
Mesoscale phenomena and their
contribution to the global
response: a focus on the
magnetotail transition region and
magnetosphere-ionosphere
coupling
Christine Gabrielse1*, Matina Gkioulidou2, Slava Merkin2,
David Malaspina3, Drew L. Turner2, Margaret W. Chen1,
Shin-ichi Ohtani2, Yukitoshi Nishimura4, Jiang Liu5,6,
Joachim Birn7, Yue Deng8, Andrei Runov5, Robert L. McPherron5,
Amy Keesee9, Anthony Tat Yin Lui2, Cheng Sheng8,
Mary Hudson10,11, Bea Gallardo-Lacourt12,13,
Vassilis Angelopoulos5, Larry Lyons6, Chih-Ping Wang6,
Emma L. Spanswick14, Eric Donovan14,
Stephen Roland Kaeppler15, Kareem Sorathia2, Larry Kepko12 and
Shasha Zou16

1The Aerospace Corporation, El Segundo, CA, United States, 2John Hopkins Applied Physics Laboratory,
Laurel, MD, United States, 3Laboratory for Atmospheric and Space Physics, University of Colorado,
Boulder, CO, United States, 4Electrical and Computer Engineering Department, Boston University,
Boston, MA, United States, 5Earth, Planetary, and Space Sciences Department, University of California, Los
Angeles, Los Angeles, CA, United States, 6Atmospheric and Ocean Sciences Department, UCLA, Los
Angeles, CA, United States, 7Space Science Institute, Boulder, CO, United States, 8Department of Physics,
University of Texas, Arlington, TX, United States, 9Department of Physics and Astronomy and Space
Science Center, University of New Hampshire, Durham, NH, United States, 10Department of Physis and
Astronomy, Dartmouth College, Hanover, NH, United States, 11NCAR HAO, Boulder, CO, United States,
12NASA Goddard Space Flight Center, Greenbelt, MD, United States, 13The Catholic University of America,
Department of Physics, Washington, DC, United States, 14Department of Physics and Astronomy,
University of Calgary, Calgary, AB, Canada, 15Department of Physics and Astronomy, Clemson University,
Clemson, SC, United States, 16Department of Climate and Space Sciences and Engineering, University of
Michigan, Ann Arbor, MI, United States

An important question that is being increasingly studied across subdisciplines of
Heliophysics is “how domesoscale phenomena contribute to the global response
of the system?” This review paper focuses on this question within two specific but
interlinked regions in Near-Earth space: the magnetotail’s transition region to the
inner magnetosphere and the ionosphere. There is a concerted effort within the
Geospace Environment Modeling (GEM) community to understand the degree to
which mesoscale transport in the magnetotail contributes to the global dynamics
of magnetic flux transport and dipolarization, particle transport and injections
contributing to the storm-time ring current development, and the substorm
current wedge. Because the magnetosphere-ionosphere is a tightly coupled
system, it is also important to understand how mesoscale transport in the
magnetotail impacts auroral precipitation and the global ionospheric system
response. Groups within the Coupling, Energetics and Dynamics of
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Atmospheric Regions Program (CEDAR) community have also been studying how
the ionosphere-thermosphere responds to thesemesoscale drivers. These specific
open questions are part of a larger need to better characterize and quantify
mesoscale “messengers” or “conduits” of information—magnetic flux, particle
flux, current, and energy—which are key to understanding the global system.
After reviewing recent progress and open questions, we suggest datasets that, if
developed in the future, will help answer these questions.

KEYWORDS

transition region, mesoscales, magnetotail, magnetosphere-ionosphere coupling,
dipolarization, particle injections,magnetohydrodynamics-MHD, substormcurrentwedge

1 Introduction

The question of how mesoscale phenomena contribute to the
global response of the geospace system has remained unanswered
for decades, but has come to the forefront of our science in recent
years thanks to 1) the availability of multipoint datasets (e.g.,
Cluster, THEMIS) that allowed repeated observations on the
appropriate (meso)scales combined with ground-based (synoptic)
imaging and magnetometer networks, and 2) the impressive
resolution improvements in our global models made possible by
larger computing power. “Mesoscale” is regime specific, broadly
defined as larger than kinetic scale phenomena and smaller than
global responses. In the magnetotail, mesoscale is defined as larger
than the ion gyroradius (roughly hundreds km and greater) up to a
few Earth radii (RE). In the ionosphere, mesoscale phenomena range
from tens to ~500 km in width (see Table 1 for summary). The range
is approximate, not exact—for example, some consider up to
1,000 km “mesoscale” in the ionosphere. As simulations are
starting to achieve mesoscale resolution, it has become apparent
how global, statistical models fail to capture the dynamic and

powerful phenomena that occur on mesoscales. This knowledge
gap propagates down and across different regimes in space physics
and aeronomy. For example, mesoscale plasma flows in the
magnetotail map to the ionosphere and have important effects
on neutral wind response (Deng et al., 2019) and neutral density
perturbations (Deng et al., 2009; Sheng et al., 2021). The difficulty in
characterizing mesoscale phenomena to determine their
relationship to the global response therefore has far-reaching effects.

Through a community-wide effort to improve understanding of
the role of mesoscale phenomena in the magnetosphere-ionosphere
(MI) system, an NSF Geospace Environment Modeling (GEM)
Focus Group on Magnetotail Dipolarizations and their Effects in
the Inner Magnetosphere organized discussions over the last 6 years,
concluding in 2023 (2017–2023). Discussions often focused on the
question of whether or not mesoscale phenomena like Bursty Bulk
Flows (BBFs) (Angelopoulos et al., 1994; 1997) and Dipolarizing
Flux Bundles (DFBs) (Liu et al., 2014) are the major source of
current, magnetic flux transport, and energy transport in the system.
Much of the discussion coalesced around Earth’s transition region,
the region spanning ~6–12 RE where the dipole magnetic field near

TABLE 1 Global vs. Mesoscale Phenomena in Earth’s Magnetotail and its Transition Region.

Phenomena Spatial size Temporal size Additional description

Dipolarization Several hrs MLT Tens of min to > hour Persistent magnetic field increase toward more dipolar; Historical
substorm indicator in the tail

Dipolarizing Flux
Bundles

~1–Several RE (in YGSM) Single DFB: ~40 s; Train of DFBs:
Minutes (at satellite)

Temporal or spatial increases in Bz; Typically associated with fast
plasma flows

Dipolarization Front ~500 km–1,000 km (in XGSM) Seconds (at satellite); minutes- tens of
minutes

Increase in Bz preceding a DFB; Separates hot plasma inside DFB from
cooler surrounding plasma

Substorm Current
Wedge

Several hours MLT Tens of minutes to > hour Current diversion from the tail through the ionosphere; based on
ground and space observations

Wedgelets ~1–several RE in azimuth
(~YGSM)

Single: ~40 s; Train: Minutes (at satellite) Temporally or azimuthally localized wedge indicators
Related to mesoscale flows

Global Aurora > 1,000 km, can span few
hrs MLT

Tens of minutes to hours Auroral oval, large-scale diffuse and discrete aurora

Mesoscale aurora ~10 km–500 km Minutes to tens of minutes Streamers, poleward boundary intensifications, etc.

Substorm Injection Up to several hours MLT Tens of min to > hour Persistent energetic particle flux increases; historically at GEO

Mesoscale Injections ~1–several RE Tens of seconds (single) - minutes (at
satellite)

Temporal energetic particle flux enhancements; Observed in the near
tail and inner magnetosphere

Values extracted from: Angelopoulos et al., 1997; Birn and Hesse, 1994; 2004; 2013; 2019; Gabrielse et al., 2014; 2017a; 2018; 2019a; 2019b; 2021; Gallardo-Lacourt et al., 2014; Gkioulidou et al.,
2014; Liu et al., 2014; 2015a; 2015b; McPherron et al., 1973; Nakamura et al., 2004; Newell et al., 2014; Nishimura et al., 2020; Ohtani and Gjerloev, 2020; Reeves et al., 1990; Runov et al., 2009;
2011; Sergeev et al., 1996. GEO = geosynchronous orbit. MLT = Magnetic Local Time. Hrs = hours. Min = minutes. Sec = Seconds.
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Earth transitions to a stretched magnetotail. The transition region is
where earthward-traveling mesoscale phenomena brake and deposit
their information (e.g., energy, particles, magnetic flux), but how
that information is ultimately dissipated to the inner magnetosphere
or ionosphere remains a mystery. Realizing the importance in
understanding how the transition region filters energy/
information, a new GEM focus group was formed in 2022 to
specifically study it (“Mesoscale drivers of the nightside transition
region: ionospheric and magnetotail evaluations”). Meanwhile, for
the past ~6–7 years (2016–2022), an Air Force Office of Scientific
Research (AFOSR) supportedMultidisciplinary University Research
Initiative (MURI) project focused on improving the specification of
the energy and momentum inputs from the magnetosphere into the
upper atmosphere, especially at mesoscales. This group has been
active in NSF’s Coupling, Energetics and Dynamics of Atmospheric
Regions (CEDAR) Program, as well as at GEM. The following
presents a summary of some of the GEM and MURI discussions
to orient the reader on the field’s status, as well as outstanding
questions and suggestions for a path forward. We acknowledge that
works outside this scope will be missed in this review.

2 A summary of the current debates and
discussions

When the GEM focus group on dipolarizations first began,
the community sat down and defined terminology to ensure
language was consistent (see Table 1). Dipolarization is
recognized as the stretched magnetotail returning to a more
dipolar state. Initially studied at geosynchronous orbit (e.g.,
McPherron, 1972), the Bz increase was interpreted as a
reconfiguration of the magnetotail often seen at the onset of
the substorm expansion phase. It would slowly return to the
stretched, pre-dipolarization level during the substorm recovery,
making the timescale on the order of an hour to an hour and a
half. Table 1 refers to this reconfiguration as “global” or “large-
scale” dipolarization to differentiate it from mesoscale
dipolarizing flux bundles (DFBs), which were named much
later during the THEMIS mission (Liu et al., 2014).
Dipolarizing flux bundles can be thought of as narrow flux
tubes racing earthward and becoming more dipolar after
forming from reconnection. The mechanics of the earthward
motion are described in papers like Li et al. (1998) (in terms of
force balance) or Wolf et al. (2002; 2006; 2009) (in terms of low
entropy bubbles). They are embedded within fast plasma flows
(often, bursty bulk flows (Angelopoulos et al., 1994; 1997)) and
are on the order of 1–3 RE wide in azimuth. A satellite observes
them as a sudden increase in Bz (the dipolarization front)
followed by an elevated Bz for tens of seconds to minutes. We
note that the lifetime of the DFB is not easy to track
observationally, as the satellite only observes it for the
duration the DFB is passing over the satellite. The DFB
decelerates as it approaches Earth until it either crashes into
the dipolar region of Earth’s magnetosphere and “piles-up”
magnetic flux at the transition region between Earth’s dipolar
field lines and its stretched magnetotail, or is diverted around
Earth’s dipolar region towards the dayside. The magnetic flux
“pile-up” was reported by Baumjohann et al. (1999) as a tailward

propagation of the dipolar region. Although they used the term
“dipolarization front” to describe the increase in Bz as it
propagated tailward, nomenclature today uses the term to
refer to the kinetic-scale Bz increase that marks the
earthward-leading edge of the dipolarizing flux bundle
separating the cold ambient plasma sheet from the hot,
tenuous plasma inside the DFB. Dipolarization fronts were
heavily studied with the Cluster mission (Nakamura et al.,
2004) and later by THEMIS and MMS. See Fu et al. (2020) for
a more extensive review on both dipolarization fronts and the
particle acceleration related to them. On a tangential but related
note, dipolarizations in the inner magnetosphere have been
observed with Bz increasing to values larger than the perfect
dipole, bringing into question the terminology choice as
technically they are “over-dipolarizations”. The question of
whether the earthward magnetic flux transport via mesoscale
DFBs is enough to account for the global dipolarization seen near
geosynchronous orbit (GEO) and within Earth’s transition
region was debated and is summarized in Section 2.1.

Historically, large-scale dipolarization was considered the cause
of the substorm current wedge (see Kepko et al., 2015 for a thorough
review). As the drift rates of electrons and protons across the region
of enhanced Bz is altered, the total current across the dipolarized
region is reduced and the cross-tail current in the undisturbed
region splits, with some portion flowing downward to the
ionosphere. As the field lines bend away from midnight on the
eastern and western sides of the dipolarization, field-aligned
currents must form. Later works suggested that an alternative
cause of the substorm current wedge is a compilation of smaller
“wedgelets” of field-aligned currents that form from the earthward-
traveling DFBs. This question has been debated and is discussed in
Section 2.2.

Also historically observed with global dipolarizations are particle
injections. Typically observed as sudden increases in particle fluxes
across multiple energies, they were named “injections” because they
transport—or, “inject”—particles into the inner magnetosphere
from the plasma sheet, energizing them in the process [See
Gabrielse et al. (2017b) for a more comprehensive historical
review.]. Reeves et al. (1990) constrained their scale size at GEO
to a few hours in magnetic local time (MLT). Injections can also
result in a sudden flux decrease across energy channels if the sign of
the phase space density radial gradient is switched, such that the
new, injected population has a lower phase space density than the
original population. These flux decreases were first reported by
Sergeev et al. (1992) as drifting electron holes at geosynchronous
orbit, but were further studied at greater distances from Earth as well
(e.g.; Cohen et al., 2019; Liu et al., 2019). Following the theme,
mesoscale injections are related to DFBs and the DFB-related
electric fields which transport and energize particles earthward.
As Section 2.3 discusses, open questions remain whether
mesoscale injections contribute to the large-scale injections seen
at GEO, and if they are important contributors to the ring
current—or if they are simply ripples on top of the global
particle transport into Earth’s inner magnetosphere.

Howmuch energy is transported from the magnetosphere to the
ionosphere onmesoscales is also a topic that is getting wide attention
from both GEM and CEDAR communities. Section 2.4 does not
attempt to summarize all the work that has been done in this area,
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but rather touches on some works and ideas specific to the GEM
Dipolarization Focus Group and MURI project referenced above to
whet the reader’s appetite and highlight the importance of
continuing to probe the contributions by mesoscales in
magnetosphere-ionosphere coupling.

2.1 In terms of magnetic flux

Many papers came out of the GEM debate discussing whether
mesoscale transport of magnetic flux can explain the large-scale
dipolarization that occurs at Earth’s transition region (see Figure 1
for schematic illustration). Most conclude that “yes”, mesoscale flux
transport is adequate to explain the majority of magnetic flux
transport globally, with one dissenting paper suggesting 50–1000
DFBs are required to fully explain all the flux transport—and that is
only if the frozen in condition is maintained (Lui, 2015). Figure 2
(from Birn et al., 2019) plots the magnetic flux over time at seven
different locations across the tail (in YGSM) from a
magnetohydrodynamics (MHD) model. They found that the total
flux transported earthward from the reconnection site was
~203MWb, commensurate with estimates from data of
100 MWb–360 MWb by Angelopoulos et al. (1994). This flux
was associated with up to seven DFB events localized across the
tail, not one single mesoscale transport event. Merkin et al. (2019)
utilized the Lyon–Fedder–Mobarry (LFM) global MHD code
(Figure 3) to determine that the total amount of earthward flux
entering the 8 RE region between 20:00 and 04:00 magnetic local
time (MLT) was ~50 MWb over roughly 30 min after substorm
onset, which is in line with expectations from observations in the
plasma sheet (e.g., Liu et al., 2014).

Most papers contributing to the debate utilized MHD modeling
(Birn et al., 2019; Merkin et al., 2019; McPherron et al., 2020),
highlighting the difficulty the field faces to answer the question with
data or with multi-scale physics.

Whilemodeling seems to be converging on consensus, observations
are needed for validation purposes as model includes all the physics
involved. Furthermore, because this field heavily relies on MHD
modeling, kinetic-scale physical processes are not modeled. Kinetic-
scale physics are expected to contribute to instabilities in the transition
region that could destabilize the plasma sheet, accelerate particles, and
lead to a global dipolarization. Therefore, models that include kinetic-
scale physics are also required (e.g., Shou et al., 2021; Ukhorskiy et al.,
2022; see also Sorathia et al., 2022 White Paper submitted to the
National Academy of Sciences).

2.2 In terms of current

Electrical currents, running along magnetic field lines
connecting the magnetosphere to the ionosphere, are important
to MI-coupling. Several papers resulted from community
discussions on whether the large-scale substorm current wedge
was comprised of “wedgelets” of current, or if it is one coherent
current system resulting from a larger-scale phenomenon (e.g.,
global dipolarization). Results varied: Some papers argued that it
is one large phenomenon (e.g., Ohtani and Gjerloev, 2020) (see
Figure 4A for schematic from the ground); or that it is one large-
scale current due to the pileup of multiple mesoscale structures (e.g.,
Yang et al., 2011; Birn and Hesse, 2014; Liu et al., 2015a; Birn et al.,
2019); or that it is comprised of multiple wedgelets that form
simultaneously and continuously (Liu et al., 2015b) (see
Figure 4B for schematic from the ground); or that “both the
large-scale and multiple-wedgelet picture occur for different
events” (Nishimura et al., 2020).

FIGURE 1
Modified from Gabrielse et al., 2019a. Illustration of mesoscale
messengers of magnetic flux (DFBs) & particle flux (injections) as
building blocks of the global dipolarization/injection.

FIGURE 2
From Birn et al., 2019. Evolution of magnetic flux (Φ) values in the
simulation for 10 evenly spaced YGSM values (indicated by different
colors) at x = −13.5RE, relative to the onset of dipolarization (t-t0 = 0).
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Liu et al. (2015a) state, “If DFBs arrive continually for several
tens of minutes, a long-lasting substorm current wedge (SCW) can
be sustained by wedgelets. Alternatively, our wedgelet scenario may
account for only the first few minutes of a long-lasting SCW . . . ”
The latter scenario was also shown by Birn et al. (2019). Sergeev et al.
(2014) demonstrated that even an individual flow burst significantly
modifies the pressure and entropy distribution in the inner
magnetosphere, which continues well after the flows fade away
(30 min–50 min, compared to the flow lifetime of
10 min–15 min). They provided a possible explanation by citing
Yao et al. (2012) and Birn and Hesse (2013), who suggested the
modified plasma pressure and entropy during the flow braking
provides the main contribution to the large-scale field-aligned
currents of the SCW via the j‖ ≈ (Bi/Beq)b̂ · (∇Veq ×∇Peq)
mechanism. This can have longer lasting effects compared to the
flow vortex mechanism in field aligned current generation, which is
limited to the lifetime of the flow burst.

Ohtani and Gjerloev (2020), on the other hand, used ground
magnetometer data to conclude that: although the SCW may evolve
from a wedgelet formed at the onset of substorms, wedgelets are

probably not a primary constituent of the SCW for most of the
subsequent expansion phase.

Nishimura et al. (2020) used THEMIS ground-based all-sky-
imagers (ASIs) and magnetometers to claim that both Figures 4A, B
scenarios do occur, with Figure 4B occurring 65% of the time. Could
it be that two substorm “modes” exist, and that both sides of this
substorm debate are not only valid, but true? If that is the case, what
leads to the two different responses? Although great progress was
made, more questions have arisen.

2.3 In terms of particle transport and
injections

Historically, particle injections were observed at
geosynchronous orbit (GEO) and were spatially constrained to be
a few hours of MLT wide (e.g., Reeves et al., 1990). As more satellites
were launched with apogees in the plasma sheet, particle
energization and transport related to BBFs and DFBs were
increasingly studied. Particle energization was observed in

FIGURE 3
FromMerkin et al. (2019). Overviewof the simulation around the time of substormonset. The solarmagnetic equatorial plane is shown in each panel.
Magnetospheric spacecraft are marked with blue (GOES-13), orange (GOES-14), green (GOES-15), and red (MMS-1) circles which indicate the spacecraft
positions projected to the plane. The black contour in the upper left panel indicates the Bz = 0 isocontour. Note bottom right shows a mesoscale DFB
impinging on the inner magnetosphere as the narrow red finger around X = −10, Y = 0. In the upper left, the red finger at the same location shows
earthward plasma flow up to 400 km/s.
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decades past, but whether mesoscale particle “injections”were in fact
“injections” (depositing electrons onto trapped drift orbits) became
a hot topic, along with whether mesoscale injections contributed to
the wider (global) GEO injections or if the two were distinctly
different. Once again, models are heavily used to approach the
answer (e.g., Birn and Hesse, 1994; 2004; 2013; Ukhorskiy et al.,
2017; 2018; Wang et al., 2018; Eshetu et al., 2019) including some
data-informed models (e.g., Li et al., 1998; Gabrielse et al., 2012;
2016; 2017a). MHD and analytical models utilizing particle tracing
codes in defined electromagnetic fields have shown that coherent
dipolarization fronts/DFBs can, in fact, carry energetic electrons
(e.g., Gabrielse et al., 2017a; Eshetu et al., 2019) and ions (e.g.,
Ukhorskiy et al., 2018) earthward by trapping them in gradient-B
drifts around the peak in Bz (sometimes referred to as “magnetic
islands”) (see Figure 5). A similar gradient-B trapping mechanism is
shown to occur due to localized magnetic dips driven by ion
injections and the resulting diamagnetic motion of the injected
ions (e.g., He et al., 2017; Xiong et al., 2017), causing dispersionless
flux enhancements at multiple energies away from the injection
source (Yin et al., 2021). Because particles with lower pitch angles
may not be trapped, the dips may serve as pitch angle filters
responsible for the anisotropic ion distributions and the
excitation of electromagnetic ion cyclotron (EMIC) waves in the
inner magnetosphere (Yin et al., 2022). These studies highlight the
importance of including mesoscale magnetic field variations in
building our understanding of particle dynamics and transport
between the plasma sheet and inner magnetosphere.

Existing observations leave much unanswered, however. How
much mesoscale injections contribute to the radiation belts and ring
current particle populations is still up for debate. Previous works
(e.g., Sergeev et al., 2000; Ohtani et al., 2006; Takada et al., 2006;
Dubyagin et al., 2011; Sergeev et al., 2012) showed that the majority
of bursty bulk flows observed in the plasma sheet brake in the
transition region and do not penetrate to the inner magnetosphere.
Takada et al. (2006) showed that 30% seen at > 15 RE were also seen
inside 10 RE. Ohtani et al. (2006) could not find most flow bursts
seen at 10 RE at GEO, and only saw 4 dipolarizations at GEO out of
106 flow bursts seen at Geotail (where Geotail was anywhere from
~10–30 RE). Combined results between Dubyagin et al. (2011), who
showed 80% of flow bursts seen at 11 RE were also seen at 9 RE, and
Sergeev et al. (2012), who found only 36%–38% of flow bursts seen
farther out by Geotail or THEMIS were accompanied by a flow burst
seen at GEO, shows that most flow bursts stop between 6.6–9 RE.
The two papers also showed that the penetration depth of the flow
burst/injection was relative to its entropy, PVγ, agreeing with
theoretical work by Pontius and Wolf (1990) suggesting low
entropy flux tubes can penetrate more deeply into the inner
magnetosphere.

More recently, Runov et al. (2021) attempted to correlate
dipolarizations observed by THEMIS at 10–12 RE in the near-
midnight magnetotail and energetic ion injections observed by
the Los Alamos National Laboratory (LANL) satellites at 6.6 RE

(GEO) during storms’ main phase. They found only 21 out of
39 dipolarizations at THEMIS were associated with dipolarizations
at GEO, and only 10 out of those 21 dipolarizations at GEO had an
associated ion injection. This indicates that dipolarizations are

FIGURE 4
From Nishimura et al. (2020) (A) Schematic of large-scale SCW.
(B) Schematic of SCW formed by a compilation of wedgelets.

FIGURE 5
From Ukhorskiy et al. (2018). Ion trapped magnetically drifting
about the local peak in Bz from the mesoscale,
earthwardtraveling DFB.
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necessary but not sufficient for ion injection at (cis) GEO—where
“cis”-GEOmeans inside, or earthward of, GEO. Taken together with
results from Liu et al. (2016) who studied cis-GEO injections with
Van Allen Probes, the important parameter in injection observation
is, unsurprisingly, the electric field. An electric field is required to
energize the particles, and we note that an electric field is present
when a fast plasma flow moves in Earth’s magnetic field.

Gkioulidou et al. (2014) used Van Allen Probes data to suggest
that mesoscale injections contribute ~30% to the ring current. But
more satellites in coordinated orbits would better help constrain
their input. Using ground-based riometers to observe injection-
related precipitation along with satellites in the tail, Spanswick et al.
(2010) demonstrated that the global particle injection initiated near
the Earth’s magnetic field transition region. It then propagated
earthward towards GEO as well as tailward. To put these
observations in context with the growing story of earthward-
traveling mesoscale injections, Gabrielse et al. (2019a) studied
injections using multiple satellites, riometers, and ground-based
ASIs. Their conclusion was that mesoscale electron injections are
distinct from global electron injections at GEO, forming differently
as predecessors and likely contributors to the global electron
injection. Whereas the global electron injection was clearly
related to the expanding global dipolarization, the ion injection
was only observed at the satellite while the fast flow and its electric
field existed at the satellite (giving it a shorter lifetime). Turner et al.
(2017) also used a multi-satellite study to constrain the injection’s
azimuthal scale size. They found multiple injections occurred during
the event studied and constrained the size of some injections to a few
RE wide; however, other injections were as wide as 12 h in MLT (For

more discussion on mesoscale injections and their contribution to
the inner magnetosphere, see the white paper submitted by
Claudepierre et al., 2022, to the National Academy of Sciences.)

It is clear that even with multiple, uncoordinated satellite
observation points, constraining the injection’s scale size and
propagation direction is elusive. If instead a coordinated fleet
with a dense coverage spanning the transition region into the
inner magnetosphere was launched to constrain the appropriate
spatial and temporal scale sizes, significant progress could be made.

In a creative use of available datasets, Adewuyi et al. (2021) used
TWINS Energetic Neutral Atom (ENA) imaging and THEMIS ASIs
tomap the ion temperature to the plasma sheet to infer locations and
sizes of the fast flows and particle heating in the magnetotail (see
Figure 6). However, limited spatial and temporal resolution (2 min)
makes it difficult to pin down the dynamical evolution of that
heating. Imagers with higher temporal-spatial resolution,
especially in coordination with the above-mentioned fleet of
spacecraft, would be pivotal in addressing these open questions.
Furthermore, TWINS has been decommissioned so these techniques
are unavailable to study future events. Along those lines, the
THEMIS white-light ASIs that have been used in a plethora of
studies only have a few operational years left. The Canadian
sponsored TREx mosaic of color ASIs will hopefully fill-in and
improve the view from the ground, providing a 2D context with
enhanced particle energy information for in situ observations, but
they need our loud support to continue to obtain funding and to
increase coverage. Losing the mosaic of ASIs across North America
would be devastating to the field, and leveraging international
partnerships is a strong path forward.

FIGURE 6
FromAdewuyi et al. (2021). (A–H): TWINS ENA imaging used to plot ion temperaturemaps (color) in 2D downtail over time.White circle is Earth, x-axis is
X-GSM, y-axis is Y-GSM. Magnetotail flow channels appear before the sudden stormcommencement (SSC), indicating the importance of mesoscale
injections to the inner magnetosphere at SSC. ASI data (shown in Adewuyi et al. (2021)) was also mapped to the tail, showing a similar trend in the aurora.
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2.4 In terms of energy transport and
precipitation

How much of the energy transport throughout the system
occurs via mesoscale phenomena as opposed to global activity?
This is a broad topic that needs more attention than this short
paper can provide. For example, previous studies (Codrescu et al.,
1995; Matsuo et al., 2003; Deng et al., 2013) showed that
mesoscale electric fields in the ionosphere (often resulting
from mesoscale magnetotail flows mapping to the ionosphere)
can play an equally important role to the Joule heating as the
average large-scale electric field. Another component of energy
transfer is via precipitation of particles from the magnetosphere
that deposit their energy in the upper atmosphere. One paper
from the GEM discussion concluded that mesoscale precipitation
contributes ~15% of the total energy dissipation into the
ionosphere (Ohtani, 2019). Another paper showed mesoscale
aurora contributes ~60%–80% of the total precipitated energy
flux during substorm expansion, then 35%–40% during the rest of
the substorm (Gabrielse et al., 2021).

These mesoscale precipitation “messengers” or “conduits” of
energy have meaningful impacts on the ionosphere and
thermosphere, and are just starting to be included in General
Circulation Models (GCMs). GCMs rely on global trends in the
aurora (e.g., OVATION Prime-2013, Newell et al., 2014) to
characterize ionosphere forcing from above. They do not capture
the dynamic, intense precipitation from mesoscale discrete aurora,

nor the fast ionospheric mesoscale plasma flows that are driven by
mesoscale magnetosphere flows (e.g., Gallardo-Lacourt et al., 2014;
Gabrielse et al., 2018; 2019b). Recent attempts have been made to
include these features. For example, both Deng et al. (2019; Figure 7)
and Sheng et al. (2021) superposed mesoscale plasma flows in the
Global Ionosphere/Thermosphere Model (GITM) to analyze how
they affect neutral winds and neutral density perturbations. They
found intense neutral density perturbations that lasted at least
50 min after the flow stopped, and that if two flows occurred
simultaneously that the neutral density perturbation had even
finer structure.

These dynamic, often discrete, auroral features are not included
in our models, which rely on statistical maps of the (often) diffuse
aurora. The diffuse aurora is also easier to model given that the
physics of their formation (e.g., wave-particle interactions in the
magnetosphere) are better understood. To address the knowledge
gap, recent works provided 2D precipitation/conductance maps
from ASIs (Lam et al., 2019; Nishimura et al., 2021; Gabrielse
et al., 2021; Figure 8), but much is left to do. See Laundal et al.
(2017) along with the white paper submitted to the National
Academy of Science’s Decadal Survey by Ozturk et al. (2022)
and/or Ozturk et al. (2021) for more details on the importance of
correctly characterizing and modeling precipitation and
conductance. Characterizing conductance correctly is important
not just for ionosphere physics, but for magnetospheric physics
as well. Feedback to the magnetotail can affect where reconnection
occurs, for example (see Lotko et al., 2014; El-Alaoui et al., 2023).

FIGURE 7
FromDeng et al. (2019). Two flow bursts were added to GITM in the auroral zone and are separated by 15° in longitude or 1 h in Local Time. There is a
high probability for multiple flow bursts to happen simultaneously in the auroral zone (Sergeev et al., 2004). Color is the difference in the ion drift in the
north direction between the simulations with and without flow burst.

Frontiers in Astronomy and Space Sciences frontiersin.org08

Gabrielse et al. 10.3389/fspas.2023.1151339

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2023.1151339


It is therefore crucial to understand and characterize these
mesoscale phenomena in the magnetotail in order to improve
not just our understanding of the magnetosphere, but of the
coupled magnetosphere-ionosphere-thermosphere (MIT) system.
This aligns very well with the objectives of NASA’s Geospace
Dynamics Constellation (GDC) mission, which will measure the
geomagnetic energy inputs into ionosphere on a broad range of
scales.

3 What are we missing to understand
the multi-scale interaction in the
nightside magnetosphere-ionosphere
system?

Section 2 was a non-inclusive summary of the current
debates, progress, and open questions within the community
on the topic of mesoscale phenomena in the magnetosphere-

FIGURE 8
From Gabrielse et al. (2021). (A) Keogram of white light counts at the Fort Yukon ASI at the Poker Flat Incoherent Scatter Radar (PFISR) longitude.
PFISR latitude is marked with horizontal line. Comparing PFISR conductance (σ) (black) with ASI inputs to the Boltzmann Three Constituent (B3C) auroral
transport code (Strickland et al., 1976; 1993) (red) and Robinson formulae (blue) for discrete aurora with an electron population described by a Gaussian
distribution (B) and diffuse aurora described by aMaxwellian distribution (C). The B3C version has a goodmatchwith PFISR. (D–G) are 2D plots of the
Hall conductance determined by ASI inputs to B3C.
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ionosphere and the overarching question of how they impact the
global system. What is clear is the importance in better probing
Earth’s magnetotail transition region to understand how energy
(that initially came from the solar wind) is ultimately dissipated.
As mesoscale flows brake and deposit magnetic flux and energy
there, how does that energy move past the transition region and
into the inner magnetosphere? How is the ring current powered?
How is the energy dissipated and/or transferred into the
ionosphere? As the transition region builds pressure from flux
pileup, that pressure drives back the incoming flows and shields
the inner magnetosphere from the solar wind electric field.
Learning how the energy makes it past the transition region
despite this shielding is key. Is it via mesoscale, bursty
phenomena? Is it via a global response predicated by
mesoscale messengers? etc.

With models reaching the point of mesoscale inclusion, the time
is ripe to better study and understand how information is
transported across space and scales via these mesoscale
messengers, especially in the Earth’s magnetotail transition region
where much energy conversion and transport takes place. The
following summarizes what science we are missing to understand
the multi-scale interaction in the nightside MI system along with
suggestions for the tools that could help address it.

Understand 3D structure of plasma, fields, and energy
conversion in the transition region

• Coordinated, 3D observations of the transition region that
span several hours of MLT in width, several RE in length
(6–12 RE), and a few RE north and south of the current sheet.
We need the ability to measure field aligned currents (FACs),
magnetic flux, particle flux and energies, and plasma
moments.

• High temporal (tens of seconds, ≤ minute) and spatial
resolution (~0.5 RE), new generation ENA imagers from
better vantage points (i.e., high inclination circular orbits
instead of elliptical ones, which would allow for more
imaging time throughout a geomagnetic storm) would be a
crucial asset, together with coordinated in-situ observations
embedded within the imaged regions, in order to address the
spatial and temporal evolution of ion injections as they move
from the plasma sheet to the inner magnetosphere.

• Global far ultraviolet (FUV) and multi-spectral imagers
observing the ionosphere with adequate temporal and
spatial resolution (seconds, ~tens of km, for 90 consecutive
minutes (substorm lifetime) or more).

• A suite of imager-bearing satellites with orbital planes flying
over the auroral oval.

• Mosaic of ground-based color imagers, which would allow us
to measure energy flux, mean energy, and conductance, as well
as observe auroral features.

• Substantially enhanced coverage and resolution of 2-D flows
in the ionosphere, such as is now becoming feasible with the
recent new capabilities of the SuperDARN radars.

Determine multi-scale energy deposition and redistribution in
the magnetosphereionosphere-thermosphere system

• 2D low-altitudemeasurements of particleflux, electric andmagnetic
fields along with auroral imaging to infer the distribution of energy
deposition into the ionosphere in the form of precipitation and
Poynting flux. Include measurement of neutrals.

• Array of multi-spectral photometers and/or imagers biased to
the magnetic zenith to infer energy flux and energy in the
auroral zone.

• A satellite constellation taking measurements across
multiple local times, like NASA’s Geospace Dynamics
Constellation (GDC).

Understand 3D structure of the plasma sheet, transport, and
mapping to the ionosphere

• Datasets capable of observing mesoscale phenomena
formation to understand how they are created. Could
include a fleet of satellites distributed azimuthally and
radially throughout the plasma sheet. Could also include
ENA imagers which have shown 2D snapshots of the
energized ions throughout the plasma sheet.

• Ability to couple auroral features with plasma sheet dynamics,
e.g., pre-breakup auroral beads. One idea includes a
spaceborne electron accelerator that provides precise
mapping between in situ and ground-based measurements,
as suggested by Borovsky et al. (2020).

Understand the effects in the inner magnetosphere: for example,
what is the mesoscale contribution to the ring current, radiation
belts, particle energization, and their participation in how particles
gain access, etc.? More on this topic is discussed in the white paper
by Claudepierre et al. (2022) submitted to the National Academy of
Sciences.

• This may require a fleet of satellites to observe the inner
magnetosphere’s evolution in both time and space across
multiple magnetic local times and radial distances.

• ENA imaging may also help address this question by
providing a 2D picture of the energized ions.

Understand non-MHD physics: e.g., ion kinetics, thin current
sheets, electron physics representative of precipitation and arc-
generation, and reconnection onset.

• Global models must be improved to include adequate
temporal and spatial resolutions that are appropriately
coupled between different geospace regions and include the
critical non-ideal MHD physics within the plasma sheet. (See
Sorathia et al., 2022 White Paper submitted to the National
Academy of Sciences.).

• Basic physics in thin auroral arc formationmust be included in
global models.

The suggested tools could be part of one gargantuan effort, or
they could be used as a series of focused investigations addressing
parts of the problem sequentially, each coordinated with its
predecessors, and building up to a constellation gradually.
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4 Summary

In summary, mesoscale carriers or “messengers” of information
such as those described in Table 1 have been increasingly studied in
the past 5–10 years as their significance to the global system is clear,
and modeling capabilities at required resolutions are improving.
Groups in the GEM and CEDAR communities (like the MURI
group) have been putting their efforts into understanding the role of
mesoscale messengers due to the importance of correctly
characterizing how energy, particles, and magnetic flux are
transported, converted, and/or stored in the magnetotail
transition region and in the coupled ionosphere. More questions
have arisen, however, that require coordinated, dedicated missions
to answer, along with improved models that capture higher spatial
and temporal resolutions across various scale sizes.
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