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Optimal Information Disclosure in Classic Auctions†

By Dirk Bergemann, Tibor Heumann, Stephen Morris, 
Constantine Sorokin, and Eyal Winter*

We characterize the revenue-maximizing information structure in the 
second-price auction. The seller faces a trade-off: more information 
improves the efficiency of the allocation but creates higher informa-
tion rents for bidders. The information disclosure policy that maxi-
mizes the revenue of the seller is to fully reveal low values (where 
competition is high) but to pool high values (where competition is 
low). The size of the pool is determined by a critical quantile that is 
independent of the distribution of values and only dependent on the 
number of bidders. We discuss how this policy provides a rationale 
for conflation in digital advertising. (JEL D44, D82, D83, M37)

In digital advertising, the publisher sells impressions in real-time auctions to 
competing advertisers. As the publisher has detailed information about the viewers 
on the website, the publisher has a choice of how much information to reveal about 
the viewer to the competing bidders. Thus, the seller can influence the distribution of 
conditional expectations of the bidders for the value of the impressions. Motivated 
by this, we characterize the optimal information disclosure of a seller regarding the 
values of the bidders. More generally our analysis provides insights in environments 
where the seller’s information is superior or supplemental in at least some dimen-
sions to that of the bidders—for example, markets for experience and secondhand 
goods and markets for financial assets such insurance and private equity.

We consider a second-price auction where bidders’ valuations are independently 
and symmetrically distributed but initially unknown to the bidders. The seller can 
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choose what information each bidder can learn about their own value. If the seller 
did not allow them to learn anything, then all bidders would bid their (common) 
expected value and the good would be randomly (and inefficiently) allocated among 
them. If the seller allowed bidders to learn their true value, then they would have 
a dominant strategy (under private values in a second-price auction) to bid their 
values. The good would be allocated efficiently to the bidder with the highest value. 
The revenue of the seller would equal the value of the efficient allocation minus the 
bidders’ information rent. By permitting bidders to learn something but not every-
thing about their values, the seller can trade off efficiency loss with information rent 
reduction. Our main result is a characterization of the optimal (among symmet-
ric) information policies for the seller. In our analysis, we assume that the seller is 
unconstrained in the choice of information disclosure. In particular, the bidders do 
not possess any private information a priori that would constrain the information 
disclosure of the seller. This is an admittedly substantive assumption but one that 
helps us to frame the trade-off for the seller sharply.

Conditional on having a low value, a bidder is likely to be competing with other 
bidders and earn low information rents. But conditional on having a high value, a 
bidder is likely to win (facing weak competition) and thus can expect to win at a 
price significantly below his value, thus earning high information rents. Thus, the 
gains from concealing information will be highest when valuations are high. In the 
optimal policy, high values are pooled and low values are revealed. There is a critical 
threshold described by a quantile above which all valuations are bundled together 
(Theorem 1). The threshold is given by a quantile of the distribution that depends 
only on the number of bidders and not the distribution of valuations. The optimal 
quantile above which disclosure occurs is increasing in the number of participating 
bidders and goes toward ​1​ (i.e., full disclosure) as the number of bidders grows 
arbitrarily large. Thus, the information policy is influencing the distribution of bids, 
holding fixed the distribution of preferences among the bidders.

The optimal threshold is designed to keep a moderate level of competition at the 
top of the bid distribution. If the threshold is too low, more bidder surplus will be 
extracted but the expected value conditional on being above the threshold will be 
too low. If the threshold is too high, the expected value conditional on being above 
the threshold will be high but too little bidder surplus will be extracted. The optimal 
quantile keeps “around” two bidders at the top of the bid distribution—that is, with 
the same expected value and competing with each other. This gives just enough 
competition to extract the bidder surplus at low efficiency cost.

In the current setting with independent private values, the revenue equiva-
lence result holds. Thus, all classic auction formats—such as first-price auction, 
second-price auction, and all-pay auction—generate the same expected revenue. 
Hence, while we formally study the second-price auction, the results presented here 
extend to all classic and revenue-equivalent auction formats.

We then consider a number of variations of the second-price auction and show 
how our insights remain robust and relevant in those settings. First, we consider the 
second-price auction with a given reserve price. We show that the optimal informa-
tion policy maintains the earlier structure but now introduces a second interval of 
pooled values around the reserve price. We then extend the allocation problem to 
where ​K​ identical objects are allocated in a uniform ​​(K + 1)​​st-price auction. The 



373BERGEMANN ET AL.: OPTIMAL INFORMATION DISCLOSURE IN AUCTIONSVOL. 4 NO. 3

newly relevant ​​(K + 1)​​st-order statistics share the same curvature property as the 
second-order statistic and hence yield comparable optimal information structures. 
Finally, we consider objectives different from the revenue of the seller, such as the 
social surplus or the bidders’ surplus. As all of these objectives can be represented 
as a convex combination of first- and second-order statistic, we obtain a complete 
characterization of the optimal information structure, now in terms of upper and 
lower censored information structures.

Our paper’s motivation is the market for impressions in digital advertising. A 
large share of digital advertising, whether in search, display advertising, or social 
networks, is allocated by auction mechanisms. In digital advertising the auction 
forms a match between competing advertisers (the bidders) and a viewer. A match 
between viewer and advertiser creates an impression (or search result) on the pub-
lisher’s website. We sketch in the final section a model of the market for impressions 
and describe its relationship to information design.

Literature.—Levin and Milgrom (2010) suggested that the idea of conflation 
(central in many commodity markets) by which similar but distinct products are 
treated as identical in order to make markets thicker or reduce cherry-picking, may 
be relevant for the design on online advertising markets. The optimal information 
structure we derive in Theorem 1 exactly determines when conflation should occur, 
in the upper interval, and when not, in the lower interval.

The paper relates to the literature studying optimal information disclosure in 
selling mechanisms. Milgrom and Weber (1982) established the “linkage princi-
ple,” which showed that public information in affiliated value auctions is revenue 
increasing. Board (2009) shows in a private value environment that the disclosure 
of information generates a trade-off between improving efficiency and decreasing 
competition. Bourreau, Caillaud, and de Nijs (2018) obtain a similar result with a 
specific model of differentiated advertisers and so do Hummel and McAfee (2016) 
by considering a specific form of public information considered earlier by Palfrey 
(1983), one that unbundles many symmetric objects.

Ganuza (2004) studies the optimal information disclosure in a second-price auc-
tion. The bidder’s valuations are independent and private and determined by the 
quality of a match between a bidder’s taste and the good’s characteristic represented 
by Hotelling’s model on a circle. The seller chooses the optimal public signal about 
the good’s characteristic. The disclosure of information occurs through a costly pub-
lic signal, and the equilibrium information provision is less than the social efficient 
level. Bergemann and Pesendorfer (2007) analyze the joint optimal design of auc-
tion and information structure. In particular, they allow for asymmetric information 
structures and personalized reserve prices. Here, we fix the selling mechanism to be 
a second-price auction and focus on the role of information to improve the revenue 
of the seller.

A recent strand of literature allows the information disclosure by the seller to 
depend on prior private information elicited from the bidders (see Eső and Szentes 
2007; Li and Shi 2017). A critical issue is then whether the information disclosure 
should discriminate across agents and across types.
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I.  Model

There are ​N​ bidders who compete for an indivisible good in an auction. Bidder ​i​’s 
value is denoted by ​​v​i​​  ∈ ​ ℝ​+​​​. We assume that the valuations are independently and 
identically distributed across bidders according to an absolutely continuous distri-
bution, denoted by ​F​. The assumption that ​F​ is absolutely continuous helps simplify 
some of the expressions, but all results go through essentially unchanged if we relax 
this assumption.

The seller can choose how much information each bidder will have about his own 
value ​​v​i​​​. An information structure is defined by

	​ ​s​i​​ : ​ℝ​+​​  →  Δ ​ℝ​+​​,​

where ​​s​i​​​(​v​i​​)​​ is the signal observed by bidder ​i​ when his value is ​​v​i​​​. After observing ​​s​i​​​, 
the bidder forms his beliefs about his value. An agent’s expected value is denoted by

	​ ​w​i​​  ≜  피​[​v​i​​ ∣ ​s​i​​]​.​

We denote by ​​G​i​​​ the distribution of expected valuations. The definition of the infor-
mation structure implicitly imposes two restrictions. First, each bidder observes 
only information about his own value as ​​s​i​​​ takes as an argument ​​v​i​​​ only (instead 
of ​​(​v​1​​,  …, ​v​N​​)​​). Second, there is no common source of randomization in the sig-
nals. Hence, the signals will be independently distributed across bidders. Finally, 
we additionally assume that the seller is restricted to symmetric information struc-
tures—that is, ​​s​i​​​( · )​  = ​ s​j​​​( · )​​.

The objective of the seller is to maximize revenue. Since bidders are competing in 
a second-price auction, it is a dominant strategy to bid their expected value. Hence, 
revenue is equal to the second-highest expected value across bidders. We denote the ​
k​th-highest value by ​​w​​(k)​​​​. The objective of the seller is to solve

(1)	​ R  ≜ ​   max​ 
​{s:ℝ→Δℝ}​

​​ 피​[​w​​(2)​​​]​.​

II.  Optimal Information Structure

Since the expected revenue is equal to the expectation of second-highest value, 
the distribution of expected valuations generated by the signal is a sufficient statistic 
to compute the seller’s expected revenue. Hence, instead of studying explicitly the 
information structure chosen by the seller, we frequently refer to the distribution of 
expected valuations generated by the signals, which we denote by ​G​.

The second-order statistic of ​N​ symmetrically and independently distributed ran-
dom variables is distributed according to

(2)	​ Pr​(​w​​(2)​​​  ≤  t)​  =  N​G​​ N−1​​(t)​​(1 − G​(t)​)​ + ​G​​ N​​(t)​.​
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The expected revenue of the auctioneer is therefore

	​ 피​[​w​​(2)​​​]​  = ​ ∫ 
0
​ 
∞

​​td​(N ​G​​ N−1​​(t)​​(1 − G​(t)​)​ + ​G​​ N​​(t)​)​.​

We now characterize the set of feasible distributions ​G​.
By Blackwell (1951), Theorem 5, there exists a signal ​s​ that induces a distribu-

tion of expected valuations if and only if ​F​ is a mean-preserving spread of ​G​. ​F​ is 
defined to be a mean-preserving spread of ​G​ if

(3)	​​ ∫ 
v
​ 
∞

​​F​(t)​ dt  ≤ ​ ∫ 
v
​ 
∞

​​G​(t)​ dt, ∀ v  ∈ ​ ℝ​+​​,​

with equality for ​v  =  0.​ If ​F​ is a mean-preserving spread of ​G​, we write ​F  ≺  G​.
We can now express the seller’s problem as maximizing revenue by choosing a 

distribution ​G​ subject to a mean-preserving constraint. The choice of the optimal 
information structure can be written as the following maximization problem:

(4)	​ R  = ​ max​ 
G
​ ​ ​ ∫ 

0
​ 
∞

​​td​(N​G​​ N−1​​(t)​​(1 − G​(t)​)​ + ​G​​ N​​(t)​)​​,

​subject to F  ≺  G.​

This problem consists of maximizing over feasible distributions of expected val-
uations. However, the objective function is nonlinear in the probability (or density) 
of the optimization variable ​G​. Moreover, the nonlinearity cannot be confined to be 
either concave or convex on ​G​.

The key step in our argument comes from a change of variables, rewriting the 
above in terms of the quantile ​q​ of the second-order statistic. We denote by ​​S​N​​​(q)​​ the 
cumulative distribution function of the quantile of the second-highest value:

	​ ​S​N​​​(q)​  ≜  Pr​(G​(​w​​(2)​​​)​  ≤  q)​.​

We index by ​N​ to highlight the dependence on the number of bidders. We observe 
that ​​S​N​​​(q)​​ is given by

	​ ​S​N​​​(q)​  =  N ​q​​ N−1​​(1 − q)​ + ​q​​ N​.​

The distribution ​​S​N​​​, which is the quantile distribution of the second-order statistic ​​
w​​(2)​​​​, is independent of the underlying distribution ​G​. Just as the quantile of any 
random variable is uniformly distributed, the quantile of the second-order statistic 
of ​N​ symmetric independent random variables is distributed according to ​​S​N​​​ for 
any underlying distribution ​G​. Hence, the revenue can be computed by taking the 
expectation over quantiles using measure ​​S​N​​​(q)​​: the revenue given the quantile of 
the second-order statistic is ​​G​​ −1​​. Thus, the maximization problem (4) can be trans-
formed into

(5)	​ ​max​ 
​G​​ −1​

​ ​ ​∫ 
0
​ 
1
​​​S​ N​ ′ ​​(q)​ ​G​​ −1​​(q)​ dq​,

​subject to ​G​​ −1​  ≺ ​ F​​ −1​.​
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The corresponding constraint states that the seller can choose any distribution of 
expected valuations whose quantile function ​​G​​ −1​​ is a mean-preserving spread 
of the quantile function ​​F​​ −1​​ of the initial distribution of valuations. This uses a 
well-known property of the distribution function (see Shaked and Shanthikumar 
2007; Chapter 3) stating that ​F  ≺  G​ if and only if ​​G​​ −1​  ≺ ​ F​​ −1​​. Hence, we have a 
linear (in ​​G​​ −1​​) maximization problem subject to a majorization constraint, which 
will allow us to solve the problem with known methods.

THEOREM 1 (Optimal Information Structure): 

	 1.	 The unique optimal symmetric information structure is given by

(6)	​ s​(​v​i​​)​  = ​ {​​v​i​​,​  if F​(​v​i​​)​  < ​ q​ N​ ∗ ​;​   피​[​v​i​​ ∣ F​(​v​i​​)​  ≥ ​ q​ N​ ∗ ​]​,
​ 
if F​(​v​i​​)​  ≥ ​ q​ N​ ∗ ​.​​​,

		  where the critical quantile ​​q​ N​ ∗ ​  ∈ ​ [0, 1)​​ is independent of ​F​.

	 2.	 The critical quantile satisfies ​​q​ 2​ ∗​  =  0​; ​​q​ N​ ∗ ​​ is increasing in ​N​; ​​q​ N​ ∗ ​  →  1​ as ​
N  →  ∞​; and for each ​N  ≥  3​, ​​q​ N​ ∗ ​​ is the unique solution in ​​(0, 1)​​ to the fol-
lowing polynomial equation of degree ​N​:

(7)	​ ​S​ N​ ′ ​​(q)​​(1 − q)​  =  1 − ​S​N​​​(q)​.​

Thus, the optimal information structure is to reveal the value of all those bidders 
who have a value lower than some threshold determined by a fixed quantile ​​q​ N​ ∗ ​​ and 
otherwise reveal no information beyond the fact that the value is above the thresh-
old. The threshold in terms of the value is given by ​​F​​ −1​​(​q​ N​ ∗ ​)​​, but the quantile ​​q​ N​ ∗ ​​ is 
independent of the distribution ​F​ of valuations.

The optimal information structure thus supports more competition at the top of 
the distribution at the expense of an efficient allocation. The information structure 
fails to distinguish in the allocation between any two valuations that are in the upper 
tail of the distribution ​​[​F​​ −1​​(​q​ N​ ∗ ​)​, ∞)​​. The benefit accrues through more competitive 
bids among the high-value bidders. Namely, if the second-highest bid is in the above 
upper interval, then its competitive bid matches exactly the bid of the winning bid 
and thus the information rent of the winning bidder is depressed considerably with 
a corresponding gain in the revenue for the seller.

To prove Theorem 1, we use Proposition 2 of Kleiner, Moldovanu, and Strack 
(2021). It gives necessary and sufficient conditions under which an extreme point ​​
G​​ −1​​ in the set of mean-preserving distributions ​​F​​ −1​​ is optimal. The proposition 
uses the fact that the objective is a linear functional, and the constraint set is defined 
by majorization and monotonicity, which are indeed the defining conditions of our 
maximization problem (5).1

1 The proof of Theorem 1 in Sorokin and Winter (2021) was self-contained and did not refer to the verification 
result of Kleiner, Moldovanu, and Strack (2021).
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PROPOSITION 1 (Kleiner, Moldovanu, and Strack 2021; Proposition 2): Let ​​G​​ −1​​ 
be such that for some countable collection of intervals ​​{​[​​ x ¯ ​​i​​, ​​x – ​​i​​)​ ∣ i  ∈  I}​​,

	​ ​G​​ −1​​(q)​  = ​
{

​
​F​​ −1​​(q)​,

​ 
if q  ∉ ​ ∪​i∈I​​​[​​ x ¯ ​​i​​, ​​x – ​​i​​)​;

​   
​ 
​∫ ​​ x ¯ ​​i​​

​ 
​​x – ​​i​​​​​F​​ −1​​(t)​dt

 _______ ​​x – ​​i​​ − ​​ x ¯ ​​i​​
  ​,

​ 
if q  ∈ ​ [​​ x ¯ ​​i​​, ​​x – ​​i​​)​.

 ​​ ​

If ​conv​S​N​​​ is affine on ​​[​​ x ¯ ​​i​​, ​​x –​​i​​)​​ for each ​i  ∈  I​ and if ​conv​S​N​​​ = ​​S​N​​​ otherwise, then  
​​G​​ −1​​ solves problem (5). Moreover, if ​​F​​ −1​​ is strictly increasing, the converse holds.

Here, ​conv ​S​N​​​ is the convexification of ​​S​N​​​—that is, the largest convex function 
that is smaller than ​​S​N​​​. With this result we can prove our main result.

PROOF OF THEOREM 1:
The second derivative of the distribution ​​S​N​​​ of the quantile of the second-order 

statistic is given by

	​ ​S​ N​ ′′ ​​(q)​  = ​ q​​ N−3​​(N − 1)​N​(N − 2 − q​(N − 1)​)​.​

Hence, ​​S​N​​​(q)​​ is concave if and only if

	​ q  ≥ ​ (N − 2)​ / ​(N − 1)​​

and convex otherwise. Thus, the convex hull of ​​S​N​​​ for ​N  ≥  3​ is

	​ conv ​S​N​​​(q)​  = ​ {​
​S​N​​​(q)​,

​ 
if q  ≤ ​ q​ N​ ∗ ​;

​    
​S​ N​ ′ ​​(​q​ N​ ∗ ​)​​(q − ​q​ N​ ∗ ​)​ + S​(​q​ N​ ∗ ​)​,

​ 
otherwise,

 ​​​

where ​​q​ N​ ∗ ​​ is defined as in (7) for ​N  ≥  3​. For ​N  =  2​, we have ​conv ​S​2​​​(q)​  =  q​ and 
define ​​q​ 2​ ∗​  =  0​. Now let ​​G​​ −1​​ be given by

(8)	​ ​G​​ −1​​(q)​  = ​
⎧
 

⎪

 ⎨ 
⎪
 

⎩
​
​F​​ −1​​(q)​,

​ 
q  < ​ q​ N​ ∗ ​;

​  
​ 
​∫ ​q​ N​ ∗ ​​ 

1
 ​​​F​​ −1​​(t)​ dt

 _ 
1 − ​q​ N​ ∗ ​ ​ ,

​ 
q  ∈ ​ [​q​ N​ ∗ ​, 1]​.

​​​

Then ​​G​​ −1​​ satisfies all the assumptions of Proposition 1, so it is the unique optimal 
solution to (5). For all valuations below ​​F​​ −1​​(​q​ N​ ∗ ​)​​, the distribution over expected val-
uations is the same as that of the real valuations. Hence, types below ​​F​​ −1​​(​q​ N​ ∗ ​)​​ know 
their own values. On the other hand, for valuations above ​​F​​ −1​​(​q​ N​ ∗ ​)​​, the distribution 
over expected valuations is a mass point at the expected value conditional on being 
above ​​F​​ −1​​(​q​ N​ ∗ ​)​​. Hence, it is clear that this distribution is induced by information 
structure (6).

To check that ​​q​ N​ ∗ ​​ is strictly increasing in ​N​, we define

	​ ψ​(q, N)​  ≜ ​ S​ N​ ′ ​​(q)​​(1 − q)​ − ​(1 − ​S​N​​​(q)​)​.​

By definition, ​ψ​(​q​ N​ ∗ ​, N)​  =  0​. We now note that

	​ ψ​(q, N + 1)​ − ψ​(q, N)​  =  N ​​(q − 1)​​​ 2​​(N​(q − 1)​ + 1)​ ​q​​ N−2​​,
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so ​ψ​(q, N + 1)​ − ψ​(q, N)​  ≥  0​ if and only if ​q  ≥ ​ (N − 1)​ / N​. As previously argued, ​​
q​ N​ ∗ ​  < ​ (N − 2)​ / ​(N − 1)​​, so ​​q​ N​ ∗ ​  < ​ (N − 1)​ / N​, which implies that

(9)	​ ψ​(​q​ N​ ∗ ​, N + 1)​  <  0.​

We also have that ​ψ​(0, N)​  =  − 1​ and ​ψ​(1 − ε, N)​  >  0​ for ​ε​ small enough, 
where the last part can be verified by noting that

	​ ψ​(1, N)​  = ​ 
∂ ψ​(1, N)​
 _ ∂ q  ​  =  0  and ​ 

​∂​​ 2​ ψ​(1, N)​
 _ 

∂ ​q​​ 2​
 ​   =  N​(N − 1)​  >  0.​

As previously argued, ​ψ​(q, N + 1)​​ has a unique root in ​​(0, 1)​​, so (9) implies that ​​
q​ N​ ∗ ​  < ​ q​ N+1​ ∗ ​ ​.

Finally, if ​N​ diverges to infinity and ​​lim​N→∞​​ ​q​ N​ ∗ ​  <  1​, then in the limit we would 
have that ​​S​N​​​(​q​ N​ ∗ ​)​, ​S​ N​ ′ ​​(​q​ N​ ∗ ​)​  →  0.​ So (7) would not be satisfied. We thus must have 
that ​​lim​N→∞​​ ​q​ N​ ∗ ​  =  1​. ∎

The gains from the optimal information structure will depend on the distribution 
of values, ranging from no gains to a revenue that can be arbitrarily larger than 
the expected revenue generated under complete information (see Bergemann et al. 
2021). As the number of bidders grows large, the gains will remain substantive as 
long as the distribution of values has fat tails.

We restricted attention to the optimal symmetric information structure. While we 
do not have a general result showing that the optimal information structure is always 
symmetric, the symmetric information structure is indeed the unique optimal infor-
mation structure when there are two or three bidders (see Board 2009 for the case ​
N  =  2​ and Bergemann, Heumann, and Morris 2021 for the case ​N  =  3​).

Critical Quantile ​​q​​ ∗​​.—We now provide some intuition for the determination of 
the critical quantile. In particular, we show that it must be given by equation (7) as 
long as information takes the qualitative form given by Theorem 1. Suppose that we 
fix a quantile threshold ​q​ and write ​v  = ​ F​​ −1​​(q)​​ for the corresponding value. Now 
what happens to revenue if we decrease the threshold by ​dq​?

With probability ​​S​ N​ ′ ​​(q)​ dq​, the second-highest bid was not in the pooling zone 
before the decrease but is now after the decrease. The resulting revenue increases by

(10)	​ ​(피​[​v​i​​ ∣ ​v​i​​  ≥  v]​ − v)​,​

where the conditional expectation ​피​[​v​i​​ ∣ ​v​i​​  ≥  v]​​ represents the value (and bid) in 
the pooling interval and ​v​ the value (and bid) before being included in the interval. 
This is the benefit of a marginally lower threshold. With probability ​1 − ​S​N​​​(q)​​, the 
second-highest bid was already in the pooling zone before the decrease. The cost of 
a lower threshold is then a loss of revenue from the inframarginal bidders:

(11)	​ ​ 
d피​[​v​i​​ ∣ ​v​i​​  ≥  v]​

  ____________ 
dq

  ​  = ​   1 _ 
1 − q ​​(피​[​v​i​​ ∣ ​v​i​​  ≥  v]​ − v)​.​

Hence, the revenue gain is proportional to ​​S​ N​ ′ ​​(q)​​ and the revenue loss is propor-
tional to ​​(1 − ​S​N​​​(q)​)​ / ​(1 − q)​​. Equating gains and losses, we get (7), as the term  
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​​(피​[​v​i​​ ∣ ​v​i​​  ≥  v]​ − v)​ dq​ appears on both sides and hence cancels out. Furthermore, 
among the class of upper-pooling information structure, revenue is quasi-concave 
and single-peaked in the threshold ​q​ (see Sorokin and Winter 2021).

A notable implication of this marginal argument is that the critical quantile ​​q​​ ∗​​ 
is indeed independent of the distribution ​F​(v)​​ of values, or indeed any other func-
tion of the distribution such as the inverse hazard rate ​​(1 − F​(v)​)​ / f​(v)​​ that typically 
appears in the virtual utility. The absence of any distributional dependence becomes 
evident in the above marginal argument. The size of the pool is determined by the 
marginal probability gain and the inframarginal probability loss, each of which can 
be expressed solely in terms of the distribution ​​S​N​​​(q)​​ of the quantile of the second-or-
der statistic. Moreover, the corresponding revenue gain or loss is proportional to  
​​(피​[​v​i​​ ∣ ​v​i​​  ≥  v]​ − v)​,​ as expressed by (10) and (11). Thus, the terms where we would 
expect the distributional information to enter drop out completely. The fact that 
the optimal quantile is independent of any distributional information regarding ​F​ 
is distinct from the fact that the quantile distribution of the second-order statistic 
is independent of ​F​. The former is a consequence of the revenue optimization; the 
latter is a purely statistical property.

The optimal quantile threshold ​​q​​ ∗​​ is therefore independent of the distribution of 
values and only depends on the number of bidders. This qualitative result on the 
optimal information policy is exactly the opposite of the optimal reserve price pol-
icy, which is independent of the number of bidders but varies with the distribution.

Competition at the Top.—We can gain further intuition about the optimal policy 
by examining the degree of competition at the top of the bid distribution. We will 
show that the expected number of bidders above the threshold lies in a narrow range 
around two.

The number of bidders that have the highest expected value follows a binomial 
distribution, denoted conventionally by ​B​(N, 1 − ​q​ N​ ∗ ​)​​. The expected number of bid-
ders at the top of the bid distribution is then given by2

	​ ​ρ​ N​ ∗ ​  ≜  N​(1 − ​q​ N​ ∗ ​)​.​

Now ​​ρ​ 2​ ∗​  =  2​, since ​​q​ 2​ ∗​  =  0​. To characterize ​​ρ​ N​ ∗ ​​ for ​N  ≥  3​, we can substitute ​​
q​ N​ ∗ ​  =  1 − ​ρ​ N​ ∗ ​/N​ into (7) to get an ​N​th-degree polynomial characterizing ​​ρ​ N​ ∗ ​​:

(12)	​ ​ ​ρ​ N​ ∗ ​ _ 
N ​ ​S​ N​ ′ ​​(1 − ​ ​ρ​ N​ ∗ ​ _ 

N ​)​  =  1 − ​S​N​​​(1 − ​ ​ρ​ N​ ∗ ​ _ 
N ​)​.​

One can numerically verify that ​​ρ​ N​ ∗ ​​ is decreasing in ​N  ≥  3​, with ​​ρ​ 3​ ∗​  =  2.25​ and ​​​
ρ​ N​ ∗ ​​↓​​ ​ρ​ ∞​ ∗ ​  ≈  1.793​​ as ​N  →  ∞​. The limit value ​​ρ​ ∞​ ∗ ​​ can be solved analytically, as 
equation (12) reduces to

	​ ​​(​ρ​ ∞​ ∗ ​)​​​ 2​ + ​ρ​ ∞​ ∗ ​ + 1  = ​ e​​ ​ρ​ ∞​ ∗ ​​,​

2 This is the expression for the mean of any binomial distribution (see, for example, Papoulis and Pillai 2002).



380 AER: INSIGHTS SEPTEMBER 2022

as ​N  →  ∞​, whose solution is ​​ρ​ ∞​ ∗ ​  ≈  1.793​. Furthermore, as ​N  →  ∞​, the bino-
mial distribution ​B​(N, 1 − ​q​ N​ ∗ ​)​​ converges to a Poisson distribution with parameter ​​
ρ​ ∞​ ∗ ​​  by the Poisson limit theorem (see Papoulis and Pillai 2002). Hence, the optimal 
information policy always keeps “about” two bidders above the threshold, which is 
the key to extracting bidder surplus.

Comparison to Bayesian Persuasion.—A brief contrast with a comparable 
Bayesian persuasion model may be instructive. In the continuous action and con-
tinuous state version as analyzed by Dworczak and Martini (2019), for example, 
the objective function is given by a nonlinear evaluation ​u​(x)​​ of an outcome ​x​ and 
density ​dG​(x)​​, thus a functional linear in probability:

	​ ​max​ 
G
​ ​ ​ ∫ 

0
​ 
1
​​u​(x)​ dG​(x)​, subject to F  ≺  G.​

Our original maximization problem (4) did not take this form, as it was nonlinear 
in the density ​dG​(t)​​. However, we reformulated the problem to one that is linear 
in the new optimization variable ​​G​​ −1​​, changing the direction of the majorization 
constraint. Thus, we do not restrict ​G​ to be a mean-preserving contraction of ​F​ any-
more as it is common in Bayesian persuasion; rather, we require that ​​G​​ −1​​ must be 
a mean-preserving spread of ​​F​​ −1​​. For this problem, the convexification of ​​S​N​​​ was 
key to identifying the optimal information structure. The information structure (6) 
that emerges here is sometimes referred to as “upper censorship” in the Bayesian 
persuasion literature, as it pools all the states above a threshold and reveals all the 
states below the threshold (Alonso and Câmara 2016; Kolotilin, Mylovanov, and 
Zapechelnyuk 2022).3

III.  Variations of the Second-Price Auction

We gave a description of the optimal information structure in the standard 
second-price auction. We now explore the nature of the optimal information struc-
ture in significant variations of the second-price auction. First, we consider the opti-
mal information structure in the presence of a reserve price ​r​. Second, we consider 
a generalization of the second-price auction—namely, the ​​(K + 1)​​st-price auction 
where each bidder has unit demand but the seller can offer ​K​ homogenous units at 
a uniform price equal to the ​K + 1​ highest bid. And third, we investigate the nature 
of the optimal information structure when the objective of the auction is different 
from the revenue of the seller—for example, the surplus of the bidders or the social 
surplus.

Reserve Price.—We now consider the second-price auction with a common 
reserve price ​r  >  0​ for all bidders. We keep the rest of the model as presented in 
Section I unchanged. We then derive the optimal information structure given the 

3 There are a number of recent papers that use the ironing techinque as introduced by Mussa and Rosen 
(1978) and Myerson (1979) to solve problems in optimal pricing and optimal gerrymandering—see, for example, 
Loertscher and Muir (2022); Ashlagi, Monachou, and Nikzad (2021); Dworczak, Kominers, and Akbarpour (2021); 
Kang (2020); and Kolotilin and Wolitzky (2020), respectively. Kleiner, Moldovanu, and Strack (2021) provide an 
elegant formulation of problems where majorization is added to the ironing problem that we can apply directly.
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auction format of a second-price auction with reserve price ​r​. In particular, we do 
not attempt to solve jointly for the optimal reserve price and information structure.

The seller’s problem regarding the choice of the information structure is now 
given by

(13)   ​   R  ≜ ​   max​ 
​{s:ℝ→Δℝ}​

​​​{ℙ​(​w​​(1)​​​  ≥  r, ​w​​(2)​​​  <  r)​r 

	 + ℙ​(​w​​(2)​​​  ≥  r)​피​[​w​​(2)​​​ ∣ ​w​​(2)​​​  ≥  r]​}​.​

In other words, if ​​w​​(1)​​​  <  r​, then the object is not sold; if ​​w​​(2)​​​  <  r​ and  
​​w​​(1)​​​  ≥  r​, then the object is sold to the bidder with the highest expected value at 
price ​r;​ if ​​w​​(2)​​​  ≥  r​, then the object is sold to the bidder with the highest expected 
value at price ​​w​​(2)​​​​.

As before, the seller’s problem is an optimization over the feasible distributions ​
G​ of expected valuations. We denote the left limit of ​G​ at ​v  =  r​ as

	​ ​q​r​​  ≜ ​ lim​ v​↑​​r​ ​ G​(v)​.​

We can now write the seller’s problem as follows:

	​ R  = ​ max​ 
​G​​ −1​

​ ​​{N ​q​ r​ N−1​​(1 − ​q​r​​)​r + ​∫ ​q​r​​
​ 

1
​​​S​ N​ ′ ​​(q)​ ​G​​ −1​​(q)​ dq}​​,

​subject to ​G​​ −1​  ≺ ​ F​​ −1​.​
This expresses the seller’s problem as an optimization problem over quantiles  

​​G​​ −1​​, subject to ​​G​​ −1​​ being a mean-preserving spread of ​​F​​ −1​​.
In the standard second-price auction, a positive reserve price ​r​ provides an upper 

bound on the information rent and thus a lower bound on the revenue that the seller 
can get in any sale of the object. The reserve price ​r​ maintains this beneficial prop-
erty in the presence of information design. But the reserve price ​r​ gives the seller 
now an additional reason to pool the values of some bidders. Namely, the seller can 
create an intermediate pool of values with an expectation equal to the reserve price ​
r​. The new pool around ​r​ allows the seller to simultaneously increase the probabil-
ity of a sale from low and intermediate values and maintain an upper bound on the 
information rent of the high-value bidders.

We denote the highest value in the support of the distribution ​G​ by ​​​v –​​G​​​.

PROPOSITION 2 (Optimal Information Structure with Reserve Price): Given a 
reserve price ​r​, an optimal distribution of expected valuations is given by

(14)	​ ​G​​ −1​​(q)​  = ​
{

​
​F​​ −1​​(q)​,

​ 
if q  ∈ ​ [0, ​q​1​​)​ ∪ ​(​q​2​​, ​q​3​​]​;

​   r,​  if q  ∈ ​ (​q​1​​, ​q​2​​]​;​   
​​v –​​G​​,

​ 
if q  ∈ ​ (​q​3​​, 1]​;

 ​​​

for some quantiles ​​q​1​​  ≤ ​ q​2​​  ≤ ​ q​3​​​ and ​​F​​ −1​​(​q​1​​)​  ≤  r  ≤ ​ F​​ −1​​(​q​2​​)​  ≤ ​ F​​ −1​​(​q​3​​)​  
≤ ​​ v –​​G​​​.
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The proposition states that there will be two full-disclosure regions  
​​[0, ​q​1​​)​ ∪ ​[​q​2​​, ​q​3​​)​​, one pooling interval at ​r​ and a second pooling interval at ​​​v –​​G​​​ (which 
is the highest value in the support of expected valuations). The inequalities for the 
threshold quantiles are weak, ​​q​1​​  ≤ ​ q​2​​  ≤ ​ q​3​​​, and thus some intervals may not be 
present in the optimal information structure.4

The main novelty is the introduction of a pooling region at ​r.​ The reason for the 
additional pooling region is that the seller’s expected revenue is discontinuous in the 
expected values around the threshold, so bidders who are initially marginally below 
the reserve price ​r​ are included in the interval ​​[​q​1​​, ​q​2​​)​,​ so that they bid the reserve 
price. The full-disclosure region ​​[0, ​q​1​​)​​ contains all values that do not buy the object.

PROOF OF PROPOSITION 2:
We fix an optimal information structure ​​G​​ ∗​​ and denote the left limit of ​​G​​ ∗​​ at ​r​ by ​​

q​ r​ ∗​​. We can then write the seller’s problem as follows:

(15)	​ R  = ​ max​ 
​G​​ −1​

​ ​N ​​(​q​ r​ ∗​)​​​ N−1​​(1 − ​q​ r​ ∗​)​r + ​∫ ​q​ r​ ∗​
​ 

1
 ​​​S​ N​ ′ ​​(q)​ ​G​​ −1​​(q)​ dq​,

subject to

(16)	​ ​G​​ −1​  ≺ ​ F​​ −1​  and  ​G​​ −1​​(​q​ r​ ∗​)​  =  r.​

Here we added the constraint that the probability that a bidder’s expected value is 
below the reserve price is ​​q​ r​ ∗​​. By construction this constraint is satisfied by the opti-
mal mechanism.

We now note that at ​​q​ r​ ∗​​, constraint (16) is binding—that is,

(17)	​​ ∫ ​q​ r​ ∗​
​ 

1
 ​​​G​​ ∗−1​​(t)​ dt  = ​ ∫ ​q​ r​ ∗​

​ 
1
 ​​​F​​ −1​​(t)​ dt.​

Otherwise, one could increase the probability that a bidder’s value is above ​r​ while 
keeping the distribution of values above quantile ​​q​ r​ ∗​​ the same as in ​​G​​ ∗−1​​. In other 
words, we could find ​​​G ˆ ​​​ 

−1
​​(q)​​, with ​​​q ˆ ​​r​​  < ​ q​ r​ ∗​​ and ​​​G ˆ ​​​ 

−1
​​(q)​  = ​ G​​ ∗−1​​(q)​​ for all ​q  ≥ ​ q​ r​ ∗​​. 

This would generate higher revenue, which is a contradiction to ​​G​​ ∗−1​​ being optimal.
Since ​​G​​ ∗−1​​(q)​  <  r​ for all ​q  < ​ q​ r​ ∗​​ and (17) is satisfied, we can assume without 

loss of generality that ​​G​​ ∗−1​​(q)​  = ​ F​​ −1​​(q)​​ for all ​q  < ​ q​ r​ ∗​.​ To verify this, note that 
we can always modify ​​G​​ ∗−1​​ in this way and it would continue to be non-decreasing 
and satisfy ​​G​​ ∗−1​  ≺ ​ F​​ −1​​. Hence, we focus on finding the properties of ​​G​​ ∗−1​​ for 
quantiles above ​​q​ r​ ∗​.​ We can write constraint (16) as follows:

(18)	​​ ∫ q​ 
1
​​​G​​ −1​​(q)​ dq  ≤ ​ ∫ q​ 

1
​​​F​​ −1​​(q)​ dq for all q  ≥ ​ q​ r​ ∗​ 

	 and with equality for q  = ​ q​ r​ ∗​ and ​G​​ −1​​(​q​ r​ ∗​)​  =  r​.

4 This is largely a function of the given level of the reserve price ​r​. Already with the uniform distribution on the 
unit interval—depending on ​r​—any of the following three configurations can arise: ​​q​1​​  <  ​q​2​​  <  ​q​3​​  =  ​q​ N​ ∗ ​​, ​​q​1​​  < ​
q​2​​  =  ​q​3​​  =  ​q​ N​ ∗ ​​, or ​​q​ N​ ∗ ​  <  ​q​1​​  =  ​q​2​​  =  ​q​3​​​.
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That is, we can write the constraint completely in terms of quantiles above ​​q​ r​ ∗​​. So 
(18) is a majorization on a restricted domain ​​[​q​ r​ ∗​, 1]​​ plus a constraint determining ​​
G​​ −1​​(​q​ r​ ∗​)​  =  r.​

We now define ​​q​ c​ ∗​​ implicitly as follows:

	​​ 
​∫ ​q​ r​ ∗​​ ​q​ c​ ∗​​​​F​​ −1​​(t)​𝑑t

 ________ ​q​ c​ ∗​ − ​q​ r​ ∗​
 ​   ≜  r​

and define the following information structure:

	​ ​​F ̃ ​​​ −1​​(q)​  = ​ {​r​  q  ∈ ​ [​q​ r​ ∗​, ​q​ c​ ∗​]​;​  ​F​​ −1​​(q)​​ q  ∉ ​ [​q​ r​ ∗​, ​q​ c​ ∗​]​.
​​​

That is, ​​F ̃ ​​ pools values in an interval ​​[​F​​ −1​​(​q​ r​ ∗​)​, ​F​​ −1​​(​q​ c​ ∗​)​]​​ so that they induce an 
expected value ​r​ (and offer full disclosure otherwise).

We now note that a quantile function satisfying ​​G​​ −1​​(q)​  = ​ F​​ −1​​(q)​​ for all  
​q  ≤ ​ q​ r​ ∗​​ satisfies (18) if and only if ​​G​​ −1​  ≺ ​​ F ̃ ​​​ −1​.​ Hence, we can write (15) as a max-
imization problem subject to a majorization constraint (as in (5)) with the following 
modifications: the optimization is over the domain ​​[​q​ r​ ∗​, 1]​​, and it is using distribu-
tion ​​F ̃ ​​ instead of ​F​. We can thus find a solution following the same procedure as in 
Theorem 1 (and we would obtain exactly the same problem if we were to rescale the 
domain ​​[​q​ r​ ∗​, 1]​​ and replace ​F​ with ​​F ̃ ​​ ). We recover (14) by setting

	​ ​(​q​1​​, ​q​2​​, ​q​3​​)​  = ​
{

​
​(​q​ r​ ∗​, ​q​ r​ ∗​, ​q​ r​ ∗​)​,

​ 
if ​q​ N​ ∗ ​  ≤ ​ q​ r​ ∗​;

​   ​(​q​ r​ ∗​, ​q​ c​ ∗​, ​q​ c​ ∗​)​,​  if  ​q​ r​ ∗​  ≤ ​ q​ N​ ∗ ​  < ​ q​ c​ ∗​;​   
​(​q​ r​ ∗​, ​q​ c​ ∗​, ​q​ N​ ∗ ​)​,

​ 
if ​q​ c​ ∗​  ≤ ​ q​ N​ ∗ ​.

 ​​ ​

Note that ​​q​ r​ ∗​​ and ​​q​ c​ ∗​​ also depend on ​N​, but we did not add the additional subindices 
to simplify the notation. ∎

​​(K + 1)​​st-Price Auction.—An important generalization of the second-price auc-
tion is the sale of ​K​ identical and homogeneous objects when each of the ​N​ bidders 
has unit demand. The seller then offers the objects at a uniform price equal to the ​
K + 1​ highest bid (assuming ​K  <  N​). Each bidder still has a dominant strategy to 
bid truthfully, and the revenue can be described by the ​​(K + 1)​​st-order statistic.

We are now interested in characterizing the optimal information structure for the ​​
(K + 1)​​st-price auction. The seller’s revenue is

	​ R  = ​   max​ 
​{s:ℝ→Δℝ}​

​​ K ⋅ 피​[​w​​(K+1)​​​]​.​

The distribution of the ​​(K + 1)​​st-order statistic is given by

	​ ℙ​(​w​​(K+1)​​​  ≤  v)​  = ​  ∑ 
k=0

​ 
K

  ​​​(​ N   k ​)​ ​G​​ N−k​​(v)​ ​​(1 − G​(v)​)​​​ k​.​
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The optimal choice of the information structure can then proceed as before except 
that we are tracking the ​​(K + 1)​​st- rather than the second-order statistic. With the 
same change in variables, from values to quantiles, we can then write the revenue 
as follows:

	​ R  = ​ ∫ 
0
​ 
1
​​​(​ ∑ 

k=0
​ 

K

  ​​​(​ N   k ​)​ ​q​​ N−k​​(v)​ ​​(1 − q)​​​ k​)​ ​G​​ −1​​(q)​ dq.​

Fortunately, the order statistic for all ​K  ≥  2​ share the same qualitative structure 
in terms of the curvature. Namely, the ​K​th-order statistic expressed in quantile ​q​ 
changes its curvature only once, and from convex to concave. It follows that we 
obtain a similar result to Theorem 1 for the ​​(K + 1)​​st-price auction:

COROLLARY 1 (​​(K + 1)​​st-Price Auction): The unique optimal symmetric infor-
mation structure is given by

(19)	​ s​(​v​i​​)​  = ​ {​​v​i​​,​  if F​(​v​i​​)​  < ​ q​ N,K​ ∗ ​ ;​    피​[​v​i​​ ∣ F​(​v​i​​)​  ≥ ​ q​ N,K​ ∗ ​ ]​,
​ 
if F​(​v​i​​)​  ≥ ​ q​ N,K​ ∗ ​ , ​​​

where the critical quantile ​​q​ N,K​ ∗ ​   ∈ ​ [0, 1)​​ is independent of ​F​.

Similar to Theorem 1, the critical threshold is determined independent of the 
underlying distribution, but dependent on the number of bidders and now the num-
ber of objects.

Alternative Welfare Objectives.—We analyzed how information disclosure can 
maximize the revenue of the seller. But we might be interested how different objec-
tive functions would influence the optimal disclosure policy. For example, we might 
ask what is the social-surplus-maximizing information disclosure policy or what 
is the bidder optimal information disclosure policy, or conversely what is the reve-
nue-minimizing or bidder-surplus-minimizing information policy?

In the second-price auction, these objectives can all be described by weighted 
sums of the first-order and second-order statistic. For example, the sum of the bid-
ders’ surplus is the expectation of the difference of the first-order statistic and the 
second-order statistic. It turns out that the difference of first- and second-order sta-
tistic has exactly the reverse curvature properties than the second-order statistic—
namely, first concave and then convex. An implication of our earlier argument is 
then that the bidders’ optimal information structure is a lower censored information 
structure.

COROLLARY 2 (Bidder Optimal Information Structure): The bidder optimal sym-
metric information structure is given by

(20)	​ s​(​v​i​​)​  = ​
{

​
피​[​v​i​​ ∣ F​(​v​i​​)​  ≤  q]​,​ 

if F​(​v​i​​)​  < ​ o​ N​ ∗ ​;
​   

​v​i​​,
​ 

if F​(​v​i​​)​  ≥ ​ o​ N​ ∗ ​,
 ​​​

where the critical quantile ​​o​ N​ ∗ ​  = ​ (N − 2)​ / ​(N − 1)​  ∈ ​ [0, 1)​​ is independent of ​F​.
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In fact, we can describe the entire range of payoff outcomes for the bidders and 
the seller by computing the optimal information policy for the weighted sum of the 
expectation of the first-order statistic and the second-order statistic. The objective 
is now to maximize the expectation of a linear combination of the first-order and 
second-order statistic:

(21)	​ m피​[​(1 − |λ|)​ ​w​​(2)​​​ + λ ​w​​(1)​​​]​​,

where ​λ  ∈ ​ [− 1, 1]​​ and ​m  ∈ ​ {− 1, 1}​​. The problem we have studied so far (revenue 
maximization) corresponds to ​​(m, λ)​  = ​ (1, 0)​​. If we wanted to maximize total sur-
plus, the objective corresponds to ​​(m, λ)​  = ​ (1, 1)​​. Bidders’ surplus maximization 
corresponds to ​​(m, λ)​  = ​ (−1, −1/2)​​.

We can find the optimal information structure following the same steps as in 
Section II. Throughout this section we assume that ​N  ≥  3​ (the case ​N  =  2​ follows 
after some qualifications). Define

	​ ​W​N​​​(q)​  ≜ ​ (1 − | λ |)​ ​S​N​​​(q)​ + λ ​q​​ N​,​

and write the optimization problem as follows:

	​ ​max​ 
​G​​ −1​

​ ​ ​∫ 
0
​ 
1
​​​W​ N​ ′ ​​(q)​ ​G​​ −1​​(q)​ dq    subject to    ​G​​ −1​  ≺ ​ F​​ −1​.​

The second derivative of ​W​ gives us the curvature of the objective function. We 
can verify that if (i) ​λ  ≥  1 / 2​ and ​m  =  1​, then ​​W​N​​​ is convex, (ii) ​λ  ≥  1 / 2​ and ​
m  =  − 1​, then ​​W​N​​​ is concave, (iii) ​λ  ≤  1 / 2​ and ​m  =  1​, then ​​W​N​​​ is convex for 
small ​q​ and concave for large ​q​, and (iv) ​λ  ≤  1 / 2​ and ​m  =  − 1​, then ​​W​N​​​ is con-
cave for small ​q​ and convex for large ​q​. The shape of ​​W​N​​​ determines the optimal 
information structure by finding the convex hull of ​​W​N​​​(q)​​.

COROLLARY 3 (Bidder Optimal Information Structure): If ​m  =  1​, the optimal 
information structure is upper censorship, furthermore, is full disclosure if and only 
if ​λ  ≥  1 / 2​. If ​m  =  − 1​, the optimal information structure is lower censorship, 
furthermore, is no disclosure if ​λ  ≥  1​.

Thus, any linear combination of revenue and social surplus is maximized by an 
upper or lower censored information structure. Figure 1 illustrates the set of feasible 
pairs of bidders’ surplus and revenue. Any point can be attained by an information 
structure that solves (21) for some ​​(λ, m)​​ and the slope of the curve is given by ​− λ / ​
(1 − |λ| + λ)​​. Furthermore, any payoff pair that is attainable by some information 
structure must be inside these two curves. The red curve illustrates the set of pay-
off pairs that can be attained by upper censored ​​(m  =  1)​​. The maximum revenue 
is attained by an upper censored information policy. The blue curve illustrates the 
set of payoff pairs that can be attained by lower censorship ​​(m  =  − 1)​​. The bidder 
optimal information structure is a lower censored information structure. Social sur-
plus is maximized under complete information; the bidder surplus is minimized 
under no information (in this case, bidder surplus is zero). Complete information 
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and no information are the two information structures that are both upper and lower 
censorship.

IV.  The Market for Impressions and Information Design

We studied the revenue-maximizing information structure in a second-price auc-
tion with and without reserve price. In the introduction, we mentioned the market 
for impressions in digital advertising as our main motivation. We conclude with a 
brief discussion how we may translate our current results to a market for impres-
sions with two-sided information. This translation recasts the optimal information 
design as bidding mechanisms in the world of digital advertising. The choice of the 
optimal information structure can then be interpreted in terms of the information 
policy of the publisher who matches the viewer with the advertisers.

The seller (a publisher or intermediary) uses an auction platform to sell the 
attention (“eyeball”) of the viewer to competing advertisers. The viewer is thus the 
object of the auction. The viewers are typically heterogeneous in many attributes: 
their demographic characteristics, their preferences, their (past) shopping behavior, 
their browsing history, and other aspects, observable and unobservable. The adver-
tisers display a corresponding degree of heterogeneity in their willingness to pay 
for a match between their advertisement and a specific viewer. The private (and the 
social) value of any particular match is jointly determined by the viewer’s attributes 
and the advertiser’s preferences for those attributes. In the presence of this hetero-
geneity on both sides of the match, viewer and advertiser, internet advertising has 
moved toward targeted advertising to join the information. The auction can there-
fore support highly targeted advertising that may increase the social efficiency in the 
match formation between viewer and advertiser.

Figure 1. Expected Revenue and Bidders’ Surplus across Information Structure,  
​N =  5​ and Uniform Distribution of Values
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Formally, the viewer may have attributes ​x  ∈  X  ⊂ ​ ℝ​​ J​​ distributed according 
to ​​F​x​​​. Each advertiser ​i​ has a preference for the attributes described by ​y  ∈  Y  ⊂ ​
ℝ​​ J​​, distributed according to ​​F​y​​​, identically and independently distributed across 
advertisers.

An impression is a match between an advertiser and a viewer. The value ​​v​i​​​ of 
advertiser ​i​ from attracting a viewer is determined by a function ​u : X × Y  → ​ ℝ​+​​,​  
such that the value is determined by the joint value of attributes and preferences: ​​
v​i​​  ≜  u​(x, y)​.​ The distribution of characteristics ​​(x, y)​​ and the value function ​u​ induce 
a distribution of the bidder ​i​’s value ​​v​i​​​, which generates a distribution of values as 
denoted earlier by ​F​.

We can then analyze bidding algorithms in which the publisher commits to com-
plement the advertiser’s information with a signal regarding the match quality and 
to set the advertiser optimal bid. In turn, the advertiser submits his preference ​y​ (and 
thus a description of the attributes he cares about). The central aspect of the bidding 
algorithms is that the publisher complements the advertiser’s private information ​
y​ with information about the viewer’s attribute ​x​ that is unknown to the advertiser. 
Bergemann, Heumann, and Morris (2021) provide two algorithms in which the opti-
mal information structure under Theorem 1 can either be exactly or approximately 
implemented while satisfying the incentive compatibility conditions of the privately 
informed bidder.
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