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ABSTRACT
The growth of a tissue, which depends on cell–cell interactions and biologically relevant processes such as cell division and apoptosis, is
regulated by a mechanical feedback mechanism. We account for these effects in a minimal two-dimensional model in order to investigate
the consequences of mechanical feedback, which is controlled by a critical pressure, pc. A cell can only grow and divide if its pressure, due to
interaction with its neighbors, is less than pc. Because temperature is not a relevant variable, the cell dynamics is driven by self-generated active
forces (SGAFs) that arise due to cell division. We show that even in the absence of intercellular interactions, cells undergo diffusive behavior.
The SGAF-driven diffusion is indistinguishable from the well-known dynamics of a free Brownian particle at a fixed finite temperature. When
intercellular interactions are taken into account, we find persistent temporal correlations in the force–force autocorrelation function (FAF)
that extends over a timescale of several cell division times. The time-dependence of the FAF reveals memory effects, which increases as pc
increases. The observed non-Markovian effects emerge due to the interplay of cell division and mechanical feedback and are inherently a
non-equilibrium phenomenon.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087815

I. INTRODUCTION

Life around us, spanning a bewildering array of length and time
scales, is sustained through multicellular processes that are driven
by non-equilibrium events such as cell growth and cell division.1,2

Although known for a long time,3 several recent experimental stud-
ies have emphasized that growth and division in cell collectives are
governed by local stresses that the cells experience.4–7 A manifes-
tation of the coupling of growth and division to local stress is the
deviation of the growth law of the cell collective from exponential
law.6 These experiments suggest that there must exist mechanical
feedback between the local stress and cell division.

In a series of papers, we showed that single cells in a collective
exhibit anomalous dynamics due to local stress-dependent cell
growth and division.8–14 In these studies, we have uncovered the
mechanism leading to spatially heterogeneous dynamics of cells
in cell collectives15,16 from jamming to super-diffusion, which is

a consequence of dynamical phase separation.8,10,11 In the present
study, we explore the dependence of mechanical feedback, medi-
ated by stress threshold pc, on the dynamics of single cells. A recent
interesting study17 has shown that mechanical feedback regulates
the physical properties of jammed cell collectives, which supports
experimental findings.4 However, how the mechanical feedback reg-
ulates individual cell migration in a collective is unknown and is the
problem that we address in this study.

Using a two-dimensional off-lattice agent-based simulation
model, we explore the role of mechanical feedback (pc) on single-
cell dynamics. The central results of the present study are as follows:
(i) In the absence of cell growth and division, the dynamics is solely
governed by short-ranged two body interactions. In this limit, the
cells over the long-time behave like a glass-like solid. (ii) In the
presence of cell division, when systematic interactions are absent,
the cells exhibit Markov dynamics resulting in diffusive motion at
long times. This finding is surprising because there is no thermal
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motion (temperature is an irrelevant variable). This is different from
a free Brownian particle where temperature randomizes the particle
motion. (iii) When both cell division and systematic interactions
control the collective movement in tandem, the dynamics is reg-
ulated by the mechanical feedback that is parameterized using pc.
To quantify the dynamics, we calculated the force auto-correlation
function (FAF) inspired by works in the theory of chemical reac-
tions in liquids.18–20 We show that the FAF increases when pc is
increased. The emergence of long-time correlation in the FAF shows
a departure from Markov dynamics and is suggestive of memory
effects in growing cell collectives. (iv) The persistence of trajectories
of individual cells increases as pc is increased. The trajectories are
strikingly different from simple Brownian motion. The enhanced
persistence in cell dynamics, as pc increases, is the origin of memory
in active systems. Taken together, the present study establishes how
mechanical feedback coupled with cell growth and division leads
to non-Markovian cell dynamics whose importance has not been
appreciated before.

II. METHODS
We simulated the spatial and temporal dynamics of a two-

dimensional (2D) growing tissue using the agent-based off-lattice
model in which the cells are represented as interacting deformable
disks. This simplified assumption of representing cells as deformable
disks was also used in previous studies,21,22 although the details
differ. In the model, the cells grow stochastically in time and
divide upon reaching a critical size (Rm), the mitotic radius. The
cell-to-cell interaction is characterized by elastic and adhesive forces.
We also consider cell-to-substrate damping as a way of accounting
for the effects of friction experienced by a moving cell by the
substrate.

A. Physical interactions
Each cell is modeled as a deformable disk with a time depen-

dent radius. A cell is characterized by physical properties such as
the radius, elastic modulus, membrane receptor, and ligand concen-
tration. In addition, the cells attract each other through E-Cadherin
mediated adhesive interactions. This model is inspired by previous
studies on 3D off-lattice multicellular tumor growth models.8–13,23,24

The elastic (repulsive) force between two disks with radii Ri and Rj
is given by

Fel
ij (t) =

h3/2ij (t)
3
4(

1−ν2i
Ei
+ 1−ν2j

Ej
)
√

1
Ri(t)
+ 1

Rj(t)

, (1)

where Ei and νi, respectively, are the elastic modulus and Poisson
ratio of cell i. The overlap between the disks, if they interpene-
trate without deformation, is hij, which is given by max[0,Ri + Rj
− ∣r⃗i − r⃗j∣] with ∣r⃗i − r⃗j∣ being the center-to-center distance between
the two disks.

Cell adhesion, mediated by receptors on the cell membrane, is
the process by which cells can attach to one another. For simplicity,
we assume that the receptor and ligand molecules are evenly
distributed on the cell surface. Consequently, the magnitude of the
adhesive force, Fad

ij , between two cells i and j is expected to scale as a

function of their contact line-segment, Lij. Keeping the 3D model as
a guide,8 we calculate Fad

ij using

Fad
ij = Lij f ad

1
2
(creci cligj + c

rec
j cligi ), (2)

where creci (cligi ) is the receptor (ligand) concentration (assumed to
be normalized with respect to the maximum receptor or ligand con-
centration so that 0 ≤ creci , cligi ≤ 1). The coupling constant f

ad allows
us to rescale the adhesion force to account for the variabilities in the
maximum densities of the receptor and ligand concentrations. We
calculate the contact length, Lij, using the length of contact between

two intersecting circles, Lij =
√

(∣4r2ijR
2
i −(r

2
ij−R

2
j +R

2
i )

2 ∣)

rij
. Here, rij is the

distance between cells i and j. As before, Ri and Rj denote the radius
of cell i and j.

Repulsive and adhesive forces considered in Eqs. (1) and (2)
act along the unit vector nij pointing from the center of cell j to the
center of cell i. The total force on the ith cell is given by the sum over
its nearest neighbors (NN(i)),

Fi = ΣjϵNN(i)(Fel
ij − Fad

ij )nij. (3)

The nearest neighbors satisfy the condition Ri + Rj − ∣ri − rj∣ > 0.
Figure 1(a) shows the plot of the total force as a function of
inter-cellular distance.

B. Three scenarios
In order to elucidate the dramatically different dynamical

behavior, we consider three limits. (I) The collective movement
arises solely from the systematic forces, given in Eq. (3). (II) Cell
movement with Fi = 0 (no inter-cellular interactions) but allowing
for cell division and growth. Note that since the inter-cellular inter-
actions are absent, mechanical feedback (pc) does not play a role.
In this limit, we show that the dynamics can only arise due to
active forces generated upon cell division. The limits (I) and (II)
are not relevant in describing collective movements in Multicellular
Spheroids (MCSs)15 or evolving cell monolayers.6 (III) In this limit,
we not only include interactions between cells [Eq. (3)] but also
allow for cell growth, division, and apoptosis. Most importantly, the
time-dependent growth of the tissue colony is limited by mechanical
feedback, which prohibits the biologically important process of cell
growth and division if the local stress on a cell exceeds a critical
non-zero value, pc.

C. Equation of motion
The damped dynamics of the ith cell, assumed to have two

degrees of freedom (x and y coordinates), is computed based on the
equation of motion,

ṙi(t) =
Fi(t)
γi

. (4)

Here, γi is the friction coefficient and ri(t) is the position of the
ith cell at time t. We assume γi to be equal to γoRi(t), where γo is
a constant. This form of γi is inspired by the simulations of three-
dimensional models for solid tumors where γi = 6πηRi with η being
the viscosity. Note that we do not consider the effect of temperature
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FIG. 1. Schematic of the 2D model.
(a) Total force [Eq. (3)] as a function of
inter-cellular distance for two cells, i and
j, with radius Ri = Rj = 4 μm. The repul-
sive and attractive parts of the force are
given by Eqs. (1) and (2), respectively.
The inset is the zoomed-in view that
highlights the region in which the force is
predominantly attractive. (b) Cartoon
illustrating the role of mechanical feed-
back. On the left, the “red” cell is dor-
mant (cannot grow and divide) because
the pressure exerted by the neighbors
exceeds pc . The “green” cell is in the
growth phase (G), which grows and
divides (p < pc). The green cell from
the left gives birth to two daughter
cells (orange and cyan) when the radius
exceeds the mitotic radius Rm.

(set to zero in the simulations) as we assume the friction coefficient,
that in reality arises from the extracellular matrix in 3D or sub-
strate in 2D, to be so high21 that thermal motion is irrelevant. The
equation of motion in Eq. (4) is similar to the case for soft granular
materials where the role of temperature is neglected.25 However, it
is crucial to note that in the growth of the tissue colony, scenarios II
and III in our case, there is a self-generated active force (SGAF) that
arises due to the biologically important processes of cell growth and
division.10

D. Cell growth, division, and apoptosis
In our model, cells can be either in the dormant (D) or in

the growth (G) phase depending on the local pressure associated

with a cell [Fig. 1(b)]. Using Irving–Kirkwood definition, we track
the pressure (pi) experienced by the ith cell due to contact with its
neighbors.26 The expression for pi is given by

pi =
1
2
ΣjϵNN(i)

Fij ⋅ drij
Ai

, (5)

whereAi = πR2
i is the area of the cell. If the local pressure, pi, exceeds

a critical limit (pc) the cell stops growing and enters the dormant
phase. Note that the cell can switch back to a growing phase if pi

pc
< 1

as the tissue evolves. The critical pressure pc serves as a mechanical
feedback, which is known to regulate the growth of tissues.7
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TABLE I. The parameters used in the simulation.

Parameters Values References

Timestep (Δt) 10 s This paper
Critical radius for division (Rm) 5 μm 8 and 24
Friction coefficient (γo) 0.1 kg/(μm s) This paper
Cell cycle time (τ) 54 000 s 8 and 27–29
Adhesive coefficient ( f ad) 10−4 μN/μm This paper
Mean cell elastic modulus (Ei) 10−3 MPa 8 and 30
Mean cell Poisson ratio (νi) 0.5 8 and 24
Apoptosis rate (ka) 10−6 s−1 8
Mean receptor concentration (crec) 1.0 8
Mean ligand concentration (clig) 1.0 8

For growing cells ( pipc < 1), their area increases at a constant rate
rA. The cell radius is updated from a Gaussian distribution with the
mean rate Ṙ = (2πR)−1rA. Over the cell cycle time τ,

rA =
π(Rm)2

2τ
, (6)

where Rm is the mitotic radius. The cell cycle time (τ) is related to
the growth rate (kb) by τ = ln 2

kb
. A cell divides once it grows to the

fixed mitotic radius (Rm). To ensure area conservation, upon cell
division, we use Rd = Rm2−1/2 as the radius of the daughter cells.
The two resulting cells are placed at a center-to-center distance
d = 2Rm(1 − 2−1/2). The direction of the new cell location is chosen
randomly from a uniform distribution on the unit circle. One source
of stochasticity in the cell movement in our model is due to random
choice for the mitotic direction. In our simulations, the cells may
undergo apoptosis at the rate ka. Throughout this work, the apopto-
sis rate was fixed to 10−6 s−1. Table I depicts the parameters used in
the simulations.

E. Initial conditions
We begin the simulations by placing 100 cells on a 2D plane

whose coordinates are chosen from a normal distribution with a
mean zero and standard deviation of 25 μm. All the parameters apart
from critical pressure (pc) are fixed.

III. RESULTS
A. Markov dynamics in the presence
of delta-correlated random force

For comparison, we briefly summarize the well-known result
for a stochastic process (over-damped Langevin equation) in one
dimension for a free Brownian particle. The equation of motion is

dx
dt
=
√
2Dη(t), (7)

where the random force obeys ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ
(t − t′). The position of the particle is x. The solution P(x, t), for
probability density for finding the particle at x at time t, is given by

P(x, t) = 1√
4πDt

e−
x2
4Dt . (8)

Here, we have assumed that the particle was at the origin at t = 0,
P(x, 0) = δ(x). The moments of P(x, t), which serve as the physical
observables in cell tracking experiments,15 are readily calculated. For
instance, the first moment ⟨x⟩ is given as

⟨x(t)⟩ = ∫
∞

−∞

xP(x, t) = 0. (9)

The second moment ⟨x2⟩, also called the mean-squared displace-
ment (MSD), is non-zero and is given as

⟨x2(t)⟩ = ∫
∞

−∞

x2P(x, t) = 2Dt. (10)

The dynamics of a free Brownian particle is an example of a Markov
process. There is no memory because P(δx(t)) = N(0,

√
2Dδt) is

independent of x(t), where δx(t) = x(t + δt) − x(t) is the displace-
ment of the particle from time t to t + δt and N(0,

√
2Dδt) is

the normal distribution with zero mean and variance 2Dδt. This
example sets the stage for exploring the emergent force auto-
correlation (FAF), with long temporal correlation, in an expanding
tissue.

B. Role of physical interactions and cell division
We first investigate the consequences of physical interactions

and cell division when they are not coupled to one another.

1. Physical interactions (limiting case I)
When the interactions between cells are based only on the sys-

tematic interactions, as given in Eqs. (1) and (2) without cell division
and apoptosis, the dynamics of the interacting cells is governed by
the elastic timescale γ

ERm
. In the absence of cell growth, division,

and apoptosis, the number of cells, N(t), is a constant, which is
confirmed in Fig. 2(a). Figure 2(b) shows the plot of mean-square
displacement, Δ(t), defined as

Δ(t) = ⟨ 1
N

N

∑
i=1
(ri(t) − ri(0))2⟩, (11)

where ⟨⋅ ⋅ ⋅⟩ denotes the ensemble average over 20 simulation runs
and N is the initial 100 cells. As in Eq. (4), ri(t) is the position
of the ith cell at time t. Also, ri(0) is the position of the ith cell
at time t = 0. Note that the definition of Δ(t) is unchanged when
cells undergo growth, division, and apoptosis. Figure 2(b) shows
that Δ(t) relaxes rapidly to a plateau on a time scale ≈ γ

ERm
. Usually,
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FIG. 2. Number and MSD of cells solely based on physical interactions and cell division: (a) number of cells, N(t), solely based on physical two body interactions. Since the
cell division rate is zero, N(t) is a constant. (b) Mean-squared displacement, Δ(t), as a function of time when only physical interactions are present. Δ(t) relaxes initially,
governed by elastic forces over a time-scale γ

ERm
(red dashed vertical line), and settles to a plateau value. (c) N(t) as a function of scaled time ( t

τ ) in the presence of cell

division only. N(t) grows exponentially. (d) Δ(t) as a function of time in the presence of cell division only. Δ(t) grows linearly in time and is diffusive (in black). The red
dashed line is a linear fit given by Eq. (13).

Δ(t) ∼ tα, with α = 0, is indicative of solid-like behavior. Figure 2(b)
shows that in the long-time limit, t ≫ γ

ERm
, α = 0, and hence, the cell

collective behaves as a solid in the sense there is absence of diffusion.
Note that the dynamics is performed under athermal (temperature is
not relevant) open boundary conditions and the scale of systematic
interactions are short-ranged (≈Rm). Hence, the cells cannot move
after the initial relaxation process.

2. Effect of cell division (limiting case II)
In this limit, during each cell division event, a cell is displaced

by the distance ≈Rm, randomly in space. Hence, when the time

evolution of a cell colony is governed solely by cell division (absence
of apoptosis and systematic interactions), we expect that with suc-
cessive cell divisions, a cell would undergo a random walk that is
uncorrelated in time and space. In other words, it would behave
as a Brownian particle due to the SGAF induced by cell division.
This is purely a non-equilibrium dynamical process. As a result, we
expect that Δ(t) = Deff t at long times. Because in this limiting case,
τ is the only time scale and Rm is the only length scale, we obtain
Deff = R2

m
τ . It is interesting to note that the origin ofDeff = R2

m
τ is rem-

iniscent of non-equilibrium effects in active systems, and one can
define a pseudo-temperature (Ta) like quantity based on analogies
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to the Stokes–Einstein relation, Ta = Deff γ
KB

. In the absence of system-
atic interactions, the pressure [Eq. (5)] on an individual cell is zero,
and all the cells grow and divide independently. Hence, the number
of cells, N(t), increases exponentially [see Fig. 2(c)]. In this limit,

dN(t)
dt

= kbN(t), (12)

and, therefore, N(t) = Noekbt . Interestingly, in accord with the argu-
ments given above, the dynamics of individual cells is diffusive in
this limit and the mean squared displacement Δ(t) is given by

Δ(t) = R2
m

τ
t, (13)

as shown in Fig. 2(d). Although there is no thermal motion, the scal-
ing behavior of Δ(t) is similar to the standard Brownian dynamics
given by Eq. (10). The dynamics is diffusive because during every
cell division, the cell is displaced by distance Rm randomly and,
hence, mimics a Brownian motion in two dimensions. In this limit,
the growth of the cell does not play a role in determining Δ(t) as
there are no systematic interactions. Hence, if the size of the cell
increases, the position of the cell does not change. Note that when
only cell apoptosis is present (kb = 0), the cells do not move, and
N(t) decreases exponentially to zero at the rate ka.

The dynamics is non-trivial when all the components (system-
atic forces, cell division and apoptosis, and mechanical feedback) are
included. For this case, the growing tissue develops a core where the
cells are jammed and exhibit glass-like dynamics.11 In contrast, the
cells in the periphery are predominantly in the growth (G) phase. As
a result, the cells exhibit anomalous spatially heterogeneous dynam-
ics with a super-diffusive (sub-diffusive) periphery (core).11 Our
previous work has shown that this dynamical phase separation arises
due to SGAFs that arise due to local stress-regulated cell growth and
division.10 In the model, cell division and growth are regulated by
the mechanical feedback parameter pc, the consequences of which
are explored in Sec. III C.

C. Highly correlated force correlations
in an expanding tissue (limiting case III)

For a simple Brownian motion, the random force is delta-
correlated and, hence, the dynamics is Markovian [see Eq. (7)].
Therefore, a signature of such dynamics is the fast decay of force
auto-correlation function (FAF), in comparison to the smallest time-
scale of the problem, which in the present case is γ

ERm
. To explore

the nature of the dynamics, when both cell division and systematic
interactions are present in tandem, we calculated FAF (t∗) given as

FAF(t∗) = ⟨F(t + t
∗) ⋅ F(t)⟩t

⟨F(t) ⋅ F(t)⟩t
. (14)

Here, F(t) is the force on the cell at time t, ⟨⋅ ⋅ ⋅⟩t is the time aver-
age, and t∗ is the delay (or waiting) time. The time averaging is
performed over ≈2000 cells. Figure 3 shows the plot of FAF for
pc = 10

−3, 10−4, and 10−5 Nm−1. Figure 3 shows that the FAF decays

FIG. 3. Emergence of highly correlated force: plot of force auto-correlation func-
tion (FAF) as a function of time. From top to bottom, FAF corresponds to
pc = 10−3, 10−4, and 10−5. The dashed line corresponds to the fits. In the inset,
we zoom in on the initial time regime of the FAF. The order of the plots and dashed
lines is the same as in the main figure. The figure shows the emergence of the
FAF with two time scales: one long (∼ 1

kb−ka
) and one small (elastic time scale

=
γ

ERm
).

on two time scales: long (∼ 1
kb−ka
) and short ( γ

ERm
). In order to

extract the two time scales, we fit the FAF with Ae
−t∗
τc + B in both

the regimes.
In the short time regime (see the inset of Fig. 3), for

pc = 10
−3 Nm−1,A = 0.5, τc = 1.2γ

ERm
and B = 0.41. For pc = 10

−4 Nm−1,
A = 0.75, τc = 0.97γ

ERm
and B = 0.16. Finally, for pc = 10

−5 Nm−1,
A = 0.81, τc = 0.95γ

ERm
and B = 0.11. As anticipated, we find that in

the short time regime, the relaxation time is approximately close
to the elastic time scale γ

ERm
, which is negligible compared to

1
kb−ka

. However, in the long time limit, the FAF shows memory
effects, especially for pc = 10

−3 Nm−1. For pc = 10
−3 Nm−1, A = 0.41,

τc = 2.2
kb−ka

and C = −0.06. For pc = 10
−4, A = 0.12, τc = 2.3

kb−ka
and B

= −0.02. Finally, for pc = 10
−5 Nm−1, A = 0.04, τc = 0.2

kb−ka
and B ≈ 0.

For pc = 10
−5 Nm−1, A is negligible, which indicates the absence of

memory. In the other two cases, A for pc = 10
−3 Nm−1 is four times

larger than for pc = 10
−4 Nm−1. Larger magnitude of FAF in the long

time regime leads to higher degree of migration for pc = 10
−3 Nm−1.

The emergence of highly correlated forces elucidates the departure
fromMarkovian dynamics in a system comprising many interacting
cells whose time evolution occurs under non-equilibrium conditions
and in the absence of fluctuation-dissipation theorem.14

D. Persistence of trajectories increases
with increasing pc (continuation of limiting case III)

To better understand, the significance of memory effects that
are embodied in FAF, we probed the trajectories of individual
cells in the growing tissue colony. We investigated the three cases:
pc = 10

−5, 10−4, and 10−3 N/m in Fig. 4. Note that the trajectories
are for the cells, which were present between 1.8 ≤ t∗ = (kb − ka)
t ≤ 3.7. Hence, the trajectories correspond to both the initial parent
cells and the subsequent daughter cells. Thus, the differences in the
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FIG. 4. Trajectories of cells for different pc values (limiting case III): (a)–(c) The values of pc = 10−3 N/m, pc = 10−4 N/m, and pc = 10−5 N/m. In the three panels, the color
bar represents time in the unit of (kb − ka)t. From the figures, it is clear that cell migration is enhanced when pc is increased. (d) Number of cells, N, as a function of scaled
time t∗ = (kb − ka)t. From top to bottom, the curves correspond to pc = 10−3, 10−4, and 10−5. (e) Mean-squared displacement, Δ(t), as a function of time for the three
critical pressure values, averaged over initial cells in the simulations. From top to bottom, the curves correspond to pc = 10−3, 10−4, and 10−5. The power-law fits to the MSD
curves are given next to each curve.
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trajectories emerge due to the interplay of systematic interactions,
cell growth, and division. Figure 4 shows that the nature of the
trajectories is strikingly different when pc values are changed. For
pc = 10

−5 N/m in Fig. 4(c), the cells move the smallest compared to
pc = 10

−4 N/m and pc = 10
−3 N/m and are not persistent in nature.

This is due to the fact that the memory effect in the FAF is negligi-
ble, as illustrated in Fig. 3. The cells exhibit persistent trajectories
for pc = 10

−4 N/m and pc = 10
−3 N/m, with the degree of persis-

tence being higher for the latter. The emergence of persistence in
trajectories implies the presence of memory or (non-Markovian)
effects in the dynamics, which has also been observed in recent stud-
ies of growing cell colonies.22 We also calculated the number of
cells, N, as a function of time for three values of pc in Fig. 4(d).
For pc = 10

−3 N/m, N increases exponentially (linear in a log-
linear plot), for pc = 10

−4 N/m, N increase exponentially initially
but transitions to sub-exponential growth at later times, and for
pc = 10

−5 N/m,N increases sub-exponentially throughout. To quan-
tify the degree of persistence as a function of pc, we also cal-
culated Δ(t) ∼ tα in Fig. 4(e). In accordance with the results in
Figs. 4(a)–4(c), α decreases as pc is decreased. The dynamics is hyper-
diffusive (α > 2) for pc = 10

−3 N/m, super-diffusive (1 < α < 2)
for pc = 10

−4 N/m, and sub-diffusive for pc = 10
−3 N/m. The rich

diversity in dynamics arising solely by tuning the value of pc is
of biological origin and has no obvious analogy to passive abiotic
systems.

IV. CONCLUSION
We have shown that in an evolving tissue colony, the dynamics

of an individual cell may be approximated as a stochastic process
where the force is correlated over many cell division times. The
emergence of correlation in force is a manifestation of memory
effects, which is a hallmark of non-Markovian dynamics. Memory
effects in a growing tissue arise due to cell division and mechanical
feedback. There is no potential or energy function, which solely
governs the dynamics in over-damped athermal systems, whose
derivative results in these processes. This immediately implies that
there is no equilibrium in the growing tissue, and hence, the system
is always out of equilibrium. The present study also provides amech-
anism for persistent motion observed in many out of equilibrium
active matter systems.31–33

It is tempting to describe the simulated time-dependent force
autocorrelation using a reduced description, something like the
Generalized Langevin equation (GLE), to describe the effective
dynamics of a cell in the evolving tissue. It is natural to use such
an approach in thermally controlled barrier crossing problems, as
was done decades ago in the most insightful studies18,19 and also in
contemporary studies.34–37 For reasons stated above, construction of
a similar set of equations, if it exists at all, in any reduced variable
(the analog of the reaction coordinate in barrier crossing problems),
which must also include large spatial heterogeneity, is likely to be
difficult. Cell division and apoptosis require energy input and dissi-
pation, which can only be described using a physical picture and a
framework that goes beyond the usual description based on Hamil-
tonians or energy functions. The work here may provide an impetus
to develop a general theoretical framework for describing feedback
controlled dynamics in active systems.
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