
as suggested by its visible geometry and materials. To ad-
dress this novel task, we propose a cross-modal transformer
model that uses audio-visual attention to inject visual prop-
erties into the audio and generate realistic audio output. In
addition, we devise a self-supervised training objective that
can learn acoustic matching from in-the-wild Web videos,
despite their lack of acoustically mismatched audio. We
demonstrate that our approach successfully translates hu-
man speech to a variety of real-world environments depicted
in images, outperforming both traditional acoustic match-
ing and more heavily supervised baselines.

1. Introduction

The audio we hear is always transformed by the space we
are in, as a function of the physical environment’s geometry,
the materials of surfaces and objects in it, and the locations
of sound sources around us. This means that we perceive the
same sound differently depending on where we hear it. For
example, imagine a person singing a song while standing
on the hardwood stage in a spacious auditorium versus in a
cozy living room with shaggy carpet. The underlying song
content would be identical, but we would experience it in
two very different ways.

For this reason, it is important to model room acoustics
to deliver a realistic and immersive experience for many
applications in augmented reality (AR) and virtual reality
(VR). Hearing sounds with acoustics inconsistent with the
scene is disruptive for human perception. In AR/VR, when
the real space and virtually reproduced space have different
acoustic properties, it causes a cognitive mismatch and the
“room divergence effect” damages the user experience [63].

Creating audio signals that are consistent with an envi-
ronment has a long history in the audio community. If the
geometry (often in the form of a 3D mesh) and material
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Figure 1. Goal of visual acoustic matching: transform the sound
recorded in one space to another space depicted in the target visual
scene. For example, given source audio recorded in a studio, re-
synthesize that audio to match the room acoustics of a concert hall.

properties of the space are known, simulation techniques
can be applied to generate a room impulse response (RIR),
a transfer function between the sound source and the micro-
phone that describes how the sound gets transformed by the
space. RIRs can then be convolved with an arbitrary source
audio signal to generate the audio signals received by the
microphone [8, 9, 17, 50, 51]. In the absence of geometry
and material information, the acoustical properties can be
estimated blindly from audio captured in that room (e.g., re-
verberant speech), then used to auralize a signal [29,42,56].
However, both approaches have practical limitations: the
former requires access to the full mesh and material prop-
erties of the target space, while the latter gets only limited
acoustic information about the target space from the rever-
beration in the audio sample. Neither uses imagery of the
target scene to perform acoustic matching.

We propose a novel task: visual acoustic matching.
Given an image of the target environment and a source au-
dio clip, the goal is to re-synthesize the audio as if it were
recorded in the target environment (see Figure 1). The idea
is to transform sounds from one space to another space
by altering their scene-driven acoustic signatures. Visual



acoustic matching has many potential applications, includ-
ing smart video editing where a user can inject sounding
objects into new backgrounds, film dubbing to make a dif-
ferent actor’s voice sound appropriate for the movie scene,
audio enhancement for video conference calls, and audio
synthesis for AR/VR to make users feel immersed in the
visual space displayed to them.

To address visual acoustic matching, we introduce a
cross-modal transformer model together with a novel self-
supervised training objective that accommodates in-the-
wild Web videos having unknown room acoustics.

Our approach accounts for two key challenges: how to
faithfully model the complex cross-modal interactions, and
how to achieve scalable training data. Regarding the first
challenge, different regions of a room affect the acoustics in
different ways. For example, reflective glass leads to longer
reverberation in high frequencies while absorptive ceilings
reduce the reverberation more quickly. Our model provides
fine-grained audio-visual reasoning by attending to regions
of the image and how they affect the acoustics. Further-
more, to capture the fine details of reverberation effects—
which are typically much smaller in magnitude than the
direct signal—we use 1D convolutions to generate time-
domain signals directly and apply a multi-resolution gen-
erative adversarial audio loss.

Regarding the second key challenge, one would ideally
have paired training data consisting of a sound sample not
recorded in the target space plus its proper acoustic render-
ing for the scene shown in the target image, i.e., a source
and target audio for each visual scene in the training set.
However, such a strategy requires either physical access
to the pictured environments, or knowledge of their room
impulse response functions—either of which severely lim-
its the source of viable training data. Meanwhile, though
a Web video does exhibit strong correspondence between
its visual scene and the scene acoustics, it offers only the
audio recorded in the target space. Accounting for these
tradeoffs, we propose a self-supervised objective that auto-
matically creates acoustically mismatched audio for train-
ing with Web videos. The key insight is to use dereverbera-
tion and acoustic randomization to alter the original audio’s
acoustics while preserving its content.

We demonstrate our approach on challenging real-world
sounds and environments, as well as controlled experiments
with realistic acoustic simulations in scanned scenes. Our
quantitative results and subjective evaluations via human
studies show that our model generates audio that matches
the target environment with high perceptual quality, outper-
forming a state-of-the-art model that has heavier supervi-
sion requirements [52] as well as traditional acoustic match-
ing models.

2. Related Work

Acoustic matching. The goal of acoustic matching is to
transform an audio recording made in one environment to
sound as if it were recorded in a target environment. The au-
dio community deals with this task with various approaches
depending on what information about the target environ-
ment is accessible. If audio recorded in the target environ-
ment is provided, blind estimation of two acoustic parame-
ters, direct-to-reverberant ratio (DRR), which describes the
energy ratio of direct arrival sound and reflected sound, and
reverberation time (RT60), the time it takes for a sound to
decay 60dB, is sufficient to create simple RIRs that yield
plausibly matched audio [15, 18, 29, 38, 42, 65]. Blind es-
timation of the room impulse response from reverberant
speech has also been explored [54, 62]. In music produc-
tion, acoustic matching is applied to change the reverber-
ation to emulate that of a target space or processing algo-
rithm [33,49]. Recent work conditions the target-audio gen-
eration on a low-dimensional audio embedding [56]. Unlike
any of the above, we introduce and tackle the visual acous-
tic matching problem, where the target environment is ex-
pressed via an input image.

Visual understanding of room acoustics. The room im-
pulse response (RIR) is the (time-domain) transfer function
capturing the room acoustics for arbitrary source stimuli
given specific source and receiver/listener positions in an
environment. Convolving an RIR with a sound waveform
yields the sound of that source in the context of the partic-
ular physical space. RIRs are traditionally measured with
special equipment in the room itself [26, 53] or simulated
with sound propagation models [5, 11, 43]. Recent work
explores estimating an RIR from an input image [31, 52],
which requires access to paired image and impulse response
training data. While video recordings provide a natural
source for learning the correspondence between space (cap-
tured by the visual stream) and acoustics (captured by the
audio stream), they have not been explored in the literature.
We show how to leverage Web video data for understand-
ing room acoustics in a self-supervised fashion, obviating
the need for expensive paired RIR-image training data. Our
results demonstrate the advantages.

Audio-visual learning. Recent advances in multi-modal
video understanding enable new forms of self-supervised
cross-modal feature learning from video [6, 34, 41], object
localization [28], and audio-visual speech enhancement and
source separation [1, 2, 12, 16, 27, 40, 44, 48, 67, 69]. Work
in embodied AI explores acoustic simulations with real vi-
sual scans to study audio-visual navigation tasks [11,14,19],
where an agent moves intelligently based on the visual and
auditory observations. However, no prior work investigates
the visual acoustic matching task as we propose.



Multimodal fusion. One standard solution for audio-
visual feature fusion is to represent audio as spectrograms,
a matrix representation of the spectrum of frequencies of
a signal as it varies with time, process them with a CNN,
and concatenate with visual features from another CNN
[11, 16, 20, 21, 44]. This fusion strategy is limited by us-
ing one global feature to represent the scene and thus sup-
ports only coarse-grained reasoning. The transformer [60]
has proven to be a power tool in vision [22, 30]. Its self-
attention operation provides a natural mechanism to fuse
high-dimensional signals of different sensory modalities,
and it has been used in various tasks such as action recog-
nition [7], self-supervised learning [4, 6, 46], and language
modeling [24]. Audio-visual attention [36, 57, 58] has been
recently studied to capture the correlation between visual
features and audio features. We use cross-modal attention
for learning how different regions of the image contribute
to reverberation. We show that compared with the conven-
tional concatenation-based fusion, the proposed model pre-
dicts acoustics from images more accurately.

3. The Visual Acoustic Matching Task

We introduce a novel task, visual acoustic matching. In
this task, an audio recording AS recorded in space S and
an image IT of a different target space T are provided as
input. The goal is to predict AT , which has the same audio
content as AS but sounds as if it were recorded in space T
with a microphone co-located with IT ’s camera. Our goal
is thus to learn a function f such that f(AS , IT ) = AT .
The microphone co-location is important because acoustic
properties vary as the listener location changes; inconsis-
tent camera locations would lead to a perceived mismatch
between the visuals and acoustics. The space S can have ar-
bitrary acoustic characteristics, from an anechoic recording
studio to a concert hall with significant reverberation. We
assume there is one sounding object, leaving the handling
of background sounds or interference as future work.

Importantly, our task formulation does not assume ac-
cess to the impulse response, nor does it require the
input audio to be anechoic. In comparison, the Im-
age2Reverb [52] task requires access to both the impulse
response and clean input audio, and does not account for
the co-location of the camera and microphone.

4. Datasets

We consider two datasets: simulated audio in scanned
real-world environments (Sec. 4.1), and in-the-wild Web
videos with their recorded audio (Sec. 4.2). The former has
the advantage of clean paired training data for AT and AS

as well as precise ground truth for evaluating the output au-
dio, but necessarily has a realism gap. The latter has the
advantage of total realism, but makes quantitative evalua-
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Figure 2. Example images in (a) SoundSpaces and (b) AVSpeech.

tion more complex.
For both, we focus on human speech in indoor settings

given its relevance to many of the applications cited above,
and due to the fact that human listeners have strong prior
knowledge about how reverberation should affect speech.
However, our model design is not specific to speech. See
Supp. for its applicability on non-speech sounds.

4.1. SoundSpaces-Speech Dataset

With the SoundSpaces platform [11], acoustics can be
accurately simulated based on 3D scans of real-world envi-
ronments [10,55,64]. This allows highly realistic rendering
of arbitrary camera views and arbitrary microphone place-
ments for waveforms of the user’s choosing, accounting
for all major real-world audio factors: direct sounds, early
specular/diffuse reflections, reverberation, binaural spatial-
ization, and effects from materials and air absorption.

We adopt a SoundSpaces-Speech dataset created in [12]
consisting of paired clean (anechoic) and reverberant au-
dio samples together with camera views.1 The RIRs for 82
Matterport3D [10] environments are convolved with non-
overlapping speech clips from LibriSpeech [45]. A 3D hu-
manoid of the same gender as the real speaker is inserted
at the speaker location and panorama RGB-D images are
rendered at the listener location. See Figure 2a. Excluding
those samples where the speaker is very distant or out-of-
view (for which the visual input does not capture the geom-
etry of the source location), there are 28,853/1,441/1,489
samples for the train/val/test splits.

4.2. Acoustic AVSpeech Web Videos

Web videos offer rich and natural supervision for the as-
sociation between visuals and acoustics. We adopt a subset
of the AVSpeech [16] dataset, which contains 3-10 second
YouTube clips from 290k videos of single (visible) human
speakers without interfering background noises. We auto-
matically filter the full dataset down to those clips likely
to meet our problem formulation criteria: 1) microphone
and camera should be co-located and at a position different
than the sound source (so that the audio contains not only

1Note that [12] uses the data for dereverberation, not acoustic matching.
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Figure 3. AViTAR model illustration. We extract visual feature sequence Vi from input image IT with a ResNet-18 [25], and audio feature
sequence Ai from input audio AS with 1D convolutions. Vi and Ai are passed into cross-modal encoders for cross-modal reasoning. The
output feature sequence Mi is processed and upsampled with 1D convolutions to recover the output of the same temporal length. Finally,
we use a multi-resolution speech GAN loss to guide the audio synthesis to be high fidelity. The acoustics alteration process is applied to
the target audio during training if and only if there is no mismatched audio, e.g., on the Acoustic AVSpeech dataset.

the source speech but also the reverberation caused by the
environment), and 2) audio recording should be reverber-
ant (so that the physical space has influenced the audio).
Cameras in this dataset are typically static, and thus we use
single frames and their corresponding audio for this task.
See Supp. for details. This yields 113k/3k/3k video clips
for train/val/test splits. We refer to this filtered dataset as
Acoustic AVSpeech. See Figure 2b.

5. Approach
We present the Audio-Visual Transformer for Audio

Generation model (AViTAR) (Figure 3). AViTAR learns to
perform cross-modal attention based on sequences of con-
volutional features of audio and images and then synthe-
sizes the desired waveform ÂT . We first define the audio-
visual features (Sec. 5.1) and their cross-modal attention
(Sec. 5.2), followed by our approach to waveform gener-
ation (Sec. 5.3). Finally, we present our acoustics alteration
idea to enable learning from in-the-wild video (Sec. 5.4).

5.1. Audio-Visual Feature Sequence Generation

To apply cross-modal attention, we first need to generate
sequences of audio and visual features, where each element
in the sequence represents features of a part of the input
space. For visual sequence generation from image IT , we
use ResNet18 [25] and flatten the last feature map before
the pooling layer, yielding the visual feature sequence Vi.

For audio feature sequence generation from source au-
dio AS , we generate audio features Ai from the waveform
directly with stacked 1D convolutions. We first use one 1D
conv layer to embed the input waveform into a latent space.

We then apply a sequence of strided 1D convolutions, each
doubling the channel size while downsampling the input se-
quence. The output audio features are a sequence of vectors
of size S, with length downsampled D times from the in-
put. Weight normalization is applied to 1D conv layers. We
employ 1D convolutions rather than STFT spectrograms so
that the audio features are not limited to one resolution and
can be optimized end-to-end to learn the most important
features for the visual acoustic matching task.

5.2. Cross-Modal Encoder

Prior work often models audio-visual inputs in a sim-
plistic manner by representing the image feature with one
single vector and concatenating it with the audio fea-
ture [11, 12, 16, 20, 21, 44, 67]. However, for visual acoustic
matching, it is important to reason how different regions of
the space contribute to the acoustics differently. For exam-
ple, a highly reflective glass door leads to longer reverber-
ation time for high frequencies, while absorptive ceilings
diminish that quickly. Thus, we propose to attend to image
regions to reason how different image patches contribute to
the acoustics, leveraging recent advances on the transformer
architecture [24, 30, 60].

For cross-modal attention, we first adopt the conformer
variant [24] of encoder blocks, which adds one convolu-
tion layer inside the block for modeling local interaction for
speech features. Based on this block, we insert one cross-
modal attention layer Acm after the first feed-forward layer,
described as follows:

Acm(Ai, Vi) = softmax(
AiV

T
i√
S

)Vi, (1)



where the attention scores between the two sequences of
features Ai and Vi are first calculated by dot-product, then
normalized by softmax, scaled by 1√

S
, and finally used to

weight the visual features Vi. This cross-modal attention al-
lows the model to attend to different image region features
and reason about how they affect the reverberation. Ab-
solute positional encoding is added to the visual encoding.
After passing Vi and Ai through N encoder blocks, we ob-
tain the fused audio-visual feature sequence Mi, which has
the same length as Ai.

5.3. Waveform Generation and Loss

Recent audio-visual work generates audio outputs by in-
ferring spectrograms then using ISTFT reconstruction to
obtain a waveform (e.g., [16, 20, 21, 66–68]). While sensi-
ble for source separation, where the target signal is a subset
of the source signal, ratio mask prediction is inadequate for
our task, because reverberation might occupy periods of si-
lence in the input audio and the ratio will be unbounded (as
we verify in results). Futhermore, generating audio based
on spectrograms is limiting because 1) predicting the co-
herent phase component remains challenging [3,13], and 2)
the spectrogram has one fixed resolution (one FFT size, hop
length, and window size).

Instead, we aim to synthesize time-domain signals di-
rectly, skipping the intermediate spectrogram generation
step and allowing more flexibility for what losses can be im-
posed, inspired by recent advances on time-domain speech
synthesis [32,35,47,59]. Specifically, with the fused audio-
visual feature sequence Mi, we apply a sequence of trans-
posed strided 1D convolutions, each halving the channel
size while upsampling the input sequence, which is exactly
the reverse operation of the audio encoding. Altogether, we
upsample the audio sequence D times and obtain a wave-
form of the same length as the input.

Next we incorporate a multi-resolution generative loss.
We found directly minimizing a Euclidean distance based
loss between the target ground truth audio AT and the in-
ferred audio ÂT leads to distortion in the generated audio
on this task (cf. Figure 5 and Tab. 2). Therefore, to let the
model learn how to reverberate the input speech properly,
we employ a generative adversarial loss where a set of dis-
criminators operating at different resolutions are trained to
identify reverberation patterns and guide the generated au-
dio to sound like real examples. Specifically, we apply an
adversarial loss [32] comprised of the generator and dis-
criminator losses:

LG =

K∑
k=1

(LAdv(G;Dk) + λ1LFM (G;Dk)) + λ2LMel(G),

LD =

K∑
k=1

LAdv(Dk;G),
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Figure 4. Acoustics alteration process. Spectrograms of the re-
sulting audio after each step are shown. We first dereverberate the
target audio AT to obtain cleaner audio AC , randomize its acous-
tics by applying an impulse response of another environment to
obtain AR, and finally, add Gaussian noise to AR to create AS .
Notice how the spectral pattern changes in this process.

where each Dk is a sub-discriminator that operates at one
of K different scales and periods for distinguishing the fake
and real examples. LAdv is the LS-GAN [39] training ob-
jective, which trains the generator to fake the discrimina-
tor and trains the discriminator to distinguish real examples
from fake ones. For the generator G, a feature matching
loss [35] LFM is used, which is a learned similarity metric
measured by the difference in features of the discrimina-
tor between a ground truth sample and a generated sample.
An additional mel-spectrogram loss LMel is imposed on the
generator for improving the training efficiency and fidelity
of the generated audio. λ1 and λ2 are two weighting factors
for these two losses. The generator loss LG and discrimina-
tor loss LD are trained alternatively competing against each
other. For more details, refer to [32].

5.4. Acoustics Alteration for Self-Supervision

The training paradigm differs in one important way de-
pending on the source of training data (cf. Sec. 4). For the
simulated SoundSpaces data, we have access to an anechoic
audio sample AS as well as the ground truth reverberated
sample AT as it should be rendered in the target environ-
ment for a camera seeing view IT . This means we can train
to (implicitly) discover the mapping that takes the target im-
age to an RIR which, when convolved with AS , yields AT .

For the in-the-wild video data (AVSpeech), however, we
have only AT and IT to train, i.e., we only observe sounds
that do match their respective views. Thus, to leverage
unannotated Web video, we need to create an audio clip
that preserves the target audio content but has mismatched
acoustics. Figure 4 illustrates the steps for this process.
First we strip away the original acoustics of the target en-



vironment by performing dereverberation on the audio AT

alone with the pretrained model from [12]. Since derever-
beration is imperfect, there is residual acoustic information
in the dereverberated output AC , meaning that the resulting
“clean” audio is still predictive of the target environment.

Thus, we subsequently randomize the acoustics by con-
volving that audio with an impulse response of another
environment, yielding AR; that IR is randomly chosen
from the corresponding train/val/test split of SoundSpaces-
Speech. The idea is to transform the semi-clean intermedi-
ate sound into another space to create more acoustic con-
fusion, thereby forcing the model to learn from the target
image. Finally, to further suppress the residual acoustics
from the training environment, we add Gaussian noise with
SNR randomly sampled from 2-10 dB to AR and obtain the
training source audio AS . See more details about how each
step alters the acoustics in Supp. In short, with this strategy,
we are able to leverage readily available Web videos for our
proposed task, despite its lack of ground truth paired audio.

6. Experiment

We validate our model on two datasets using compre-
hensive metrics and baselines. Implementation and training
details can be found in Supp.

Evaluation metrics. We measure the quality of the gen-
erated audio from three aspects: 1) the closeness to the
ground truth (if ground truth audio is available), as mea-
sured by STFT Distance, i.e., the MSE between the gener-
ated and true target audio’s magnitude spectrograms; 2) the
correctness of the room acoustics, as measured by the RT60
Error (RTE) between the true and inferred AT ’s RT60 val-
ues. RT60 indicates the reverberation time in seconds for
the audio signal to decay by 60 dB, a standard metric to
characterize room acoustics. We estimate the RT60 directly
from magnitude spectrograms of the output audio, using a
model trained with disjoint SoundSpaces data (see Supp.),
since impulse responses are not available for the target envi-
ronments; and 3) the speech quality preserved in the synthe-
sized speech, measured by the Mean Opinion Score Error
(MOSE), which is the difference in speech quality between
the true target audio and generated audio, as assessed by a
deep learning based objective model MOSNet [37].2 Both
the RTE and MOSE metrics are content-invariant and thus
useful for evaluation when only audio with correct acous-
tics and mismatched content is available as ground truth,
i.e., Web videos. In addition, we conduct user studies to
evaluate whether a given audio is perceived as matching the
room acoustics of the reference image.

2By taking the difference with the true target audio’s MOS score (rather
than simply the output’s score), we account for the fact that properly rever-
berated speech need not have high speech quality.

Seen and unseen environments. On both datasets, we
evaluate by pairing the source audio AS with a target im-
age IT coming from either the training set (Seen) or test
set (Unseen). The audio is always unobserved in training.
The Seen case is useful to match the audio to scenes where
we have video recordings (e.g., the film dubbing case). The
Unseen case is important for injecting room acoustics de-
picted in novel images (e.g., to match sounds for a random
Web photo being used as a Zoom call background).

Baselines. We consider the following baselines:
1. Input audio. This is the naive baseline that does noth-
ing, simply returning the input AS as output.
2. Blind Reverberator. This is a traditional acoustic
matching approach [61] using audio recorded in the target
space T as reference with content different from AT . It first
estimates RT60 and DRR from the reference audio (estima-
tors are trained using simulated IRs), and then synthesizes
the target IR by shaping an exponentially decaying white
noise based on those two parameters. Unlike our model,
this method requires reference audio at test time and IRs
at training time. It is therefore inapplicable for the Unseen
case (no reference audio) and AVSpeech (no training IRs).

3. Image2Reverb [52]. This is a recent approach that
trains an IR predictor from images, then convolves the pre-
dicted IRs with AS to obtain the target audio. This model
requires access to the IR during training and thus is not ap-
plicable to the Acoustic AVSpeech dataset. We use the au-
thors’ code and convert the SoundSpaces-Speech data into
the format of their dataset (see Supp.). We replace their
depth prediction model with the ground truth depth image,
to improve this baseline’s performance.
4. AV U-Net [20]. This is an audio-visual model orig-
inally proposed for visually guided spatial sound genera-
tion based on a U-Net network for processing audio spec-
trograms. We adapt it for visual acoustic matching by re-
moving the ratio mask prediction (which we find does not
work well). Instead, we feed in a magnitude spectrogram,
predict the target magnitude spectrograms, and generate the
time-domain signals with Griffin Lim [23]. This baseline
helps isolate the impact of our proposed cross-modal at-
tention architecture compared to the common U-Net ap-
proach [13, 20, 21, 44, 68].
5. AViTAR w/o visual. This model is solely audio-based
and is the same as our proposed model except that it does
not have visual inputs or the cross-modal attention layer.

6.1. Results on SoundSpaces-Speech

For the SoundSpaces data, we have access to clean ane-
choic speech, which we use as the input AS . The simu-
lations offer a clean testbed for this task, showing the po-
tential of each model when it is noise-free and the visuals
reveal the full geometry via the panoramic RGB-D images.



SoundSpaces-Speech Acoustic AVSpeech
Seen Unseen Seen Unseen

STFT RTE (s) MOSE STFT RTE (s) MOSE RTE (s) MOSE RTE (s) MOSE

Input audio 1.192 0.331 0.617 1.206 0.356 0.611 0.387 0.658 0.392 0.634
Blind Reverberator [61] 1.338 0.044 0.312 - - - - - - -

Image2Reverb [52] 2.538 0.293 0.508 2.318 0.317 0.518 - - - -
AV U-Net [20] 0.638 0.095 0.353 0.658 0.118 0.367 0.156 0.570 0.188 0.540

AViTAR w/o visual 0.862 0.140 0.217 0.902 0.186 0.236 0.194 0.504 0.207 0.478
AViTAR 0.665 0.034 0.161 0.822 0.062 0.195 0.144 0.481 0.183 0.453

Table 1. Results on the SoundSpaces-Speech and Acoustic AVSpeech datasets for Seen and Unseen environments. All input audio at test
time is novel (unheard during training). Note that the STFT metric is applicable only for SoundSpaces, where we can access the ground
truth AT ’s spectrogram. For all metrics, lower values are better. Standard errors for STFT, RTE and MOSE are all less than 0.04, 0.013s
and 0.01 on SoundSpaces-Speech. Standard errors for RTE and MOSE are all less than 0.005s and 0.01 on Acoustic AVSpeech.

Table 1 (left) shows the results. As expected, the clean
input audio baseline does poorly because it does not account
for the target environment. Our AViTAR model has the low-
est RT60 error and MOS error, indicating that it best pre-
dicts the correct acoustics from images, injects them into the
speech, and synthesizes high-quality audio. The AV U-Net
baseline has slightly lower STFT distance than ours, likely
because its training objective is to minimize STFT distance.
However it has higher perceptual errors (RTE and MOSE).
Image2Reverb’s [52] high errors reveal the difficulty of our
task and data, and its inapplicability to AVSpeech high-
lights our model’s self-supervised training advantage. De-
spite having the estimated RT60 as input (and thus having
low RT60 error), Blind Reverberator’s STFT and MOS er-
rors are much higher than AViTAR’s, showing that images
are a promising way to characterize room acoustics beyond
the traditional RT60. Plus, its inapplicability for the other
scenarios highlights fundamental advantages of AViTAR.
Without access to visual information (“w/o visual”), AVi-
TAR can only learn to add an average amount of reverber-
ation to the input audio; this confirms that our model suc-
cessfully learns the acoustics from the visual scene. Al-
though this variant has higher RT60 error than AV U-Net,
its MOS error is lower because the audio quality is better.
See Supp. video for examples.

Ablations. Table 2 shows results for ablations on unseen
images. For the model architecture, to understand if at-
tending to different image regions with cross-modal atten-
tion is helpful, we train the full model with the length of
visual feature sequence reduced to one by mean pooling
the final ResNet feature map (“w/ pooled visual feature”).
This model underperforms the full model on both STFT and
RT60 metrics, showing that the audio-visual attention leads
to a better visual understanding of room acoustics. Next
we ablate the generative loss and replace it with the non-
generative multi-resolution STFT loss [35] (“w/o generative
loss”), which slightly improves the STFT error but leads to

AViTAR STFT RTE (s) MOSE

Full model 0.822 0.062 0.195
w/ pooled visual feature 0.850 0.067 0.193

w/o generative loss 0.777 0.081 0.314
w/o human 0.884 0.139 0.218

w/ random image 0.940 0.236 0.250

Table 2. Ablations on model design and data.

a large drop on the acoustics recovery and speech quality.
Despite being multi-resolution, without learnable discrimi-
nators to learn to model those fine reverberation details, the
audio quality gets worse. See Supp. for GAN loss ablations.

The synthetic dataset provides access to meta informa-
tion useful to evaluate whether and how much AViTAR rea-
sons about different visual properties. The location of the
sound source matters for acoustics because it directly influ-
ences acoustic characteristics like the direct-to-reverberant
ratio (DRR). When we remove the 3D humanoid from the
scene (“w/o human”) in all test images, all error metrics in-
crease, which indicates that our model reasons about the lo-
cation of the sound source in the image for accurate acous-
tic matching. To understand if the model learns meaningful
information from the visuals, we replace the target image
with a random image (“w/ random image”); this signifi-
cantly harms our model’s performance.

6.2. Results on Acoustic AVSpeech

Next, we train our model on the in-the-wild AVSpeech
videos, and test it on novel clean speech clips from Lib-
riSpeech [45] (AS) paired with target images (IT ) from
AVSpeech. Here we do not have ground truth for the tar-
get speech, so we evaluate with RTE and MOSE.

Table 1 (right) shows the results. Our proposed AViTAR
model achieves the lowest RT60 error compared to all base-
lines. This shows our model trained in its self-supervised
fashion successfully generalizes to novel images and novel
audio, and demonstrates we can do acoustic matching even



Image Input AV U-Net AViTAR GT Target

Input  0.01s
Office  0.34s Garage  0.40s     Auditorium  0.58s

Image2reverb

Figure 5. Qualitative predicted audio. For all audio clips, we compute the magnitude spectrogram, convert the magnitude to dB, and plot
the spectrogram with x-axis spanning from 0 to 1.28 s (left to right) and y-axis from 0 to 3000 Hz (bottom to top). Row 1: SoundSpaces-
Speech example where the target space is a large empty room with a lot of reverberation. Our model predicts the audio closest to the target
clip. AV U-Net’s spectrogram is too smoothed compared to ours and misses some fine reverb details, which leads to perceptual distortion.
Row 2: examples on Acoustic AVSpeech (unseen images). We feed one clean audio clip to match three different scenarios (office, garage,
auditorium). From left to right, the audio spectrogram becomes more reverberant as phoneme patterns get extended and blurred on the
temporal axis (est. RT60 times shown). NB: AViTAR processes waveforms, not spectrograms; here they are for visualization.

Acoustics Alteration Seen Unseen

Dereverb. + Randomization + Noise 0.144 0.183
Dereverb. + Randomization 0.178 0.197

Dereverb. + Noise 0.170 0.208
Dereverb. 0.230 0.250

AT + Randomization + Noise 0.236 0.249

Table 3. Ablations on acoustics alteration. RTE is reported.

for non-anechoic inputs. AViTAR’s MOS error is also the
lowest compared to all baselines, showing that it is able
to synthesize high-fidelity audio while injecting the proper
amount of reverberation into the speech. The absolute er-
rors on AVSpeech are higher than on SoundSpaces, which
makes sense because the YouTube imagery is more variable,
and it has a narrower field of view and no depth, making the
geometry and materials of the scene only partly visible. See
Supp. for sim2real generalization.

Ablations on acoustic alteration. Table 3 shows abla-
tions on the proposed acoustics alteration strategy. In short,
all three steps are necessary to create an acoustic mismatch
with the image, thereby forcing the model to recover the
correct acoustics based on the image and allowing better
generalization to novel sounds. See Supp. for details.

User study. To supplement the quantitative metrics and
directly capture the perceptual quality of the generated sam-
ples, we next conduct a user study. We show participants
the image of the target environment IT , the accompanying
ground truth audio clip AT as reference, and paired audio
clips ÂT generated by AViTAR and each baseline. We ask
participants to select the clip that most sounds as if it were
recorded in the target environment and best matches the re-
verberation in the given clip. We select 30 reverberant ex-
amples from SoundSpaces-Speech and AVSpeech and ask

SoundSpaces AVSpeech

Input Speech 42.1% / 57.9% 40.1% / 59.9%
Image2Reverb [52] 25.9% / 74.1% - / -

AV U-Net [20] 29.8% / 70.2% 27.2% / 72.8%
AViTAR w/o visual 39.6% / 60.4% 46.3% / 53.9%

Table 4. User study results. X%/Y% indicates among all paired
examples for this baseline and AViTAR, X% of participants prefer
this baseline while Y% prefer AViTAR.

30 participants to complete the assignment on MTurk.
Table 4 shows the resulting preference scores. Compared

to each baseline, AViTAR is always preferred. Note that no
participant has a background in acoustics, and some might
simply pick the one that sounds “clean” rather than having
the correct room acoustics. This may be the reason even the
anechoic input has a higher preference score than the U-Net
model. Despite the lack of domain knowledge, participants
still consistently favor our model over other baselines.

Qualitative examples. Figure 5 shows example outputs.
Please see the Supp. video to gauge the audio quality.

7. Conclusion
We proposed the visual acoustic matching task and in-

troduced the first model to address it. Given an image and
audio clip, our method injects realistic room acoustics to
match the target environment. Our results validate their re-
alism with both objective and perceptual measures. Impor-
tantly, the proposed model is trainable with unannotated,
in-the-wild Web videos. In future work we aim to extend
our model to leverage the dynamics in target visual scenes
in video. We discuss potential societal impact in Supp.
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