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ABSTRACT

Reverberation not only degrades the quality of speech for human per-
ception, but also severely impacts the accuracy of automatic speech
recognition. Prior work attempts to remove reverberation based on
the audio modality only. Our idea is to learn to dereverberate speech
from audio-visual observations. The visual environment surrounding
a human speaker reveals important cues about the room geometry,
materials, and speaker location, all of which influence the precise
reverberation effects. We introduce Visually-Informed Dereverbera-
tion of Audio (VIDA), an end-to-end approach that learns to remove
reverberation based on both the observed monaural sound and visual
scene. In support of this new task, we develop a large-scale dataset
SoundSpaces-Speech that uses realistic acoustic renderings of speech
in real-world 3D scans of homes offering a variety of room acoustics.
Demonstrating our approach on both simulated and real imagery for
speech enhancement, speech recognition, and speaker identification,
we show it achieves state-of-the-art performance and substantially
improves over audio-only methods.

1. INTRODUCTION

Audio reverberation occurs when multiple reflections from surfaces
and objects in the environment build up then decay, altering the orig-
inal audio signal. While reverberation bestows a realistic sense of
spatial context, it also can degrade a listener’s experience. In partic-
ular, the quality of human speech is greatly affected by reverberant
environments—as illustrated by how difficult it can be to parse the
words of a family member speaking loudly from another room in
the house, a tour guide describing the artwork down the hall of a
magnificent cavernous cathedral, or a colleague participating in a
Zoom call from a cafe. Consistent with the human perceptual experi-
ence, automatic speech recognition (ASR) systems noticeably suffer
when given reverberant speech input [1, 2, 3, 4, 5, 6]. Thus there is
great need for intelligent dereverberation algorithms that can strip
away reverb effects for speech enhancement, recognition, and other
downstream tasks, which could in turn benefit many applications in
teleconferencing, assistive hearing devices, augmented reality, and
video indexing.

The audio community has made steady progress devising ma-
chine learning solutions to tackle speech dereverberation [6, 7, 8,
4,9, 10, 11]. The general approach is to take a reverberant speech
signal, usually represented with a Short-Time Fourier Transform
(STFT) spectrogram, and feed it as input to a model that estimates
a clean version of the signal with the reverberation removed. Past
approaches have tackled this problem with signal processing and
statistical techniques [12, 13], while many modern approaches are
based on neural networks that learn a mapping from reverberant to
clean spectrograms [4, 6, 14]. To our knowledge, all existing models
for dereverberation rely purely on audio. Unfortunately this often
underconstrains the dereverberation task since the latent parameters
of the recording space are not discernible from the audio alone.
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Fig. 1: The goal of audio-visual dereverberation is to leverage the vi-
sual observation of the environment to improve speech enhancement.

However, we observe that in many practical settings of interest—
video conferencing, augmented reality, Web video indexing—
reverberant audio is naturally accompanied by a visual (video)
stream. Importantly, the visual stream offers valuable cues about
the room acoustics affecting reverberation: where are the walls, how
are they shaped, where is the human speaker, what is the layout of
major furniture, what are the room’s dominant materials (which affect
absorption), and even what is the facial appearance and/or body shape
of the person speaking (since body shape determines the acoustic
properties of a person’s speech, and reverb time is frequency depen-
dent). For example, reverb is typically stronger when the speaker is
further away; speech is more reverberant in a large church or hallway;
heavy carpet absorbs more sound. See Figure 2. While some recent
works explore acoustic modeling using images [15, 16, 17, 18], no
prior work has investigated how to leverage visual-acoustic cues for
dereverberation.

Our idea is to learn to dereverberate speech from audio-visual
observations (Fig. 1) In this task, the input is reverberant speech
and visual observations of the environment surrounding the human
speaker, and the output is a prediction of the clean source audio. To
tackle this problem, there are two key technical challenges. First, how
to model the multi-modal dereverberation process in order to infer the
latent clean audio. Second, how to secure appropriate training data
spanning a variety of physical environments for which we can sample
speech with known ground truth (non-reverberant, anechoic) audio.
The latter is also non-trivial because ordinary audio/video recordings
are themselves corrupted by reverberation but lack the ground truth
source signal we wish to recover.

For the modeling challenge, we introduce an end-to-end approach
called Visually-Informed Dereverberation of Audio (VIDA). VIDA
consists of a Visual Acoustics Network (VAN) that learns reverbera-
tion properties of the room geometry, object locations, and speaker
position. Coupled with a multi-modal UNet dereverberation module,
it learns to remove the reverberations from a single-channel audio
stream. In addition, we propose an audio-visual (AV) matching loss
to enforce consistency between the visually-inferred reverberation
features and those inferred from the audio signal. We leverage the
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Fig. 2: Visual cues reveal key factors influencing reverb effects on
human speech audio. For example, these audio speech samples
(depicted as waveforms and spectrograms) are identical lexically, but
have very different reverberation properties owing to their differing
environments. In the church, reverb is strong, in the classroom it is
less, and when the speaker is distant from the camera it is again more
evident.

outputs of our model for multiple downstream tasks: speech enhance-
ment, speech recognition, and speaker identification.

Next, to address the training data challenge, we develop
SoundSpaces-Speech, a new large-scale audio-visual dataset based
on SoundSpaces [19], a 3D simulator for real-world scanned envi-
ronments that allows both visual and acoustic rendering. Our data
approach inserts “clean" audio voices together with a 3D humanoid
model at various positions within an array of indoor environments,
then samples the images and properly reverberating audio when
placing the receiver microphone and camera at other positions in
the same house. This strategy allows sampling realistic audio-visual
instances coupled with ground truth raw audio to train our model,
and it has the added benefit of allowing controlled studies that vary
the parameters of the capture setting. As we will show, the data also
supports sim2real transfer for applying our model to real audio-visual
observations.

Our main contributions are to 1) present the task of audio-visual
dereverberation, 2) address it with a new multi-modal modeling ap-
proach and a novel reverb-visual matching loss, 3) provide a bench-
mark evaluation framework built on both SoundSpaces-Speech and
real data, and 4) demonstrate the utility of AV dereverberation for
multiple practical tasks. We first train and evaluate our model on
82 large-scale real-world environments—each a multi-room home
containing a variety of objects—coupled with speech samples from
the LibriSpeech dataset [20]. We consider both near-field and far-field
settings where the human speaker is in-view or quite far from the cam-
era, respectively. The proposed model outperforms methods restricted
to the audio stream, and improves the state of the art for multiple
tasks with speech enhancement. We also show that our model trained
in simulation can transfer directly to real-world data. Overall, our
work shows the potential for speech enhancement models to benefit
from seeing the 3D environment.

2. RELATED WORK

Audio dereverberation and speech enhancement. Audio dere-
verberation and speech enhancement have a long and rich litera-
ture [21, 22, 13, 1, 23]. While dereverberation can be done with mi-
crophone arrays, we focus on single audio channel approaches, which
require fewer assumptions about the input data. Recent deep learning
methods achieve promising results to dereverberate [4, 9, 10, 6, 2, 11],
denoise [24, 14, 11], or separate [25, 26] the audio stream using au-
dio input alone, and such enhancements can improve downstream
speech recognition [27, 1] and speaker recognition [8]. Acoustic sim-
ulations can provide data augmentation during training [1, 4, 27, 2].

Accounting for environmental effects on reverb, some work targets
“room-aware" deep audio features capturing reverberation properties
(e.g., RT60) [7], or injects reverberation effects from a different room
via acoustic matching [28]. To our knowledge, the only prior work
drawing on the visual stream to infer dereverberated audio is limited
to using lip regions on near-field faces to first separate out distractor
sounds [29], and does not model anything about the visual scene
for dereverberation purposes. In contrast, our model accounts for
the full visual scene, far-field speech sources, and even out-of-view
speakers. Our approach is the first to learn visual room acoustics
for dereverberation, and it yields state-of-the-art results with direct
benefits for multiple downstream tasks.

Visual-acoustic learning. The room impulse response (RIR) is the
transfer function capturing the room acoustics for arbitrary source
stimuli; once convolved with a sound waveform, it produces the
sound of that source in the context of the particular physical space.
While traditionally measured with specialized equipment in the room
itself [30, 31] or else simulated with sound propagation models (e.g.,
geometric [32, 19] or wave-based [33]), recent work explores esti-
mating an RIR from an input image using CNNs [34] or conditional
GANSs [35] in order to simulate reverberant sound for a given en-
vironment. Video-based methods have also explored ways to lift
monaural audio into its spatialized (binaural, ambisonic) counterpart
in order to create an immersive audio experience for human listen-
ers [36, 37, 38]. Such methods share our interest in learning visual
properties of a scene that influence the audio channel. However,
unlike any of the above methods, rather than generate spatialized
audio to benefit human listeners in augmented or virtual reality, our
goal is to dereverberate audio—removing the effects of the room
acoustics— to benefit automatic speech analysis. In addition, prior
methods use imagery taken at camera positions at an unknown off-
set from the microphone, i.e., conflating all RIRs for a scene with
one image, which limits them to a coarse characterization of the
environment [39, 40, 41]. In contrast, our data and model align the
camera and microphone to capture novel fine-grained audio-visual
properties, including the human speaker’s location with respect to the
microphone when the speaker is in view.

Audio-visual simulations. Recent work in embodied Al explores
how vision and sound together can help agents move intelligently in
3D environments. Driven in part by new tools for audio-visual (AV)
simulations in realistic scanned environments [19, 42], new research
develops deep reinforcement learning approaches to train agents to
navigate to sounding objects [19, 43, 44, 45], explore unmapped envi-
ronments [46], or move around to better separate multiple overlapping
sounds in a house [47]. Our work also leverages state-of-the-art AV
simulations for learning, but our objective and models are entirely
different. Rather than train virtual robots to move intelligently, our
aim is to clean reverberant audio for better speech analysis.
Audio-visual learning from video. Multi-modal video understand-
ing has experienced a resurgence of work in the vision, audio, and
machine learning literature in recent years. This includes excit-
ing advances in self-supervised cross-modal feature learning from
video [48, 49, 50, 51], localizing objects in video with both sight and
sound [52], and audio-visual source separation [53, 54, 55, 56, 57, 58].
None of these methods address speech deverberation.

3. THE AUDIO-VISUAL DEREVERBERATION TASK

We introduce the novel task of audio-visual dereverberation. In this
task, a speaker (or other sound source) and a listener are situated in a
3D environment, such as the interior of a house. The speaker—whose
location is unknown to the listener—produces a speech waveform
As. A superposition of the direct sound and the reverb is captured by



the listener, denoted A,. The reverberant speech A, can be modeled
as the convolution of the anechoic source waveform A, with the
room impulse response (RIR) R, i.e. A,(t) = A(t) * R(¢) [21].
R is a function of the environment’s geometry, the materials that
make up the environment, and the relative positioning of the speaker
and the listener. It is possible in principle to measure the RIR R
for a real-world environment, but doing so can be impractical when
the source and listener are able to move around or must cope with
different environments. Furthermore, in the common scenario where
we want to process video captured in environments to which we have
no physical access, measuring the RIR is simply impossible.

Crucially to our task, we consider an alternative source of infor-
mation about the environment: vision. We assume the listener has
an RGB-D observation of its surroundings, obtained from a RGB-D
camera or an RGB camera coupled with single-image depth estima-
tion [59, 60]. Intuitively, we should be able to leverage the informa-
tion about the environment’s geometry and material composition that
is implicit in the visual stream—as well as the location of the speaker
(if visible)—to estimate its reverberant characteristics. We anticipate
that these cues can inform an estimate of the room acoustics, and
thus the clean source waveform. Given the RGB I, and depth image
1 captured by the listener from its current vantage point, the task is
to predict the source waveform A from the images and reverberant
audio: A, (t) = fp([Ir, Is, A-(t)]). This setting represents common
real-world scenarios previously discussed, and poses new challenges
for speech enhancement and recognition.

4. DATASET CURATION

For the proposed task, obtaining the right training data is itself a
challenge. Existing video data contains reverberant audio but lacks
the ground truth anechoic audio signal, and existing RIR datasets [39,
40, 41] do not have images paired with the microphone position. We
introduce both real and simulated datasets to enable reproducible
research on audio-visual deverberation.
3D environments and acoustic simulator. First we introduce a
large-scale dataset in which we couple real-world visual environ-
ments with state-of-the-art audio simulations accurately capturing
the environments’ spatial effects on real samples of recorded speech.
We want our dataset to allow control of a variety of physical envi-
ronments, the positions of the listener/camera and sources, and the
speech content of the sources—all while maintaining both the ob-
served reverberant A, (¢) and ground truth anechoic A, (t) sounds.
To this end, we leverage the audio-visual simulator SoundSpaces [19],
which provides precomputed RIRs R(t) on a uniform grid of reso-
lution 1 m for the real-world environment scans in Replica [61] and
Matterport3D [62]. We use 82 Matterport environments due to their
greater scale and complexity; each environment has multiple rooms
spanning on average 517 m?.
SoundSpaces-Speech. We extend SoundSpaces to construct rever-
berant speech. As the source speech corpus we use LibriSpeech [20],
which contains 1,000 hours of 16kHz read English speech from audio
books, and is widely used in the speech recognition literature. We
train our models with the train-clean-360 split, and use the dev-clean
and test-clean sets for validation and test splits, respectively. Note
that these splits have non-overlapping speaker identities. Similarly,
we use the standard disjoint train/val/test splits for the Matterport 3D
visual environments [19]. Thus, neither the houses nor speaker voices
observed at test time are ever observed during training.

For each source utterance, we randomly sample a source-receiver
location pair in a random environment, then convolve the speech
waveform A, (t) with the associated SoundSpaces RIR R(t) to obtain
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Fig. 3: Audio-visual rendering for a Matterport environment. Left:
bird’s-eye view of the 3D environment. Right: panorama image
rendered at the camera location and the corresponding received spec-
trogram.

the reverberant A,.(¢). To augment the visual scene, we insert a 3D
humanoid of the same gender as the real speaker at the speaker
location and render RGB and depth images at the listener location.
We consider two types of image: panorama and normal field of view
(FoV). For the panorama image, we stitch 18 images each having a
horizontal FoV of 20 degrees, for a full image resolution of 192 x 756.
For the normal FoV, we render images with a 80 degree FoV, at a
resolution of 384 x 256. While the panorama gives a fuller view of
the environment and thus should allow the model to better estimate
the room acoustics, the normal FoV is more common in existing video
and thus will facilitate our model’s transfer to real data. See Fig. 3.
We generate 49,430/2,700/2,600 such samples for the train/val/test
splits, respectively. See Supp. materials for examples and details.
Real data collection. To explore whether models trained in simu-
lation can also work in the real world, we also collect a set of real
images and speech recordings while preserving the ground truth ane-
choic audio.

To collect image data, we use an iPhone 11 camera to capture
a panoramic RGB image and a monocular depth estimation algo-
rithm [60] to generate the corresponding depth image.

To record the audio, we use a ZYLIA ZM-1 microphone. We
place both the camera and microphone at the same height (1.5m)
as the SoundSpaces RIRs. For the source speech, we play utter-
ances from the LibriSpeech test set through a loudspeaker held by
a person facing the camera. We collect data from varying environ-
ments, including auditoriums, meeting rooms, atriums, corridors,
and classrooms. For each environment, we vary the speaker location
from near-field to mid-field to far-field. For each location, we play
around 10 utterances. During data collection, the microphone also
records ambient sounds like people chatting, door opening, AC
humming, etc. In total, we collect 200 recordings. Code and data are
available at https://github.com/facebookresearch/
learning-audio-visual-dereverberation.

5. APPROACH

We propose the Visually-Informed Dereverberation of Audio (VIDA)
model, which leverages visual cues to learn representations of the
environmental acoustics and sound source locations to dereverberate
audio. While our model is agnostic to the audio source type, we
focus on speech due to the importance of dereverberating speech
for downstream analysis. VIDA consists of two main components
(Figure 4): 1) a Visual Acoustics Network (VAN), which learns
to map RGB-D images of the environment to features useful for
dereverberation, and 2) the dereverberation module itself, which is
based on a UNet encoder-decoder architecture. The UNet encoder
takes as input a reverberant spectrogram, while the decoder takes
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Fig. 4: VIDA model architecture. We convert the input speech to a spectrogram and use overlapping sliding windows to obtain 2.56 second
segments. For visual inputs, we use separate ResNet18 networks to extract features e, and e4, which are fused to obtain e.. We feed the
spectrogram segment S’ to a UNet encoder, tile and concatenate e, with the encoder’s output, then use the UNet decoder to predict the clean
spectrogram S During inference, we stitch the predicted spectrogams back into a full spectrogram and use Griffin-Lim [63] to reconstruct the

output dereverberated waveform.

the encoder’s output along with the visual dereverberation features
produced by the VAN and reconstructs a dereverberated version of
the audio.

Visual Acoustics Network. Visual observations of a scene reveal
information about room acoustics, including room geometry, materi-
als, object locations, and the speaker position. We devise the VAN
to capture all these cues into a latent embedding vector, which is
subsequently used to remove reverb. This network takes as its input
an RGB image I, and a depth image 14, captured from the listener’s
current position within the environment. The depth image contains in-
formation about the geometry of the environment and arrangement of
objects, while the RGB image contains more information about their
material composition. To better model these different information
sources, we use two separate ResNet18 [64] networks to extract their
features, i.e. e, = f,(I) and eq = fq(I4). We concatenate e, and
eq channel-wise and feed the result to a 1x1 convolution layer f.(-) to
reduce the number of total channels to 512 followed by a subsequent
pooling layer f(-) to reduce the spatial dimension, resulting in the
output vector e. = fi(fo([er; €d]))-

Dereverberation Network. To recover the clean speech audio, we
use the UNet [65] architecture, a fully convolutional network often
used for image segmentation. We first use the Short-Time Fourier
Transform (STFT) to convert the reverberant input audio A, to a
complex spectrogram S,.. We treat .S, as a 2-dimensional, 2-channel
image, where the horizontal dimension represents time, the vertical
dimension represents frequency, and the two channels represent the
log-magnitude and phase angle. Our UNet takes spectrograms of
a fixed size of 256 X 256 as input, but in general the duration of
the speech audio we wish to dereverberate will be variable. There-
fore, the model processes the full input spectrogram using a series of
overlapping, sliding windows. Specifically, we segment the spectro-
gram along the time dimension into a sequence of fixed-size chunks
Sie9 = {S}, 52 ..., 5"} using a sliding window of length s frames
and 50% overlap between consecutive windows to avoid boundary
artifacts. To derive the ground-truth target spectrograms used in train-
ing, we perform the exact same segmentation operation on the clean

source audio A to obtain S5¢9 = {S%, 52 .. S”}.

During training, when a particular waveform .S, is selected for

inclusion in a data batch, we randomly sample one of its segments
S? to be the input to the model, and choose the corresponding S?
as the target. We first compute the output of the VAN, e., for the
environment image associated with S,.. Next, Sﬁ is fed to the UNet’s
encoder to extract the intermediate feature map es = fenc(S%). We
then spatially tile and concatenate e. channel-wise with e, and feed
the fused features to the UNet decoder, which predicts the source
spectrogram segment % = facc([es, ec]).
Spectrogram prediction loss. The primary loss function we use
to train our model is the Mean-Squared Error (MSE) between the
predicted and ground-truth spectrograms, treating the magnitude
and phase separately. For a given predicted spectrogram segment
S%, let M! denote the predicted log-magnitude spectrogram, Pi
denote the predicted phase spectrogram, and M? and P! denote
the respective ground-truth magnitude and phase spectrograms. We
define the magnitude loss as:

Lmagnitude = HM; - M;HZ

To address the issue of phase wraparound, we map the phase angle to
its corresponding rectangular coordinates on the unit circle and then
compute the loss for the phase:

Lyhase = || sin(P}) — sin(F%)||2 + || cos(P) — cos(PY)]|2.

Reverb-visual matching loss. To reinforce the consistency between
the visually-inferred room acoustics and the reverberation charac-
teristics learned by the UNet encoder, we also employ a contrastive
reverb-visual matching loss:

Lunatching(€c, €s, €5) = max{d(fn(ec), fn(es))
— d(fn(ec)7 fn(e?)) +m, 0}

Here, d(z,y) represents L2 distance, f,(-) applies L2 normalization,



m is a margin, and ey is a different speech embedding sampled from
the same data batch. This loss forces the embeddings output by the
VAN and the UNet encoder to be consistent, which we empirically
show to be beneficial.

Training. Our overall training objective (for a single training exam-
ple) is as follows:

Liotar = Lmagnitude + Aleha,se + )\QLmatching7

where A1 and A2 are weighting factors for the phase and matching
losses. To augment the data, we further choose to rotate the im-
age view for a random angle for each input during training. This is
possible because our audio recording is omni-directional and is in-
dependent of camera pose. This data augmentation strategy prevents
the model from overfitting; without it our model fails to converge. It
creates a one-to-many mapping between reverb and views, forcing
the model to learn a viewpoint-invariant representation of the room
acoustics.

Testing. At test time, we wish to re-synthesize the entire clean wave-
form instead of a single fixed-length segment. In this case, we feed
all of the segments for a waveform .S, into the model and temporally
concatenate all of the output segments. Because consecutive seg-
ments overlap by 50%, during the concatenation step we only retain
the middle 50% of the frames from each segment and discard the rest.
Finally, to re-synthesize the waveform we use the Griffin-Lim algo-
rithm [63] to iteratively improve the predicted phase for 30 iterations,
which we find works better than directly using the predicted phase or
using Griffin-Lim with a randomly initialized phase.

6. EXPERIMENTS

We evaluate our model by dereverberating speech for three down-
stream tasks: speech enhancement (SE), automatic speech recognition
(ASR), and speaker verification (SV). We evaluate using both real
scanned Matterport3D environments with simulated audio as well as
real-world data collected with a camera and mic. Please see Supp. for
all hyperparameter settings and data preprocessing details.
Evaluation tasks and metrics. We report the standard metrics Per-
ceptual Evaluation of Speech Quality (PESQ) [66], Word Error
Rate (WER), and Equal Error Rate (EER) for the three tasks, re-
spectively. For ASR and SV, we use pretrained models from the
SpeechBrain [67] toolkit. We evaluate these models off-the-shelf on
our (de)reverberated version of the LibriSpeech test-clean set, and
also explore finetuning the model on the (de)reverberated LibriSpeech
train-clean-360 data to ensure all models have exposure to reverberant
speech when training. For speaker verification, we construct a set
of 80k sampled utterance pairs consisting of different rooms, mic
placements, and genders to account for session variability, similar to
[68]. Please see Supp. for more details.

Baseline models. In addition to evaluating the the clean and rever-
berant audio (with no enhancement), we compare against multiple
baseline dereverberation models:

1. MetricGAN+ [69]: a recently proposed state-of-the-art model
for speech enhancement; we use the public implementation from
SpeechBrain [67], trained on our dataset. Following the original
paper, we optimize for PESQ during training, then choose the
best-performing model snapshot (on the validation data) specific
to each of our downstream tasks.

2. HiFi-GAN [11]: a recent model for denoising and dereverbera-
tion. We use this implementation: https://github.com/
rishikksh20/hifigan-denoiser.

SE ASR sv
PESQ | WER FT |EER FT

Anechoic (Upper bound) | 4.64 | 250 2.50| 1.62 1.62
Reverberant 1.54 | 886 4.62| 4.69 4.57
MetricGAN+ [69] 233 | 749 486|467 275
HiFi-GAN [11] 1.83 | 931 559|430 249
WPE [12] 163 | 8.18 430|519 448

VIDA w/o VAN 232 | 492 376 | 467 261
VIDA w/ normal FoV 2.33 4.85 3.73| 453 279
VIDA w/o matching loss | 2.38 | 4.59 3.72| 4.02 2.62
VIDA w/o human mesh | 2.31 4.57 3.72| 400 252
VIDA w/ random image | 2.34 | 494 3.82| 470 248
VIDA 237 | 444 3.66| 3.97 2.40

Table 1: Results on LibriSpeech test-clean set that is reverberated
with our environmental simulator (with the exception of the “Ane-
choic (Upper bound)” setting, which is evaluated on the original
audio). FT refers to tests where the models are finetuned with the
audio-enhanced data.

3. WPE [12]: A statistical speech dereverberation model that is
commonly used for comparison.

We emphasize that all baselines are audio-only models, as opposed to
our proposed audio-visual model. Our multimodal dereverberation
technique could extend to work in conjunction with other newly-
proposed audio-only models, i.e., ongoing architecture advances are
orthogonal to our idea.

Results on SoundSpaces-Speech. Table 1 shows the results for all
models on SE, ASR, and SV. First, since existing methods report
results on anechoic audio, we note the pretrained SpeechBrain model
applied to anechoic audio (first row) yields errors competitive with
the SoTA [70], meaning we have a solid experimental testbed. Com-
paring the results on anechoic vs. reverberated speech, we see that
reverberation significantly degrades performance on all tasks. Our
VIDA model outperforms all other models, and by a large margin
on the ASR and SV tasks. The results are statistically significant
according to a paired t-test. After finetuning the ASR model, the gain
is still largely preserved at 0.64% WER (14.88% relative), although it
is important to note that finetuning downstream models on enhanced
speech is not always feasible, e.g., if using off-the-shelf ASR. Our
results demonstrate that learning the acoustic properties from visual
signals is very helpful for dereverberating speech, enabling the model
to leverage information unavailable in the audio alone.

Ablations. To study how much VIDA leverages visual signals, we
ablate the visual network VAN (audio-only). Table 1 shows the re-
sults. All performance degrades significantly, showing that visual
acoustic features are helpful for dereveberation. To understand how
well VIDA works with a normal field-of-view (FoV) camera, we
replace the panorama image input with a FoV of 80 degrees randomly
sampled from the current view. All metrics drop compared to us-
ing a panorama, as expected. Compared to the audio-only ablation,
however, VIDA still performs better; even a partial view of the en-
vironment helps the model understand the scene and dereverberate
the audio. Next, we ablate the proposed reverb-visual matching loss
(““w/o matching loss"). Without it, VIDA’s performance declines on
all metrics. This shows by forcing the visual feature to agree with
the reverberation feature, our model learns a better representation
of room acoustics. To examine how much the model leverages the
human speaker cues and uses the visual scene, we evaluate VIDA on
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SE | ASR | SV

PESQ | WER | EER

Anechoic (Upper bound) | 4.64 | 252 | 1.42
Reverberant 1.22 | 18.39 | 391
MetricGAN+ [69] 162 | 2142 | 5.70
HiFi-GAN [11] 1.33 | 24.05 | 521
VIDA w/o VAN 141 | 1518 | 4.24
VIDA w/ normal FoV 1.44 | 1471 | 3.79
VIDA 149 | 13.02 | 3.75

Table 2: Results on real data demonstrating sim2real transfer.

‘ Atrium ‘ Conf. Room ‘ Classroom | Corridor

Near-field | 14.1/9.0 5.0/6.5 6.1/53 | 22/1.8
Mid-field [21.8/189| 7.7/7.7 26/1.5 | 7.3/4.4
Far-field |52.4/50.5| 22.0/6.7 59/6.8 |252/21.1

Table 3: Breakdown of word error rate (WER) for VIDA without and
with VAN on real test data.

the same test data but with the 3D humanoid removed (‘““w/o human
mesh") or train VIDA with random images (“w/ random image") and
re-evaluate. All three metrics become worse. This shows our model
pays attention to both the presence of the human speaker and the
scene geometry to better anticipate reverberation.

Results on real data. Next, we deploy our model in the real world.
We use all models trained in simulation to dereverberate the real-
world dataset (cf. Sec. 4) before using the finetuned ASR/SV models
to evaluate the enhanced speech. Table 2 shows the results of all
models on real data. Reverberation does more damage to the WER
compared to in simulation. Although MetricGAN+ [69] has better
PESQ, it has a weak WER score. Our VIDA model again outperforms
all baselines on ASR and SV. This demonstrates the realism of the
simulation and the capability of our model to transfer to real-world
data, a promising step for VIDA’s wider applicability.

Table 3 breaks down the ASR performance for VIDA without and
with VAN by environment type and speaker distance. The atrium is
quite reverberant due to the large space. The conference room and the
classroom have smaller sizes and are comparatively less reverberant.
The corridor only becomes reverberant when the speaker is far away.
VIDA outperforms VIDA w/o VAN in most cases, especially in highly
reverberant ones.

Analyzing learned features. Figure 5a and 5b analyze our model’s
learned audio and visual features via 2D t-SNE projections [71]. For
each sample, we color the point according to either (c) the ground
truth distance between the camera/microphone and the human speaker
or (d) the reverberation time for the audio signal to decay by 60 dB
(known as the RT60). Neither of these variables are available to
our model during training, yet when learning to perform deverber-
ation, our model exposes these high-level properties relevant to the
audio-visual task. Consistent with the quantitative results above, this
analysis shows how our model captures elements of the visual scene,
room geometry, and speaker location that are valuable to proper
dereverberation.

Qualitative examples. Figure 6 shows a simulated and real-world
example. As we can see, the reverberant spectrogram is much blurrier
compared to the clean spectrogram, while our predicted spectrogram
removes those reverberations by leveraging the visual cues of room
acoustics.
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Fig. 6: Example input images, clean spectrograms, reverberant spec-
tograms and spectrograms dereverberated by VIDA (top is from a
scan, bottom is a real pano). The speaker is out of view in the first case
and distant in the second case (back of the classroom). Though both
received audio inputs are quite reverberant, our model successfully
removes the reverb and restores the clean source speech.

7. CONCLUSION

We introduced the novel task of audio-visual dereverberation. The
proposed VIDA approach learns to remove reverb by attending to both
the audio and visual streams, recovering valuable signals about room
geometry, materials, and speaker locations from visual encodings of
the environment. In support of this task, we develop a large-scale
dataset providing realistic, spatially registered observations of speech
and 3D environments. VIDA successfully dereverberates novel voices
in novel environments more accurately than an array of baselines,
improving multiple downstream tasks. In future work, we will explore
temporal models for dereverberation with real-world video.
Acknowledgements: UT Austin is supported in part by the [IFML
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A. SUPPLEMENTARY MATERIALS

In this supplementary material, we provide additional details about:

1. Video (with audio) for demos of the collected data as well as
qualitative assessment of VIDA’s performance.

2. Implementation details of our model and data pre-processing.

. Evaluation details of downstream tasks and corresponding metrics.

4. Ablation on visual sensors.

(98]

A.l. Qualitative Video

This video includes examples for audio-visual data in simulation and
in the real-world. We demonstrate examples of our dereverbration
model applied to these inputs. The video is available at https:
//youtu.be/zPeAjlwobXA.

A.2. Implementation Details

For the STFT calculation, we sample the input audio at 16 kHz
and use a Hamming window of size 400 samples (25 milliseconds),
a hop length of 160 samples (10 milliseconds), and a 512-point
FFT. By retaining only the positive frequencies and segmenting the
spectrograms into 256-frame chunks (corresponding to approximately
2.5 seconds of sound), the final audio input size to our UNet is
256x256. We use the Adam optimizer [72] to train our model with
Ir = 0.001. We decay the learning rate exponentially to [r = 0.0001
in 150 epochs. We set the batch size to 96 and train all models for
150 epochs, which is long enough to reach convergence. We set the
margin m to 0.5, phase loss weight A\; to 0.08 and matching loss
weight A2 to 0.001.

A.3. Evaluation Details

We evaluate our model on three tasks: speech enhancement (SE),
automatic speech recognition (ASR), and speaker verification (SV).

* For SE, the goal is to improve the overall sonic quality of
the speech signal, which we measure automatically using the
standard Perceptual Evaluation of Speech Quality (PESQ)
[66] metric.

* For ASR, the goal is to automatically transcribe the sequence
of words that were spoken in the audio recording. For this
task, we report the Word Error Rate (WER), which is the
standard metric used in ASR and reflects a word-level edit
distance between a recognizer’s output and the ground-truth
transcription.

» For SV, the goal is to detect whether or not two different spo-
ken utterances were spoken by the same speaker. For SV, we
report the Equal Error Rate (EER), a standard metric in the
SV field indicating the point on the Detection Error Trade-
off (DET) curve where the false alarm and missed detection
probabilities are equivalent.

Since the spectrogram MSE loss we optimize during training does
not perfectly correlate with these three task-specific metrics, we
perform model selection (across snapshots saved each training epoch)
by computing the task-specific evaluation metric on 500 validation
samples. We then select the best model snapshot independently for
each downstream task and evaluate on the held-out test set; the same
model selection procedure is also used for all of our baseline models.

For the ASR and SV tasks, we use the SpeechBrain [67] toolkit.
For ASR, we use the HuggingFace Transformer [73] + Trans-
former LM model pre-trained on LibriSpeech [20]. We evaluate

SE ASR N

PESQ 1 | WER (%) | | EER (%) |
Reverberant 1.54 8.86 4.69
VIDA w/o VAN 2.32 4.92 4.67
VIDA w/o RGB 2.38 4.76 3.82
VIDA w/o depth 2.38 4.52 3.99
VIDA w/ early fusion | 2.38 4.56 3.94
VIDA 2.37 4.44 3.99

Table 4: Ablations on visual sensors. Percentages in parenthesis
represent relative improvements over the reverberant baseline.

this model off-the-shelf on our (de)reverberated version of the Lib-
riSpeech test-clean set, and also explore fine-tuning the model on
the (de)reverberated LibriSpeech train-clean-360 data. For the SV
task, we use SpeechBrain’s ECAPA-TDNN embedding model [74],
pre-trained on VoxCeleb [75]. For performing verification, we
evaluate the model on a set of 80k randomly sampled utterance
pairs from the test-clean set (40k same-speaker pairs, 40k different-
speaker pairs) using the cosine similarity-based scoring pipeline
from SpeechBrain’s VoxCeleb recipe. In the verification task, we
use the clean (non-reverberated) speech as the reference utterance,
and the reverberant speech as the test utterance. As in the ASR task,
we evaluate this model on our dereverberation model’s outputs both
off-the-shelf, as well as after fine-tuning on the (de)reverberated
train-clean-360 set.

A.4. Ablation on Visual Sensors

To understand the importance of each input sensor, we ablate the
RGB and depth input as shown in Table 4. Dropping either RGB or
depth makes the WER worse. We hypothesize that this is because
they contain distinct information for the learning of room acoustics.
The depth image is better for capturing room geometry, while the
RGB image is better for capturing material and speaker location
information.

In addition, we perform early fusion of RGB and Depth images
by stacking them along the channel dimension (w/ early fusion in
Table 4) and use one ResNetl8 [64] model instead of two. This
method also has worse WER, which validates our design choice of
extracting RGB and depth features separately.
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