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Abstract

In this paper, we prove one divisibility of the Iwasawa–Greenberg main conjecture for the Rankin–Selberg product of
a weight two cusp form and an ordinary complex multiplication form of higher weight, using congruences between
Klingen Eisenstein series and cusp forms on GU(3, 1), generalizing an earlier result of the third-named author to
allow nonordinary cusp forms. The main result is a key input in the third-named author’s proof of Kobayashi’s
±-main conjecture for supersingular elliptic curves. The new ingredient here is developing a semiordinary Hida
theory along an appropriate smaller weight space and a study of the semiordinary Eisenstein family.
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1. Introduction

Let p be an odd prime number. In this paper, under some assumptions, we prove one divisibility of
a two-variable Greenberg-type main conjecture for a weight 2 newform unramified at p. The result is
a key ingredient in the third author’s proof [Wan21] of the Iwasawa main conjecture, formulated by
Kobayashi [Kob03], for elliptic curves with supersingular reduction at p and 𝑎𝑝 = 0, as well as in the
proof of its extension to the case 𝑎𝑝 ≠ 0 by Sprung [Spr16]. Another application of our main result is
in the proof by the first and third authors [CW16] of a p-converse to the theorem of Gross–Zagier and
Kolyvagin for supersingular primes.

Let 𝜋 be an irreducible cuspidal automorphic representation of GL2(AQ) generated by a newform of

weight 2. Associated to 𝜋 is a continuous two-dimensional p-adic Galois representation 𝜌𝜋 of Gal(Q/Q)
over L, a finite extension of Q𝑝 . (We use the geometric convention for Galois representations. The

determinant of 𝜌𝜋 is 𝜖−1
cyc.) For the representation 𝜌𝜋 over L, we can fix a Gal(Q/Q)-stableO𝐿-lattice 𝑇𝜋 .
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Take K to be an imaginary quadratic field in which p splits as 𝔭𝔭̄. Denote by K∞ the maximal abelian
pro-p extension of K unramified outside p. Then the Galois group Gal(K∞/K) is isomorphic to Z2

𝑝 and
we denote it by ΓK. We have the tautological character

ΨK : Gal(Q/K) → ΓK ↩→ Z𝑝 [[ΓK]]×.

Let 𝜉 : K×\A×
K

→ C× be an algebraic Hecke character. We can associate to it a p-adic character

Gal(Q/K) → O×
𝐿 , which we denote also by 𝜉.

We consider the Gal(Q/K)-module

𝑇𝜋,K, 𝜉 := 𝑇𝜋 (𝜖2
cyc) |Gal(Q/K) (𝜉

−1) ⊗ Z𝑝 [[ΓK]] (Ψ−1
K
).

Define the Selmer group

Sel𝜋,K, 𝜉 = ker

⎧⎪⎪⎨
⎪⎪⎩

𝐻1 (K, 𝑇𝜋,K, 𝜉 ⊗O𝐿 [[ΓK ]] O𝐿 [[ΓK]]∗
)

−→
∏
𝔳≠𝔭

𝐻1 (𝐼𝔳, 𝑇𝜋,K, 𝜉 ⊗O𝐿 [[ΓK ]] O𝐿 [[ΓK]]∗
)⎫⎪⎪⎬⎪⎪⎭

, (1.0.1)

with O𝐿 [[ΓK]]∗ = HomZ𝑝
(
O𝐿 [[ΓK]],Q𝑝/Z𝑝

)
, the Pontryagin dual of O𝐿 [[ΓK]]. (This Selmer group

has relaxed condition at 𝔭 and unramified condition at 𝔭̄.) Let

𝑋𝜋,K, 𝜉 := HomZ𝑝
(
Sel𝜋,K, 𝜉 ,Q𝑝/Z𝑝

)
, (1.0.2)

which is well known to be a finitely generated O𝐿 [[ΓK]]-module. We recall the following definition of
characteristic ideals.

Definition 1.0.1. For a Noetherian normal domain A and a finitely generated A-module M, we define
the characteristic ideal of M as

char𝐴(𝑀) =
{
𝑥 ∈ 𝐴

���� ord𝑃 (𝑥) ≥ length𝐴𝑃
(𝑀𝑃) for all

height one prime ideals 𝑃 ⊂ 𝐴

}
.

The Iwasawa–Greenberg main conjecture [Gre94] predicts that the characteristic ideal of 𝑋𝜋,K, 𝜉 is
generated by the following p-adic L-function.

Denote by Ôur
𝐿

the completion of the maximal unramified extension of O𝐿 . By using the construction
in [Hid91], it is proved in Proposition 8.2.2 that there is a p-adic L-function

L𝜋,K, 𝜉 ∈ M𝑒𝑎𝑠
(
ΓK, Ôur

𝐿

)
� Ôur

𝐿 [[ΓK]]

satisfying the interpolation property: For all algebraic Hecke characters 𝜏 : K×\A×
K
→ C× with p-adic

avatars 𝜏𝑝-adic factoring through ΓK and 𝜉𝜏 of ∞-type (𝑘1, 𝑘2) with 𝑘1, 𝑘2 ∈ Z, 𝑘1 ≤ 0, 𝑘2 ≥ 2 − 𝑘1,

L𝜋,K, 𝜉 (𝜏𝑝-adic) =
(
Ω𝑝

Ω∞

)2(𝑘2−𝑘1) Γ(𝑘2)Γ(𝑘2 − 1)
(2𝜋𝑖)2𝑘2−1

· 𝛾𝑝

(
3 − (𝑘1 + 𝑘2)

2
, 𝜋∨
𝑝 × (𝜉0𝜏0)−1

𝔭̄

)

× 𝐿 {∞, 𝑝}
(
𝑘1 + 𝑘2 − 1

2
, BC(𝜋) × 𝜉0𝜏0

)
,

(1.0.3)

where 𝜉0𝜏0 = 𝜉𝜏 | · |−
𝑘1+𝑘2

2
AK

and BC(𝜋) denotes the unitary automorphic representation of GL2(AK)
obtained as the base change of 𝜋.

We are interested in the following (two-variable) Greenberg-type main conjecture.
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Conjecture 1.0.2.

char
Ôur

𝐿
[[ΓK ]]

(
𝑋𝜋,K, 𝜉

)
=

(
L𝜋,K, 𝜉

)
.

The main result of this paper is Theorem 8.2.3, which is a partial result towards this conjecture.
Like the previous works [Urb01, Urb06, SU14, Wan20] on proving Greenberg-type main conjectures
for modular forms, the proof uses the congruences between Klingen Eisenstein series and cuspidal
automorphic forms. The L-values in our case here are of the same type as those in [Wan20], and we also
use Klingen Eisenstein series on GU(3, 1) as in loc.cit. The main difference is that the modular form
here is not assumed to be ordinary at p, so the standard Hida theory is not applicable.

The key idea is to introduce the notion of semiordinary automorphic forms on GU(3, 1). In
§§2-4, we develop a Hida theory for p-adic families of (cuspidal and noncuspidal) semiordinary forms
on GU(3, 1) along an appropriate two-dimensional subspace of the usual three-dimensional weight
space for GU(3, 1). The main results are stated in Theorem 2.9.1. In §5, by using the doubling method,
we construct a Klingen Eisenstein family 𝑬

Kling
𝜑 and prove its semiordinarity. In §6, we study the degen-

erate Fourier–Jacobi coefficients of 𝑬Kling
𝜑 . The analogous computations in [Wan20] assume a sufficient

ramification condition (see Definition 6.30 in op.cit) which is not available in our case here, so we need
a better way to do the computation at p by using the functional equations for local doubling zeta inte-
grals. In §7, we study the nondegenerate Fourier–Jacobi coefficients of 𝑬Kling

𝜑 . This part is very similar
to [Wan20], and we cite many results there, but the presentation is slightly rearranged. For example, the
auxiliary data for constructing the Klingen Eisenstein family are chosen at the beginning of the construc-
tion (§5.6) instead of at the end of the analysis of the nondegenerate Fourier–Jacobi coefficients, and an
explanation of the strategy for analyzing the nondegenerate Fourier–Jacobi coefficients is included in
§7.5. In §8, combining the results in §6 and §7, we deduce a result on the Klingen Eisenstein congruence
ideal and use it as an input for the lattice construction to deduce the results on Selmer groups.

Notation. We fix a prime 𝑝 ≥ 3 and an imaginary quadratic field K in which p splits in K as 𝔭𝔭̄. Denote
by 𝐷K/Q the discriminant of K/Q and by 𝔡K/Q the different ideal of K/Q. Denote by 𝜂K/Q the quadratic
character of Q×\A×

Q
associated to K/Q. Denote by 𝑐 the nontrivial element in Gal(K/Q). For 𝑥 ∈ K,

denote by 𝑥 its image under c. For a finite place v of Q, we put K𝑣 = K ⊗Q Q𝑣 and OK,𝑣 = OK ⊗Z Z𝑣 .
Fix embeddings

𝜄∞ : K ↩−→ C, 𝜄𝑝 : K ↩−→ Q𝑝 (1.0.4)

such that the valuation ofQ𝑝 and 𝜄𝑝 induce the valuation of K given by𝔭. The embedding 𝜄𝑝 : K ↩→ Q𝑝
induces a homomorphism 𝜚𝔭 : K𝑝 = K ⊗Q Q𝑝 → Q𝑝 . We denote by 𝜚𝔭̄ : K ⊗Q Q𝑝 → Q𝑝 the
composition of 𝜚𝑝 and the nontrivial element 𝑐 ∈ Gal(K/Q). We have the isomorphism

(𝜚𝔭, 𝜚𝔭̄) : K ⊗Q Q𝑝 −→ Q𝑝 × Q𝑝 , 𝑎 ↦−→
(
𝜚𝔭 (𝑎), 𝜚𝔭̄ (𝑎)

)
We also fix a totally imaginary element 𝛿 ∈ K such that Nm(𝛿) = 𝛿𝛿 is a p-adic unit.

Fix the standard additive character eAQ =
⊗

𝑣 e𝑣 : Q\A→ C× with

e𝑣 (𝑥) =
{

𝑒−2𝜋𝑖 {𝑥 }𝑣 , 𝑣 ≠ ∞,

𝑒2𝜋𝑖𝑥 , 𝑣 = ∞,
(1.0.5)

where {𝑥}𝑣 is the fractional part of x.

2. Hida theory for semiordinary forms on GU(3, 1)
In this section, we define semiordinary forms on GU(3, 1) and state the control theorem for semiordinary
families (Theorem 2.9.1). The proof of Theorem 2.9.1 is given in the following sections: 3 and 4.
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2.1. Some notation

Let 𝐿0 be a free OK-module of rank 2 with basis w1, w2, and we equip 𝐿0 ⊗Z Q with a skew-Hermitian
form 〈 , 〉𝐿0

whose matrix with respect to the basis w1, w2 is given by a matrix 𝜁0 ∈ skew- Her2(OK)
with 𝛿𝜁0 positive definite. Let 𝑋,𝑌 be free OK-modules of rank 1 with bases x1, y1. Let 𝑋∨ = 𝔡−1

K/Q · x1

and 𝐿 = 𝑋∨ ⊕ 𝐿0 ⊕𝑌 . Equip 𝐿 ⊗Z Q with the skew-Hermitian form 〈 , 〉𝐿 whose matrix with respect to

the basis x1, w1, w2, y1 is given by 𝜁 =
���

1
𝜁0

−1

���
.

Define the similitude unitary groups 𝐺 ′ = GU(2) and 𝐺 = GU(3, 1) (over Z) as: for all Z-algebra R

GU(2) (𝑅) = {(𝑔, 𝜈) ∈ GLOK⊗Z𝑅 (𝐿0 ⊗Z 𝑅) × 𝑅× : 〈𝑔𝑣1, 𝑔𝑣2〉𝐿0
= 𝜈〈𝑣1, 𝑣2〉𝐿0

},
GU(3, 1) (𝑅) = {(𝑔, 𝜈) ∈ GLOK⊗Z𝑅 (𝐿 ⊗Z 𝑅) × 𝑅× : 〈𝑔𝑣1, 𝑔𝑣2〉𝐿 = 𝜈〈𝑣1, 𝑣2〉𝐿},

(2.1.1)

and the unitary groups U(2) (resp. U(3, 1)) as the subgroup of GU(2) (resp. GU(3, 1)) consisting of
elements with 𝜈 = 1.

2.2. Shimura variety

We fix an open compact subgroup 𝐾
𝑝

𝑓
⊂ 𝐺 (A𝑝

Q, 𝑓
), assumed throughout to be neat. Let 2𝜋𝑖〈 , 〉 :

𝐿 × 𝐿 → Z(1) be the alternating pairing 2𝜋𝑖 · TrK/Q ◦ 〈 , 〉𝐿 and ℎ : C → EndOK⊗ZR(𝐿 ⊗Z R) be the
homomorphism given by

ℎ(𝑢 + 𝑖𝑣) : (x1, w1, w2, y1) ↦→ (x1, w1, w2, y1)
������

1 ⊗ 𝑢 −1 ⊗ 𝑣

1 ⊗ 𝑢 + 𝛿 ⊗ 𝑣√
𝛿 𝛿

1 ⊗ 𝑢 + 𝛿 ⊗ 𝑣√
𝛿𝛿

1 ⊗ 𝑣 1 ⊗ 𝑢

������
.

Then the tuple (OK, 𝑐, 𝐿, 2𝜋𝑖〈 , 〉, ℎ) defines a Shimura datum of polarization, endomorphism and level
structure (PEL) type with reflex field K.

Consider the moduli problem sending every locally Noetherian connected OK, (𝑝) -scheme S to the
set of isomorphism classes of tuples (𝐴, 𝜆, 𝑖, 𝛼𝑝) with:

◦ A an abelian scheme of relative dimension 4 over S;
◦ 𝜆 : 𝐴 → 𝐴∨ a Z×(𝑝) -polarization;
◦ 𝑖 : OK ↩→ End𝑆𝐴 an embedding such that the induced OK-action on Lie 𝐴/𝑆 satisfies the

determinant condition, that is,

det
(
𝑋 − 𝑖(𝑏) | Lie 𝐴/𝑆

)
= (𝑋 − 𝑏)3(𝑋 − 𝑏̄)

for all 𝑏 ∈ OK;

◦ 𝛼𝑝 an (integral) 𝐾
𝑝

𝑓
-level structure on (𝐴, 𝜆, 𝑖) of type

(
𝐿 ⊗ Ẑ(𝑝) , TrK/Q ◦ 〈 , 〉𝐿

)
; that is, a

𝜋1 (𝑆, 𝑠)-invariant 𝐾
𝑝

𝑓
-orbit of OK-module isomorphisms 𝐿 ⊗ Ẑ(𝑝) → 𝑇 (𝑝) 𝐴𝑠 , where 𝑠 is a

geometric point of S and 𝑇 (𝑝) 𝐴𝑠 is the prime-to-p Tate module of 𝐴𝑠 , together with an isomorphism
Ẑ(𝑝) (1) ∼→ G𝑚,𝑠 making the following diagram commute:

(𝐿 ⊗ Ẑ(𝑝) ) × (𝐿 ⊗ Ẑ(𝑝) )
TrK/Q◦〈 , 〉𝐿

��

��

Ẑ(𝑝) (1)

��

𝑇 (𝑝) 𝐴𝑠 × 𝑇 (𝑝) 𝐴𝑠
𝜆-Weil

�� G𝑚,𝑠 .

(See [Lan13, Def. 1.4.1.4].)

https://doi.org/10.1017/fms.2022.95 Published online by Cambridge University Press



6 F. Castella, Z. Liu and X. Wan

Since 𝐾
𝑝

𝑓
is neat, the above moduli problem is represented by a smooth quasi-projective scheme 𝒮

over OK, (𝑝) (see [Lan13, Thm. 1.4.1.2, Cor. 7.2.3.10]).
Denote by 𝒮tor the toroidal compactification of 𝒮, which is a proper smooth scheme over OK, (𝑝)

containing 𝒮 as an open dense subscheme with complement being a relative Cartier divisor with
normal crossings. (In our special case GU(3, 1) here, there is a unique choice of the polyhedral cone
decomposition for the toroidal compactification.) We denote by I𝒮tor the ideal sheaf of the boundary
of 𝒮tor. By [Lan13, Thm. 6.4.1.1], the universal family (�, 𝜆, 𝑖, 𝛼𝑝) over 𝒮 extends to a degenerating
family (𝒢, 𝜆, 𝑖, 𝛼𝑝) over 𝒮tor. Moreover, the base change of 𝒮 (resp. 𝒮tor) to K agrees with the Shimura
variety over K (resp. its toroidal compactification) representing the moduli problem with full level
structure at p (see [Lan15, (A.4.17), (A.4.18)]).

2.3. Hasse invariant

Set 𝜔 := 𝑒∗Ω1
𝒢/𝒮tor , where 𝑒 : 𝒮tor → 𝒢 is the zero section of the semiabelian scheme 𝒢 over 𝒮tor. Let

𝜔 be the line bundle det 𝜔 = ∧top𝜔. The minimal compactification of 𝒮 is defined as

𝒮min = Proj

(⊕
𝑘�0

𝐻0(𝒮tor, 𝜔𝑘 )
)
.

Let 𝜋 : 𝒮tor → 𝒮min be the canonical projection. The push-forward 𝜋∗𝜔 is an ample line bundle, and
𝜋∗𝜋∗𝜔 � 𝜔 (see [Lan13, Thm. 7.2.4.1]).

In the following, with a slight abuse of notation, we also denote by 𝒮tor and 𝒮min their base change
to Z𝑝 via the map OK, (𝑝) → Z𝑝 induced by our fixed embedding 𝜄𝑝 , and let 𝒮tor

/F𝑝 and 𝒮min
/F𝑝 be their

corresponding special fibers.

Let Ha ∈ 𝐻0
(
𝒮tor
/F𝑝 , 𝜔𝑝−1

)
be the Hasse invariant defined as in [Lan18, §6.3.1]. In particular, for

each geometric point 𝑠 of 𝒮tor
/F𝑝 , the Hasse invariant of the corresponding semiabelian scheme 𝒢𝑠 is

nonzero if and only if the abelian part of 𝒢𝑠 is ordinary. Because 𝜋∗𝜔 is ample, for some 𝑡𝐸 > 0,
there exists an element in 𝐻0

(
𝒮min, (𝜋∗𝜔)𝑡𝐸 (𝑝−1) ) lifting the 𝑡𝐸 -th power of the push-forward of Ha;

we denote by 𝐸 the pullback under 𝜋 of any such lift, which (because 𝜋∗𝜋∗𝜔 � 𝜔) defines an element
𝐸 ∈ 𝐻0

(
𝒮tor, 𝜔𝑡𝐸 (𝑝−1) ) .

2.4. Some groups

Before moving on, we need to introduce some more group-theoretic notations. Given a matrix 𝑎 ∈
GL4(K ⊗Q Q𝑝), we define 𝑎+, 𝑎− ∈ GL4 (Q𝑝) as

𝑎+ = 𝜚𝔭 (𝑎), 𝑎− = 𝜚𝔭̄ (𝑎),

where (𝜚𝔭, 𝜚𝔭̄) : K ⊗QQ𝑝 → Q𝑝 ×Q𝑝 are defined as in Notation, and we view an element 𝑔 ∈ 𝐺 (Q𝑝)
as a matrix inside GL4(K ⊗Q Q𝑝) via the basis (x1, w1, w2, y1). Then the corresponding matrices
𝑔+, 𝑔− ∈ GL4 (Q𝑝) satisfy

t𝑔−𝜚𝔭 (𝜁) 𝑔+ = 𝜈(𝑔) · 𝜚𝔭 (𝜁).

In the following, we will often write 𝑔 ∈ 𝐺 (Q𝑝) as (𝑔+, 𝑔−). Note that the map

𝐺 (Q𝑝) → GL4(Q𝑝) × Q×
𝑝

𝑔 ↦→ (𝑔+, 𝜈(𝑔))
(2.4.1)

is an isomorphism.
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There is a filtration D = {D𝑖}𝑖 of 𝐿 ⊗Z Z𝑝 given by

D
1 = 0 ⊂ D0 = 𝑋+

𝑝 ⊕ 𝐿+
0, 𝑝 ⊕ 𝑋−

𝑝 ⊂ D−1 = 𝐿 ⊗Z Z𝑝 , (2.4.2)

where 𝑋+
𝑝 ⊂ 𝑋∨ ⊗Z Z𝑝 = 𝑋 ⊗Z Z𝑝 (resp. 𝑋−

𝑝 ⊂ 𝑋∨ ⊗Z Z𝑝 , 𝐿+
0, 𝑝 ⊂ 𝐿0 ⊗Z Z𝑝) is the subspace on which

𝑏 ∈ OK acts by 𝜄𝑝 (𝑏) (resp. 𝜄𝑝 (𝑏̄), 𝜄𝑝 (𝑏)). Note that D0 is isotropic with respect to TrK/Q ◦ 〈 , 〉𝐿 . For
𝑅 = Z𝑝 or Q𝑝 , we put

𝑃D (𝑅) = {𝑔 ∈ 𝐺 (𝑅) : 𝑔(D0) = D0};

that is, 𝑃D (𝑅) is the subgroup of 𝐺 (𝑅) stabilizing the filtration D in (2.4.2). We see that 𝑃±
D (𝑅) :=

{𝑔± : 𝑔 ∈ 𝑃D (𝑅)} are the subgroups of GL4(𝑅) given by

𝑃+
D =

{( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗

)}
, 𝑃−

D =

{( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

)}
.

Because 𝑃D preserves both 𝑋+
𝑝 ⊕ 𝐿+

0, 𝑝 and 𝑋−
𝑝 , there is a natural projection 𝑃D (𝑅) → GL3(𝑅) ×GL1 (𝑅)

which in terms of matrices is given by

𝑔 = (𝑔+, 𝑔−) =
((
𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34

𝑎44

)
,

(
𝑏11 𝑏12 𝑏13 𝑏14

𝑏22 𝑏23 𝑏24
𝑏32 𝑏33 𝑏34
𝑏42 𝑎43 𝑏44

))
↦→

((
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)
, 𝑏11

)
.

We will consider the p-level subgroups given by

𝐾1
𝑝,𝑛 :=

{
𝑔 ∈ 𝐺 (Z𝑝) : 𝑔+ ≡

( ∗ ∗ ∗ ∗
𝑝∗ ∗ ∗ ∗

1 ∗
1

)
mod 𝑝𝑛

}
,

𝐾0
𝑝,𝑛 :=

{
𝑔 ∈ 𝐺 (Z𝑝) : 𝑔+ ≡

( ∗ ∗ ∗ ∗
𝑝∗ ∗ ∗ ∗

∗ ∗
∗

)
mod 𝑝𝑛

}
,

where n is a positive integer.

2.5. Igusa towers

Let 𝒯𝑛 be the ordinary locus of level 𝐾1
𝑝,𝑛 attached to the PEL-type Shimura data introduced in §2.2

and the filtration D in (2.4.2), as constructed in [Lan18, Theorem 3.4.2.5]. By [Lan18, Prop. 3.4.6.3], 𝒯𝑛
is a smooth quasi-projective scheme over Z𝑝 representing a moduli problem for tuples (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝),
where (𝐴, 𝜆, 𝑖, 𝛼𝑝) is as in §2.2, and 𝛼𝑝 is an ordinary 𝐾1

𝑝,𝑛-level structure of A, that is, a 𝐾1
𝑝,𝑛-orbit of

group scheme embeddings 𝜇𝑝𝑛 ⊗ D0 ↩→ 𝐴[𝑝𝑛] with image isotropic for the 𝜆-Weil pairing, compatible
with the OK-actions on D0 and 𝐴[𝑝𝑛] through i, as described in [HLTT16, §3.1.1].

Remark 2.5.1. In [Lan18, Chapter 3], the ordinary locus is defined as a normalization of the naive
moduli problem introduced in [loc.cit., Def. 3.4.1.1]. In our case, because p is a good prime in the
sense of [Lan18, Def. 1.1.1.6] and 𝜈(𝐾1

𝑝,𝑛) = Z×𝑝 , this construction of the ordinary locus agrees with
the moduli problem. (See [HLTT16, B.10] for more details.)

Let 𝒯tor
𝑛 be the partial toroidal compactification of the ordinary locus 𝒯𝑛 ([Lan18, Thm. 5.2.1.1]); it

is obtained by gluing to 𝒯𝑛 the toroidal boundary charts parameterizing degenerating families defined
in [Lan18, Def. 3.4.2.0] (including an extensibility condition on the ordinary level structure). We note
that, even though the generic fiber of 𝒯𝑛 agrees with the Shimura variety of level 𝐾

𝑝

𝑓
𝐾1
𝑝,𝑛 over Q𝑝 , the

generic fiber of 𝒯tor
𝑛 is in general just an open subscheme of a toroidal compactification of the Shimura

variety of level 𝐾
𝑝

𝑓
𝐾1
𝑝,𝑛 over Q𝑝 .
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Let 𝒯tor
𝑛,𝑚 (resp. 𝒮tor

𝑚 ) be the base change of 𝒯tor
𝑛 (resp. 𝒮tor) to Z/𝑝𝑚Z. By [Lan18, Lem. 6.3.2.7],

𝒮tor
𝑚 [1/𝐸] agrees with the ordinary locus in [Lan18, Thm. 5.2.1.1] for full level at p, and by [Lan18,

Cor. 5.2.2.3] the map 𝒯tor
𝑛,𝑚 → 𝒮tor

𝑚 [1/𝐸] that forgets the ordinary 𝐾1
𝑝,𝑛-level structure is finite étale.

Concretely, we can describe 𝒯tor
𝑛,𝑚 as

Isom𝒮tor
𝑚 [1/𝐸 ]

(
𝜇𝑝𝑛 ⊗ D0,𝒢[𝑝𝑛]mult

)
/𝐾1

𝑝,𝑛 ∩ 𝑃D (Z𝑝), (2.5.1)

where 𝑃D (Z𝑝) acts on an element 𝛼𝑝 ∈ Isom𝒮tor
𝑚 [1/𝐸 ]

(
𝜇𝑝𝑛 ⊗ D0,𝒢[𝑝𝑛]mult

)
by (𝑔 · 𝛼𝑝) (𝑣) = 𝛼𝑝 (𝑔−1𝑣)

for 𝑣 ∈ D0. The fiber at a geometric point 𝑠 ∈ 𝒮tor
𝑛,𝑚 parameterizes tuples (F±, 𝛿+3 , 𝛿−1 , F+1 [𝑝]), where F±

are filtrations

F
+ : 0 = F+0 ⊂ F+2 ⊂ F+3 = 𝒢𝑠 [𝑝𝑛]mult+

F
− : 0 = F−0 ⊂ F−1 = 𝒢𝑠 [𝑝𝑛]mult− (2.5.2)

compatible with the Weil pairing; 𝛿+3 and 𝛿−1 are isomorphisms

𝛿+3 : 𝜇𝑝𝑛 � GrF
+

3 , 𝛿−1 : 𝜇𝑝𝑛 � GrF
−

1 ;

and 0 ⊂ F+1 [𝑝] ⊂ F+2 [𝑝] is a two-step filtration of F+2 [𝑝].

2.6. p-adic forms

Define the space of mod 𝑝𝑚 automorphic forms on G of level n by

𝑉𝑛,𝑚 := 𝐻0
(
𝒯tor
𝑛,𝑚,O𝒯tor

𝑛,𝑚

)
.

Letting I𝒯tor
𝑛,𝑚

:= (𝒯tor
𝑛,𝑚 → 𝒮tor

𝑚 [1/𝐸])∗I𝒮tor , we similarly define the space of mod 𝑝𝑚 cuspidal auto-
morphic forms on G of level n by

𝑉0
𝑛,𝑚 := 𝐻0

(
𝒯tor
𝑛,𝑚, I𝒯tor

𝑛,𝑚

)
.

Passing to the limit, we obtain corresponding spaces of p-adic automorphic forms (with p-power
torsion coefficients) by

V := lim−−→
𝑚

lim−−→
𝑛

𝑉𝑛,𝑚, V 0 := lim−−→
𝑚

lim−−→
𝑛

𝑉0
𝑛,𝑚.

Let 𝑇so (Z𝑝) = Z×𝑝 × Z×𝑝 . The map sending (𝑎1, 𝑎2) to 𝑔 ∈ 𝐺 (Z𝑝) with 𝑔+ =

(
1

1
𝑎1

𝑎−1
2

)
and 𝜈(𝑔) = 1

identifies 𝑇so (Z/𝑝𝑛) = (Z/𝑝𝑛Z)×× (Z/𝑝𝑛Z)× with 𝐾0
𝑝,𝑛/𝐾1

𝑝,𝑛. Hence, the group 𝑇so (Z𝑝) naturally acts

on 𝑉𝑛,𝑚, 𝑉0
𝑛,𝑚, V , V 0 making these spaces into Z𝑝 [[𝑇so (Z𝑝)]]-modules.

By a p-adic weight (for a semiordinary form) we mean a Q𝑝-valued character of 𝑇so (Z𝑝), that is,

a pair (𝜏+, 𝜏−), where 𝜏± : Z×𝑝 → Q
×
𝑝 are continuous characters, and we say that a p-adic weight is

arithmetic if it is of the form (𝑥, 𝑦) ↦→ 𝜖+(𝑥)𝑥𝑡+ · 𝜖−(𝑦)𝑦𝑡− , where 𝜖± is of finite order and 𝑡± ∈ Z. If
(𝜏+, 𝜏−) is arithmetic, we put 𝜏±f := 𝜖± and 𝜏±alg = 𝑡±. Given a p-adic weight (𝜏+, 𝜏−), we denote by

𝑉𝑛,𝑚 [𝜏+, 𝜏−] the subspace of 𝑉𝑛,𝑚 ⊗Z𝑝 OQ𝑝 (𝜏+ ,𝜏−) on which 𝑇so (Z𝑝) acts by the inverse of the character

(𝜏+, 𝜏−). Similarly, we define the spaces 𝑉0
𝑛,𝑚 [𝜏+, 𝜏−], V [𝜏+, 𝜏−], V 0 [𝜏+, 𝜏−].
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2.7. Classical automorphic forms

The weights of classical holomorphic automorphic forms on G are indexed by tuples of integers
𝑡 = (𝑡+1 , 𝑡+2 , 𝑡+3 ; 𝑡−1 ) with 𝑡+1 ≥ 𝑡+2 ≥ 𝑡+3 . (When 𝑡+3 ≥ −𝑡−1 + 4, the Archimedean component of the
corresponding automorphic representation is isomorphic to a holomorphic discrete series.)

Let 𝑊𝑡 be the algebraic representation of GL3 ×GL1 given by

𝑊𝑡 := 𝑊(𝑡+1 ,𝑡+2 ,𝑡+3 ) �𝑊𝑡−1
.

Here, for any algebra R, letting 𝑅[𝑥, det 𝑥−1] be the polynomial ring in the variables 𝑥𝑖 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 3)

and
(
det(𝑥𝑖 𝑗 )1≤𝑖, 𝑗≤3

)−1
, 𝑊(𝑡+1 ,𝑡+2 ,𝑡+3 ) (𝑅) is the R-submodule of 𝑅[𝑥, (det 𝑥)−1] spanned by

𝑥
𝑎1
11𝑥

𝑎2
12𝑥

𝑎3
13 det

(
𝑥11 𝑥12

𝑥21 𝑥22

)𝑏1

det

(
𝑥11 𝑥13

𝑥21 𝑥23

)𝑏2

det

(
𝑥12 𝑥13

𝑥22 𝑥23

)𝑏3

det
���
𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

𝑥31 𝑥32 𝑥33

���
𝑡+3

,

where 𝑎𝑖 , 𝑏𝑖 ≥ 0, 𝑎1 + 𝑎2 + 𝑎3 = 𝑡+1 − 𝑡+2 , 𝑏1 + 𝑏2 + 𝑏3 = 𝑡+2 − 𝑡+3 , and 𝑊𝑡−1
(𝑅) is the R-submodule of

𝑅[𝑥, 𝑥−1] spanned by 𝑥𝑡
−
1 .

The groups GL3 and GL1 act on 𝑊𝑡 by right translation. One can check that the left translation

of
(
𝑎1∗ 𝑎2∗ ∗ 𝑎3

)
on 𝑊(𝑡+1 ,𝑡+2 ,𝑡+3 ) is by the scalar 𝑎

𝑡+1
1 𝑎

𝑡+2
2 𝑎

𝑡+3
3 ; when 𝑅 = C, it is the irreducible algebraic

representation of GL3(C) of highest weight (𝑡+1 , 𝑡+2 , 𝑡+3 ). Let 𝔢can : 𝑊𝑡 → A1 be the linear functional
defined by the evaluation at (13, 11).

Let 𝜔+ (resp. 𝜔−) be the subsheaf of 𝜔 on which 𝑖(𝑏) acts by b (resp. 𝑏̄) for all 𝑏 ∈ OK. Because p
is unramified in K, 𝜔+ (resp. 𝜔−) is locally free of rank 3 (resp. rank 1) and 𝜔 = 𝜔+ ⊕ 𝜔−.

Set

𝜔+
(𝑡+1 ,𝑡+2 ,𝑡+3 )

= Isom𝒮tor (O⊕3
𝒮tor , 𝜔+) ×GL3 𝑊(𝑡+1 ,𝑡+2 ,𝑡+3 ) ,

𝜔+
𝑡−1

= Isom𝒮tor (O𝒮tor , 𝜔+) ×GL1 𝑊𝑡−1
� (𝜔−)⊗𝑡−1 ,

and put 𝜔𝑡 = 𝜔+
(𝑡+1 ,𝑡+2 ,𝑡+3 )

⊗ 𝜔−
𝑡−1

.

Letting 𝐹/Q𝑝 be a finite extension containing the values of the finite-order character 𝜖± of Z×𝑝 , and

𝑆tor
𝐾

𝑝
𝑓
𝐾 1

𝑝,𝑛
be the toroidal compactification of the Shimura variety of level 𝐾

𝑝

𝑓
𝐾1
𝑝,𝑛 defined over K, we

have

𝑀(0,0,𝑡+;𝑡−)
(
𝐾
𝑝

𝑓
𝐾1
𝑝,𝑛, 𝜖+, 𝜖−; 𝐹

)
=

(
𝐻0

(
𝑆tor
𝐾

𝑝
𝑓
𝐾 1

𝑝,𝑛
, 𝜔 (0,0,𝑡+;𝑡−)

)
⊗K 𝐹

)
[𝜖+, 𝜖−],

the space of classical automorphic forms on G of weight (0, 0, 𝑡+; 𝑡−), level 𝐾
𝑝

𝑓
𝐾1
𝑝,𝑛, and nebentypus

(𝜖+, 𝜖−) for the action of 𝐾0
𝑝,𝑛/𝐾1

𝑝,𝑛. Here, F is viewed as a K-algebra via K
𝜄𝑝→ Q𝑝 → 𝐹. Similarly,

we have the space of classical cuspidal automorphic forms

𝑀0
(0,0,𝑡+;𝑡−)

(
𝐾
𝑝

𝑓
𝐾1
𝑝,𝑛, 𝜖+, 𝜖−; 𝐹

)
=

(
𝐻0

(
𝑆tor
𝐾

𝑝
𝑓
𝐾 1

𝑝,𝑛
, 𝜔 (0,0;𝑡+;𝑡−) ⊗ I𝒮tor

)
⊗K 𝐹

)
[𝜖+, 𝜖−] .

There are classical embeddings

𝐻0
(
𝒮tor, 𝜔 (0,0,𝑡+;𝑡−)

)
↩−→ lim←−−

𝑚

lim−−→
𝑛

𝑉𝑛,𝑚 [𝑡+, 𝑡−],

𝐻0
(
𝒮tor, 𝜔 (0,0,𝑡+;𝑡−) ⊗ I𝒮tor

)
↩−→ lim←−−

𝑚

lim−−→
𝑛

𝑉0
𝑛,𝑚 [𝑡+, 𝑡−],

(2.7.1)
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induced by the trivialization of 𝜔 over the Igusa tower and the canonical functional 𝔢can. More precisely,

the trivialization of 𝜔 arises from the Hodge–Tate map (G/𝑆 [𝑝𝑛]mult)𝐷 ⊗Z O𝑆
∼→ 𝑒∗Ω1

G/𝑆 ⊗Z Z/𝑝𝑛Z,

where G/𝑆 is an ordinary semiabelian variety over S, the superscript 𝐷 denotes the Cartier dual, and
𝑒 : 𝑆 → G is the zero section.

Similarly, we have embeddings

𝑀(0,0,𝑡+;𝑡−)
(
𝐾
𝑝

𝑓
𝐾1
𝑝,𝑛, 𝜖+, 𝜖−; 𝐹

)
↩−→

(
lim←−−
𝑚

lim−−→
𝑛

𝑉𝑛,𝑚 ⊗Z𝑝 𝐹

)
[(𝑡+, 𝜖+), (𝑡−, 𝜖−)],

𝑀0
(0,0,𝑡+;𝑡−)

(
𝐾
𝑝

𝑓
𝐾1
𝑝,𝑛, 𝜖+, 𝜖−; 𝐹

)
↩−→

(
lim←−−
𝑚

lim−−→
𝑛

𝑉0
𝑛,𝑚 ⊗Z𝑝 𝐹

)
[(𝑡+, 𝜖+), (𝑡−, 𝜖−)] .

(2.7.2)

2.8. The U𝑝-operator

Given a tuple (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝) parameterized by 𝒯𝑛,𝑚, where 𝛼𝑝 : 𝜇𝑝𝑛 ⊗ D0 → 𝐴[𝑝𝑛]mult is an
isomorphism up to 𝐾1

𝑝,𝑛 ∩ 𝑃D (Z𝑝), the corresponding filtration F± of 𝐴[𝑝𝑛]mult± is

F
+ : 0 = F+0 ⊂ F+2 = {𝑒+1 , 𝑒+2} ⊂ F+3 = {𝑒+1 , 𝑒+2 , 𝑒+3} = 𝐴[𝑝𝑛]mult+,

F
− : 0 = F−0 ⊂ F−1 = {𝑒−1 } = 𝐴[𝑝𝑛]mult−,

where (𝑒+1 , 𝑒+2 , 𝑒+3 ; 𝑒−1 ) = 𝛼𝑝 (x+1 , w+1 , w+2 ; x−1 ).
Now, we define three U𝑝-operators 𝑈+

𝑝,2, 𝑈+
𝑝,3, 𝑈−

𝑝,1.

2.8.1. U𝑝-operators on 𝑉𝑛,𝑚

For 𝑗 = 2, 3, let 𝒞+
𝑗 ,𝑛,𝑚 denote the solution to the moduli problem classifying tuples (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝐶)

with 𝐶 ⊂ 𝐴[𝑝2] a Lagrangian subgroup, (that is, maximal isotropic for the 𝜆-Weil pairing) stable
under the OK-action through i such that 𝐴[𝑝] = 𝐶 [𝑝] ⊕ F+𝑗 [𝑝]. With 𝑒±1 , 𝑒±2 , 𝑒±3 , 𝑒±4 a basis of 𝐴[𝑝𝑛]
corresponding to 𝛼𝑝 , such a C is spanned by (𝑒±1 , 𝑒±2 , 𝑒±3 , 𝑒±4 ) · 𝑝𝑛𝛾±

𝐶,𝑝
, where for 𝑗 = 2

𝛾+
𝐶,𝑝 =

�����

1 𝑢1 ∗
1 𝑢2 ∗

1
1

�����
�����

1
1

1
𝑝

1
𝑝

�����
,

𝛾−
𝐶,𝑝 =

���
1

𝜄𝑝 (𝜁0)−1

1

���
�����

1 ∗ ∗
1

−𝑢2 1 𝑢1

1

�����
������

1
𝑝

1
𝑝2

1
𝑝

1
𝑝2

������
���
1

𝜄𝑝 (𝜁0)
1

���

(2.8.1)

with 𝑢1, 𝑢2, ∗ ∈ Z𝑝 , and for 𝑗 = 3,

𝛾+
𝐶,𝑝 =

�����

1 ∗
1 ∗

1 ∗
1

�����
�����

1
1

1
1
𝑝

�����
, 𝛾−

𝐶,𝑝 =

�����

1 ∗
1 ∗

1 ∗
1

�����
������

1
𝑝

1
𝑝2

1
𝑝2

1
𝑝2

������
(2.8.2)

with ∗ ∈ Z𝑝 .
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Similarly, let 𝒞−
1,𝑛,𝑚 be the moduli space classifying tuples (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝐶) with 𝐶 ⊂ 𝐴[𝑝2] a

Lagrange subgroup stable under the OK-action through i such that 𝐴[𝑝] = 𝐶 [𝑝] ⊕ F−1 [𝑝]. Then such a
C is spanned by (𝑒±1 , 𝑒±2 , 𝑒±3 , 𝑒±4 ) · 𝑝𝑛𝛾±

𝐶,𝑝
with

𝛾+
𝐶,𝑝 =

�����

1 ∗
1 ∗

1 ∗
1

�����
������

1
𝑝

1
𝑝

1
𝑝

1
𝑝2

������
, 𝛾−

𝐶,𝑝 =

�����

1 ∗
1 ∗

1 ∗
1

�����
������

1
1
𝑝

1
𝑝

1
𝑝

������
. (2.8.3)

For (•, 𝑗) = (+, 2), (+, 3), (−, 1), we consider the diagram

𝒞•
𝑗 ,𝑛,𝑚

𝑝1

����
��
��
�� 𝑝2

���
��

��
��

�

𝒯𝑛,𝑚 𝒯𝑛,𝑚

(2.8.4)

with 𝑝1, 𝑝2 the projections given by

𝑝1 : (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝐶) ↦−→ (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝),
𝑝2 : (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝐶) ↦−→ (𝐴′, 𝜆′, 𝑖′, (𝛼𝑝) ′, 𝛼′

𝑝),

where 𝐴′ = 𝐴/𝐶, 𝜆′ is such that 𝜋∨ ◦ 𝜆 ◦ 𝜋 = 𝑝2𝜆 with 𝜋 : 𝐴 → 𝐴′ the natural projection, 𝑖′ is the
OK-action i on A descended to 𝐴′, (𝛼𝑝) ′ = 𝜋 ◦ 𝛼𝑝 , and 𝛼′

𝑝 given by (𝑒+′1 , 𝑒+′2 , 𝑒+′3 ; 𝑒−′1 ) defined as

(𝑒+′1 , 𝑒+′2 , 𝑒+′3 ; 𝑒−′1 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜋

(
(𝑒+1 , 𝑒+2 , 𝑒+3 ; 𝑒−1 )

( 1 𝑢1
1 𝑢2

1
1

) ( 1
1
𝑝−1

𝑝−1

))
, • = +, 𝑗 = 2,

𝜋

(
(𝑒+1 , 𝑒+2 , 𝑒+3 ; 𝑒−1 )

(
1

1
1
𝑝−1

))
, • = +, 𝑗 = 3,

𝜋

(
𝑒+1 , 𝑒+2 , 𝑒+3 ; 𝑒−1 )

(
𝑝−1

𝑝−1

𝑝−1

1

))
, • = −, 𝑗 = 1.

One can check that if (𝑒+1 , 𝑒+2 , 𝑒+3 ; 𝑒−1 ) is up to 𝐾1
𝑝,𝑛 ∩ 𝑃D (Z𝑝), then (𝑒+′1 , 𝑒+′2 , 𝑒+′3 ; 𝑒−′1 ) is well-defined up

to 𝐾1
𝑝,𝑛 ∩ 𝑃D (Z𝑝).

Define

𝑈+
𝑝, 𝑗 : 𝐻0(𝒯𝑛,𝑚,O𝒯𝑛,𝑚

)
𝑝∗2−→ 𝐻0(𝒞+

𝑗 ,𝑛,𝑚,O𝒯𝑛,𝑚
) 𝑝− 𝑗Tr 𝑝1−−−−−−−→ 𝐻0(𝒯𝑛,𝑚,O𝒯𝑛,𝑚

), ( 𝑗 = 2, 3) (2.8.5)

𝑈−
𝑝,1 : 𝐻0(𝒯𝑛,𝑚,O𝒯𝑛,𝑚

)
𝑝∗2−→ 𝐻0 (𝒞−

1,𝑛,𝑚,O𝒯𝑛,𝑚
) 𝑝−3Tr 𝑝1−−−−−−→ 𝐻0(𝒯𝑛,𝑚,O𝒯𝑛,𝑚

). (2.8.6)

The normalization factors 𝑝− 𝑗 and 𝑝−3 are the inverse of the pure inseparability degree of the corre-
sponding projection 𝑝1; they are the optimal normalization to preserve integrality [Hid02, p.71]. By
computing the effect of equations (2.8.5) and (2.8.6) on Fourier–Jacobi expansions, one can check that
the operators preserve 𝑉𝑛,𝑚 and 𝑉0

𝑛,𝑚.
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2.8.2. U𝑝-operators on 𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡

)
Let 𝒯0,tor

𝑛,𝑚 be the quotient of 𝒯tor
𝑛,𝑚 by 𝐾0

𝑝,𝑛, which can be described as

Isom𝒮tor
𝑚 [1/𝐸 ]

(
𝜇𝑝𝑛 ⊗ D0,𝒢[𝑝𝑛]mult

)
/𝐾0

𝑝,𝑛.

Compared to 𝒯tor
𝑛,𝑚, the level structure at p for 𝒯0,tor

𝑛,𝑚 forgets 𝛿+3 , 𝛿−1 and parameterizes (F±, F+1 [𝑝]). We

can define U𝑝-operators on 𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡

)
. In order to see that they increase the level, we need to

introduce Igusa towers of more general level structure at p.
Given 1 ≤ 𝑛1, 𝑛2 ≤ 𝑛3 ≤ 𝑛1 + 𝑛2, define the level group

𝐾0
𝑝,𝑛1 ,𝑛2 ,𝑛3

=

{
𝑔 ∈ 𝐺 (Z𝑝) : 𝑔+ =

( ∗ ∗ ∗ ∗
𝑝∗ ∗ ∗ ∗
𝑝𝑛1∗ 𝑝𝑛1∗ ∗ ∗
𝑝𝑛3∗ 𝑝𝑛3∗ 𝑝𝑛2∗ ∗

)}
.

Define 𝒯0
𝑛1 ,𝑛2 ,𝑛3 ,𝑚

as the quotient of 𝒯𝑛,𝑚, 𝑛 ≥ 𝑛1, 𝑛2, 𝑛3, by 𝐾0
𝑝,𝑛1 ,𝑛2 ,𝑛3

∩ 𝑃D (Z𝑝), that is, the

corresponding level structure at p parameterizes isomorphism 𝛼𝑝 : 𝜇𝑝𝑛 ⊗ D0 → 𝐴[𝑝𝑛]mult up to
𝐾0
𝑝,𝑛1 ,𝑛2 ,𝑛3

∩ 𝑃D (Z𝑝).
Like above, for (•, 𝑗) = (+, 2), (+, 3), (−, 1), let 𝒞0,•

𝑗 ,𝑛1 ,𝑛2 ,𝑛3 ,𝑚
be the moduli space parameterizing

tuples (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝐶) with 𝐶 ⊂ 𝐴[𝑝2] a Lagrangian subgroup stable under the OK-action through
i such that 𝐴[𝑝] = 𝐶 [𝑝] ⊕ F•𝑗 .

Consider the diagrams

𝒞
0,+
2,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

𝑝1

����
��
��
��
�� 𝑝2

���
��

��
��

��
��

𝒯0
𝑛1 ,𝑛2 ,𝑛3 ,𝑚

𝒯0
𝑛1+1,𝑛2 ,𝑛3+1,𝑚

𝒞
0,+
3,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

𝑝1

����
��
��
��
�� 𝑝2

���
��

��
��

��
��

𝒯0
𝑛1 ,𝑛2 ,𝑛3 ,𝑚

𝒯0
𝑛1 ,𝑛2+1,𝑛3+1,𝑚

𝒞
0,−
1,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

𝑝1

����
��
��
��
�� 𝑝2

���
��

��
��

��
��

𝒯0
𝑛1 ,𝑛2 ,𝑛3 ,𝑚

𝒯0
𝑛1 ,𝑛2+1,𝑛3+1,𝑚,

where 𝑝1, 𝑝2 are defined in the same way as in the diagram (2.8.4). This time, for (𝑒+1 , 𝑒+2 , 𝑒+3 ; , 𝑒−1 ) up
to 𝐾0

𝑝,𝑛1 ,𝑛2 ,𝑛3
∩ 𝑃D (Z𝑝), the (𝑒+′1 , 𝑒+′2 , 𝑒+′3 ; , 𝑒−′1 ) is well defined up to 𝐾0

𝑝,𝑛1+1,𝑛2 ,𝑛3+1 ∩ 𝑃D (Z𝑝) in case

𝒞
0,+
2,𝑛,𝑚, and well defined up to 𝐾0

𝑝,𝑛1 ,𝑛2+1,𝑛3+1 ∩ 𝑃D (Z𝑝) in case 𝒞0,+
3,𝑛,𝑚 and case 𝒞0,−

1,𝑛1 ,𝑛2 ,𝑛3 ,𝑚
.

In order to define the U𝑝-operators on the global sections of vector bundles, we also need maps

𝜋∗ : 𝐻0
(
𝒞

0,−
1,𝑛1+1,𝑛2 ,𝑛3+1,𝑚, 𝑝∗

2𝜔𝑡

)
−→ 𝐻0

(
𝒞

0,−
1,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

, 𝑝∗
1𝜔𝑡

)
𝜋∗ : 𝐻0

(
𝒞

0,−
1,𝑛1 ,𝑛2+1,𝑛3+1,𝑚, 𝑝∗

2𝜔𝑡

)
−→ 𝐻0

(
𝒞

0,−
1,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

, 𝑝∗
1𝜔𝑡

)
.
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Suppose that 𝜀𝐴 (resp. 𝜀𝐴/𝐶) is a basis of 𝜔𝐴 (resp. 𝜔𝐴/𝐶) compatible with 𝛼𝑝 (resp. 𝛼′
𝑝). We have

𝜀𝐴 = (𝜋∗𝜔𝐴/𝐶)𝑔 with

𝑔 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ

(
1

1
𝑝−1

𝑝−1

)
ℎ′, • = +, 𝑗 = 2,

ℎ

(
1

1
1
𝑝−1

)
ℎ′, • = +, 𝑗 = 3,

ℎ

(
𝑝−1

𝑝−1

𝑝−1

1

)
ℎ′, • = −, 𝑗 = 1,

for some ℎ, ℎ′ =

( ∗ 𝑝𝑛∗ 𝑝𝑛∗
∗ ∗ 𝑝∗
∗ ∗ ∗

∗

)
∈ GL4(Z𝑝). In all the cases, 𝑔−1 belongs to the semigroup

Δ+ =
{(

ℎ
(
𝑎1
𝑎2
𝑎3

)
ℎ′, 𝑎4

)
: ℎ, ℎ′ =

( ∗ 𝑝∗ 𝑝∗
∗ ∗ 𝑝∗
∗ ∗ ∗

)
∈ GL3(Z𝑝), 𝑎−1

1 𝑎2, 𝑎−1
2 𝑎3 ∈ Z𝑝

}
.

We make Δ+ act on 𝑊𝑡 by

���
ℎ
���
𝑎1

𝑎2

𝑎3

���
ℎ′, 𝑎4

���
· 𝑞(𝑥, 𝑦)

= 𝑞
���
���
𝑝−𝑣𝑝 (𝑎1)

𝑝−𝑣𝑝 (𝑎2)

𝑝−𝑣𝑝 (𝑎3)

���
𝑥ℎ

���
𝑎1

𝑎2

𝑎3

���
ℎ′, 𝑝−𝑣𝑝 (𝑎4)𝑦𝑎4

���
,

(2.8.7)

and define 𝜋∗ as

𝜋∗ �𝑓 (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝐶, 𝜀𝐴) = �𝑓 (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝐶, 𝜀𝐴, (𝜋∗𝜀𝐴/𝐶)𝑔)
= 𝑔−1 · �𝑓 (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝐶, 𝜀𝐴/𝐶).

The U𝑝-operators are defined as

𝑈+
𝑝,2 : 𝐻0

(
𝒯0
𝑛1+1,𝑛2 ,𝑛3+1,𝑚, 𝜔𝑡

) 𝑝∗2−→ 𝐻0
(
𝒞

0,+
2,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

, 𝑝∗
2𝜔𝑡

)
𝜋∗−→ 𝐻0

(
𝒞

0,+
2,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

, 𝑝∗
1𝜔𝑡

)
𝑝−2Tr 𝑝1−−−−−−→ 𝐻0(𝒯0

𝑛1 ,𝑛2 ,𝑛3 ,𝑚
, 𝜔𝑡 ),

𝑈+
𝑝,3 : 𝐻0

(
𝒯0
𝑛1 ,𝑛2+1,𝑛3+1,𝑚, 𝜔𝑡

) 𝑝∗2−→ 𝐻0
(
𝒞

0,+
3,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

, 𝑝∗
2𝜔𝑡

)
𝜋∗−→ 𝐻0

(
𝒞

0,+
3,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

, 𝑝∗
1𝜔𝑡

)
𝑝−3Tr 𝑝1−−−−−−→ 𝐻0(𝒯0

𝑛1 ,𝑛2 ,𝑛3 ,𝑚
, 𝜔𝑡 ),

𝑈−
𝑝,1 : 𝐻0

(
𝒯0
𝑛1 ,𝑛2+1,𝑛3+1,𝑚, 𝜔𝑡

) 𝑝∗2−→ 𝐻0
(
𝒞

0,−
1,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

, 𝑝∗
2𝜔𝑡

)
𝜋∗−→ 𝐻0

(
𝒞

0,−
1,𝑛1 ,𝑛2 ,𝑛3 ,𝑚

, 𝑝∗
1𝜔𝑡

)
𝑝−2Tr 𝑝1−−−−−−→ 𝐻0(𝒯0

𝑛1 ,𝑛2 ,𝑛3 ,𝑚
, 𝜔𝑡 ).

Similarly as 𝑉𝑛,𝑚, one can check that these U𝑝-operators preserve the spaces 𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡

)
and 𝐻0

(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛,𝑚

)
. It is also easy to see that 𝑈+

𝑝,2𝑈
+
𝑝,3𝑈

−
𝑝,1 maps 𝐻0

(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡

)
(resp.
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𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛,𝑚

)
) into 𝐻0

(
𝒯

0,tor
𝑛−1,𝑚, 𝜔𝑡

)
(resp. 𝐻0

(
𝒯

0,tor
𝑛−1,𝑚, 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛−1,𝑚

)
), that is, the operator

𝑈+
𝑝,2𝑈

+
𝑝,3𝑈

−
𝑝,1 increases the level.

2.8.3. Adelic U𝑝-operators

If we identify 𝐺 (Q𝑝) with GL4 (Q𝑝) × GL1 (Q𝑝) via equation (2.4.1), the U𝑝-operators defined above
acting on classical automorphic forms on G of weight (𝑡+1 , 𝑡+2 .𝑡+3 ; 𝑡−1 ) correspond to the following adelic
operators (up to the action of the center of 𝐺 (Q𝑝)):

𝑈+
𝑝,2 : 𝑝〈(𝑡+1 ,𝑡+2 ,𝑡+3 ;−𝑡−1 )+2𝜌c , (1,1,0;0)〉

∫
𝑁 (Z𝑝)

𝑅

(
𝑢

( 𝑝
𝑝

1
1

)
, 1

)
𝑑𝑢;

𝑈+
𝑝,3 : 𝑝〈(𝑡+1 ,𝑡+2 ,𝑡+3 ;−𝑡−1 )+2𝜌c , (1,1,1;0)〉

∫
𝑁 (Z𝑝)

𝑅

(
𝑢

( 𝑝
𝑝
𝑝

1

)
, 1

)
𝑑𝑢;

𝑈−
𝑝,1 : 𝑝〈(𝑡+1 ,𝑡+2 ,𝑡+3 ;−𝑡−1 )+2𝜌c , (0,0,0;−1)〉

∫
𝑁 (Z𝑝)

𝑅

(
𝑢

(
1

1
1
𝑝−1

)
, 1

)
𝑑𝑢,

(2.8.8)

where 𝑁 (Z𝑝) =
{(

1 ∗ ∗ ∗
1 ∗ ∗

1 ∗
1

)
∈ GL4 (Z𝑝)

}
, 𝑅(−) denotes the right translation, and 2𝜌c = (2, 0,−2; 0) is

the sum of the compact positive roots of G.

2.9. Statement of main theorem

Let 𝑇so (Z𝑝)◦ be the connected component of 𝑇so (Z𝑝) containing 12, that is, 𝑇so (1 + 𝑝Z𝑝), and put
Λso = Z𝑝 [[𝑇so (Z𝑝)◦]].

Theorem 2.9.1. The following hold:

(1) Let 𝑈𝑝 = 𝑈+
𝑝,2𝑈

+
𝑝,3𝑈

−
𝑝,1. Then for each 𝑓 ∈ V , lim

𝑟→∞
(𝑈𝑝)𝑟 ! 𝑓 converges, and we can define the

semiordinary projector as 𝑒so = lim
𝑟→∞

(𝑈𝑝)𝑟 !. The Z𝑝 [[𝑇so (Z𝑝)]]-modules

V 0,∗
so = HomZ𝑝

(
𝑒soV 0,Q𝑝/Z𝑝

)
, V ∗

so = HomZ𝑝
(
𝑒soV ,Q𝑝/Z𝑝

)

are both free of finite rank over Λso.
(2) The spaces of Λso-families of tame level 𝐾

𝑝

𝑓
are defined as

M0
so = HomΛso

(
V 0,∗

so ,Λso

)
, Mso = HomΛso

(
V ∗

so,Λso
)
.

For a given weight (𝜏+, 𝜏−) ∈ Homcont
(
𝑇so (Z𝑝), 𝐹×) , let P𝜏+ ,𝜏− be the ideal in O𝐹 [[𝑇so (Z𝑝)]]

generated by {(𝑥, 𝑦) − 𝜏+(𝑥)𝜏−(𝑦) : (𝑥, 𝑦) ∈ 𝑇so (Z𝑝)}. We have

M0
so ⊗Z𝑝 [[𝑇so (Z𝑝) ]] O𝐹 [[𝑇so (Z𝑝)]]/P𝜏+ ,𝜏−

∼−→
(
lim←−−
𝑚

lim−−→
𝑛

𝑒so𝑉
0
𝑛,𝑚 ⊗Z𝑝 O𝐹

)
[𝜏+, 𝜏−],

Mso ⊗Z𝑝 [[𝑇so (Z𝑝) ]] O𝐹 [[𝑇so (Z𝑝)]]/P𝜏+ ,𝜏−
∼−→

(
lim←−−
𝑚

lim−−→
𝑛

𝑒so𝑉𝑛,𝑚 ⊗Z𝑝 O𝐹

)
[𝜏+, 𝜏−] .

(2.9.1)
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The semiordinary projector preserves the spaces of classical forms, and by combining equation
(2.9.1) with equation (2.7.2), we have the embeddings

𝑒so𝑀0
(0,0,𝑡+;𝑡−)

(
𝐾
𝑝

𝑓
𝐾1
𝑝,𝑛, 𝜖+, 𝜖−; 𝐹

)
↩−→

(
M0

so ⊗Z𝑝 [[𝑇so (Z𝑝) ]] O𝐹 [[𝑇so (Z𝑝)]]/P𝜏+ ,𝜏−
)
[1/𝑝],

𝑒so𝑀(0,0,𝑡+;𝑡−)
(
𝐾
𝑝

𝑓
𝐾1
𝑝,𝑛, 𝜖+, 𝜖−; 𝐹

)
↩−→

(
Mso ⊗Z𝑝 [[𝑇so (Z𝑝) ]] O𝐹 [[𝑇so (Z𝑝)]]/P𝜏+ ,𝜏−

)
[1/𝑝],

where 𝑡± = 𝜏±alg with (0, 0, 𝑡+; 𝑡−) dominant and 𝜖± = 𝜏±f .

(3) Given 0 ≥ 𝑡+, there exists 𝐴 ≥ −𝑡+ + 4 such that the above embedding for the cuspidal forms is
surjective if 𝑡− ≥ 𝐴.

(4) There is the following so-called fundamental exact sequence (in the study of Klingen Eisenstein
congruences),

0 −→ M0
so −→ Mso

⊕Φ𝑔−−−→
⊕
𝑔

𝑀(0,0) (𝐾 ′
𝑓 ,𝑔;Z𝑝) ⊗Z𝑝 Z𝑝 [[𝑇so (Z𝑝)]] −→ 0,

with g runs over
(
𝐺 ′

1 (Q) � 𝑃′
1 (A

𝑝

Q, 𝑓
)
)
\𝐺 (A𝑝

Q, 𝑓
)/𝐾 𝑝

𝑓
and Φ𝑔 the Siegel operator obtained by

restriction to the boundary stratum indexed by g. The level group 𝐾 ′
𝑓 ,𝑔

= 𝐾
′𝑝
𝑓 ,𝑔

𝐾 ′
𝑝,𝑔 ⊂ 𝐺 ′(A𝑝

Q, 𝑓
) is

defined in equation (4.4.1), and 𝑀(0,0) (𝐾 ′
𝑓 ,𝑔

;Z𝑝) denotes the space of classical automorphic forms
on 𝐺 ′ of weight (0, 0) and level 𝐾 ′

𝑓 ,𝑔
.

Remark 2.9.2. In general, one can consider semiordinary families whose members have weight 𝑡 =

(𝑡+1 , 𝑡+2 , 𝑡+3 ; 𝑡−1 ) with 𝑡+1 , 𝑡+2 fixed and 𝑡+3 , 𝑡−1 varying in the family. We only consider the case 𝑡+1 = 𝑡+2 = 0
because it suffices for proving Theorem 8.2.3, and we want to avoid having the main idea obscured by
the extra complications of working with vector bundles. For the general case, instead of considering the
global sections of the structure sheaf over the Igusa tower, one considers the global sections of a vector
bundle 𝜔𝑡 . For defining V ♭ (cf. §4.3) such that the quotient V /V ♭ has a nice structure, besides the

requirement of vanishing outside the strata labeled by cusp labels in 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, one also requires

that the elements are global sections of 𝜔♭𝑡 ⊂ 𝜔𝑡 with 𝜔♭𝑡 a subsheaf defined as in [Hsi14a, Section 4.1].

3. The proof of Theorem 2.9.1 for the cuspidal part

In this section, we prove Theorem 2.9.1 for cuspidal families. The results for cuspidal families will be
used to deduce the results for noncuspidal families in §4.

Proposition 3.0.1 (Base change property). Let 𝒯0,tor
𝑛 [1/𝐸] be the open subscheme of 𝒯0,tor

𝑛 where E,
our fixed lift of Hasse invariant viewed as a section over 𝒯

0,tor
𝑛 , is nonvanishing. For any classical

dominant weight 𝑡, the natural map

𝐻0
(
𝒯0,tor
𝑛 [1/𝐸], 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛

)
⊗ Z/𝑝𝑚Z ↩→ 𝐻0

(
𝒯0,tor
𝑛,𝑚 , 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛,𝑚

)
is an isomorphism.

Proof. Over 𝒯tor
𝑛 , we have the exact sequence of sheaves

0 −→ 𝜔𝑡 ⊗ I𝒯tor
𝑛

𝑝𝑚→ 𝜔𝑡 ⊗ I𝒯tor
𝑛

−→ 𝜔𝑡 ⊗ I𝒯tor
𝑛,𝑚

−→ 0.

By [Lan18, Thm. 8.2.1.1], 𝑅1
𝜋𝑛 ,∗(𝜔𝑡 ⊗ I𝒯tor

𝑛
) = 0 (where 𝜋𝑛 is the projection 𝜋𝑛 : 𝒯tor

𝑛 → 𝒯min
𝑛 ), so

we have the exact sequence of sheaves

0 → 𝜋𝑛,∗ (𝜔𝑡 ⊗ I𝒯tor
𝑛
) 𝑝

𝑚

→ 𝜋𝑛,∗ (𝜔𝑡 ⊗ I𝒯tor
𝑛
) → 𝜋𝑛,∗ (𝜔𝑡 ⊗ I𝒯tor

𝑛,𝑚
) → 0

over 𝒯min
𝑛 . Since 𝒯min

𝑛 [1/𝐸] is affine by definition, taking global sections gives the result. �
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Proposition 3.0.2. Let 𝑈𝑝 = 𝑈+
𝑝,2𝑈

+
𝑝,3𝑈

−
𝑝,1. Let 𝑓 ∈ V 0 and �𝑓 ∈ 𝐻0

(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛,𝑚

)
. Then both

limits lim
𝑟→∞

(𝑈𝑝)𝑟 ! 𝑓 and lim
𝑟→∞

(𝑈𝑝)𝑟 ! �𝑓 converge.

Proof. Consider 𝒯̃𝑛, the ordinary locus of level

𝐾̃𝑛𝑝,1 =

{
𝑔 ⊂ 𝐺 (Z𝑝) | 𝑔+ ≡

(
1 ∗ ∗ ∗

1 ∗ ∗
1 ∗

1

)
mod 𝑝𝑛

}
.

Let 𝒯̃tor
𝑛 be the partial toroidal compactification of 𝒯̃𝑛, and put 𝑉̃0

𝑛,𝑚 = 𝐻0(𝒯̃tor
𝑛,𝑚, 𝜔𝑡 ⊗ I𝒯̃tor

𝑛,𝑚
), which

contains 𝑉0
𝑛,𝑚 as a subspace. The definition of the U𝑝-operators in §2.8 can be naturally extended to

𝑉̃0
𝑛,𝑚, so it suffices to show that lim

𝑟→∞
(𝑈𝑝)𝑟 ! 𝑓 converges for every 𝑓 ∈ 𝑉̃0

𝑛,𝑚. As explained in [Hid02],

lim←−−
𝑚

lim−−→
𝑛

𝑉̃0
𝑛,𝑚 is p-torsion free and there is an embedding

⊕
𝑡 dominant

𝐻0
(
𝒮tor, 𝜔𝑡 ⊗ I𝒮tor

)
⊗ Q ↩→

(
lim←−−
𝑚

lim−−→
𝑛

𝑉̃0
𝑛,𝑚

)
[1/𝑝] .

The Z𝑝-modules 𝐻0
(
𝒮tor, 𝜔𝑡 ⊗ I𝒮tor

)
are free of finite rank and stable under the action of 𝑈𝑝 , so the

limit lim
𝑟→∞

(𝑈𝑝)𝑟 ! exists on them. Since

���
⊕

𝑡 dominant

𝐻0
(
𝒮tor, 𝜔𝑡 ⊗ I𝒮tor

)
⊗ Q���

∩ lim←−−
𝑚

lim−−→
𝑛

𝑉̃0
𝑛,𝑚 (3.0.1)

is dense in lim←−−
𝑚

lim−−→
𝑛

𝑉̃0
𝑛,𝑚 by [Hid02], the convergence of lim

𝑟→∞
(𝑈𝑝)𝑟 ! 𝑓 for every 𝑓 ∈ 𝑉̃0

𝑛,𝑚 follows.

On the other hand, let �𝑓 ∈ 𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛,𝑚

)
. By Proposition 3.0.1, �𝑓 lifts to

�𝔣 ∈ 𝐻0
(
𝒯0,tor
𝑛 [1/𝐸], 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛

)
.

For 𝑙 � 0, we have �𝔣𝐸 𝑙 ∈ 𝐻0
(
𝒯

0,tor
𝑛 , 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛

)
, which by the Koecher principle can be viewed as

an element in the finite-dimensional space 𝑀0
𝑡+𝑙𝑡𝐸 (𝑝−1) (𝐾

𝑝

𝑓
𝐾0
𝑝,𝑛;Q𝑝). Thus, the limit lim

𝑟→∞
(𝑈𝑝)𝑟 !(�𝔣𝐸 𝑙)

converges. Since 𝐸 ≡ 1 mod 𝑝, we have �𝔣𝐸 𝑙 ≡ �𝑓 mod 𝑝𝑚, and the convergence of lim
𝑟→∞

(𝑈𝑝)𝑟 ! �𝑓
follows. �

Thanks to the convergence of lim
𝑟→∞

(𝑈𝑝)𝑟 ! on V 0 and 𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛,𝑚

)
, we can define the

semiordinary projector on them as 𝑒so = lim
𝑟→∞

(𝑈𝑝)𝑟 !.

Proposition 3.0.3. For 𝑛 ≥ 𝑚 and a dominant weight (0, 0, 𝑡+; 𝑡−), the map

𝑒so𝐻0
(
𝒯0,tor
𝑛,𝑚 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I𝒯tor

𝑛,𝑚

)
→ 𝑒so𝑉

0
𝑛,𝑚 [𝑡+, 𝑡−]

induced by equation (2.7.1) is an isomorphism.
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Proof. Given �𝑓 , we have

(𝑈𝑛
𝑝
�𝑓 ) (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝜀𝛼𝑝

)

= 𝑝−(2+3+3)𝑛
∑
𝐶

(
t𝑢−1
𝐶

(
𝑝𝑛

𝑝𝑛

𝑝2𝑛

)
, 𝑝2𝑛

)
· �𝑓 (𝐴/𝐶, 𝜆′, 𝑖′, (𝛼𝑝) ′, 𝛼′

𝑝 , 𝜀𝛼′
𝑝
).

(3.0.2)

Here, C runs over the subgroups of 𝐴[𝑝4𝑛] which can be spanned as

(𝑒+1 , 𝑒+2 , 𝑒+3 , 𝑒+4) · 𝑝𝑛
( 1 𝑢1 ∗

1 𝑢2 ∗
1 ∗

1

) ( 𝑝−𝑛
𝑝−𝑛

𝑝−2𝑛

𝑝−4𝑛

)
,

(𝑒−1 , 𝑒−2 , 𝑒−3 , 𝑒−4 ) · 𝑝𝑛
( 1 ∗ ∗ ∗

1
−𝑢2 1 −𝑢1

1

)���
𝑝−2𝑛

𝑝−5𝑛

𝑝−4𝑛

𝑝−5𝑛

���
,

with 𝑒±1 , 𝑒±2 , 𝑒±3 , 𝑒±4 a basis of 𝐴[𝑝𝑛] compatible with 𝛼𝑝 . For such a C, 𝑢𝐶 =
( 1 𝑢1

1 𝑢2
1

)
. By our definition

of the Δ+-action on 𝑊𝑡 (in equation (2.8.7)), we know that if 𝑤 ∈ 𝑊(0,0,𝑡+;𝑡−) is a vector of nonhighest
weight, then ((

𝑝𝑛

𝑝𝑛

𝑝2𝑛

)
, 𝑝2𝑛

)
· 𝑤 ≡ 0 mod 𝑝𝑛.

Therefore, from equation (3.0.2) we see that 𝑈𝑛
𝑝
�𝑓 is actually determined by the projection of its values

to the highest weight space.
On one hand, this shows that the map in the statement is injective. On the other hand, given

𝑓 ∈ 𝑒so𝑉
0
𝑛,𝑚 [𝑡+, 𝑡−], we can define �𝑓 by the rule

�𝑓 (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝜀𝛼𝑝
) = 𝑝−(2+3+3)𝑛

∑
𝐶

(
t𝑢−1
𝐶 , 1

)
· 𝑤 (0,0,𝑡+;𝑡−) 𝑓 (𝐴/𝐶, 𝜆′, 𝑖′, (𝛼𝑝) ′, 𝛼′

𝑝), (3.0.3)

where C runs over the same range as above. One can check that �𝑓 satisfies

�𝑓 (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 ◦ 𝑔, 𝜀𝛼𝑝◦𝑔) =
(( ∗ 𝑝∗

∗ ∗
𝑢1 𝑢2 𝑎1

)
, 𝑎2

)−1
· �𝑓 (𝐴, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝 , 𝜀𝛼𝑝

)

for 𝑔+ ≡
( ∗ ∗ 𝑢1 ∗
𝑝∗ ∗ 𝑢2 ∗

𝑎1 ∗
𝑎−1

2

)
mod 𝑝𝑛, so equation (3.0.3) defines an element in

𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I𝒯tor

𝑛,𝑚

)
, and it is easy to check its semiordinarity from the semiordinarity

of f. The composition of equation (3.0.3) and the map in the statement is 𝑈𝑛
𝑝 . Hence, the map is a

bijection. �

Proposition 3.0.4. 𝑒so𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡 ⊗ I𝒯tor

𝑛,𝑚

)
= 𝑒so𝐻0

(
𝒯

0,tor
1,𝑚 , 𝜔𝑡 ⊗ I𝒯tor

1,𝑚

)
.

Proof. This follows immediately from the fact that 𝑈𝑝 maps the space 𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡 ⊗ I𝒯tor

𝑛,𝑚

)
into

𝐻0
(
𝒯

0,tor
𝑛−1,𝑚, 𝜔𝑡 ⊗ I𝒯tor

𝑛,𝑚

)
. (See §2.8.2.) �

Proposition 3.0.5. For a fixed tame level 𝐾
𝑝

𝑓
and a fixed integer 𝐵 ≥ 0, the dimension of

𝑒so𝑀0
𝑡 (𝐾

𝑝

𝑓
𝐾0
𝑝,1;Q𝑝) is uniformly bounded for all 𝑡+1 ≥ 𝑡+2 ≥ 𝑡+3 ≥ −𝑡−1 + 4 with 𝑡+1 − 𝑡+2 ≤ 𝐵.
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Proof. Suppose that Π is an irreducible cuspidal automorphic representation of 𝐺 (AQ) generated by a

semiordinary form 𝜑 ∈ 𝑒so𝑀0
𝑡

(
𝐾
𝑝

𝑓
𝐾0
𝑝,𝑛;Q𝑝

)
whose (generalized) eigenvalue of 𝑈+

𝑝,2 (resp. 𝑈+
𝑝,3, 𝑈−

𝑝,1)

is 𝜆+
2 (resp. 𝜆+

3 , 𝜆−
1 ). The semiordinarity condition implies that 𝜆+

2 , 𝜆+
3 , 𝜆−

1 are all p-adic units. We view
Π𝑝 as an irreducible representation of GL4(Q𝑝) via equation (2.4.1). Let Q be the parabolic subgroup{( ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗
∗

)}
⊂ GL4 with Levi factorization 𝑄 = 𝑀𝑄𝑁𝑄. Let

Π𝑝,𝑁𝑄
= Π𝑝/{Π𝑝 (𝑢)𝑣 − 𝑣 : 𝑣 ∈ Π𝑝 , 𝑢 ∈ 𝑁𝑄 (Q𝑝)},

the Jacquet module of Π𝑝 with respect to the parabolic Q acted on by 𝑀𝑄 (Q𝑝) � GL2(Q𝑝) ×
GL1(Q𝑝) ×GL1(Q𝑝). It follows from Jacquet’s lemma (see [Cas95, Theorem 4.1.2, Proposition 4.1.4])

that Π
𝑀𝑄 (Q𝑝)∩𝐾 0

𝑝,𝑛

𝑝,𝑁𝑄
equals the image under the natural projection of

⋂
𝑟 ≥1

(
𝑈𝑝,loc

)𝑟
Π
𝐾 0

𝑝,𝑛

𝑝 , 𝑈𝑝,loc =

∫
𝑁𝑄 (Z𝑝)

Π𝑝
���
𝑢
���
𝑝2

𝑝2

𝑝

𝑝−1

���
���

𝑑𝑢.

The semiordinary form 𝜑 ∈ Π is fixed by 𝐾0
𝑝,𝑛 and belongs to a generalized eigenspace of 𝑈𝑝,loc with a

nonzero eigenvalue. Thus, we deduce that Π
𝑀𝑄 (Q𝑝)∩𝐾 0

𝑝,𝑛

𝑝,𝑁𝑄
≠ 0 and Π𝑝 is isomorphic to a subquotient of

Ind
GL4 (Q𝑝)
𝑄 (Q𝑝) 𝜎 � 𝜒 � 𝜒′,

where 𝜎 is an irreducible smooth admissible representation of GL2(Q𝑝), and 𝜒, 𝜒′ are smooth characters

of Q×
𝑝 . We have 𝑀𝑄 (Q𝑝) ∩ 𝐾0

𝑝,1 � 𝐾 ′
𝑝 × (1 + 𝑝𝑛Z𝑝) × (1 + 𝑝𝑛Z𝑝) with 𝐾 ′

𝑝 =

{(
∗ ∗
𝑝∗ ∗

)}
⊂ GL2(Z𝑝).

From Π
𝑀𝑄 (Q𝑝)∩𝐾 0

𝑝,𝑛

𝑝,𝑁𝑄
≠ 0, we know that 𝜎𝐾

′
𝑝 ≠ 0 ([Cas95, Theorem 6.3.5]). This implies that 𝜎 is not

supercuspidal, and Π𝑝 is isomorphic to a subquotient of a principal series. Denote by 𝛼1, 𝛼2, 𝛼3, 𝛼4 the
evaluations at p of the corresponding characters of Q×

𝑝 . Then, up to reordering, we have

𝜆+
2 = 𝑝𝑡

+
1 +

1
2 𝛼1 · 𝑝𝑡

+
2 −

1
2 𝛼2, (3.0.4)

𝜆+
3 = 𝑝𝑡

+
1 +

1
2 𝛼1 · 𝑝𝑡

+
2 −

1
2 𝛼2 · 𝑝𝑡

+
3 −

3
2 𝛼3, (3.0.5)

𝜆−
1 = 𝑝𝑡

−
1 −

3
2 𝛼−1

4 . (3.0.6)

Now, in addition to 𝑈+
𝑝,2, 𝑈+

𝑝,3, 𝑈−
𝑝,1, we also consider the action of the operator

𝑈+
𝑝,1 = 𝑝〈(𝑡+1 ,𝑡+2 ,𝑡+3 ;−𝑡−1 )+2𝜌c , (1,0,0;0)〉

∫
𝑁 (Z𝑝)

𝑅

(
𝑢

( 𝑝
1

1
1

)
, 1

)
𝑑𝑢 (3.0.7)

on 𝑀0
𝑡

(
𝐾
𝑝

𝑓
𝐾0
𝑝,𝑛;Q𝑝

)
. The operator 𝑈+

𝑝,1 has a geometric interpretation analogous to equation (2.8.5),

and the above normalization makes all its eigenvalues p-integral. If 𝛼−1
1 𝛼2 ≠ 𝑝±1, then 𝑝𝑡

+
1 +

1
2 𝛼1 and

𝑝𝑡
+
1 +

1
2 𝛼2 are both eigenvalues for the action of 𝑈+

𝑝,1 on the holomorphic forms in Π of level 𝐾
𝑝

𝑓
𝐾0
𝑝,𝑛, so

𝑣𝔭 (𝛼1) + 𝑡+1 + 1

2
≥ 0, 𝑣𝔭 (𝛼2) + 𝑡+1 + 1

2
≥ 0. (3.0.8)
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By using that equation (3.0.4) is a p-adic unit and our condition 0 ≤ 𝑡+1 − 𝑡+2 ≤ 𝐵, we get

(𝑣𝔭 (𝛼1) + 𝑡+1 + 1

2
) + (𝑣𝔭 (𝛼2) + 𝑡+1 + 1

2
) = 𝑡+1 − 𝑡+2 + 1 ≤ 𝐵 + 1. (3.0.9)

Combining equation (3.0.8) and equation (3.0.9), we get

0 ≤ 𝑣𝔭 (𝛼 𝑗 ) + 𝑡+1 + 1

2
≤ 𝐵 + 1, 𝑗 = 1, 2. (3.0.10)

If 𝛼−1
1 𝛼2 = 𝑝±1, then equation (3.0.4) being a p-adic unit implies that

𝑡+1 − 𝑡+2
2

≤ 𝑣𝔭 (𝛼 𝑗 ) ≤
𝑡+1 − 𝑡+2

2
+ 1, 𝑗 = 1, 2.

Combining it with our condition 0 ≤ 𝑡+1 − 𝑡+2 ≤ 𝐵, we get

0 ≤ 𝑣𝔭 (𝛼 𝑗 ) ≤
𝐵

2
+ 1, 𝑗 = 1, 2. (3.0.11)

Therefore, for 𝑡+1 ≥ 𝑡+2 ≥ 𝑡+3 ≥ −𝑡−1 + 4, 𝑡+1 − 𝑡+2 ≤ 𝐵, all the semiordinary forms in 𝑒so𝑀0
𝑡 (𝐾

𝑝

𝑓
𝐾0
𝑝,1;Q𝑝)

have slopes ≤ 𝐵 for the U𝑝-operator 𝑈+
𝑝,1𝑈

+
𝑝,2𝑈

+
𝑝,3𝑈

−
𝑝,1.

Recall that the theory of Coleman families for unitary groups (developed in [Bra16] as a general-
ization of [AIP15]) shows that, for every point in the weight space Homcont ((Z×𝑝)4,C×𝑝), there exists a
neighborhood U of that point and a projective AU -module of finite rank interpolating all the cuspidal
overconvergent forms of weights in U and 𝑈+

𝑝,1𝑈
+
𝑝,2𝑈

+
𝑝,3𝑈

−
𝑝,1-slope ≤ 𝐵 and a fixed tame level. Since

all the algebraic weights 𝑡 are contained in a compact subset of Homcont ((Z×𝑝)4,C𝑝), when 𝑡 varies
among all the algebraic weights, there is a uniform bound on the dimension of the space of cuspidal
overconvergent forms of weight 𝑡 and slopes ≤ 𝐵 and tame level 𝐾

𝑝

𝑓
. The proposition follows. �

Proposition 3.0.6.

(1) dimF𝑝 𝑒so𝐻0
(
𝒯

0,tor
1,1 , 𝜔𝑡 ⊗ I

𝒯
0,tor

1,1

)
< ∞.

(2) (Classicity) There is a canonical embedding

𝑒so𝑀0
(0,0,𝑡+;𝑡−)

(
𝐾
𝑝

𝑓
𝐾1
𝑝,0;Q𝑝

)
↩−→

(
lim←−−
𝑚

lim−−→
𝑛

𝑒so𝑉
0
𝑛,𝑚 [𝑡+, 𝑡−]

)
⊗ Q𝑝 ,

and for a given 𝑡+ ≤ 0, there exists 𝐴(𝑡+) ≥ −𝑡+ + 4 such that if 𝑡− ≥ 𝐴(𝑡+), then the embedding is
an isomorphism.

Proof. (1) Suppose that 𝑓 1, . . . , 𝑓 𝑑 ∈ 𝑒so𝐻0
(
𝒯

0,tor
1,1 , 𝜔𝑡 ⊗ I

𝒯
0,tor

1,1

)
are linearly independent. By Propo-

sition 3.0.1, they lift to 𝑓1, . . . , 𝑓𝑑 ∈ 𝐻0
(
𝒯

0,tor
1 [1/𝐸], 𝜔𝑡 ⊗ I

𝒯
0,tor

1

)
. Recall that E has scalar weight

𝑡𝐸 (𝑝 − 1) and let 𝑡 + 𝑙𝑘𝐸 (𝑝 − 1) = (𝑡+1 + 𝑙𝑡𝐸 (𝑝 − 1), 𝑡+2 + 𝑙𝑡𝐸 (𝑝 − 1), 𝑡+3 + 𝑙𝑡𝐸 (𝑝 − 1); 𝑡−1 + 𝑙𝑡𝐸 (𝑝 − 1)).
For 𝑙 � 0, we have

𝑓1𝐸 𝑙 , . . . , 𝑓𝑑𝐸 𝑙 ∈ 𝐻0
(
𝒯0,tor
𝑛 , 𝜔𝑡+𝑙𝑡𝐸 (𝑝−1) ⊗ I

𝒯
0,tor
𝑛

)
.

Because 𝐸 ≡ 1 mod 𝑝, we have 𝑒so ( 𝑓 𝑗𝐸 𝑙) = 𝑓 𝑗 , and therefore 𝑒so ( 𝑓1𝐸 𝑙), . . . , 𝑒so( 𝑓𝑑𝐸 𝑙) are linearly
independent. Thus, d can be at most the bound in Proposition 3.0.5.
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(2) We have 𝑀0
(0,0,𝑡+;𝑡−)

(
𝐾
𝑝

𝑓
𝐾0
𝑝,1;Q𝑝

)
= 𝐻0

(
𝒯

0,tor
1 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1

)
⊗ 𝜄𝑝 Q𝑝 . (As mentioned

above, the base change of 𝒯0,tor
1 to K is an open subscheme of 𝑆tor

𝐾
𝑝
𝑓
𝐾 0

𝑝,1

; here, we use the Koecher

principle to get the equality of global sections.) The map (2.7.1) induces

𝐻0
(
𝒯

0,tor
1 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1

)
→

(
lim←−−
𝑚

lim−−→
𝑛

𝑒so𝑉
0
𝑛,𝑚 [𝑡+, 𝑡−]

)
,

and this gives the canonical embedding in the statement.
Put 𝑉0

so [𝑡+, 𝑡−] = lim←−−
𝑚

lim−−→
𝑛

𝑒so𝑉
0
𝑛,𝑚 [𝑡+, 𝑡−]. Note that from Propositions 3.0.3 and 3.0.4, for 𝑛 ≥ 𝑚, we

have

𝑒so𝑉
0
𝑛,𝑚 [𝑡+, 𝑡−] � 𝑒so𝐻0

(
𝒯

0,tor
1,𝑚 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1,𝑚

)
.

It follows that 𝑉0
so [𝑡+, 𝑡−] is p-torsion free, and together with Proposition 3.0.1 we get

dimF𝑝 𝑉0
so [𝑡+, 𝑡−]/𝑝𝑉0

so [𝑡+, 𝑡−] = dimF𝑝 𝑒so𝐻0
(
𝒯

0,tor
1,1 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1,1

)
= dimQ𝑝

𝑒so𝐻0
(
𝒯

0,tor
1 [1/𝐸], 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1

)
⊗ Q𝑝 .

Denote this dimension by d. The above shows that 𝑉0
so [𝑡+, 𝑡−] is a free Z𝑝-module of rank d. Thus, it

suffices to show that there exists 𝐴(𝑡+) ≥ −𝑡+ such that dimQ𝑝
𝑒so𝑀0

(0,0,𝑡+;𝑡−)

(
𝐾
𝑝

𝑓
𝐾0
𝑝,1;Q𝑝

)
≥ 𝑑 for

𝑡− ≥ 𝐴(𝑡+). Pick an unramified Hecke character 𝜒 of K×\A×
K

of ∞-type (−𝑡𝐸 (𝑝 − 1), 0). Twisting E
by the character obtained by composing 𝜒 with det : 𝐺 (Q)\𝐺 (AQ) → K×\A×

K
, we get a holomorphic

form 𝐸 ′ of weight (0, 0, 0; 2𝑡𝐸 (𝑝 − 1)) with the same vanishing locus as E. Multiplying by (𝐸 ′)𝑙 and
applying 𝑒so gives an injection

𝑒so𝑀0
(0,0,𝑡+;𝑡−)

(
𝐾
𝑝

𝑓
𝐾0
𝑝,1;Q𝑝

)
↩−→ 𝑒so𝑀0

(0,0,𝑡+;𝑡−+2𝑡𝐸 (𝑝−1))

(
𝐾
𝑝

𝑓
𝐾0
𝑝,1;Q𝑝

)
,

so

dimQ𝑝
𝑒so𝑀0

(0,0,𝑡+;𝑡−)

(
𝐾
𝑝

𝑓
𝐾0
𝑝,1;Q𝑝

)
≤ dimQ𝑝

𝑒so𝑀0
(0,0,𝑡+;𝑡−+2𝑡𝐸 (𝑝−1))

(
𝐾
𝑝

𝑓
𝐾0
𝑝,1;Q𝑝

)
.

By the definition of d, we thus see that for each 0 ≤ 𝑗 ≤ 2𝑡𝐸 (𝑝 − 1) − 1 there exists 𝑙 𝑗 (𝑡+) ≥ 0 such that

dimQ𝑝
𝑒so𝑀0

(0,0,𝑡+;−𝑡++4+ 𝑗+2𝑡𝐸 (𝑝−1)𝑙 𝑗 (𝑡+))

(
𝐾
𝑝

𝑓
𝐾0
𝑝,1;Q𝑝

)
≥ 𝑑.

Therefore, 𝐴(𝑡+) = −𝑡+ + 4 + 2𝑡𝐸 (𝑝 − 1) (max 𝑗 {𝑙 𝑗 (𝑡+)} + 1) has the required property. �

Theorem 3.0.7 (Vertical control theorem). V 0,∗
so is a free Λso-module of finite rank.

Proof. Let 𝔪 be a maximal ideal of Z𝑝 [[𝑇so (Z𝑝)]]. (We know that 𝔪 ∩ Λso = (𝑝, 𝑇+, 𝑇−), where we
identify Λso with Z𝑝 [[𝑇+, 𝑇−]] by identifying (1 + 𝑝, 1) ∈ 𝑇so (Z𝑝) (resp. (1, 1 + 𝑝) ∈ 𝑇so (Z𝑝) with 𝑇+

(resp. 𝑇−).) We show that V 0,∗
so,𝔪, the localization of V 0,∗

so at 𝔪, is a free Λso-module of finite rank.
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First, we consider the quotient V 0,∗
so,𝔪 ⊗Λso Λso/(𝑝, 𝑇+, 𝑇−), which by definition, equals (𝑒soV [𝔪])∗.

Take 0 ≥ 𝑡+ ≥ −𝑡− + 4 with P𝑡+ ,𝑡− ⊂ 𝔪. Then

𝑒soV [𝔪] = 𝑝-torsion of lim−−→
𝑚

lim−−→
𝑛

𝑒so𝑉
0
𝑛,𝑚 [𝑡+, 𝑡−]

(Prop 3.0.3)
= 𝑝-torsion of lim−−→

𝑚

lim−−→
𝑛

𝑒so𝐻0
(
𝒯0,tor
𝑛,𝑚 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor
𝑛,𝑚

)
(Prop 3.0.4)

= 𝑝-torsion of lim−−→
𝑚

𝑒so𝐻0
(
𝒯

0,tor
1,𝑚 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1,𝑚

)

= 𝑒so

[
𝑝-torsion of lim−−→

𝑚

𝐻0
(
𝒯

0,tor
1,𝑚 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1,𝑚

)]
.

Also, Proposition 3.0.1 implies

lim−−→
𝑚

𝐻0
(
𝒯

0,tor
1,𝑚 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1,𝑚

)
= lim−−→

𝑚

𝐻0
(
𝒯

0,tor
1 [1/𝐸], 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1

)
⊗ Z/𝑝𝑚Z.

It follows that

𝑝-torsion of lim−−→
𝑚

𝐻0
(
𝒯

0,tor
1,𝑚 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1,𝑚

)

=𝐻0
(
𝒯

0,tor
1 [1/𝐸], 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1

)
⊗ Z/𝑝Z

=𝐻0
(
𝒯

0,tor
1,1 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1,1

)
,

where Proposition 3.0.1 is used again for the second equality. Thus,

𝑒soV [𝔪] = 𝑒so𝐻0
(
𝒯

0,tor
1,1 , 𝜔 (0,0,𝑡+;𝑡−) ⊗ I

𝒯
0,tor

1,1

)
.

By Proposition 3.0.6, we know this is finite dimensional over F𝑝 . Hence, V 0,∗
so,𝔪 ⊗Λso Λso/(𝑝, 𝑇+, 𝑇−) =

(𝑒soV [𝔪])∗ is finite dimensional over F𝑝 . Let

𝑑 = dimF𝑝 V 0,∗
so,𝔪 ⊗Λso Λso/(𝑝, 𝑇+, 𝑇−).

By Nakayama’s lemma, there exist 𝐹1, . . . , 𝐹𝑑 ∈ V 0,∗
so,𝔪 such that

V 0,∗
so,𝔪 = Λso𝐹1 + · · · + Λso𝐹𝑑 .

Next, we show that 𝐹1, . . . , 𝐹𝑑 are Λso-linearly independent. Suppose that 𝑎1, . . . , 𝑎𝑑 ∈ Λso are such
that 𝑎1𝐹1 + · · · + 𝑎𝑑𝐹𝑑 = 0. Given any 0 ≥ 𝑡+ ≥ −𝑡− + 4 with P𝑡+ ,𝑡− ⊂ 𝔪, we put

P◦
𝑡+ ,𝑡− = Λso ∩ P𝑡+ ,𝑡− .

In view of Proposition 3.0.1, the Z𝑝-module lim−−→
𝑚

lim−−→
𝑛

𝐻0
(
𝒯

0,tor
𝑛,𝑚 , 𝜔𝑡 ⊗ I

𝒯
0,tor
𝑛,𝑚

)
is p-divisible, and by

Proposition 3.0.3 so is 𝑒soV 0 [𝑡+, 𝑡−]. Therefore,

V 0,∗
so,𝔪 ⊗Λso Λso/P◦

𝑡+ ,𝑡− =
(
𝑒soV 0 [𝑡+, 𝑡−]

)∗
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is p-torsion free. On the other hand,

dimF𝑝

(
V 0,∗

so,𝔪 ⊗Λso Λso/P◦
𝑡+ ,𝑡−

)
⊗Z Z/𝑝Z = dimF𝑝 V 0,∗

so,𝔪 ⊗Λso Λso/(𝑝, 𝑇+, 𝑇−) = 𝑑.

It follows that the Z𝑝-module V 0,∗
so,𝔪 ⊗Λso Λso/P◦

𝑡+ ,𝑡− is free of rank d, and therefore 𝑎1, . . . , 𝑎𝑑 ∈ P◦
𝑡+ ,𝑡− .

Then from
⋂

0≥𝑡+≥−𝑡−+4
P◦
𝑡+ ,𝑡− = 0, we conclude that 𝑎1 = · · · = 𝑎𝑑 = 0, and hence V 0,∗

so,𝔪 is a free Λso-

module of rank d. �

This completes the proof of part (1) of Theorem 2.9.1 for cuspidal forms. For part (2), because V 0,∗
so

is free over Λso, letting 𝑉0
𝑚,so [𝜏+, 𝜏−] = 𝑒so lim−−→

𝑛

𝑉0
𝑛,𝑚 ⊗Z𝑝 O𝐹 [𝜏+, 𝜏−] we have

M0
so ⊗Z𝑝 [[𝑇so (Z𝑝) ]] O𝐹 [[𝑇so (Z𝑝)]]/P𝜏+ ,𝜏− � HomZ𝑝

(
V 0,∗

so ⊗Z𝑝 O𝐹/P𝜏+ ,𝜏− ,Z𝑝

)
= HomZ𝑝

(
(𝑒soV 0 [𝜏+, 𝜏−])∗,Z𝑝

)

= HomZ𝑝

((
lim−−→
𝑚

𝑉0
𝑚,so [𝜏+, 𝜏−]

)∗
,Z𝑝

)
.

(3.0.12)

Since the left-hand side is a free Z𝑝-module (because M0
so is a free Λso-module), we see that

lim−−→
𝑚

𝑉0
𝑚,so [𝜏+, 𝜏−]) is p-divisible, and 𝑉0

𝑚+1,so [𝜏+, 𝜏−] → 𝑉0
𝑚,so [𝜏+, 𝜏−] is surjective, so

HomZ𝑝

(
lim−−→
𝑚

𝑉0
𝑚,so [𝜏+, 𝜏−],Q𝑝/Z𝑝

)
� HomZ𝑝

(
lim←−−
𝑚

𝑉0
𝑚,so [𝜏+, 𝜏−],Z𝑝

)

and hence

(3.0.12) = HomZ𝑝

(
HomZ𝑝

(
lim←−−
𝑚

𝑉0
𝑚,so [𝜏+, 𝜏−],Z𝑝

)
,Z𝑝

)
= lim←−−

𝑚

𝑉0
𝑚,so [𝜏+, 𝜏−]

=

(
lim←−−
𝑚

lim−−→
𝑛

𝑒so𝑉
0
𝑛,𝑚 ⊗Z𝑝 O𝐹

)
[𝜏+, 𝜏−],

concluding the proof of part (2) of Theorem 2.9.1 for cuspidal forms. Part (3) follows from Proposi-
tion 3.0.6.

4. The proof of Theorem 2.9.1 for the noncuspidal part

We apply the approach in [LR20] to prove the vertical control theorem for semiordinary forms on
GU(3, 1) by analyzing the quotient V /V 0 and using the vertical control theorem for cuspidal semior-
dinary forms on GU(3, 1). When studying V /V 0, we introduce an auxiliary space V ♭. One difference
from loc.cit is that q-expansions are used there to reduce proving some properties for the U𝑝-action
on V , V ♭ to matrix computations, but q-expansions are not available in the case of GU(3, 1). The ana-
logue of those properties in our case are proved in §4.5 by working with semiabelian schemes over the
boundary of the partial toroidal compactification.

4.1. Cusp labels

Following [Lan13], a cusp label is a 𝐾 𝑓 -orbit of triples (Z,Φ, 𝛿), with:
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◦ Z : 0 ⊂ Z−2 ⊂ Z−1 = Z⊥−2 ⊂ 𝐿 ⊗ Ẑ a fully symplectic admissible filtration.
◦ Φ = (X, Y, 𝜙, 𝜑−2, 𝜑0) a torus argument, where 𝜙 : Y→ X is an OK-linear embedding of locally free

OK-modules with finite cokernel, and 𝜑−2 : GrZ−2

∼→ Hom
(
X ⊗ Ẑ, Ẑ(1)

)
and 𝜑0 : GrZ0

∼→ Y ⊗ Ẑ,

with GrZ−𝑖 = Z−𝑖/Z−𝑖−1, are isomorphisms such that 〈𝑣, 𝑤〉 = 𝜑0 (𝑣)
(
𝜙
(
𝜑−2(𝑤)

) )
,

◦ 𝛿 : GrZ = GrZ−2 ⊕ GrZ−1 ⊕ GrZ0
∼→ 𝐿 ⊗ Ẑ is an OK ⊗ Ẑ-equivariant splitting.

Following [Lan18, Def. 3.2.3.1], an ordinary cusp label of tame level 𝐾
𝑝

𝑓
is a 𝐾

𝑝

𝑓
𝑃D (Z𝑝)-orbit of

triples (Z,Φ, 𝛿) as above compatible with D, in the sense that

Z−2 ⊗Ẑ Z𝑝 ⊂ D ⊂ Z−1 ⊗Ẑ Z𝑝 .

There is a unique cusp label for which Z−2 = 0, and in our case, all other cusp labels have Z−2 with
rank 1. As explained in [HLTT16, B.2, B.3, B.11], the latter are parametrized by a certain double coset
space. To recall this, we have the filtration

𝑋∨ ⊂ 𝑋∨ ⊕ 𝐿0 ⊂ 𝐿 = 𝑋∨ ⊕ 𝐿0 ⊕ 𝑌 . (4.1.1)

Let 𝑃 ⊂ 𝐺 be the parabolic subgroup preserving this filtration, and 𝑃′ ⊂ 𝑃 be the kernel of the natural
projection 𝑃 → GL(𝑌 ). Define the triple (Z(1) ,Φ(1) , 𝛿 (1) ) as

◦ Z(1) : Z−2 = 𝑋∨ ⊗ Ẑ, Z−1 = (𝑋∨ ⊕ 𝐿0) ⊗ Ẑ.
◦ Φ(1) = (X(1) , Y(1) , 𝜙 (1) , 𝜑

(1)
−2 , 𝜑

(1)
0 ) with X(1) = HomOK

(𝑋∨,OK (1)), Y(1) = 𝑌 ,

𝜙 (1) : 𝑌 → HomOK

(
𝔡−1
K/Q · x1,OK (1)

)
induced by our fixed basis of x1 and y1 of X and Y and the

pairing 2𝜋𝑖 · TrK/Q ◦ 〈 , 〉𝐿 , 𝜑
(1)
−2 = 2𝜋

√
−1 · id and 𝜑

(1)
0 = id.

◦ 𝛿 (1) = id.

Denote by V : 0 ⊂ V−2 ⊂ V−1 ⊂ 𝐿 ⊗ Q the filtration obtained as equation (4.1.1) tensored with Q. For
every 𝑔 ∈ 𝐺 (AQ, 𝑓 ), define (Z(𝑔) ,Φ(𝑔) , 𝛿 (𝑔) ) by

◦ Z
(𝑔)
𝑗 =

(
𝑔−1(V 𝑗 ⊗ AQ, 𝑓 )

)
∩

(
𝐿 ⊗ Ẑ

)
.

◦ Φ(𝑔) = (X(𝑔) , Y(𝑔) , 𝜙 (𝑔) , 𝜑
(𝑔)
−2 , 𝜑

(𝑔)
0 ) with (X(𝑔) , Y(𝑔) , 𝜙 (𝑔) ) = (X(1) , Y(1) , 𝜙 (1) ), 𝜑

(𝑔)
−2 (resp. 𝜑

(𝑔)
0 ) is

the composition of 𝜑
(1)
−2 (resp. 𝜑

(1)
0 ) with 𝑔 : GrZ

(𝑔)
−2 → GrZ−2 (resp. 𝑔 : GrZ

(𝑔)
0 → GrZ0).

◦ 𝛿 (𝑔) is GrZ
(𝑔) Gr(𝑔)→ GrZ

(1) 𝛿 (1)→ 𝐿 ⊗ Ẑ 𝑔
−1

→ 𝐿 ⊗ Ẑ.

Then the map that sends g to (the cusp label represented by) (Z(𝑔) ,Φ(𝑔) , 𝛿 (𝑔) ) sets up a bijection between
the set of cusp labels with Z−2 rank 1 and the double coset space

𝐶 (𝐾 𝑝

𝑓
) = GL(𝑋 ⊗ Q) � 𝑃′(A𝑝

Q, 𝑓
)\𝐺 (A𝑝

Q, 𝑓
)/𝐾 𝑝

𝑓
.

(See [Lan15, Prop. A.5.9].)
Similarly, the ordinary cusp labels with Z−2 of rank 1 are parameterized by

𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord = Im

(
𝐺 (A𝑝

Q, 𝑓
)𝑃D(Q𝑝) −→ GL(𝑋 ⊗ Q) � 𝑃′(AQ, 𝑓 )\𝐺 (AQ, 𝑓 )/𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛

)
, (4.1.2)

which is in a natural bijection with(
GL(𝑋(𝑝) ) � (𝑃′(A𝑝

Q, 𝑓
) × 𝑃′(Z𝑝))

)∖
𝐺 (A𝑝

Q, 𝑓
) × 𝑃D (Z𝑝)

/
𝐾
𝑝

𝑓
(𝐾1

𝑝,𝑛 ∩ 𝑃D (Z𝑝))

� 𝐶 (𝐾 𝑝

𝑓
) ×

(
𝑈K,𝐾

𝑝
𝑓
� 𝑃′(Z𝑝)\𝑃D(Z𝑝)/𝐾1

𝑝,𝑛 ∩ 𝑃D (Z𝑝)
)
,

(4.1.3)
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where 𝑈K,𝐾
𝑝
𝑓
=

{
𝑎 ∈ O×

K
:
( 𝑎

12
t 𝑎̄−1

)
∈ 𝐾

𝑝

𝑓

}
. By abuse of notation, we shall denote by g both elements

in 𝐺 (A𝑝
Q, 𝑓

)𝑃D(Q𝑝) and in its quotient 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord. The context should eliminate any possible

confusions.

4.2. The formal completion along boundary strata

Let 𝒵𝑔,𝑛 be the stratum associated to 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord in the partial toroidal compactification 𝒯tor

𝑛 .
Then we have

𝒯tor
𝑛 = 𝒯𝑛 �

⊔
𝑔∈𝐶 (𝐾 𝑝

𝑓
𝐾 1

𝑝,𝑛)ord

𝒵𝑔,𝑛.

(The choice of a polyhedral cone decomposition is unique in our special case GU(3, 1) because with(
S
Φ

(𝑔)
𝐾

𝑝
𝑓
𝐾1
𝑝,𝑛

)
defined as below and P

Φ
(𝑔)
𝐾

𝑝
𝑓
𝐾1
𝑝,𝑛

the subset of HomZ
(
S
Φ

(𝑔)
𝐾

𝑝
𝑓
𝐾1
𝑝,𝑛

,Z
)
⊗ R consisting of

positive semidefinite Hermitian forms, we have P
Φ

(𝑔)
𝐾

𝑝
𝑓
𝐾1
𝑝,𝑛

= R≥0.) Let 𝒯min
𝑛 be the partial minimal

compactification of 𝒯𝑛 (constructed in [Lan18, Theorem 6.2.1.1]). Denoting by 𝒴𝑔,𝑛 the stratum
associated to 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord in 𝒯min

𝑛 , we similarly have

𝒯min
𝑛 = 𝒯𝑛 �

⊔
𝑔∈𝐶 (𝐾 𝑝

𝑓
𝐾 1

𝑝,𝑛)ord

𝒴𝑔,𝑛.

The stratum 𝒴𝑔,𝑛 can be identified with the 0-dimensional Shimura variety 𝒮𝐺′,𝐾 ′
𝑓 ,𝑔,𝑛

, where

𝐾 ′
𝑓 ,𝑔,𝑛 = Im

(
𝑃(AQ, 𝑓 ) ∩ 𝑔𝐾

𝑝

𝑓
𝐾1
𝑝,𝑛𝑔

−1 → 𝐺 ′(AQ, 𝑓 )
)
. (4.2.1)

We have the following diagram:

Ξord
𝑔,𝑛

�

�

��

��

Ξ
ord
𝑔,𝑛

����
��
��
��
�

𝒞ord
𝑔,𝑛

ℎ

��

𝒮𝐺′,𝐾 ′
𝑓 ,𝑔,𝑛

,

(4.2.2)

where 𝒞ord
𝑔,𝑛 → 𝒮𝐺′,𝐾 ′

𝑓 ,𝑔,𝑛
is a torsor of an abelian scheme quasi-isogenous to Hom

OK
(X(𝑔) ,A) with A

the universal abelian scheme over 𝒮𝐺′,𝐾 ′
𝑓 ,𝑔,𝑛

, and Ξord
𝑔,𝑛 → 𝒞ord

𝑔,𝑛 is a torsor of the torus with character
group S

Φ
(𝑔)
𝐾

𝑝
𝑓
𝐾1
𝑝,𝑛

, which is a finite index subgroup of the free quotient of

(
1

𝑁
Y
(𝑔) ⊗Z X(𝑔)

)/(
𝑦 ⊗ 𝜙 (𝑔) (𝑦′) − 𝑦′ ⊗ 𝜙 (𝑔) (𝑦)
(𝑏 1
𝑁

𝑦) ⊗ 𝑥 − ( 1
𝑁

𝑦 ⊗ (𝑏𝑐𝑥)

)
𝑦,𝑦′∈Y(𝑔) ,𝑥∈X(𝑔) ,𝑏∈OK

with N sufficiently large with respect to the level 𝐾
𝑝

𝑓
𝐾1
𝑝,𝑛; and Ξord

𝑔,𝑛 ↩→ Ξ
ord
𝑔,𝑛 is the torus embedding

with respect to the unique cone decomposition.
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Denote by 𝔛𝑔,𝑛 the formal completion of 𝒯tor
𝑛 along the stratum 𝒵𝑔,𝑛. Then 𝔛𝑔,𝑛 is canonically

isomorphic to the quotient by Γ𝑔 of the formal completion of Ξ
ord
𝑔,𝑛 along the boundary Ξ

ord
𝑔,𝑛 − Ξord

𝑔,𝑛.

Here, Γ𝑔 is the (finite, in our case) subgroup of GL(X(𝑔) )×GL(Y(𝑔) ) preserving 𝜑
(𝑔)
−2 and 𝜑

(𝑔)
0 (as orbits).

4.3. The subset 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord of 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord and the subspace V ♭ of V

By a generic point, denoted by 𝜂, of the formal completion 𝔛𝑔,𝑛, we mean a generic point of
Spec(Γ(𝑈,O𝑈 )) with U an affine open subscheme of 𝔛𝑔,𝑛. Let (G, 𝜆, 𝑖, 𝛼𝑝 , 𝛼𝑝) be the pullback to
Spec(Γ(𝑈,O𝑈 )) of the family of semiabelian varieties over 𝒯tor

𝑛 , which is a degenerating family
obtained by Mumford’s construction. Let

0 −→ T −→ G♮ −→ A → 0

be the Raynaud extension of G. Then, for any positive integer N, the group T [𝑁] (resp. G♮ [𝑁]) is
canonically isomorphic to a subgroup of G [𝑁], which we denote by (G [𝑁])𝜇 (resp. (G [𝑁])f). We
have (G [𝑁])𝜇 ⊂ (G [𝑁])f and the quotient (G [𝑁])ab = (G [𝑁])f/(G [𝑁])𝜇 is canonically isomorphic to
A[𝑁]. (See also [Lan18, §3.4.2].)

Let 𝜂 be a geometric point over 𝜂. The ordinary level structure 𝛼𝑝, 𝜂̄ of G𝜂̄ gives rise to a filtration

F
+
𝜂̄ : 0 ⊂ F+2, 𝜂̄ ⊂ F+3,𝜂 ⊂ G𝜂̄ [𝑝𝑛]mult+

(refer to text around equation (2.5.2)). We define a subset 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord ⊂ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord in terms of

the relative positions of F+2,𝜂 and (G𝜂̄ [𝑝])𝜇.

Definition 4.3.1. Define 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord as the subset of 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord consisting of g such that

F
+
2, 𝜂̄ ∩ (G𝜂̄ [𝑝])𝜇 = 0

for a geometric point 𝜂 over a generic point 𝜂 of 𝔛𝑔,𝑛.

One can check that the preceding definition does not depend on the choice of 𝜂. Let

𝑃♭D (Q𝑝) =
{
𝑔 ∈ 𝑃D (Q𝑝)

���� 𝑔+ =

(
𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34

𝑎44

)
with

( 𝑎21 𝑎22
𝑎31 𝑎32

)−1 ( 𝑎23
𝑎33

)
∈ Z2

𝑝

}

and

𝑃♭D (Z𝑝) =
{
𝑔𝑝 ∈ 𝑃D (Z𝑝)

���� 𝑔+
𝑝 =

(
𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34

𝑎44

)
with

( 𝑎21 𝑎22
𝑎31 𝑎32

)
∈ GL2 (Z𝑝)

}

= 𝑃′(Z𝑝)
(

1
1

1
1

) (
𝐾0
𝑝,𝑛 ∩ 𝑃D (Z𝑝)

)
.

Proposition 4.3.2. We have

𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord = Im

(
𝐺 (A𝑝

Q, 𝑓
)𝑃♭D(Q𝑝) −→ GL(𝑋 ⊗ Q) � 𝑃′(AQ, 𝑓 )\𝐺 (AQ, 𝑓 )/𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛

)
, (4.3.1)

which is in a natural bijection with

𝐶 (𝐾 𝑝

𝑓
) ×

(
𝑈K,𝐾

𝑝
𝑓
� 𝑃′(Z𝑝)\𝑃♭D (Z𝑝)/𝐾1

𝑝,𝑛 ∩ 𝑃D (Z𝑝)
)
. (4.3.2)
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Proof. Given 𝑔𝑝 ∈ 𝑃D (Z𝑝) with

𝑔+
𝑝 =

(
𝑎11 𝑎12 𝑎13 ∗
𝑎21 𝑎22 𝑎23 ∗
𝑎31 𝑎32 𝑎33 ∗

∗

)
, (𝑔−1

𝑝 )+ =

(
𝑐11 𝑐12 𝑐13 ∗
𝑐21 𝑐22 𝑐23 ∗
𝑐31 𝑐32 𝑐33 ∗

∗

)
, (𝑔−1

𝑝 )− =

(
𝑑11 ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

)
,

the corresponding F2, 𝜂̄ is spanned by the image of 𝑥+1 , 𝑤+
1 under 𝛼𝑝, 𝜂̄ , and T𝜂̄ [𝑝] is spanned by the

image under 𝛼𝑝, 𝜂̄ of

(x+1 , w+1 , w+2 ; x−1 )
�����

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

𝑑11

�����
�����

1 0
0 0
0 0
0 1

�����
. (4.3.3)

Therefore, the condition F+2,𝜂 ∩ (G𝜂̄ [𝑝])𝜇 = 0 is equivalent to the condition that 𝑐11x
+
1 + 𝑐21w

+
1 + 𝑐31w

+
2

does not belong to SpanF𝑝 {x+1 , w+1}, which is equivalent to 𝑐31 ∈ Z×𝑝 . The condition 𝑐31 ∈ Z×𝑝 for (𝑔−1
𝑝 )+ is

equivalent to the condition
( 𝑎21 𝑎22
𝑎31 𝑎32

)
∈ GL2(Z𝑝) for 𝑔+

𝑝 . This shows that 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord equals equation

(4.3.2). It is also easy to see that there is a natural bijection between equations (4.3.1) and (4.3.2). �

Definition 4.3.3. Define

𝑉♭𝑛,𝑚 =
{

𝑓 ∈ 𝑉𝑛,𝑚 : 𝑓 |𝒵𝑔,𝑛
= 0 for all 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord − 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord

}
,

that is, the subspace of 𝑉𝑛,𝑚 consisting of forms vanishing along all the boundary strata of 𝒯tor
𝑛 indexed

by ordinary cusp labels outside 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, and define

V ♭ = lim−−→
𝑚

lim−−→
𝑛

𝑉♭𝑛,𝑚.

4.4. The exact sequence for 𝑉♭𝑛,𝑚

When 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, the level 𝐾 ′

𝑓 ,𝑔,𝑛
is independent of n, and we denote it by 𝐾 ′

𝑓 ,𝑔
. We have

𝐾
′𝑝
𝑓 ,𝑔

= Im
(
𝑃(A𝑝

Q, 𝑓
) ∩ 𝑔𝐾

𝑝

𝑓
𝑔−1 −→ 𝐺 ′(A𝑝

Q, 𝑓
)
)
,

𝐾 ′
𝑝,𝑔 =

{
ℎ ∈ 𝐺 ′(Z𝑝) : ℎ+ ≡

(
∗ ∗
∗

)
mod 𝑝

}
.

(4.4.1)

Let 𝑀(0,0) (𝐾 ′
𝑓 ,𝑔

;Z/𝑝𝑚Z) be the space of classical automorphic forms on 𝐺 ′ valued in Z/𝑝𝑚Z of weight
(0, 0) and level 𝐾 ′

𝑓 ,𝑔
(which are functions valued in Z/𝑝𝑚Z on the finite set 𝐺 ′(Q)\𝐺 ′(AQ, 𝑓 )/𝐾 ′

𝑓 ,𝑔
),

and 𝑀(0,0) (𝐾 ′
𝑓 ,𝑔

;Q𝑝/Z𝑝) = lim−−→
𝑚

𝑀(0,0) (𝐾 ′
𝑓 ,𝑔

;Z/𝑝𝑚Z).

Proposition 4.4.1. We have the exact sequences

0 −→ 𝑉0
𝑛,𝑚 −→ 𝑉♭𝑛,𝑚

⊕Φ𝑔−−−→
⊕

𝑔∈𝐶 (𝐾 𝑝
𝑓
)
𝑀(0,0) (𝐾 ′

𝑓 ,𝑔;Z/𝑝𝑚Z) ⊗ Z𝑝 [[𝑇so (Z𝑝)/𝑈K,𝐾
𝑝
𝑓
]] −→ 0 (4.4.2)

and

0 −→ V 0 −→ V ♭
⊕Φ𝑔−−−→

⊕
𝑔∈𝐶 (𝐾 𝑝

𝑓
)
𝑀(0,0) (𝐾 ′

𝑓 ,𝑔;Q𝑝/Z𝑝) ⊗ Z𝑝 [[𝑇so (Z𝑝)/𝑈K,𝐾
𝑝
𝑓
]] −→ 0, (4.4.3)
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where the map Φ𝑔 is obtained by restriction to the stratum 𝒵𝑔,𝑛 (whose global sections are the same as
the global sections of 𝒴𝑔,𝑛, which can be identified with the 0-dimensional Shimura variety 𝒮𝐺′,𝐾 ′

𝑓 ,𝑔
),

and is sometimes called a Siegel operator.

Proof. Let 𝜋𝑛 : 𝒯tor
𝑛 → 𝒯min

𝑛 be the natural map. By [Lan18, Lem. 8.2.2.10], we have

(
𝜋𝑛,∗O𝒯tor

𝑛,𝑚
/𝜋𝑛,∗I𝒯tor

𝑛,𝑚

)∧
𝒴𝑔,𝑛

� ℎ∗O𝒞ord
𝑔,𝑛

⊗ Z/𝑝𝑚Z = O𝒮𝐺′,𝐾′
𝑓 ,𝑔

⊗ Z/𝑝𝑚Z.

(Here, h is the map in the diagram (4.2.2).) Taking global sections over the affine scheme 𝒯min
𝑛,𝑚 , we get

𝑉𝑛,𝑚/𝑉0
𝑛,𝑚 =

⊕
𝑔∈𝐶 (𝐾 𝑝

𝑓
𝐾 1

𝑝,𝑛)ord

𝑀(0,0) (𝐾 ′
𝑓 ,𝑔,𝑛;Z/𝑝𝑚Z). (4.4.4)

By definition, an element in 𝑉𝑛,𝑚 belongs to 𝑉♭𝑛,𝑚 if and only if it vanishes along the strata associated

to the cusp labels outside 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, so

𝑉♭𝑛,𝑚/𝑉0
𝑛,𝑚 =

⊕
𝑔∈𝐶 (𝐾 𝑝

𝑓
𝐾 1

𝑝,𝑛)♭ord

𝑀(0,0) (𝐾 ′
𝑓 ,𝑔;Z/𝑝𝑚Z). (4.4.5)

The action of 𝑇so (Z𝑝) on 𝑉𝑛,𝑚 preserves 𝑉0
𝑛,𝑚, so it descends to 𝑉𝑛,𝑚/𝑉0

𝑛,𝑚. This action permutes the
direct summands of the right-hand side of equation (4.4.4). More precisely, the corresponding action of
(𝑎1, 𝑎2) ∈ 𝑇so (Z𝑝) on the index set

𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord = 𝐶 (𝐾 𝑝

𝑓
) ×

(
𝑈K,𝐾

𝑝
𝑓
� 𝑃′(Z𝑝)\𝑃D(Z𝑝)/𝐾1

𝑝,𝑛 ∩ 𝑃D (Z𝑝)
)

sends 𝑔 = 𝑔𝑝𝑔𝑝 to 𝑔𝑝𝑔𝑝𝑡𝑎1 ,𝑎2 , where 𝑡𝑎1 ,𝑎2 ∈ 𝐺 (Z𝑝) with 𝑡+𝑎1 ,𝑎2
=

(
1

1
𝑎1

𝑎−1
2

)
. It is easy to see that

𝑇so (Z𝑝)-action on 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord preserves 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, so the 𝑇so (Z𝑝) on 𝑉𝑛,𝑚 preserves 𝑉♭𝑛,𝑚 and

induces an action on 𝑉♭𝑛,𝑚/𝑉0
𝑛,𝑚.

For given 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
), set

𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord,𝑔 = {elements in 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord whose projection to 𝐶 (𝐾 𝑝

𝑓
) is 𝑔},

𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord,𝑔 = {elements in 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord whose projection to 𝐶 (𝐾 𝑝

𝑓
) is 𝑔}.

(4.4.6)

The Z𝑝 [[𝑇so (Z𝑝)]]-module structures of 𝑉𝑛,𝑚/𝑉0
𝑛,𝑚 (resp. 𝑉♭𝑛,𝑚/𝑉0

𝑛,𝑚) are determined by

the Z𝑝 [[𝑇so (Z𝑝)]]-actions on 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord,𝑔 (resp. 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord,𝑔). The 𝑇so (Z𝑝)-action on

𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord,𝑔 has too many orbits, and the number of orbits grows with n, so 𝑉𝑛,𝑚/𝑉0

𝑛,𝑚 is not

very nice as a Z𝑝 [[𝑇so (Z𝑝)]]-module. In contrast, the 𝑇so (Z𝑝)-action on 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord,𝑔 is transitive,

factoring through Z𝑝 [[𝑇so (Z𝑝/𝑝𝑛Z)/𝑈K,𝐾
𝑝
𝑓
]], and the action of this quotient is free. Therefore, by fixing

an element in 𝑃♭
D
(Z𝑝), which we will always choose to be

(
1

1
1

1

)
, we get the isomorphism

Right hand side of (4.4.5) � 𝑀(0,0) (𝐾 ′
𝑓 ,𝑔;Z/𝑝𝑚Z) ⊗ Z𝑝 [[𝑇so (Z𝑝)/𝑈K,𝐾

𝑝
𝑓
]], (4.4.7)

from which the exact sequence (4.4.2) follows. The exact sequence (4.4.3) follows from equation (4.4.2)
by taking the direct limit. �
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4.5. Three propositions on the U𝑝-action on V and V ♭.

We introduce some setting for the proof of the following propositions. Given 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord,

recall that 𝜂 denotes a generic point of 𝔛𝑔,𝑛,𝑚, and 𝜂 denotes a geometric point over 𝜂. Let
(G𝜂̄ , 𝑖 𝜂̄ , 𝜆 𝜂̄ , 𝛼

𝑝
𝜂̄ , 𝛼𝑝, 𝜂̄) be the pullback to 𝜂 of the family of semiabelian schemes over 𝒯tor

𝑛,𝑚. Recall

that certain Lagrangian subgroups 𝐶 ⊂ G𝜂̄ [𝑝2] are used in the construction of 𝒞•
𝑗 ,𝑛,𝑚 for defining 𝑈•

𝑝, 𝑗

in §2.8. (Here, (•, 𝑗) = (+, 2), (+, 3) or (−, 1).) Let

(G ′
𝜂̄ = G𝜂̄/𝐶, 𝑖′𝜂̄ , 𝜆′

𝜂̄ , (𝛼𝑝𝜂̄ ) ′, 𝛼′
𝑝, 𝜂̄) (4.5.1)

be the tuple defined as in the construction of 𝒞•
𝑗 ,𝑛,𝑚. If (𝑒±1 , 𝑒±2 , 𝑒±3 , 𝑒±4 ) is a basis of G𝜂̄ [𝑝𝑛] compatible

with 𝛼𝑝, 𝜂̄ , then C is spanned by (𝑒±1 , 𝑒±2 , 𝑒±3 , 𝑒±4 ) · 𝑝𝑛𝛾±
𝐶,𝑝

with 𝛾𝐶,𝑝 given as in equations (2.8.1), (2.8.2)
and (2.8.3). From Mumford’s construction of the degenerating family over 𝔛𝑔,𝑛,𝑚, we see that the tuple
(4.5.1), corresponds to a geometric point 𝜂′ over a generic point 𝜂′ of 𝔛𝑔′,𝑛,𝑚 with 𝑔′ = 𝑔 · 𝛾𝐶,𝑝 .

Proposition 4.5.1. The space V ♭ is preserved by the U𝑝-operators.

Proof. We shall show that 𝑔′ = 𝑔 ·𝛾𝐶,𝑝 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord only if 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord. By the definition of

the U𝑝-operators, this will imply that if 𝑓 ∈ V vanishes along the strata outside 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, then so

does 𝑈•
𝑝, 𝑗 ( 𝑓 ). We use the description (4.3.1) for 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord. Consider the case (•, 𝑗) = (+, 2). Write

𝑔+
𝑝 =

(
𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34

𝑎44

)
and 𝑔′+

𝑝 = 𝑔+
𝑝 · 𝛾+

𝐶,𝑝
=

���
𝑎′11 𝑎

′
12 𝑎

′
13 𝑎

′
14

𝑎′21 𝑎
′
22 𝑎

′
23 𝑎

′
24

𝑎′31 𝑎
′
32 𝑎

′
33 𝑎

′
34
𝑎′44

���
with 𝛾+

𝐶,𝑝
as in equation (2.8.1). We have

�����

𝑎′
11 𝑎′

12 𝑎′
13 𝑎′

14
𝑎′

21 𝑎′
22 𝑎′

23 𝑎′
24

𝑎′
31 𝑎′

32 𝑎′
33 𝑎′

34
𝑎′

44

�����
=

������

𝑎11 𝑎12
𝑎13+𝑢1𝑎11+𝑢2𝑎12

𝑝
∗

𝑎21 𝑎22
𝑎23+𝑢1𝑎21+𝑢2𝑎22

𝑝 ∗
𝑎31 𝑎32

𝑎33+𝑢1𝑎31+𝑢2𝑎32
𝑝

∗
𝑎44
𝑝

������
(4.5.2)

and

(
𝑎′

21 𝑎′
22

𝑎′
31 𝑎′

32

)−1 (
𝑎′

23
𝑎′

33

)
= 𝑝−1

[(
𝑎21 𝑎22

𝑎31 𝑎32

)−1 (
𝑎23

𝑎33

)
+

(
𝑢1

𝑢2

)]
. (4.5.3)

Since 𝑢1, 𝑢2 ∈ Z𝑝 , the right-hand side can be integral only if
( 𝑎21 𝑎22
𝑎31 𝑎32

)−1 ( 𝑎23
𝑎33

)
∈ Z2

𝑝 . Therefore,

𝑔′ = 𝑔 · 𝛾𝐶,𝑝 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord only if 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord. The argument for the other two cases is

similar. �

Proposition 4.5.2. There exists a positive integer N such that the exact sequences in Proposition 4.4.1
are (𝑈•

𝑝, 𝑗 )𝑁 -equivariant for (•, 𝑗) = (+, 2), (+, 3), (−, 1) in the sense that for all 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord

and 𝑓 ∈ V ♭, we have

Φ𝑔

(
(𝑈•

𝑝, 𝑗 )𝑁 𝑓
)
= Φ𝑔 ( 𝑓 ).

Proof. Take 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, and we use the setting described at the beginning of this subsection.

In order to look at the image of 𝑈•
𝑝, 𝑗 𝑓 under the Siegel operator Φ𝑔, we consider the abelian quotients

A𝜂̄ and A𝜂̄′ of the Raynaud extensions

0 −→ T𝜂̄ −→ G
♮
𝜂̄ −→ A𝜂̄ −→ 0, 0 −→ T𝜂̄′ −→ G

♮
𝜂̄′ −→ A𝜂̄′ −→ 0.
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Let

𝐶f =
(
𝐶 + (G𝜂̄ [𝑝𝑛])𝜇

)
∩ (G𝜂̄ [𝑝𝑛])f , 𝐶ab = 𝐶f/(G𝜂̄ [𝑝𝑛])𝜇 . (4.5.4)

(See the beginning of §4.3 for the definition of (G𝜂̄ [𝑝𝑛])𝜇 and (G𝜂̄ [𝑝𝑛])f .) Then we have

A𝜂̄′ = A𝜂̄/𝐶ab.

We use the description (4.1.3) and equation (4.3.2) for 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord and 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord. Write 𝑔 =

𝑔𝑝𝑔𝑝 with 𝑔𝑝 ∈ 𝑃D (Z𝑝) and

(𝑔−1
𝑝 )+ =

(
𝑐11 𝑐12 𝑐13 ∗
𝑐21 𝑐22 𝑐23 ∗
𝑐31 𝑐32 𝑐33 ∗

∗

)
, (𝑔−1

𝑝 )− =

(
𝑑11 ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

)
. (4.5.5)

The condition 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord implies that 𝑐−1

31 𝑐11, 𝑐−1
31 𝑐21 ∈ Z𝑝 . Thus, we see that (G𝜂 [𝑝𝑛])𝜇 is

spanned by

𝑐−1
31 𝑐11𝑒+1 + 𝑐−1

31 𝑐21𝑒+2 + 𝑒+3 , 𝑒−1 (4.5.6)

(cf. equation (4.3.3)), and (G𝜂 [𝑝𝑛])f is spanned by

𝑒+1 , 𝑒+2 , 𝑒+3 , 𝑒−1 , (𝑒−2 , 𝑒−3 , 𝑒−4 )
(
−𝜄𝑝 (𝜁0)

1

)���
0 1

𝑐−1
31 𝑐11 𝑐−1

31 𝑐21

1 0

���
. (4.5.7)

We first consider the operator 𝑈+
𝑝,3. By a direct computation, we see that for 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, the

p-part of 𝑔′ ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord is

𝑔′+
𝑝 = 𝑔+

𝑝 · 𝛾+
𝐶,𝑝 =

(
1 ∗

1 ∗
1 ∗
𝑝−1

)
𝑔+
𝑝 , (4.5.8)

where ∗ ∈ Q𝑝 . This shows that the cusp label 𝑔′ is independent of C and belongs to 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord. For

given C spanned by (𝑒±1 , 𝑒±2 , 𝑒±3 , 𝑒±4 ) · 𝑝𝑛−2𝛾±
𝐶,𝑝

with 𝛾±
𝐶,𝑝

as in (2.8.2), from the definition (4.5.4) and

the basis (4.5.7) of (G𝜂 [𝑝𝑛])f , we see that 𝐶f is spanned by

𝑐−1
31 𝑐11𝑒+1 + 𝑐−1

31 𝑐21𝑒+2 + 𝑒+3 , 𝑒−1 , (𝑒−2 , 𝑒−3 , 𝑒−4 ) · 𝑝𝑛−2

(
−𝜄𝑝 (𝜁0)

1

)���
0 1

𝑐−1
31 𝑐11 𝑐−1

31 𝑐21

1 0

���
.

Its quotient 𝐶ab is independent of the choice of C and is spanned by (𝜖−1 , 𝜖−2 ) · 𝑝𝑛−2, with (𝜖−1 , 𝜖−2 ) the

image of (𝑒−2 , 𝑒−3 , 𝑒−4 )
(
−𝜄𝑝 (𝜁0)

1

) (
0 1

𝑐−1
31 𝑐11 𝑐

−1
31 𝑐21

1 0

)
under the quotient map G

♮
𝜂̄ → A𝜂̄ which is a basis of

A𝜂̄ [𝑝𝑛]−. (Here, we identify (G𝜂̄ [𝑝𝑛])f with G
♮
𝜂̄ [𝑝𝑛] by the canonical isomorphism between them.)

Thus, we get

A𝜂̄′ = A𝜂̄/A𝜂̄ [𝑝2]−. (4.5.9)

Denote by 〈𝑝〉− the operator on 𝑀(0,0) (𝐾 ′
𝑓 ,𝑔

;Z/𝑝𝑚Z) induced by taking the quotient by A[𝑝2]−.
Combining equations (4.5.8) and (4.5.9), we see that the trace cancels the normalizer in equation (2.8.5)
due to the independence of the choice of C, and

Φ𝑔 (𝑈+
𝑝,3 𝑓 ) = (〈𝑝〉−)2Φ𝑔′ ( 𝑓 ).
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With 𝐾
𝑝

𝑓
fixed, there exists 𝑁1 ≥ 1, such that

(
1 ∗

1 ∗
1 ∗
𝑝−𝑁1

)
𝑝

𝑔 and g represent the same element in the

double coset 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, and (〈𝑝〉−)2𝑁1 = 1 on 𝑀(0,0) (𝐾 ′

𝑓 ,𝑔
;Z/𝑝𝑚Z). For such 𝑁1, we deduce that

Φ𝑔

(
(𝑈+

𝑝,3)𝑁1 𝑓
)
= Φ𝑔 ( 𝑓 )

for all 𝑓 ∈ V ♭ and 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord. A similar calculation shows that that there exists 𝑁2 ≥ 1 such that

Φ𝑔

(
(𝑈−

𝑝,1)𝑁2 𝑓
)
= Φ𝑔 ( 𝑓 )

for all 𝑓 ∈ V ♭ and 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord.

It remains to consider 𝑈+
𝑝,2. Write 𝑔+

𝑝 =

(
𝑎11 𝑎12 𝑎13 ∗
𝑎21 𝑎22 𝑎32 ∗
𝑎31 𝑎32 𝑎33 ∗

∗

)
and 𝑔′+

𝑝 = 𝑔+
𝑝 · 𝛾+

𝐶,𝑝
=

���
𝑎′11 𝑎

′
12 𝑎

′
13 𝑎

′
14

𝑎′21 𝑎
′
22 𝑎

′
23 𝑎

′
24

𝑎′31 𝑎
′
32 𝑎

′
33 𝑎

′
34
𝑎′44

���
with

𝛾+
𝐶,𝑝

as in (2.8.1). Then we have equations (4.5.2) and (4.5.3), and 𝑔′ ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord if and only if

(
𝑢1

𝑢2

)
≡ −

(
𝑎21 𝑎22

𝑎31 𝑎32

)−1 (
𝑎23

𝑎33

)
mod 𝑝. (4.5.10)

Now, suppose 𝑔′ ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, that is, the entries 𝑢1, 𝑢2 in 𝛾±

𝐶,𝑝
(see (2.8.1)) satisfy the congruence

(4.5.10). Then we have 𝑔′+
𝑝 ∈

(
𝑝−1 ∗ ∗ ∗

1 ∗
1 ∗
𝑝−1

)
𝑔+
𝑝𝐾1

𝑝,𝑛,and as an element in the double coset 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord,

𝑔′ represents the same element as

(
𝑝−1

1
1
𝑝−1

)
𝑔 in 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord. The congruence (4.5.10) implies

that the 𝑐𝑖 𝑗 ’s in equation (4.5.5) satisfies

𝑢1 ≡ −𝑐−1
31 𝑐11 mod 𝑝, 𝑢2 ≡ −𝑐−1

31 𝑐21 mod 𝑝. (4.5.11)

From the definition (4.5.4) and the relation (4.5.11), by using the basis (4.5.7) of (G𝜂 [𝑝𝑛])f and the
basis of C in equation (2.8.1), we see that 𝐶f is spanned by

𝑐−1
31 𝑐11𝑒+1 + 𝑐−1

31 𝑐21𝑒+2 + 𝑒+3 , 𝑒−1 , (𝑒−2 , 𝑒−3 , 𝑒−4 ) · 𝑝𝑛−2

(
−𝜄𝑝 (𝜁0)−1

1

)���
0 1

𝑐−1
31 𝑐11 𝑐−1

31 𝑐21

1 0

���
.

Like in the case of 𝑈+
𝑝,3, we can deduce that 𝐶ab = A𝜂̄ [𝑝𝑛]−, and

A𝜂̄′ = A𝜂̄/A𝜂̄ [𝑝2]−.

The independence of 𝐶ab on the ∗’s in 𝛾+
𝐶,𝑝

cancels the normalizer in equation (2.8.5), and we get

Φ𝑔 (𝑈+
𝑝,2 𝑓 ) = (〈𝑝〉−)2Φ𝑔′ ( 𝑓 ).
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For fixed 𝐾
𝑝

𝑓
, take 𝑁3 such that

(
𝑝−1

1
1
𝑝−1

)𝑁3

𝑝

𝑔 and g represent the same element in the double coset

𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord and (〈𝑝〉−)2𝑁3 = 1 on 𝑀(0,0) (𝐾 ′

𝑓 ,𝑔
;Z/𝑝𝑚Z). Then

Φ𝑔

(
(𝑈+

𝑝,3)𝑁3 𝑓
)
= Φ𝑔 ( 𝑓 )

for all 𝑓 ∈ V ♭ and 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord. By taking 𝑁 = 𝑁1𝑁2𝑁3, we conclude the proof. �

Proposition 4.5.3. (𝑈+
𝑝,2)𝑚 𝑓 ∈ 𝑉♭𝑛,𝑚 for all 𝑓 ∈ 𝑉𝑛,𝑚.

Proof. We shall show that for all 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord − 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord and 𝑓 ∈ 𝑉𝑛,𝑚,

Φ𝑔

(
𝑈+
𝑝,2 𝑓

)
∈ 𝑝𝑀(0,0) (𝐾 ′

𝑓 ,𝑔;Z/𝑝𝑚Z), (4.5.12)

from which the proposition follows. For a given 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord −𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord, we use the setting

described at the beginning of this subsection. As in the proof of Proposition 4.5.2, we consider A𝜂̄′ , the
abelian quotient of the Raynaud extension associated to G𝜂̄′ = G𝜂̄/𝐶. We have

A𝜂̄′ = A𝜂̄/𝐶ab,

whereA𝜂̄ is the abelian quotient of the Raynaud extension associated toG𝜂̄ , and𝐶ab is defined in equation
(4.5.4). Since theU𝑝-operator considered here is 𝑈+

𝑝,2, the Lagrangian subgroup 𝐶 ⊂ G𝜂̄ [𝑝2] is spanned
by (𝑒±1 , 𝑒±2 , 𝑒±3 , 𝑒±4 ) · 𝑝𝑛𝛾±

𝐶,𝑝
with 𝛾±

𝐶,𝑝
as in equation (2.8.1). We use the description (4.1.3) and equation

(4.3.2) for 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord and 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord. Write (𝑔−1

𝑝 )+ =

(
𝑐11 𝑐12 𝑐13 ∗
𝑐21 𝑐22 𝑐23 ∗
𝑐31 𝑐32 𝑐33 ∗

∗

)
, (𝑔−1

𝑝 )− =

(
𝑑11 ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

)
(which

are elements in GL4 (Z𝑝)). The condition 𝑔 ∉ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)♭ord implies that 𝑐31 ∈ 𝑝Z𝑝 and 𝑐11 or 𝑐21

belongs to Z×𝑝 .
Suppose 𝑐11 ∈ Z×𝑝 . The group (G𝜂̄ [𝑝𝑛])𝜇 is spanned by

𝑐11𝑒+1 + 𝑐21𝑒+2 + 𝑐31𝑒+3 , 𝑒−1 , (4.5.13)

and (G𝜂 [𝑝𝑛])f is spanned by

𝑒+1 , 𝑒+2 , 𝑒+3 , 𝑒−1 , (𝑒−2 , 𝑒−3 , 𝑒−4 )
(
−𝜄𝑐𝑝 (𝜁0)−1

1

)���
𝑐11 0
0 𝑐11

−𝑐21 𝑐31

���
. (4.5.14)

By the definition of 𝐶f in equation (4.5.4), a direct computation shows that 𝐶f is spanned by (G𝜂̄ [𝑝𝑛])𝜇
plus

(
(𝑐11𝑢2 − 𝑐21𝑢1)𝑒+2 + 𝑐11𝑒+3

)
· 𝑝𝑛−1, (𝑒−2 , 𝑒−3 , 𝑒−4 )

(
−𝜄𝑐𝑝 (𝜁0)−1

1

)���
𝑐11 0
0 𝑐11

−𝑐21 𝑐31

���
(

𝑐11 0
𝑐11𝑢2 − 𝑐21𝑢1 𝑝

)
.

(4.5.15)

Hence, 𝐶ab is spanned by the image of equation (4.5.15) modulo (G𝜂̄ [𝑝𝑛])𝜇. Let 𝑢′
2 = 𝑐11𝑢2 − 𝑐21𝑢1.

The trace in equation (2.8.5) corresponds to a sum with 𝑢1, 𝑢′
2 and the two ∗’s in 𝛾𝐶,𝑝 varying in Z/𝑝Z.

Since equation (4.5.15) depends only on 𝑢′
2, we see that 𝐶ab, and hence A𝜂̄′ depends only on 𝑢′

2. Its
independence of the two ∗’s implies that the sum over the two ∗’s cancels the normalization factor in
equation (2.8.5). Its independence of 𝑢1 implies that the sum over 𝑢1 contributes a factor p. Therefore,
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the evaluation of Φ𝑔
(
𝑈+
𝑝,2 𝑓

)
at 𝜂′ is divisible by p. This shows the inclusion (4.5.12), hence the result

in this case. The case 𝑐21 ∈ Z×𝑝 can be similarly treated. �

4.6. The ordinary projection on V and the fundamental exact sequence

In this section, we use the exact sequence in Proposition 4.4.1 and the three propositions proved in
§4.5 to show that lim

𝑟→∞
(𝑈𝑝)𝑟 ! 𝑓 converges for all 𝑓 ∈ V and that V ∗

so = HomZ𝑝
(
𝑒soV ,Q𝑝/Z𝑝

)
is a free

Λso-module of finite rank and deduce the fundamental exact sequence in part (4) of Theorem 2.9.1.

Theorem 4.6.1 (Vertical control theorem). Let 𝑈𝑝 = 𝑈+
𝑝,2𝑈

+
𝑝,3𝑈

−
𝑝,1. Then for each 𝑓 ∈ V , lim

𝑟→∞
(𝑈𝑝)𝑟 ! 𝑓

converges, and we can define the semiordinary projector as 𝑒so = lim
𝑟→∞

(𝑈𝑝)𝑟 !. The Z𝑝 [[𝑇so (Z𝑝)]]-
module V ∗

so = HomZ𝑝
(
𝑒soV ,Q𝑝/Z𝑝

)
is free of finite rank over Λso.

Proof. Given 𝑓 ∈ 𝑉𝑛,𝑚, we define the following finiteness property for f :

The submodule generated by
(
𝑈𝑝

)𝑟
𝑓 , 𝑟 ≥ 0, is finitely generated over Z/𝑝𝑚. (F)

It is easy to see that the convergence of lim
𝑟→∞

(𝑈𝑝)𝑟 ! 𝑓 follows from the property (F) for f. By Proposition

4.5.3, in order to show that all 𝑓 ∈ 𝑉𝑛,𝑚 satisfy (F), it suffices to show that all 𝑓 ∈ 𝑉♭𝑛,𝑚 satisfy (F).

Given 𝑓 ∈ 𝑉♭𝑛,𝑚, it follows from Proposition 4.5.2 that 𝑓 ′ = 𝑈𝑁
𝑝 𝑓 − 𝑓 belongs to 𝑉0

𝑛,𝑚. Proposition 3.0.2
implies that there exists 𝑀 ≥ 0 such that

𝑈𝑀+1
𝑝 𝑓 ′ ∈ SpanZ

{
𝑓 ′, 𝑈𝑝 𝑓 ′, 𝑈2

𝑝 𝑓 ′, . . . , 𝑈𝑀
𝑝 𝑓 ′

}
.

Then

𝑈𝑀+𝑁+1
𝑝 𝑓 ∈ SpanZ

{
𝑓 , 𝑈𝑝 𝑓 , 𝑈2

𝑝 𝑓 , . . . , 𝑈𝑀+𝑁
𝑝 𝑓

}
,

from which it follows that for all 𝑟 ≥ 0,

𝑈𝑟
𝑝 𝑓 ∈ SpanZ

{
𝑓 , 𝑈𝑝 𝑓 , 𝑈2

𝑝 𝑓 , . . . , 𝑈𝑀+𝑁
𝑝 𝑓

}
.

Hence, (F) holds for f. Therefore, we have proved that lim
𝑟→∞

(𝑈𝑝)𝑟 ! 𝑓 converges for all 𝑓 ∈ V , and we can

define the semiordinary projector 𝑒so on V as

𝑒so = lim
𝑟→∞

(𝑈𝑝)𝑟 !. (4.6.1)

By Proposition 4.5.3, we have

𝑒soV = 𝑒soV ♭. (4.6.2)

Applying 𝑒so to the Pontryagin dual of the exact sequence in Proposition 4.4.1 and using equation
(4.6.2), we obtain the exact sequence

0 −→ 𝑀(0,0) (𝐾 ′
𝑓 ,𝑔;Z𝑝) ⊗ Z𝑝 [[𝑇so (Z𝑝)/𝑈K,𝐾

𝑝
𝑓
]] −→ V ∗

so −→ V 0,∗
so −→ 0. (4.6.3)

We know that 𝑀(0,0) (𝐾 ′
𝑓 ,𝑔

;Z𝑝) is a free Z𝑝-module of finite rank, so the leftmost term in equation

(4.6.3) is a free Λso-module of finite rank. The rightmost term V 0,∗
so is also a free Λso-module of finite

rank by Theorem 3.0.7. Since Ext1
Λso

(𝑀, 𝑁) vanishes for free Λso-modules M, we deduce that V ∗
so, as

a Λso-module, is isomorphic to the direct sum of the terms on the two ends of equation (4.6.3) and
therefore is a free Λso-module of finite rank. �
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Part (2) of Theorem 2.9.1 for noncuspidal semiordinary families can be proved in the same way as the
cuspidal semiordinary families. The freeness of V 0,∗

so implies that applying HomΛso ( · ,Λso) preserves
the exactness of equation (4.6.3), and part (4) of Theorem 2.9.1 follows.

4.7. The Fourier–Jacobi expansion

We introduce the Fourier–Jacobi expansions of p-adic forms on GU(3, 1), which will be used in §7 for
analyzing the Klingen Eisenstein family on GU(3, 1) constructed in §5.

In §4.2, for an ordinary cusp label 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord, we described 𝔛𝑔,𝑛, the formal completion of

𝒯tor
𝑛 along the boundary stratum 𝒵𝑔,𝑛. From the description there, we see that

𝐻0
(
𝔛𝑔,𝑛,O𝔛𝑔,𝑛

)
=

(∏
𝛽

𝐻0
(
𝒞ord
𝑔,𝑛,L(𝛽)

))Γ𝑔
,

where 𝛽 runs over S∨
Φ

(𝑔)
𝐾

𝑝
𝑓
𝐾1
𝑝,𝑛

∩P
Φ

(𝑔)
𝐾

𝑝
𝑓
𝐾1
𝑝,𝑛

, which can be identified with a subset of Her1(K)≥0, andL(𝛽) is

the invertible sheaf over 𝒞ord
𝑔,𝑛 of 𝛽-homogeneous functions on Ξord

𝑔,𝑛. Therefore, given 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord

and 𝛽 ∈ Her1 (K)≥0, the restriction to 𝔛𝑔,𝑛 induces a map

𝑉𝑛,𝑚 −→ 𝐻0
(
𝒞ord
𝑔,𝑛,L(𝛽) ⊗ Z/𝑝𝑚Z

)
. (4.7.1)

We consider 𝑔 = 14 and 𝛽 ∈ Her1 (K)≥0. In this case, the p-component of level group for the Shimura
variety 𝒮𝐺′,𝐾 ′

𝑓 ,14 ,𝑛
in the diagram (4.2.2) is

𝐾 ′
𝑝,14 ,𝑛

=

{
𝑔 ∈ GU(2) (Z𝑝) : 𝑔+ ≡

(
∗ ∗
0 1

)
mod 𝑝𝑛

}
,

(depending on n). Let

𝑉
𝐽 ,𝛽

GU(2) = lim←−−
𝑚

lim−−→
𝑛

𝐻0
(
𝒞ord

14 ,𝑛
,L(𝛽) ⊗ Z/𝑝𝑚Z

)
. (4.7.2)

The map gives the map of taking the 𝛽-th Fourier–Jacobi coefficient of p-adic forms on GU(3, 1) along
the boundary stratum labeled by 14:

FJ𝛽 : 𝑉GU(3,1) −→ 𝑉
𝐽 ,𝛽

GU(2) . (4.7.3)

5. The construction of the Klingen family

5.1. Some notation

Let K∞ be the maximal abelian pro-p extension of K unramified outside p and ΓK = Gal(K∞/K). Then
ΓK � Z

2
𝑝 . Denote by Ω∞ ∈ C× (resp. Ω𝑝 ∈ Ẑur,×

𝑝 ) the complex complex multiplication (CM) period
(p-adic CM period) with respect to the embeddings in equation (1.0.4) (cf. [Hsi14a, Section 2.8]). We
also fix an isomorphism Q𝑝 � C compatible with the embeddings in equation (1.0.4). Let 𝐿 ⊂ Q𝑝 be a

sufficiently large finite extension of Q𝑝 , and denote by Ôur
𝐿

the ring of integers of the completion of the
maximal unramified extension of L.

For our later use of theta correspondence for unitary groups, we also fix a Hecke character

𝜆 : K×\A×
K
−→ C×,
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such that

𝜆 |A×
Q
= 𝜂K/Q, 𝜆∞ (𝑧) = |𝑧𝑧 |1/2

𝑧
.

5.2. Our setup

Let 𝜋 be an irreducible cuspidal automorphic representation of GL2(AQ) generated by a newform 𝑓

of weight 2. Take a finite extension L of Q𝑝 containing all the Hecke eigenvalues of f. We assume the
following conditions on 𝜋:

◦ for all finite places v of Q, 𝜋𝑣 is either unramified or Steinberg or Steinberg twisted by an unramified
quadratic character of Q×

𝑣 ,
◦ 𝜋𝑝 is unramified,
◦ there exists a prime q not split in K such that 𝜋 is ramified at q, and if 2 does not split in K, then 𝜋 is

ramified at 2,
◦ 𝜌̄𝜋 |Gal(Q/K) is irreducible, (which is automatically true if 𝜋 is not ordinary at p because in this case

𝜌̄𝜋 |𝐺K ,𝔭 � 𝜌̄𝜋 |𝐺Q, 𝑝 is irreducible by [Edi92]), where 𝜌̄𝜋 denotes the residual representation of the

p-adic Galois representation 𝜌𝜋 : Gal(Q̄/Q) → GL2(𝐿).

We also fix

◦ an algebraic Hecke character 𝜉 : K×\A×
K
→ C× of ∞-type (0, 𝑘0) with 𝑘0 an even integer.

5.3. The weight space

The weight space we will use for constructing the semiordinary Klingen Eisenstein family on GU(3, 1)
is Homcont

(
ΓK,Q

×
𝑝

)
. By identifying ΓK with a quotient of K×\A×

K, 𝑓
, the arithmetic points in the weight

space are p-adic avatars of the algebraic Hecke characters ofK×\A×
K

whose p-adic avatars factor through
ΓK. (Given an algebraic Hecke character 𝜒 : K×\A×

K
→ C× of ∞-type (𝑘1, 𝑘2), its p-adic avatar is the

continuous character K×\A×
K, 𝑓

−→ Q×
𝑝 sending x to 𝜒(𝑥)𝑥𝑘1

𝔭 𝑥
𝑘2
𝔭̄

.) We will use 𝜏 to denote such Hecke
characters.

Given an algebraic Hecke character 𝜒, we denote by 𝜒0 its associated unitary Hecke character, that is,

𝜒0 = 𝜒 | · |−
𝑘1+𝑘2

2
AK

,

and denote by 𝜒𝑝-adic its p-adic avatar. Applying this convention to 𝜉, 𝜏, we get 𝜉0, 𝜉𝑝-adic, 𝜏0, 𝜏𝑝-adic.
The interpolation points we will use are the 𝜏’s satisfying that 𝜉𝜏 has ∞-type (0, 𝑘) with k an even

integer ≥ 6. (One can consider more general ∞-types by using Masss–Shimura differential operators.
For our purpose here, only considering the case of ∞-type (0, 𝑘) suffices.)

5.4. The groups

By the assumption on 𝜋 in §5.2, we can fix a prime 𝑞 such that

{
𝑞 does not split in K and 𝜋𝑞 is ramified, if 2 splits in K,

𝑞 = 2, if 2 does not split in K.

Let 𝐷 be the quaternion algebra overQ ramified exactly at q and∞, and let 𝜋𝐷 be the Jacquet–Langlands
transfer of 𝜋 to 𝐷× (AQ).
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We can take a square free positive integer 𝔰, coprime to 𝑝𝐷K/Q and all the primes inert in K where

D splits such that inv𝑣 (𝐷) = (−𝔰, 𝐷K/Q)𝑣 , where ( • , • )𝑣 is the Hilbert symbol. Define 𝜁0 = 𝛿

(
𝔰

1

)
with 𝛿 the totally imaginary element in K with 𝛿2 a p-adic unit as fixed in Notation. This 𝜁0 is a skew-
Hermitian matrix. Define the unitary group U(2) (resp. similitude unitary group GU(2)) over Z as: for
all Z-algebra R,

U(2) (𝑅) = {𝑔 ∈ GL2(𝑅 ⊗Z OK) : 𝑔𝜁0
t𝑔 = 𝜁0} (5.4.1)

GU(2) (𝑅) = {𝑔 ∈ GL2(𝑅 ⊗Z OK) : 𝑔𝜁0
t𝑔 = 𝜈(𝑔)𝜁0, 𝜈(𝑔) ∈ 𝑅×}. (5.4.2)

We have

𝐷 = {𝑔 ∈ 𝑀2 (K) : 𝑔𝜁0
t𝑔̄ = det(𝑔)𝜁0} =

{(
𝑎 −𝔰𝑏̄

𝑏 𝑎

)
: 𝑎, 𝑏 ∈ K

}
,

and we view both 𝐷× and GU(2) as subgroups of ResK/QGL2(K). Then the homomorphism

K× × 𝐷× −→ GU(2) (Q), (𝑎, 𝑔) ↦−→ 𝑎𝑔

induces an isomorphism

GU(2) � (ResK/QG𝑚 × 𝐷×)/{(𝑎, 𝑎−112) : 𝑎 ∈ G𝑚}. (5.4.3)

Given an automorphic form on 𝜙 on 𝐷× with central character 𝜒1, by picking an extension 𝜒 of 𝜒1 to
K×\A×

K
, one obtains an automorphic form 𝜙GU(2) on GU(2) by equation (5.4.3).

We denote by 𝜋𝐷 the Jacquet–Langlands transfer of 𝜋 to 𝐷×, and by 𝑓 𝐷 the unique automorphic
form on 𝐷× which is a newform for the action of 𝐷× (Q𝑣 ) � GL2 (Q𝑣 ) for all 𝑣 ≠ 𝑞,∞ and takes
value 1 at 12. By our assumption, 𝜋𝐷 has trivial central character. We can extend 𝑓 𝐷 to a form 𝑓 GU(2)

via equation (5.4.3) and the trivial character and denote by 𝜋GU(2) the automorphic representation of
GU(2) (AQ) generated by 𝑓 GU(2) .

Define the unitary group U(3, 1) (resp. similitude unitary group GU(3, 1)) over Z as

U(3, 1) (𝑅) =
⎧⎪⎪⎨
⎪⎪⎩

𝑔 ∈ GL4(𝑅 ⊗Z OK) : 𝑔
���

1
𝜁0

−1

���
t𝑔 =

���
1

𝜁0

−1

���
⎫⎪⎪⎬
⎪⎪⎭

,

GU(3, 1) (𝑅) =
⎧⎪⎪⎨
⎪⎪⎩

𝑔 ∈ GL4(𝑅 ⊗Z OK) : 𝑔
���

1
𝜁0

−1

���
t𝑔 = 𝜈(𝑔)���

1
𝜁0

−1

���
, 𝜈(𝑔) ∈ 𝑅×

⎫⎪⎪⎬
⎪⎪⎭

.

Let

𝑃GU(3,1) =

⎧⎪⎪⎨
⎪⎪⎩
���
𝑥 ∗ ∗

𝑔 ∗
𝜈(𝑔)𝑥−1

���
∈ GU(3, 1) : 𝑔 ∈ GU(2), 𝑥 ∈ ResK/QG𝑚

⎫⎪⎪⎬
⎪⎪⎭

, (5.4.4)

the (standard) Klingen parabolic subgroup of GU(3, 1). Its Levi subgroup is

𝑀𝑃GU 3,1) � ResK/QG𝑚 × GU(2).

(Over Q, the groups GU(2) and GU(3, 1) are the same as the groups defined in equation (2.1.1) written
with respect to the basis w1, w2 and x1, w1, w2, y1.)
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Define the unitary group U(1) over Z by

U(1) (𝑅) =
{
𝑎 ∈ (𝑅 ×Z OK)× : 𝑎𝑎̄ = 1

}
.

The projection 𝜚𝔭 : K𝑝 = K ⊗ Q𝑝 → Q𝑝 induces maps

U(2) (Q𝑝) −→ GL2 (Q𝑝), U(3, 1) (Q𝑝) −→ GL4(Q𝑝), U(1) (Q𝑝) −→ Q×
𝑝 ,

and they are all isomorphisms. We denote the inverse maps by 𝜚−1
𝔭 :

𝜚−1
𝔭 : GL2 (Q𝑝)

�−→ U(2) (Q𝑝), 𝜚−1
𝔭 : GL4(Q𝑝)

�−→ U(3, 1) (Q𝑝), 𝜚−1
𝔭 : Q×

𝑝

�−→ U(1) (Q𝑝).
(5.4.5)

5.5. The Klingen Eisenstein series and the doubling method

We briefly recall the definition of Klingen Eisenstein series and Garrett’s (generalized) doubling method
formula which expresses a Klingen Eisenstein series on GU(3, 1) as an integral involving a Siegel
Eisenstein series on GU(3, 3).

5.5.1. The Klingen Eisenstein series on GU(3, 1)
Let 𝑈𝑃GU(3,1) be the unipotent subgroup of the Klingen parabolic subgroup 𝑃GU(3,1) in equation (5.4.4).
For a unitary character 𝜉0𝜏0 : K×\A×

K
→ C× and a complex number s, define 𝐼𝑃GU(3,1) (𝑠, 𝜉0𝜏0) as the

space of smooth K-finite functions (where K is a maximal compact subgroup of GU(3, 1) (AQ))

𝐹 (𝑠, 𝜉0𝜏0) : 𝑈𝑃GU(3,1) (AQ)𝑀𝑃GU 3,1) (Q)\GU(3, 1) (AQ) −→ C

satisfying

(i) 𝐹 (𝑠, 𝜉0𝜏0)���
���
𝑥

12

𝑥−1

���
𝑔
���
= 𝜉0𝜏0(𝑥) |𝑥𝑥 |𝑠+

3
2

AQ
for all 𝑥 ∈ A×

K
, 𝑔 ∈ GU(3, 1) (AQ),

(ii) for all 𝑔 ∈ GU(3, 1) (AQ), the function 𝑔1 ↦→ 𝐹 (𝑠, 𝜉0𝜏0)���
���
1

𝑔1

𝜈(𝑔1)
���
𝑔
���

is an automorphic form

on GU(2) (AQ).

The Klingen Eisenstein series on GU(3, 1) attached to 𝐹 (𝑠, 𝜉0𝜏0) ∈ 𝐼𝑃GU(3,1) (𝑠, 𝜉0𝜏0) is defined as

𝐸Kling(𝑔; 𝐹 (𝑠, 𝜉0𝜏0)) =
∑

𝛾∈𝑃GU(3,1) (Q)\GU(3,1) (Q)
𝐹 (𝑠, 𝜉0𝜏0) (𝛾𝑔).

If the cuspidal automorphic form in (ii) belongs to 𝜋GU(2) , the Galois representation attached to
𝐸Kling ( • ; 𝐹 (𝑠, 𝜉0𝜏0)) |𝑠= 𝑘−3

2
(where we assume that 𝜉𝜏 has ∞-type (0, 𝑘)) is

𝜉𝜏 · 𝜖−2
cyc ◦ Nm ⊕ (𝜉𝜏)−𝑐 · 𝜖cyc ◦ Nm ⊕ 𝜌𝜋 |Gal(Q/K) ,

where the Hecke characters ofK×\A×
K

are viewed as characters of Gal(Q/K). The congruences between
this Klingen Eisenstein series and cuspidal forms on GU(3, 1) can be used to construct elements in the
Selmer group for 𝜌𝜋 (𝜖2

cyc) |Gal(Q/K) ⊗ 𝜉−1𝜏−1.
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5.5.2. The Siegel Eisenstein series on GU(3, 3)
Let GU(3, 3) be the similitude unitary group over Z defined by

GU(3, 3) (𝑅) =
{
𝑔 ∈ GL6(𝑅 ⊗Z OK) : 𝑔

(
13

−13

)
t𝑔̄ = 𝜈(𝑔)

(
13

−13

)
, 𝜈(𝑔) ∈ 𝑅×

}
.

The group GU(3, 1) ×G𝑚
GU(2) = {(𝑔1, 𝑔2) ∈ GU(3, 1) × GU(2) : 𝜈(𝑔1) = 𝜈(𝑔2)} embeds into H by

𝚤 : GU(3, 1) ×G𝑚
GU(2) −→ GU(3, 3)

(𝑔1, 𝑔2) −→ S−1

(
𝑔1

𝑔2

)
S ,

(5.5.1)

where S =

�����

1
12 − 𝜁0

2
1

−12 − 𝜁0
2

�����
.

Let 𝑄GU(3,3) be the (standard) Siegel parabolic subgroup of GU(3, 3). For a Z-algebra R,

𝑄GU(3,3) (𝑅) =
{(

𝐴 𝐵

0 𝐷

)
∈ GL6(𝑅 ⊗Z OK) : 𝐷 = 𝜈t 𝐴̄−1, 𝜈 ∈ 𝑅×, 𝐴−1𝐵 ∈ Her3(𝑅 ⊗Z OK)

}
.

For a place v of Q, a unitary character 𝜉0,𝑣𝜏0,𝑣 of K×
𝑣 and a complex number s, the degenerate principal

series 𝐼𝑄GU(3,3) ,𝑣 (𝑠, 𝜉0,𝑣𝜏0,𝑣 ) is defined as the space consisting of smooth GU(3, 3) (Z𝑣 )-finite functions
𝑓𝑣 (𝑠, 𝜉0,𝑣𝜏0,𝑣 ) : GU(3, 3) (Q𝑣 ) −→ C satisfying

𝑓𝑣 (𝑠, 𝜉0,𝑣𝜏0,𝑣 )
((

𝐴 𝐵

0 𝐷

)
𝑔

)
= 𝜉0,𝑣𝜏0,𝑣 (det 𝐴) | det 𝐴𝐷−1 |𝑠+

3
2

𝑣 𝑓 (𝑔)

for all 𝑔 ∈ GU(3, 3) (Q𝑣 ),
(
𝐴 𝐵

0 𝐷

)
∈ 𝑄GU(3,3) (Q𝑣 ).

Given a unitary character 𝜉0𝜏0 : K×\A×
K
→ C× and a section 𝑓 (𝑠, 𝜉0𝜏0) =

⊗′
𝑣 𝑓𝑣 (𝑠, 𝜉0,𝑣𝜏0,𝑣 ) inside⊗′

𝑣 𝐼𝑄GU(3,3) ,𝑣 (𝑠, 𝜉0,𝑣𝜏0,𝑣 ), the Siegel Eisenstein series on GU(3, 3) attached to 𝑓 (𝑠, 𝜉0𝜏0) is defined as

𝐸Sieg(𝑔; 𝑓 (𝑠, 𝜉0𝜏0)) =
∑

𝛾∈𝑄GU(3,3) (Q)\GU(3,3) (Q)
𝑓 (𝑠, 𝜉0𝜏0) (𝛾𝑔).

5.5.3. The (generalized) doubling method formula

Theorem 5.5.1 [Gar89]. Let 𝜉0𝜏0 : K×\A×
K

→ C× be a unitary character. For a section 𝑓 (𝑠, 𝜉0𝜏0) ∈
𝐼𝑄GU(3,3) (𝑠, 𝜉0𝜏0) and a cuspidal automorphic form 𝜑 on GU(2) (AQ),
∫

U(2) (Q)\U(2) (AQ)
𝐸Sieg (𝚤(𝑔, 𝑔1𝑡); 𝑓 (𝑠, 𝜉0𝜏0)

)
𝜑(𝑔1𝑡)(𝜉0𝜏0)−1(det 𝑔1𝑡) 𝑑𝑔1 = 𝐸Kling (𝑔; 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)

)
,

where t is an element of GU(3, 1) (AQ) with 𝜈(𝑡) = 𝜈(𝑔) (and it is easy to see that the left-hand side
does not depend on the choice of t), and 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑) is the section in 𝐼𝑃GU(3,1) (𝑠, 𝜉0𝜏0) defined by

𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)(𝑔) =
∫

U(2) (AQ)
𝑓 (𝑠, 𝜏0) (𝚤(𝑔, 𝑔1𝑡)) 𝜑(𝑔1𝑡) (𝜉0𝜏0)−1(det 𝑔1𝑡) 𝑑𝑔1.
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5.6. The auxiliary data for the Klingen family

Let Σ be the set of finite places of Q containing the prime 2, the prime q, the finite places 𝑣 ≠ 𝑝 where
𝜋 or 𝜉 or K/Q is ramified and the primes dividing 𝔰. We denote by Σs the set of primes in Σ split in K

and Σns the set of primes in Σ nonsplit in K.
The Klingen Eisenstein family we will construct is not of the optimal level. It depends on some

auxiliary data which are chosen such that we can prove the desired properties of its nondegenerate
Fourier–Jacobi coefficients. In this subsection, we fix these auxiliary data.

The Siegel Eisenstein family on GU(3, 3) we will use for constructing the Klingen Eisenstein family
depends on the choice of ℓ, ℓ′, 𝑐𝑣 , 𝑣 ∈ Σ ∪ {ℓ, ℓ′}. We will define a space (5.6.11) depending on 𝜒ℎ,𝑣 ,
𝑣 ∈ Σs ∪ {ℓ}, from which we will choose an automorphic form on GU(2) to pair with the restriction of
the Siegel Eisenstein family to GU(3, 1) ×G𝑚

GU(2). The characters 𝜒𝜃 , 𝜒ℎ will show up in our analysis
of nondegenerate Fourier coefficients.

Before choosing the auxiliary data, we first introduce a proposition on certain Schwartz functions in
the Schrödinger model of Weil representations of U(2, 1). Let 𝑉,𝑉− (resp. 𝑊𝛽) be the two-dimensional
skew-Hermitian spaces (resp. one-dimensional Hermitian space) over K, and 𝑒1, 𝑒2 ∈ 𝑉 ⊗𝑊𝛽 , 𝑒−1 , 𝑒−2 ∈
𝑉− ⊗ 𝑊𝛽 as in §7.1. We have U(𝑉 ⊕ 𝑉−) � U(2, 2) and U(𝑊𝛽) � U(1).
Proposition 5.6.1. Let v be a finite place of Q nonsplit in K/Q. Denote by 𝜔𝛽,𝑣 ( • , • ) the Weil
representation of U(2, 2) (Q𝑣 ) × U(1) (Q𝑣 ) on the Schrödinger model S

(
K𝑣 (𝑒1 + 𝑒−1 ) ⊕ K𝑣 (𝑒2 + 𝑒−2 )

)
(with respect to 𝜆𝑊𝛽

= 𝜆). Let

𝒯 : S
(
Q𝑣𝑒1 ⊕ Q𝑣𝑒2 ⊕ Q𝑣𝑒−1 ⊕ Q𝑣𝑒−2

)
−→ S

(
K𝑣 (𝑒1 + 𝑒−1 ) ⊕ K𝑣 (𝑒2 + 𝑒−2 )

)
be the intertwining map between Schrödinger models.

For 𝛽 = 1 and 𝑚 > max{ord𝑣 (cond(𝜆𝑣 )), 3}, there exists a character 𝜒𝑣 : U(1) (Q×
𝑣 ) → C× of

conductor at least 𝜛
max{ord𝑣 (cond(𝜆𝑣 )) ,3}+1
𝑣 , a Schwartz function 𝜙1,𝑣 on Q𝑣𝑒1 ⊕ Q𝑣𝑒2, and 𝑢1, . . . , 𝑢𝑡 ∈

U(1) (Q𝑣 ), 𝑏1, . . . , 𝑏𝑡 ∈ C such that the function

𝑦 ↦−→
𝑡∑
𝑗=1

𝑏 𝑗

∫
Q𝑣𝑒1⊕Q𝑣𝑒2

𝒯−1

(
𝜔𝛽,𝑣

((
12 𝑞−𝑚 · 12

0 12

)
, 𝑢 𝑗

)
Φ0,𝑣

)
(𝑥, 𝑦) · 𝜙1,𝑣 (𝑥) 𝑑𝑥

is nonzero and belongs to the 𝜒𝑣𝜆
2
𝑣 |U(1) (Q𝑣 ) -eigenspace for the action of U(1) (Q𝑣 ), where Φ0,𝑣 is the

characteristic function of O𝐾,𝑣
𝑒1+𝑒−1

2 ⊕ OK,𝑣
𝑒2+𝑒−2

2 .

Proof. [Wan20, Lemma 6.26]. �

We fix:

– primes ℓ, ℓ′ ≠ 2, 𝑝 such that ℓ splits in K/Q, ℓ′ is inert in K/Q, and 𝜋ℓ , 𝜋ℓ′ are unramified,
– a positive integer 𝑐𝑣 for each place 𝑣 ∈ Σ ∪ {ℓ, ℓ′},
– auxiliary Hecke characters 𝜒𝜃 , 𝜒ℎ : K×\A×

K
→ C× of ∞-type (0, 0) with 𝜒ℎ𝜒𝑐𝜃 |A×

Q
= triv

satisfying the following properties:

(1) 𝜒𝜃 , 𝜒ℎ are unramified away from Σ ∪ {𝑝, ℓ, ℓ′} and 𝜒ℎ𝜒𝑐𝜃 is unramified at q;
(2) 𝜒𝜃,𝔭, 𝜒ℎ,𝔭̄ are unramified, and 𝜒ℎ,𝔭 |Z×𝑝 = 𝜒−1

𝜃,𝔭̄ |Z×𝑝 = 𝜉0,𝔭 |Z×𝑝 ;
(3) For 𝑣 ∈ Σns ∪ {ℓ′},

𝑐𝑣 > max{ord𝑣 (cond(𝜋𝑣 )), ord𝑣 (cond(𝜆𝑣 )), 3}
𝜒𝜃,𝑣 |U(1) (Q𝑣 ) = a 𝜒𝑣 as in Proposition 5.6.1 with 𝑚 = 𝑐𝑣 ,

ord𝑣
(
cond(𝜒ℎ,𝑣 𝜒𝑐𝜃,𝑣 )

)
, ord𝑣

(
cond((𝜆2

𝑣 𝜒ℎ,𝑣 𝜒𝜃,𝑣 )
)

> ord𝑣 (cond(𝜋𝑣 )), if 𝑣 ≠ 𝑞,

ord𝑣
(
cond(𝜒𝜃,𝑣 ) |U(1) (Q𝑣 )

)
≥ max{ord𝑣

(
cond(𝜒ℎ,𝑣 ) |U(1) (Q𝑣 )

)
, ord𝑣 (cond(𝜆𝑣 ) + 1};
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(4) For 𝑣 = 𝔳𝔳 ∈ Σs ∪ {ℓ}, 𝜒𝜃,𝔳 is unramified, and

ord𝔳̄ (cond(𝜒𝜃,𝔳̄)) ≥ 2ord𝑣 (cond(𝜋𝑣 )) + 2,

ord𝔳
(
cond((𝜒ℎ𝜒𝑐𝜃 )𝔳

)
=

{
ord𝔳

(
cond(𝜒𝜃,𝔳̄)

)
− ord𝑣 (cond(𝜋𝑣 )), 𝜋𝑣 ramified,

ord𝔳
(
cond(𝜒𝜃,𝔳̄)

)
− 1, 𝜋𝑣 unramified;

𝑐𝑣 > max
{
ord𝔳̄ (cond(𝜒𝜃,𝔳̄)), ord𝔳 (cond(𝜉0,𝔳)), ord𝔳̄ (cond(𝜉0,𝔳̄)), ord𝔳̄ (cond(𝜆𝔳̄))

}

(5) If 𝑞 = 𝔮2 is ramified in K/Q,

(𝜒ℎ𝜒𝑐𝜃 )𝑞 (𝜛𝔮) = 𝜒𝑞 (𝑞),

where 𝜛𝔮 is a uniformizer of K𝔮 and 𝜒𝑞 is the unramified quadratic character of K×
𝑞 such that

𝜋𝑞 � Steinberg ⊗ 𝜒𝑞;
(6) Furthermore, the value

(
Ω𝑝

Ω∞

)4

𝜋−3 · 𝛾𝑝

(
1

2
, 𝜋𝑝 ×

(
𝜆2 𝜒ℎ𝜒𝜃

)
𝔭̄

)−1

𝐿

(
1

2
, BC(𝜋) × 𝜆2 𝜒ℎ𝜒𝜃

)
(5.6.1)

is a p-adic unit, and

𝐿𝑞
(
1

2
, BC(𝜋) × 𝜒ℎ𝜒𝑐𝜃

)
≠ 0. (5.6.2)

For some algebraic Hecke character 𝜏 : K×\A×
K
→ C× such that 𝜏𝑝-adic factors through ΓK and

𝜉𝜏 has ∞-type (0, 𝑘), 𝑘 ≥ 2, the values

(
Ω𝑝

Ω∞

) 𝑘
(2𝜋𝑖)1−𝑘Γ(𝑘 − 1) · 𝛾𝔭̄

(
𝑘 − 2

2
, 𝜒ℎ𝜒𝑐𝜃𝜉0𝜏0

)−1

𝐿 𝑝∞
(
𝑘 − 2

2
, 𝜒ℎ𝜒𝑐𝜃𝜉0𝜏0

)
, (5.6.3)

(
Ω𝑝

Ω∞

) 𝑘−2

(2𝜋𝑖)2−𝑘Γ(𝑘 − 2) · 𝐿𝔭

(
𝑘 − 2

2
, 𝜆2 𝜒ℎ𝜒𝜃𝜉

𝑐
0 𝜏𝑐0

)
𝐿 𝑝∞

(
𝑘 − 2

2
, 𝜆2 𝜒ℎ𝜒𝜃𝜉

𝑐
0 𝜏𝑐0

)
, (5.6.4)

1 − (𝜒ℎ𝜒𝑐𝜃𝜉0𝜏0)𝑞 (𝑞)𝑞− 𝑘−2
2 , (5.6.5)

are all p-adic units.

We can first fix places ℓ, ℓ′ and positive integers 𝑐𝑣 for 𝑣 ∈ Σns ∪{ℓ′}. Next, we can choose 𝜒𝜃,1, 𝜒ℎ,1
satisfying the conditions (1)–(5) except the last one in (4). (The inert prime ℓ′ is introduced to ensure
the existence.) Then we apply the mod p nonvanishing results—[Hsi14b] for the L-values in equation
(5.6.1), [Hsi12] for the L-values in equations (5.6.3)(5.6.4) and in [Hun17] for the L-value in equation
(5.6.2)—to choose a character 𝜈 of ℓ-power conductor such that 𝜒𝜃 = 𝜒𝜃,1𝜈, 𝜒ℎ = 𝜒ℎ,1𝜈 satisfy (1)–(6)
except the last one in (4). (The conditions in (3) on the conductors at nonsplit primes and the condition
(5) implies that the local root numbers are +1 as required for applying [Hsi14b, Hun17]. Our assumption
that 𝜉 has ∞-type (0, 𝑘0) with 𝑘0 even implies that the L-values in equations (5.6.3)(5.6.4) fall into
the nonresidually self-dual case for which [Hsi12, Theorem B] can be applied. Since we only need the
L-value in equation (5.6.2) to be nonvanishing rather than mod p nonvanishing, we can choose a prime
𝑝′ ≠ ℓ, different from p, such that the results in [Hun17] apply.) Then we fix positive integers 𝑐𝑣 for
𝑣 ∈ Σs ∪{ℓ}. (The strategy outlined in §7.5 explains why we need to make such a choice of the auxiliary
𝜒𝜃 , 𝜒ℎ .)

With our fixed 𝑐𝑣 ’s for all 𝑣 ∈ Σ ∪ {ℓ, ℓ′}, define

𝐾 ′
𝑣 =

{
𝑔 ∈ GU(2) (Z𝑣 ) : 𝑔 ≡ 12 mod 𝑞

2𝑐𝑣+ord𝑣 (𝔰𝛿)
𝑣

}
, (5.6.6)
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and the tame level group 𝐾
′𝑝
𝑓

⊂ GU(2) (Ẑ(𝑝) ) as

𝐾
′𝑝
𝑓

=
⊗

𝑣∉Σ∪{∞,ℓ,ℓ′, 𝑝}
GU(2) (Z𝑣 )

⊗
𝑣 ∈Σ∪{ℓ,ℓ′ }

𝐾 ′
𝑣 . (5.6.7)

Given an open subgroup 𝐾 ′
𝑝 ⊂ GU(2) (Z𝑝) and a ring R, let

𝑀GU(2)
(
𝐾

′𝑝
𝑓

𝐾 ′
𝑝; 𝑅

)
=

{
functions on GU(2) (Q)\GU(2) (AQ)/𝐾 ′𝑝

𝑓
𝐾 ′
𝑝 U(2) (R) valued 𝑅

}
, (5.6.8)

the space of R-valued automorphic forms on GU(2) of weight (0, 0) and level 𝐾
′𝑝
𝑓

𝐾 ′
𝑝 .

We also define the following twist of the form 𝑓 GU(2) :

𝑓
GU(2)
𝜒ℎ =

∏
𝑣=𝔳𝔳̄∈Σs∪{ℓ }

∑
𝑛∈(Z𝑣/𝑞𝑡𝑣𝑣 Z𝑣 )×

𝜒ℎ,𝔳̄ (−𝑛) 𝑅

((
1
𝑛 1

)
𝔳

(
𝑞
−𝑡𝑣
𝑣

1

)
𝔳

)
𝑓 GU(2) , (5.6.9)

where 𝑡𝑣 = ord𝔳̄ (cond(𝜒ℎ,𝔳̄)). We have 𝑓
GU(2)
𝜒ℎ ∈ 𝑀GU(2)

(
𝐾

′𝑝
𝑓

GU(2) (Z𝑝);O𝐿

)
. Let

𝐿
[
GU(2)

(
QΣns∪{ℓ′ }

) ]
· 𝑓

GU(2)
𝜒ℎ (5.6.10)

denote the space generated by 𝑓
GU(2)
𝜒ℎ and the action of GU(Q𝑣 ), 𝑣 ∈ Σns ∪ {ℓ′}.

Remark 5.6.2. In the sentence beginning ‘the twist at the split’, please define CM. We will choose a 𝜑

inside the space

𝑀GU(2)
(
𝐾

′𝑝
𝑓

GU(2) (Z𝑝);O𝐿

)
∩ 𝐿

[
GU(2)

(
QΣns∪{ℓ′ }

) ]
· 𝑓

GU(2)
𝜒ℎ (5.6.11)

to pair with the Siegel Eisenstein family on GU(3, 3) to get the Klingen Eisenstein family on GU(3, 1).
The twist at the split primes is to make the nebentypus match those of the auxiliary CM families 𝜽 and
𝒉 constructed from our chosen auxiliary characters 𝜒𝜃 and 𝜒ℎ . The flexibility at the nonsplit primes is
to ensure the nonvanishing of the local triple product integrals at the nonsplit primes.

5.7. The choice of the local sections for the Siegel Eisenstein series on GU(3, 3)
With 𝑐𝑣 ’s chosen in §5.6, given an algebraic Hecke character 𝜏 such that 𝜉𝜏 has ∞-type (0, 𝑘) with k an
even integer ≥ 6, we make the following choices of 𝑓 (𝑠, 𝜉0𝜏0) ∈ 𝐼𝑄GU(3,3) (𝑠, 𝜉0𝜏0) so that after a suitable

normalization, 𝐸Sieg ( • ; 𝑓 (𝑠, 𝜉0𝜏0))
��
𝑠= 𝑘−3

2
can be interpolated by a two-variable p-adic family when 𝜏

varies.

5.7.1. The Archimedean place

We choose 𝑓∞(𝑠, 𝜉0𝜏0) ∈ 𝐼𝑄GU(3,3) ,∞ (𝑠, 𝜏0) as

𝑓∞ (𝑠, 𝜉0𝜏0)
(
𝑔 =

(
𝐴 𝐵

𝐶 𝐷

))
= (det 𝑔)𝑘 | det(𝑔) |

𝑠
2 + 3

4− 𝑘
4

C

× det
(
𝐶
(
𝑖

𝜁0
2

)
+ 𝐷

)−𝑘111det
(
𝐶
(
𝑖

𝜁0
2

)
+ 𝐷

)���−𝑠− 3
2+ 𝑘

2
C

.

5.7.2. Unramified places

For 𝑣 ∉ Σ ∪ {𝑝, ℓ, ℓ′}, we choose 𝑓𝑣 (𝑠, 𝜉0𝜏0) ∈ 𝐼𝑄GU(3,3) ,𝑣 (𝑠, 𝜏0) to be the standard spherical section,
that is, the section that is invariant under the right translation of GU(3, 3) (Z𝑣 ) and takes value 1 at 16.

https://doi.org/10.1017/fms.2022.95 Published online by Cambridge University Press



Forum of Mathematics, Sigma 41

5.7.3. Places 𝑣 ∈ Σ ∪ {ℓ, ℓ′}
We choose 𝑓𝑣 (𝑠, 𝜉0𝜏0) ∈ 𝐼𝑄GU(3,3) ,𝑣 (𝑠, 𝜏0) as

𝑓𝑣 (𝑠, 𝜉0𝜏0)
(
𝑔 =

(
𝐴 𝐵

𝐶 𝐷

))
= |𝜈(𝑔) |𝑠+

3
2

𝑣 | det 𝐶 t𝐶̄ |−𝑠−
3
2

𝑣 (𝜉0𝜏0)𝑣
(
𝜈(𝑔) (det 𝐶̄)−1

)

× 1Her(3,OK,𝑣 )

(
𝐶−1𝐷 +

(
0 0
0 𝑞

−𝑐𝑣
𝑣 · 12

))
,

(5.7.1)

where 𝑐𝑣 is the fixed positive integer in §5.6.

5.7.4. The place p

We have the isomorphisms

U(3, 3) (Q𝑝) −→ GL6(Q𝑝), 𝑔 =
(
𝑎𝑖 𝑗

)
↦−→

(
𝜚𝔭 (𝑎𝑖 𝑗 )

)
,

Her3(K𝑝) −→ 𝑀3,3 (Q𝑝), 𝑥 =
(
𝑥𝑖 𝑗

)
↦−→ 𝜚𝔭 (𝑥) =

(
𝜚𝔭 (𝑥𝑖 𝑗 )

)
,

and we will often use them to identify U(3, 3) (Q𝑝) with GL6(Q𝑝) and Her3(K𝑝) with 𝑀3,3 (Q𝑝).

For 𝑥 ∈ Her3(K𝑝), we write 𝜚𝔭 (𝑥) as
���
𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

𝑥31 𝑥32 𝑥33

���
. Define the Schwartz function 𝛼𝜉 𝜏,𝑝 on

Her3(K𝑝) as

𝛼𝜉 𝜏,𝑝 (𝑥) = 1Her3 (OK, 𝑝) (𝑥) · 1Z×𝑝 (𝑥21) 1GL2 (Z𝑝)

(
𝑥21 𝑥22

𝑥31 𝑥32

)
(𝜉0𝜏0)−1

𝔭

(
det

(
𝑥21 𝑥22

𝑥31 𝑥32

))
,

and let F−1𝛼𝜉 𝜏,𝑝 be the inverse Fourier transform of 𝛼𝜉 𝜏,𝑝 , that is,

F−1𝛼𝜉 𝜏,𝑝 (𝑥) =
∫

Her3 (K𝑝)
𝛼𝜉 𝜏,𝑝 (𝑦) e𝑝 (Tr 𝑥𝑦) 𝑑𝑦,

where e𝑝 is the additive character in equation (1.0.5). (A simple computation shows that

F−1𝛼𝜉 𝜏,𝑝 (𝑥) = 𝑝−3𝑡𝔤
(
(𝜉0𝜏0)−1

𝔭

)2
· 1Z5

𝑝
(𝑥11, 𝑥21, 𝑥31, 𝑥32, 𝑥33) · 1Z2

𝑝
(𝑥−1

23 𝑥13, 𝑥−1
23 𝑥22)

× 1𝑝−𝑡Z×𝑝 (𝑥23)1𝑝−𝑡Z×𝑝
(
𝑥12 − 𝑥13𝑥−1

23 𝑥22

)
(𝜉0𝜏0)𝔭

(
𝑝2𝑡 det

(
𝑥12 𝑥13

𝑥22 𝑥23

))
,

(5.7.2)

if (𝜉0𝜏0)𝔭 has conductor 𝑝𝑡 , 𝑡 ≥ 1.) In order to define the 𝑓𝑝 (𝑠, 𝜉0𝜏0) for our purpose, we first define the
section

𝑓
big-cell
𝑝 (−𝑠, (𝜉0𝜏0)−𝑐)

(
𝑔 =

(
𝐴 𝐵

𝐶 𝐷

))
= |𝜈(𝑔) |−𝑠+

3
2

𝑝 | det 𝐶 t𝐶̄ |𝑠−
3
2

𝑝 (𝜉0𝜏0)𝑝 (𝜈(𝑔) (det 𝐶))

× F−1𝛼𝜉 𝜏,𝑝 (𝐶−1𝐷),

which belongs to 𝐼𝑄GU(3,3) , 𝑝 (−𝑠, (𝜉0𝜏0)−𝑐) and is supported on the big cell

𝑄GU(3,3) (Q𝑝)

(
0 −13

13 0

)
𝑄GU(3,3) (Q𝑝) .
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We choose 𝑓𝑝 (𝑠, 𝜉0𝜏0) ∈ 𝐼𝑄GU(3,3) , 𝑝 (𝑠, 𝜉0𝜏0) as

𝑓𝑝 (𝑠, 𝜉0𝜏0) (𝑔) = 𝛾𝑝

(
−2𝑠, (𝜉Q0 𝜏

Q

0 )
−1

)
𝛾𝑝

(
−2𝑠 − 1, (𝜉Q0 𝜏

Q

0 )
−1𝜂K/Q

)
𝛾𝑝

(
−2𝑠 − 2, (𝜉Q0 𝜏

Q

0 )
−1

)
× 𝑀𝑝 (−𝑠, (𝜉0𝜏0)−𝑐) 𝑓

big-cell
𝑝 (−𝑠, (𝜉0𝜏0)−𝑐)(𝑔Υ𝑝),

(5.7.3)

where 𝜉
Q

0 (resp. 𝜏
Q

0 ) denotes the restriction of 𝜉0 (resp. 𝜏0) to Q×\A×
Q

, and 𝑀𝑝 (−𝑠, (𝜉0𝜏0)−𝑐) is the
intertwining operator, that is,

𝑀𝑝 (−𝑠, (𝜉0𝜏0)−𝑐) 𝑓
big-cell
𝑝 (−𝑠, (𝜉0𝜏0)−𝑐) (𝑔Υ𝑝)

=

∫
Her3 (K𝑝)

𝑓
big-cell
𝑝 (−𝑠, (𝜉𝜏0)−𝑐)

((
−13

13

) (
13 𝑦

13

)
𝑔Υ𝑝

)
𝑑𝑦,

(5.7.4)

and Υ𝑝 is the element in U(3, 3) (Q𝑝) such that

𝜚𝔭 (Υ𝑝) =
�����

1
12 − 𝜁0

2
1

−12 − 𝜁0
2

�����

−1

.

Remark 5.7.1. When (𝜉Q0 𝜏
Q

0 )𝑝 is ramified with conductor 𝑝𝑡 ,

𝛾𝑝

(
−2𝑠, (𝜉Q0 𝜏

Q

0 )
−1

)
𝛾𝑝

(
−2𝑠 − 1, (𝜉Q0 𝜏

Q

0 )
−1𝜂K/Q

)
𝛾𝑝

(
−2𝑠 − 2, (𝜉Q0 𝜏

Q

0 )
−1

)
=𝔤

(
(𝜉Q0 𝜏

Q

0 )
−1
𝑝

)−3
(𝜉Q0 𝜏

Q

0 )𝑝 (𝑝)
−3𝑡 𝑝 (6𝑠+6)𝑡 .

Combining this with equation (5.7.2), one can see that the formula for the section 𝑓𝑝 (𝑠, 𝜉0𝜏0) in equation
(5.7.3) agrees with the formula in [Wan20, (6-5)].)

Remark 5.7.2. For the unitary group attached to

(
1𝑛

−1𝑛

)
and 𝛽 ∈ Her𝑛 (K), the factor for the

functional equation of the 𝛽-th local Fourier coefficients of the degenerate principal series inducing
(𝜉0𝜏0)−𝑐𝑝 | · |−𝑠

K𝑝
is

𝑐𝑛,𝑝 (−𝑠, (𝜉0𝜏0)−𝑐 , 𝛽)

= 𝑐𝛽,𝑝 · (𝜉Q0 𝜏
Q

0 )𝑝 (det 𝛽) | det 𝛽 |2𝑠
Q𝑝

·
𝑛∏
𝑗=1

𝛾𝑝

(
−2𝑠 + 1 − 𝑗 , (𝜉Q0 𝜏

Q

0 )
−1𝜂

𝑛+ 𝑗
K/Q

)−1
,

(5.7.5)

where 𝑐𝛽,𝑝 is a constant independent of s and 𝜉0𝜏0. This factor also shows up in the functional equation
of the doubling zeta integrals. Note that in our choice of 𝑓𝑝 (𝑠, 𝜉0𝜏0) in equation (5.7.3), the product of
gamma factors is exactly the product of gamma factors in 𝑐3, 𝑝 (−𝑠, (𝜉0𝜏0)−𝑐 , 𝛽).

Next, we construct a p-adic family interpolating these 𝐸Sieg (−; 𝑓 (𝑠, 𝜉0𝜏0))
��
𝑠= 𝑘−3

2
with 𝑓 (𝑠, 𝜉0𝜏0)

chosen as above. We will construct p-adic families of automorphic forms as measures on ΓK valued in
the space of p-adic forms. The next subsection introduces some notions about p-adic measures.
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5.8. p-adic measures and p-adic families of automorphic forms

For a p-adically complete O𝐿-module M and a compact abelian group Y with totally disconnected
topology, denote byM𝑒𝑎𝑠(𝑌, 𝑀) the space of M-valued p-adic measures on Y. Given 𝜇 ∈ M𝑒𝑎𝑠(𝑌, 𝑀)
and a continuous function 𝜂 : 𝑌 → 𝑅 with R a p-adically complete O𝐿-algebra, we write

𝜇(𝜂) =
∫
𝑌

𝜂(𝑦) 𝑑𝜇(𝑦)

to denote the value of 𝜇 at 𝜂, which is an element in 𝑅⊗̂O𝐿
𝑀 .

For each 𝑦 ∈ 𝑌 , we have the delta measure 𝛿𝑦 ∈ M𝑒𝑎𝑠(𝑌, 𝑀) defined by

𝛿𝑦 (𝜂) = 𝜂(𝑦). (5.8.1)

Given 𝑀1, 𝑀2 and 𝜇𝑖 ∈ M𝑒𝑎𝑠(𝑌, 𝑀𝑖), 𝑖 = 1, 2, the convolution 𝜇1 ∗ 𝜇2 ∈ M𝑒𝑎𝑠(𝑌, 𝑀1⊗̂𝑀2) is
defined by

(𝜇1 ∗ 𝜇2) (𝜂) =
∫
𝑌

∫
𝑌

𝜂(𝑦𝑧) 𝑑𝜇1 (𝑦) 𝑑𝜇2 (𝑧). (5.8.2)

If 𝜒 is a continuous character of Y valued in O×
𝐿̄
, then

(𝜇1 ∗ 𝜇2) (𝜒) = 𝜇1 (𝜒) ⊗ 𝜇2(𝜒). (5.8.3)

Let A be a group with a homomorphism 𝐴 → 𝑌 and an action on M. Then the group A acts on
M𝑒𝑎𝑠(𝑌, 𝑀) in two ways:

– A acts on M𝑒𝑎𝑠(𝑌, 𝑀) via its action on M,
– A acts on M𝑒𝑎𝑠(𝑌, 𝑀) via the homomorphism 𝐴 → 𝑌 and the translation of Y on itself.

Define

M𝑒𝑎𝑠(𝑌, 𝑀)♮ =
{

𝑝-adic measures in M𝑒𝑎𝑠(𝑌, 𝑀) on which
the two actions of 𝐴 are compatible

}
. (5.8.4)

In our applications, Y will be taken to be ΓK or 𝑈K, 𝑝 = 1 + 𝑝OK, 𝑝 , A will be taken to be Z×𝑝 × Z×𝑝 ,

which we identify with O×
K, 𝑝 via (𝜚𝔭, 𝜚𝔭̄), and M will be taken to be either Ôur

𝐿
or spaces of p-adic forms

on unitary groups. Next, we introduce the spaces of p-adic families of automorphic forms we will use.

5.8.1. p-adic families on GU(3, 1)
Define the tame level group

𝐾𝑣 =
{
𝑔 ∈ GU(3, 1) (Z𝑣 ) : 𝑔 ≡ 14 mod 𝑞

2𝑐𝑣+ord𝑣 (𝔰𝛿)
𝑣

}
,

𝐾
𝑝

𝑓
=

⊗
𝑣∉Σ∪{∞,ℓ,ℓ′, 𝑝}

GU(3, 1) (Z𝑣 )
⊗

𝑣 ∈Σ∪{ℓ,ℓ′ }
𝐾𝑣 .

Let 𝑉GU(3,1) = lim←−−
𝑚

lim−−→
𝑛

𝑉𝑛,𝑚 (with 𝑉𝑛,𝑚 defined in §2.6) of tame level 𝐾
𝑝

𝑓
. In equation (5.8.4), put

𝑌 = ΓK, 𝐴 = Z×𝑝 × Z×𝑝 with the homomorphism

𝐴 � O×
K, 𝑝 K×\A×

K
ΓK = 𝑌,

natural

embedding

natural
projection

(5.8.5)
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and 𝑀 = 𝑉GU(3,1) , 𝜉 , the component of 𝑉GU(3,1) on which the kernel of equation (5.8.5) acts through the

character 𝜉𝑝-adic. We make (𝑎1, 𝑎2) ∈ Z×𝑝 ×Z×𝑝 act on 𝑉GU(3,1) , 𝜉 by the usual action of 𝜚−1
𝔭

(
1

1
𝑎1
𝑎2

)
∈

𝑇so (Z𝑝) ⊂ U(3, 1) (Z𝑝) on 𝑉GU(3,1) , 𝜉 multiplied by the scalar 𝜉−1
𝑝-adic, 𝑝 (𝑎1, 𝑎2). (Here, 𝜚−1

𝔭 is the

isomorphism in equation (5.4.5), and this action factors through the quotient of Z×𝑝 × Z×𝑝 by the kernel
of equation (5.8.5).) Then we get

M𝑒𝑎𝑠
(
ΓK, 𝑉GU(3,1) , 𝜉

) ♮
, (5.8.6)

the 𝜉𝑝-adic-component of the space of p-adic families on GU(3, 1). The compatibility of the two actions
of Z×𝑝 ×Z×𝑝 implies that the value at 𝜏𝑝-adic of an element in equation (5.8.6) is a p-adic form with p-adic
nebentypus (

triv, triv, (𝜉𝜏)𝑝-adic,𝔭, (𝜉𝜏)−1
𝑝-adic,𝔭̄

)
.

(By saying p-adic nebentypus, we refer to the usual action of 𝜚−1
𝔭

(
𝑎1 ∗ ∗ ∗
𝑎2 ∗ ∗
𝑎3 ∗
𝑎4

)
∈ U(3, 1) (Z𝑝) on

𝑉GU(3,1) .)
The base change to Ôur

𝐿
of the space (5.8.6) contains the subspace of semiordinary families:

M𝑒𝑎𝑠
(
ΓK, 𝑒so𝑉GU(3,1) , 𝜉 ⊗̂ Ôur

𝐿

) ♮
, (5.8.7)

which is naturally equipped with an Ôur
𝐿
[[ΓK]]-module structure. The Klingen Eisenstein family we

will construct belongs to this space. (It is tautological that an element in equation (5.8.7) gives rise

to an element in 𝜉𝑝-adic-component of Mso⊗̂Z𝑝 [[𝑇so (Z𝑝) ]]Ô
ur
𝐿
[[ΓK]] = Hom

Ôur
𝐿
[[ΓK ]]

(
V ∗

so, Ôur
𝐿
[[ΓK]]

)
;

see §8.1.)

5.8.2. p-adic families on GU(3, 3)
Let 𝑉GU(3,3) be the space of p-adic forms on GU(3, 3) defined by considering global sections of the
structure sheaf on the Igusa towers for the Shimura variety of GU(3, 3). We will construct a Siegel
Eisenstein family in

M𝑒𝑎𝑠
(
ΓK, 𝑉GU(3,3)

)
.

5.8.3. p-adic families on U(2)
For constructing the Klingen Eisenstein family, we use an automorphic form 𝜑 in the space (5.6.11),
which is spherical at p and does not vary over the weight space. It is when analyzing the nondegenerate
Fourier–Jacobi coefficients of our Klingen Eisenstein family that we need auxiliary p-adic families on
U(2).

Let

𝑁𝑝 (Z𝑝) =
{
𝑔 ∈ U(2) (Z𝑝) : 𝜚𝔭 (𝑔) =

(
∗ ∗
0 1

)}
,

𝑁 ′
𝑝 (Z𝑝) =

{
𝑔 ∈ U(2) (Z𝑝) : 𝜚𝔭 (𝑔) =

(
1 ∗
0 ∗

)}
.

We define the following two spaces of p-adic forms on U(2) of tame level 𝐾
′𝑝
𝑓
∩ U(2) (Ẑ(𝑝) ):

𝑉U(2) =
{
continuous functions U(2) (Q)\U(2) (AQ, 𝑓 )/

(
𝐾

′𝑝
𝑓
∩ U(2) (Ẑ(𝑝) )

)
𝑁𝑝 (Z𝑝) → O𝐿

}
,

𝑉 ′
U(2) =

{
continuous functions U(2) (Q)\U(2) (AQ, 𝑓 )/

(
𝐾

′𝑝
𝑓
∩ U(2) (Ẑ(𝑝) )

)
𝑁 ′
𝑝 (Z𝑝) → O𝐿

}
,
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and let 𝑉U(2) , 𝜉 (resp. 𝑉 ′
U(2) , 𝜉−1) denote the subspace of 𝑉U(2) (resp. 𝑉 ′

U(2) ) on which the kernel of

equation (5.8.5) acts through the character (triv, 𝜉𝑝-adic,𝔭) (resp. (𝜉−1
𝑝-adic,𝔭, triv)). We have the operator

𝑈𝑝 acting on F ∈ 𝑉U(2) , 𝜉 (resp. F ∈ 𝑉 ′
U(2) , 𝜉−1) as

(𝑈𝑝F) (𝑔) =
∑

𝑥∈Z/𝑝Z
F

(
𝑔𝜚−1

𝔭

(
𝑝 𝑥

1

))

with 𝜚−1
𝔭 the isomorphism in equation (5.4.5). The ordinary projection is defined as 𝑒ord = lim

𝑛→∞
𝑈𝑛!
𝑝 .

In equation (5.8.4), put 𝑌 = ΓK, 𝐴 = Z×𝑝 ×Z×𝑝 with the homomorphism 𝐴 → 𝑌 as in equation (5.8.5),

and 𝑀 = 𝑉U(2) , 𝜉 on which we make (𝑎1, 𝑎2) ∈ Z×𝑝 × Z×𝑝 act by the right translation of 𝜚−1
𝔭

(
1

𝑎1

)
multiplied by the scalar 𝜉−1

𝑝-adic,𝔭 (𝑎1). (This action factors through the quotient of Z×𝑝 ×Z×𝑝 by the kernel
of equation (5.8.5).) Then we get

M𝑒𝑎𝑠
(
ΓK, 𝑉U(2) , 𝜉

) ♮
. (5.8.8)

The evaluation at 𝜏𝑝-adic of an element in equation (5.8.8) is a p-adic form on U(2) with p-adic nebentypus(
triv, (𝜉𝜏)𝑝-adic,𝔭

)
.

The nondegenerate Fourier–Jacobi coefficients of our Klingen Eisenstein family are p-adic measures
on ΓK valued in p-adic Jacobi forms on U(2). Pairing them with a fixed Jacobi form on U(2) gives an
element in equation (5.8.8). (See §7.6.)

We will also need to consider some auxiliary p-adic families which are p-adic measures on 𝑈K, 𝑝 =

1+ 𝑝OK, 𝑝 valued in 𝑉U(2) , 𝜉 and 𝑉 ′
U(2) , 𝜉−1 . We will fix N, a power of p, such that raising to the N-th power

maps ΓK into 𝑈K, 𝑝 . (See §7.7.1 for an explanation why we need to consider 𝑈K, 𝑝 and fix such an N.)
Put 𝑌 = 𝑈K, 𝑝 = 1 + 𝑝OK, 𝑝 , 𝐴 = Z×𝑝 × Z×𝑝 with the homomorphism

𝐴 = Z×𝑝 × Z×𝑝 ΓK 𝑈K, 𝑝 = 𝑌,
(5.8.5) N-th power

and 𝑀 = 𝑒ord𝑉U(2) , 𝜉 (resp. 𝑒ord𝑉
′
U(2) , 𝜉−1) in equation (5.8.4), on which we make (𝑎1, 𝑎2) ∈ 𝐴 act

through the right translation by 𝜚−1
𝔭

(
1

𝑎1

)
(resp. 𝜚−1

𝔭

(
𝑎−1

1
1

)
) multiplied by the scalar 𝜉−1

𝑝-adic,𝔭 (𝑎1)
(resp. 𝜉𝑝-adic,𝔭 (𝑎1)). Then we get

M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑒ord𝑉U(2) , 𝜉

) ♮ (
resp. M𝑒𝑎𝑠

(
𝑈K, 𝑝 , 𝑒ord𝑉

′
U(2) , 𝜉−1

) ♮)
. (5.8.9)

For 𝜏𝑝-adic ∈ Homcont

(
ΓK,Q

×
𝑝

)
, the evaluation at 𝜏𝑝-adic |𝑈K, 𝑝

of an element in equation (5.8.8) is a

p-adic form on U(2) with nebentypus

(
triv, (𝜉𝜏N)𝑝-adic,𝔭

) (
resp.

(
𝜉𝜏N)−1

𝑝-adic,𝔭, triv
))

.

We will construct auxiliary CM families

𝜽 , 𝒉̃3 ∈ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑒ord𝑉U(2) , 𝜉

) ♮
, 𝜽̃3, 𝒉 ∈ M𝑒𝑎𝑠

(
𝑈K, 𝑝 , 𝑒ord𝑉

′
U(2) , 𝜉−1

) ♮
,

in §7.7 and use them to study the nondegenerate Fourier–Jacobi coefficients of the Klingen Eisenstein
family (which are elements in equation (5.8.8) and gives rise to measures on 𝑈K, 𝑝 by the map (7.7.1).)

https://doi.org/10.1017/fms.2022.95 Published online by Cambridge University Press



46 F. Castella, Z. Liu and X. Wan

5.9. The p-adic family of Siegel Eisenstein series on GU(3, 3)
We normalize the Siegel Eisenstein series 𝐸Sieg( • ; 𝑓 (𝑠, 𝜉0𝜏0)

��
𝑠= 𝑘−3

2
(with 𝑓 (𝑠, 𝜉0𝜏0) chosen as in

§5.7) as

𝐸
Sieg
𝜉 𝜏

=

(
2−6 (−2𝜋𝑖)3𝑘

𝜋3
∏2
𝑗=0 Γ(𝑘 − 𝑗)

)−1

𝑑
Σ∪{∞, 𝑝,ℓ,ℓ′ }
3 (𝑠, 𝜉0𝜏0) · 𝐸Sieg ( • ; 𝑓 (𝑠, 𝜉0𝜏0)

��
𝑠= 𝑘−3

2
, (5.9.1)

where

𝑑
Σ∪{∞, 𝑝,ℓ,ℓ′ }
3 (𝑠, 𝜉0𝜏0) =

∏
𝑣∉Σ∪{𝑝,ℓ,ℓ′ }

𝑑3,𝑣 (𝑠, 𝜉0𝜏0),

𝑑3,𝑣 (𝑠, 𝜉0𝜏0) =
3∏
𝑗=1

𝐿𝑣

(
2𝑠 + 𝑗 , 𝜉

Q

0 𝜏
Q

0 𝜂
3− 𝑗
K/Q

)
.

(5.9.2)

Theorem 5.9.1. There exists a p-adic measure 𝑬
Sieg ∈ M𝑒𝑎𝑠

(
ΓK, 𝑉GU(3,3)

)
such that

𝑬
Sieg(𝜏𝑝-adic) = 𝐸

Sieg
𝜉 𝜏

for all algebraic Hecke character 𝜏 : K×\A×
K
→ C× such that its p-adic avatar 𝜏𝑝-adic factors through

ΓK and 𝜉𝜏 has ∞-type (0, 𝑘) with 𝑘 ≥ 6 even.

Proof. The measure is constructed by interpolating the q-expansions of the 𝐸
Sieg
𝜉 𝜏

’s. First, we record the
formulas for the Fourier coefficients in [Wan20, §§6E-6H]. Given 𝛽 ∈ Her3(K) and 𝑔 ∈ GU(3, 3) (AQ),
let

𝑊𝛽,𝑣

(
𝑔𝑣 , 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
=

∫
Her3 (K𝑣 )

𝑓𝑣 (𝑠, 𝜉0𝜏0)
((

−13

13

) (
13 𝜍

0 13

)
𝑔𝑣

)
e𝑣 (−Tr 𝛽𝜍) 𝑑𝜍

(where e𝑣 is the additive character in equation (1.0.5)), and

𝐸
Sieg
𝛽

(
𝑔; 𝑓 (𝑠, 𝜉0𝜏0)

)
=

∫
Her3 (K\AK)

𝐸Sieg

((
13 𝜍

0 13

)
𝑔; 𝑓 (𝑠, 𝜉0𝜏0)

)
eAQ (−Tr 𝛽𝜍) 𝑑𝜍.

Because the sections at 𝑣 ∈ Σ∪ {ℓ, ℓ′} are chosen to be supported on the big cell, for 𝑔 ∈ 𝑄GU(3,3) (AQ),
we have

𝐸
Sieg
𝛽

(
𝑔; 𝑓 (𝑠, 𝜉0𝜏0)

)
=

∏
𝑣

𝑊𝛽,𝑣

(
𝑔𝑣 , 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
.

For our choice of 𝑓𝑣 (𝑠, 𝜉0𝜏0) in §5.7, the formulas for 𝑊𝛽,𝑣

(
𝑔𝑣 , 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
are as follows.

– The Archimedean place.

𝑊𝛽,∞

((
𝑦 𝑥t 𝑦̄−1

0 t 𝑦̄−1

)
; 𝑓∞(𝑠, 𝜉0𝜏0)

)����𝑠= 𝑘−3
2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2−6 (−2𝜋𝑖)3𝑘

𝜋3
∏2

𝑗=0 Γ(𝑘− 𝑗)
(det 𝑦̄)𝑘eR

(
Tr 𝛽(𝑥 + 𝑖𝑦t 𝑦̄)

)
· (det 𝛽)𝑘−3, 𝛽 ∈ Her3 (K)>0

0, otherwise.
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– 𝑣 ∉ Σ ∪ {𝑝, ℓ, ℓ′}. For det 𝛽 ≠ 0,

𝑊𝛽,𝑣 (diag(𝐴, 𝐷); 𝑓𝑣 (𝑠, 𝜉0𝜏0))
��
𝑠= 𝑘−3

2
= 𝜉0,𝑣𝜏0,𝑣 (det 𝐷) | det 𝐴𝐷−1 |−

𝑘
2 +3

Q𝑣
· 𝑑3,𝑣 (𝑠, 𝜉0𝜏0)−1

× 1Her3 (OK,𝑣 )∗ (𝐷−1𝛽𝐴) · ℎ𝑣,𝐷−1𝛽𝐴

(
𝜉
Q

0,𝑣𝜏
Q

0,𝑣 (𝑞𝑣 )𝑞
−𝑘
𝑣

)
,

where ℎ𝑣,𝐷−1𝛽𝐴 ∈ Z[𝑋] is a monic polynomial depending only on v and 𝐷−1𝛽𝐴, and is the constant

polynomial when when 𝐷−1𝛽𝐴 belongs to GL3(OK,𝑣 ).
– 𝑣 ∈ Σ ∪ {ℓ, ℓ′}.

𝑊𝛽,𝑣 (diag(𝐴, 𝐷); 𝑓𝑣 (𝑠, 𝜉0𝜏0))
��
𝑠= 𝑘−3

2
= |𝐷K/Q |3/2𝑣 · 𝜉0,𝑣𝜏0,𝑣 (det 𝐷) | det 𝐴𝐷−1 |−

𝑘
2 +3

Q𝑣

× 1Her3 (OK,𝑣 )∗ (𝐷−1𝛽𝐴) e𝑣

( (𝐷−1𝛽𝐴)22 + (𝐷−1𝛽𝐴)33

𝑞
𝑐𝑣
𝑣

)
.

– The place p. An easy computation shows that

𝑊𝛽,𝑝

(
16; 𝑓

big-cell
𝑝 (−𝑠, 𝜉−𝑐0 𝜏−𝑐0 )

)���𝑠= 𝑘−3
2

= F (F−1𝛼𝜉 𝜏,𝑝) (𝛽) = 𝛼𝜉 𝜏,𝑝 (𝛽).

The functional equation for 𝑊𝛽,𝑝 in [LR05, (14)] implies that

𝑊𝛽,𝑝

(
𝑔; 𝑀𝑝

(
−𝑠, 𝜉−𝑐0 𝜏−𝑐0

)
𝑓

big-cell
𝑝 (−𝑠, 𝜉−1

0 𝜏−1
0 )

)
= 𝑐3, 𝑝 (−𝑠, 𝜉−𝑐0 𝜏−𝑐0 , 𝛽) · 𝑊𝛽,𝑝

(
𝑔; 𝑓

big-cell
𝑝 (−𝑠, 𝜉−𝑐0 𝜏−𝑐0 )

)

with 𝑐3, 𝑝 (−𝑠, 𝜉−𝑐0 𝜏−𝑐0 , 𝛽) defined as in equation (5.7.5). It follows that

𝑊𝛽,𝑝

(
1; 𝑓𝑝 (𝑠, 𝜉0𝜏0)

) ��
𝑠= 𝑘−3

2
= 𝑐𝛽,𝑝 · (𝜉Q0 𝜏

Q

0 )𝑝 (det 𝛽) | det 𝛽 |2𝑠
Q𝑝

· 𝛼𝜉 𝜏,𝑝 (𝛽).

Denote by 𝐸
Sieg
𝜉 𝜏,𝛽

(
diag(𝐴, 𝐷)

)
the 𝛽-th coefficient in the (p-adic) q-expansion of 𝐸

Sieg
𝜉 𝜏

at the (0-

dimensional) cusp indexed by diag(𝐴, 𝐷) ∈ GU(3, 3) (A𝑝
K, 𝑓

). From the above formulas for the local

Fourier coefficients at the p and ∞, we see that 𝐸
Sieg
𝜉 𝜏,𝛽

(
diag(𝐴, 𝐷)

)
is nonzero only for 𝛽 inside

𝔖3 =

{
𝛽 ∈ Her3(OK)>0 : 𝜚𝔭 (𝛽21) ∈ Z×𝑝 ,

(
𝜚𝔭 (𝛽21) 𝜚𝔭 (𝛽22)
𝜚𝔭 (𝛽31) 𝜚𝔭 (𝛽32)

)
∈ GL2 (Z𝑝)

}
,

and for 𝛽 ∈ 𝔖3, combining the above formulas gives

𝐸
Sieg
𝜉 𝜏,𝛽

(
diag(𝐴, 𝐷)

)
= a constant independent of 𝜏

× (𝜉𝜏)𝑝-adic(det 𝐷)
∏

𝑣∉Σ∪{𝑝,ℓ,ℓ′ }
ℎ𝑣,t 𝐴̄𝛽𝐴

(
(𝜉𝜏)Q

𝑝-adic,𝑣 (𝑞𝑣 )
)
,

× (𝜉𝜏)𝑝-adic,𝔭

(
det

(
𝛽21 𝛽22

𝛽31 𝛽32

)−1
)
(𝜉𝜏)Q

𝑝-adic, 𝑝 (det 𝛽).

(5.9.3)

(Note that thanks to the condition that 𝜉𝜏 has ∞-type (0, 𝑘), we have (𝜉𝜏)𝑝-adic,𝔭 = (𝜉𝜏)𝔭 and
(𝜉𝜏)𝑝-adic |O×

K,𝔭
= 𝜉0𝜏0 |O×

K,𝔭
.)

The factors on the right-hand side of equation (5.9.3) are interpolated by 𝛿-measures in
M𝑒𝑎𝑠(ΓK,O𝐿). The convolution of those 𝛿-measures gives an element in M𝑒𝑎𝑠(ΓK,O𝐿) which
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interpolates the Fourier coefficient 𝐸
Sieg
𝜉 𝜏,𝛽

(
diag(𝐴, 𝐷)

)
. (See equations (5.8.1)(5.8.2)(5.8.3) for the defi-

nitions of 𝛿-measures and the convolution of p-adic measures.) We see that there exists a p-adic measure

𝑬
Sieg ∈ M𝑒𝑎𝑠

(
ΓK,

⊕
𝑝-adic cusps

O𝐿 [[𝔖3]]
)

that interpolates the p-adic q-expansions of 𝐸
Sieg
𝜉 𝜏

. By the q-expansion principle and the fact that the

𝐸
Sieg
𝜉 𝜏

’s are automorphic forms on GU(3, 3), we deduce that 𝑬Sieg belongs toM𝑒𝑎𝑠
(
ΓK, 𝑉GU(3,3)

)
. (Here,

we view the space of p-adic measures valued in 𝑉GU(3,3) as a subspace of the space of p-adic measures
valued in copies of O𝐿 [[𝔖]] via the embedding of 𝑉GU(3,3) into the O𝐿-module of q-expansions.) �

5.10. The semiordinary family of Klingen Eisenstein series

Let 𝐸
Sieg
𝜉 𝜏

��
GU(3,1)×GU(2) be the automorphic form obtained by the composition of the restriction from

GU(3, 3) to GU(3, 1)×G𝑚
GU(2) via the embedding (5.5.1) and the extension by zero from GU(3, 1)×G𝑚

GU(2) to GU(3, 1) × GU(2). Define the twist 𝐸
Sieg
𝜉 𝜏

��★
GU(3,1)×GU(2) as

𝐸
Sieg
𝜉 𝜏

��★
GU(3,1)×GU(2) (𝑔1, 𝑔2) = 𝐸

Sieg
𝜉 𝜏

��
GU(3,1)×GU(2) (𝑔1, 𝑔2) · 𝜉−1

𝑝-adic𝜏
−1
𝑝-adic(det 𝑔2).

Then by our choice of the section 𝑓𝑝 (𝑠, 𝜉0𝜏0), we see that

𝐸
Sieg
𝜉 𝜏

��★
GU(3,1)×GU(2) ∈ 𝑉GU(3,1) , 𝜉 ⊗ 𝑀GU(2)

(
𝐾

′𝑝
𝑓

𝐾 ′
𝑝,0; Ôur

𝐿

)

with 𝐾 ′
𝑝,0 =

{
𝑔 ∈ GU(2) (Z𝑝) : 𝜚𝔭 (𝑔) =

(
∗ ∗
𝑝∗ ∗

)}
. (Note that 𝐾 ′

𝑝,0 equals the 𝐾 ′
𝑝,𝑔 in equation (4.4.1).

See equation (5.6.8) for the definition of 𝑀GU(2)
(
𝐾

′𝑝
𝑓

𝐾 ′
𝑝,0; Ôur

𝐿

)
.)

Therefore, by applying a twist of (𝜉𝜏)−1
𝑝-adic ◦ det to the family 𝑬

Sieg
��
GU(3,1)×GU(2) on the second

factor, we obtain the p-adic family

𝑬
Sieg

��★
GU(3,1)×GU(2) ∈ M𝑒𝑎𝑠

(
ΓK, 𝑉GU(3,1) , 𝜉

) ♮ ⊗̂ 𝑀GU(2)
(
𝐾

′𝑝
𝑓

𝐾 ′
𝑝,0; Ôur

𝐿

)
(5.10.1)

interpolating 𝐸
Sieg
𝜉 𝜏

��★
GU(3,1)×GU(2) when 𝜏 varies. (To see that it belongs to the ♮-subspace, one just needs

to check the nebentypus.)
Attached to a 𝜑 in the space (5.6.11) is a linear functional

〈 • , 𝜑〉 : 𝑀GU(2)
(
𝐾

′𝑝
𝑓

𝐾 ′
𝑝,0; Ôur

𝐿

)
−→ Ôur

𝐿

𝜑′ ↦−→ 〈𝜑′, 𝜑〉 =
∫

GU(2) (Q)\GU(2) (AQ, 𝑓 )
𝜑′(𝑔)𝜑(𝑔) 𝑑𝑔,

where the integral is understood as a sum over the finite set GU(2) (Q)\GU(2) (AQ, 𝑓 )/𝐾 ′𝑝
𝑓

𝐾 ′
𝑝,0.

Applying the linear functional 〈 • , 𝜑〉 to equation (5.10.1) gives a family

𝑬
Kling
𝜑 =

〈
𝑬

Sieg |★GU(3,1)×GU(2) , 𝜑
〉
∈ M𝑒𝑎𝑠

(
ΓK, 𝑉GU(3,1) , 𝜉 ⊗̂ Ôur

𝐿

) ♮
⊗Z Q. (5.10.2)
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Proposition 5.10.1. For 𝜏𝑝-adic satisfying the conditions in Theorem 5.9.1, the evaluation of the family

𝑬
Kling
𝜑 at 𝜏𝑝-adic is a Klingen Eisenstein series on GU(3, 1) inducing 𝜉0𝜏0 | · |

𝑘−3
2 �𝜋GU(2) , more precisely,

the automorphic form

𝑔 ↦−→
∫

U(2) (Q)\U(2) (AQ)/U(2) (R)
𝐸Sieg (𝚤(𝑔, 𝑔2); 𝑓 (𝑠, 𝜉0𝜏0)

)
𝜑(𝑔2) (𝜉0𝜏0)−1(det 𝑔2) 𝑑𝑔2

�����𝑠= 𝑘−3
2

(5.10.3)

normalized by the factor in equation (5.9.1).

Moreover, 𝑬Kling
𝜑 ∈ M𝑒𝑎𝑠

(
ΓK, 𝑒so𝑉GU(3,1) , 𝜉 ⊗̂ Ôur

𝐿

) ♮
⊗Z Q, that is, is a semiordinary family.

Proof. From the construction of the family 𝑬
Kling
𝜑 , it is easy to see that its evaluation 𝜏𝑝-adic satisfying

the conditions in Theorem 5.9.1 equals the form given in equation (5.10.3) normalized by the factor in
equation (5.9.1). By the doubling method formula (Theorem 5.5.1), we know that equation (5.10.3) is

a Klingen Eisenstein series inducing 𝜉0𝜏0 | · |
𝑘−3

2 � 𝜋GU(2) .
In order to show that 𝑬Kling

𝜑 is a semiordinary family, for all 𝜏 satisfying the conditions in Theorem
5.9.1 and (𝜉𝜏)𝔭 ramified, we look at the action of U𝑝-operators on the form (5.10.3), which has weight
(0, 0, 0; 𝑘). Given integers 𝑚, 𝑚′, 𝑚′′ ≥ 0, by the formula for adelic U𝑝-operators in equation (2.8.8)
and our choice of the local section at p in §5.7, the action of (𝑈+

𝑝,2)𝑚(𝑈+
𝑝,3)𝑚

′ (𝑈−
𝑝,1)𝑚

′′
on the form

(5.10.3) can be computed by considering

𝑝2𝑚+𝑘𝑚′′
∫
𝑁 (Z𝑝)

𝑓
big-cell
𝑝

(
3 − 𝑘

2
, (𝜉0𝜏0)−𝑐

)������
𝑔𝑢

�����

𝑝𝑚+𝑚′

𝑝𝑚+𝑚′

𝑝𝑚
′

𝑝−𝑚
′′

1
1

������

������
𝑑𝑢, (5.10.4)

where we identify U(3, 3) (Q𝑝) with GL6 (Q𝑝) via 𝜚𝔭 : K ⊗Q Q𝑝 → Q𝑝 . Writing 𝑔 =

(
𝐴 𝐵

𝐶 𝐷

)
in 3 × 3

blocks, we have

(5.10.4) = 𝑝2𝑚+𝑘𝑚′′ ·
(
(𝜉𝜏)𝔭 (𝑝)𝑝3

)2𝑚+3𝑚′ (
(𝜉𝜏)𝔭̄ (𝑝)𝑝3

)𝑚′′

× 𝑝−4𝑚−3𝑚′−3𝑚′′ ∑
𝑢1 ,𝑢2∈Z/𝑝𝑚Z

∑
𝑣1 ,𝑣2∈Z/𝑝𝑚+𝑚′+𝑚′′

𝑣3∈Z/𝑝𝑚
′+𝑚′′

Z

(F−1𝛼𝜉 𝜏,𝑝)
((

𝑝−𝑚−𝑚′

𝑝−𝑚−𝑚′

𝑝−𝑚
′

) ( 1 −𝑢1
1 −𝑢2

1

) (
𝐶−1𝐷 +

(
𝑣1 0 0
𝑣2 0 0
𝑣3 0 0

)) (
𝑝−𝑚

′′

1
1

))
.

(5.10.5)

A direct computation by using the formula (5.7.2) shows that when (𝜉𝜏)𝔭 is ramified

∑
𝑢1 ,𝑢2

∑
𝑣1 ,𝑣2 ,𝑣3

(F−1𝛼𝜉 𝜏,𝑝)
((

𝑝−𝑚−𝑚′

𝑝−𝑚−𝑚′

𝑝−𝑚
′

) ( 1 −𝑢1
1 −𝑢2

1

) (
𝐶−1𝐷 +

(
𝑣1 0 0
𝑣2 0 0
𝑣3 0 0

)) (
𝑝−𝑚

′′

1
1

))

= 𝑝2𝑚 (F−1𝛼𝜉 𝜏,𝑝)
(
𝐶−1𝐷

( 1
𝑝−𝑚−𝑚′

𝑝−𝑚−𝑚′

))
.

(5.10.6)
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Combining equations (5.10.5) and (5.10.6), we obtain

(5.10.4) = 𝑝6𝑚+6𝑚′ (𝜉𝜏)𝔭 (𝑝)2𝑚+3𝑚′
(
(𝜉𝜏)𝔭̄ (𝑝)𝑝𝑘

)𝑚′′

·
(
𝜉𝜏)𝔭̄ (𝑝)𝑝3

)−2𝑚−2𝑚′

× 𝑓
big-cell
𝑝

(
3 − 𝑘

2
, (𝜉0𝜏0)−𝑐

) (
𝑔
(

14

𝑝−𝑚−𝑚′ ·12

))
,

= (𝜉𝜏)𝔭 (𝑝)𝑚
′
(
(𝜉𝜏)𝔭̄ (𝑝)𝑝𝑘

)𝑚′′

· (𝜉𝜏)𝔭̄ (𝜉𝜏)−1
𝔭 (𝑝)−2𝑚−2𝑚′

× 𝑓
big-cell
𝑝

(
3 − 𝑘

2
, (𝜉0𝜏0)−𝑐

) (
𝑔
(

14

𝑝−𝑚−𝑚′ ·12

))
,

and the corresponding Siegel Eisenstein series paired with 𝜑 · (𝜉0𝜏0)−1 ◦ det over U(2) gives

(𝜉𝜏)𝔭 (𝑝)𝑚
′
(
(𝜉𝜏)𝔭̄ (𝑝)𝑝𝑘

)𝑚′′

· the automorphic form given in equation (5.10.3).

Here, we use the condition that 𝜑 has trivial central character. Both (𝜉𝜏)𝔭 (𝑝) and (𝜉𝜏)𝔭̄ (𝑝)𝑝𝑘 are p-adic
units, so the form (5.10.3) is an eigenvector for the action of (𝑈+

𝑝,2)𝑚(𝑈+
𝑝,3)𝑚

′ (𝑈−
𝑝,1)𝑚

′′
with eigenvalue a

p-adic unit. This shows that the evaluations of the Klingen Eisenstein family 𝑬
Kling
𝜑 at all 𝜏 satisfying the

conditions in Theorem 5.9.1 with (𝜉𝜏)𝔭 ramified are semiordinary. Hence, 𝑬Kling
𝜑 is semiordinary. �

6. The degenerate Fourier–Jacobi coefficients of the Klingen family

This section is devoted to proving Theorem 6.1.1, which states that the degenerate Fourier–Jacobi
coefficients of 𝑬Kling

𝜑 are divisible by the p-adic L-function attached to BC(𝜋).

6.1. The divisibility of the degenerate Fourier–Jacobi coefficients by p-adic L-functions

Given a cusp label 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
), we have the map

Φ𝑔 : M𝑒𝑎𝑠
(
ΓK, 𝑒so𝑉GU(3,1) , 𝜉 ⊗̂ Ôur

𝐿

) ♮
−→ M𝑒𝑎𝑠

(
ΓK, 𝑀GU(2)

(
𝐾

′𝑝
𝑓 ,𝑔

𝐾 ′
𝑝,0; Ôur

𝐿

))
,

(which corresponds to the map Φ𝑔 in the fundamental exact sequence in part (4) of Theorem 2.9.1).

Here, 𝐾
′𝑝
𝑓 ,𝑔

is an open subgroup of GU(2) (Ẑ(𝑝) ) depending on the cusp label 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
). Applying it

to our Klingen Eisenstein family 𝑬
Kling
𝜑 , we get

Φ𝑔

(
𝑬

Kling
𝜑

)
∈ M𝑒𝑎𝑠

(
ΓK, 𝑀GU(2)

(
𝐾

′𝑝
𝑓 ,𝑔

𝐾 ′
𝑝,0; Ôur

𝐿

))
⊗Z Q.

Evaluating it at 𝑔′ ∈ GU(2) (AQ, 𝑓 ) gives

Φ𝑔

(
𝑬

Kling
𝜑

)
(𝑔′) ∈ M𝑒𝑎𝑠

(
ΓK, Ôur

𝐿

)
⊗Z Q � Ôur

𝐿 [[ΓK]] ⊗Z Q.

By the work of Kubota–Leopoldt on p-adic L-functions for Dirichlet characters, there exists a (unique)
p-adic L-function L

Σ∪{ℓ,ℓ′ }
𝜉 ,Q

∈ Ôur
𝐿
[[ΓK]] satisfying the interpolation property:

L
Σ∪{ℓ,ℓ′ }
𝜉 ,Q

(𝜏𝑝-adic) =
Γ(𝑘 − 2)
(2𝜋𝑖)𝑘−2

· 𝛾𝑝

(
3 − 𝑘, (𝜉Q0 𝜏

Q

0 )
−1

)
· 𝐿Σ∪{∞, 𝑝,ℓ,ℓ′ }

(
𝑘 − 2, 𝜉

Q

0 𝜏
Q

0

)
(6.1.1)
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for all algebraic Hecke character 𝜏 : K×\A×
K

→ C× such that 𝜏𝑝-adic factors through ΓK and 𝜏
Q
∞ =

sgn𝑘 | · |𝑘
R
.

By [EW16] (and the Archimedean computation in [EL]), there exists a (unique) p-adic L-function
L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

∈ Ôur
𝐿
[[ΓK]] ⊗Z Q satisfying the interpolation property: for all algebraic Hecke character

𝜏 : K×\A×
K

→ C× such that 𝜏𝑝-adic factors through ΓK and 𝜉𝜏 has ∞-type (𝑘1, 𝑘2) with 𝑘1, 𝑘2 ∈ Z,
𝑘1 ≤ 0, 𝑘2 ≥ 2 − 𝑘1,

L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

(𝜏𝑝-adic)

=

(
Ω𝑝

Ω∞

)2(𝑘2−𝑘1) Γ(𝑘2)Γ(𝑘2 − 1)
(2𝜋𝑖)2𝑘2−1

· 𝛾𝑝

(
3 − (𝑘1 + 𝑘2)

2
, 𝜋∨
𝑝 × (𝜉0𝜏0)−1

𝔭̄

)

× 𝐿Σ∪{∞, 𝑝,ℓ,ℓ′ }
(
𝑘1 + 𝑘2 − 1

2
, BC(𝜋) × 𝜉0𝜏0

)
.

(6.1.2)

Theorem 6.1.1. Suppose that 𝜑 belongs to the space (5.6.11). Then for all cusp labels 𝑔 ∈ 𝐶 (𝐾 𝑝

𝑓
) and

𝑔′ ∈ GU(2) (AQ, 𝑓 ), we have

(
Φ𝑔

(
𝑬

Kling
𝜑

)
(𝑔′)

)
⊂

(
L
Σ∪{ℓ,ℓ′ }
𝜉 ,Q

L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

)

in Ôur
𝐿
[[ΓK]] ⊗Z Q.

Proof. For 𝜏 as in Theorem 5.9.1, that is, 𝜏𝑝-adic factoring through ΓK and 𝜉𝜏 has ∞-type (0, 𝑘) with

𝑘 ≥ 6 even), let 𝐸
Kling
𝜑, 𝜉 𝜏

be the classical Klingen Eisenstein series whose corresponding p-adic form is

𝑬
Kling
𝜑 (𝜏𝑝-adic). The theorem is proved by computing Φ𝑔

(
𝑬

Kling
𝜑

)
(𝜏𝑝-adic) with

𝑔 = 𝑘Σ,ℓ,ℓ′ =
⊗

𝑣 ∈Σ∪{ℓ,ℓ′ }
𝑘𝑣 , 𝑘𝑣 ∈ U(3, 1) (Z𝑣 ).

The value of Φ𝑔

(
𝑬

Kling
𝜑

)
(𝜏𝑝-adic) at 𝑔′ ∈ GU(2) (AQ) is the 0-th Fourier–Jacobi coefficient of the

𝐸
Kling
𝜑, 𝜉 𝜏

at

𝑥 =

(
1
𝑔′

𝜈 (𝑔′)

)
𝑘Σ 𝑓 ,ℓ,ℓ′ 𝑤3, 𝑝

multiplied by
(
Ω𝑝

Ω∞

)2𝑘
, where 𝑤3, 𝑝 ∈ U(3, 1) (Q𝑝) is defined by

𝜚𝔭 (𝑤3, 𝑝) =
�����

1
1

1
1

�����
.

Note that 𝑤3, 𝑝 ∈ U(3, 1) (Q𝑝) is also our fixed element in 𝑃♭
D
(Z𝑝) for obtaining the isomorphism

(4.4.7)).
By the description of 𝑬Kling

𝜑 (𝜏𝑝-adic) in equation (5.10.3) and the doubling method formula (Theorem
5.5.1), we have

𝐸
Kling
𝜑, 𝜉 𝜏

(𝑥) = normalization factor
on the RHS of equation (5.9.1) · 𝐸Kling (𝑥; 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)

) ���
𝑠= 𝑘−3

2
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with 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑) the section in 𝐼𝑃GU(3,1) (𝑠, 𝜉0𝜏0) given by

𝐹 ( 𝑓 (𝑠, 𝜏0), 𝜑) (𝑥) =
∫

U(2) (AQ)
𝑓 (𝑠, 𝜉0𝜏0) (𝚤(𝑥, 𝑔1𝑡))𝜑(𝑔1𝑡) (𝜉0𝜏0)−1(det 𝑔1𝑡) 𝑑𝑔1

=

∫
U(2) (AQ)

𝑓 (𝑠, 𝜉0𝜏0)
(
𝚤
(
𝑘Σ 𝑓 ,ℓ,ℓ′ 𝑤3, 𝑝 , 𝑔1

))
𝜑(𝑔′𝑔1) (𝜉0𝜏0)−1(det 𝑔1) 𝑑𝑔1,

where t is an element in GU(2) (AQ) with 𝜈(𝑡) = 𝜈(𝑥). What we need to compute is∫
𝑈𝑃GU(3,1) (Q)

∖
𝑈𝑃GU(3,1) (AQ)

𝐸Kling (𝑢𝑥; 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)
)
𝑑𝑢. (6.1.3)

It follows from [MW94, II.1.7] that

(6.1.3) = 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑) (𝑥) + 𝑀𝑃GU(3,1) (𝑠, 𝜉0𝜏0)𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑) (𝑥).

The Archimedean computation in [Wan15, Corollary 5.11] shows that for our choice of 𝑓∞ (𝑠, 𝜉0𝜏0) in
§5.7 and 𝑘 ≥ 6,

𝑀𝑃GU(3,1) (𝑠, 𝜉0𝜏0)𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)
��
𝑠= 𝑘−3

2
= 0. (6.1.4)

We reduce to compute 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑) (𝑥). Take arbitrary 𝜑′ ∈ 𝜋̄GU(2) spherical away fromΣ ∪{ℓ, ℓ′}
and factorizable with respect to an isomorphism 𝜋̄GU(2) �

⊗
𝑣 𝜋̄

GU(2)
𝑣 . Put〈

𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑) ( • 𝑘Σ 𝑓 ,ℓ,ℓ′ 𝑤3, 𝑝), 𝜑′〉
=

∫
GU(2) (Q)𝑍GU(2) (AQ)\GU(2) (AQ)

𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑) (𝑔′ 𝑘Σ,ℓ,ℓ′ 𝑤3, 𝑝) 𝜑′(𝑔′) 𝑑𝑔′.

Then we have 〈
𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑) ( • 𝑘Σ,ℓ,ℓ′ 𝑤3, 𝑝), 𝜑′〉

=
∏

𝑣∉Σ∪{𝑝,ℓ,ℓ′ }
𝑍𝑣

(
𝑓𝑣 (𝑠, 𝜉0𝜏0), 14, 𝜑𝑣 , 𝜑′

𝑣

)

×
∏

𝑣 ∈Σ∪{ℓ,ℓ′ }
𝑍𝑣

(
𝑓𝑣 (𝑠, 𝜉0𝜏0), 𝑘𝑣 , 𝜑𝑣 , 𝜑′

𝑣

)
· 𝑍𝑝

(
𝑓𝑝 (𝑠, 𝜉0𝜏0), 𝑤3, 𝑝 , 𝜑𝑝 , 𝜑′

𝑝

)
,

where for 𝑔𝑣 ∈ GU(3, 1) (Q𝑣 ),

𝑍𝑣
(
𝑓𝑣 (𝑠, 𝜉0𝜏0), 𝑔𝑣 , 𝜑𝑣 , 𝜑′

𝑣

)
=

∫
U(2) (Q𝑣 )

𝑓𝑣 (𝑠, 𝜉0𝜏0) (𝚤(𝑔𝑣 , 𝑔1)) (𝜉0𝜏0)−1
𝑣 (det 𝑔1)

〈
𝜋

GU(2)
𝑣 (𝑔1)𝜑𝑣 , 𝜑′

𝑣

〉
𝑑𝑔1.

(6.1.5)

The restriction of 𝑓𝑣 (𝑠, 𝜉0𝜏0) ( • 𝚤(𝑔𝑣 , 12)) to U(2, 2) (Q𝑣 ) is a section in the degenerate principal

series of U(2, 2) (Q𝑣 ) inducing 𝜉0𝜏0 | · |𝑠+
1
2

AK

. Hence, the integral (6.1.5) is essentially a doubling zeta
integral. We have the following formulas.

– The Archimedean place.

𝑍∞
(
𝑓∞ (𝑠, 𝜉0𝜏0), 14, 𝜑∞, 𝜑′

∞
)
=

〈
𝜑∞, 𝜑′

∞
〉

because 𝑓∞(𝑠, 𝜉0𝜏0) (𝚤(14, • ), 𝜑∞, 𝜑′
∞ are all invariant under U(2) (R).
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– 𝑣 ∉ Σ ∪ {ℓ, ℓ′, 𝑝}.

𝑍𝑣
(
𝑓𝑣 (𝑠, 𝜉0𝜏0), 14, 𝜑𝑣 , 𝜑′

𝑣

)
= 𝑑2,𝑣

(
𝑠 + 1

2
, 𝜉0𝜏0

)−1

· 𝐿𝑣 (𝑠 + 1, BC(𝜋) × 𝜉0𝜏0)

with

𝑑2,𝑣 (𝑠, 𝜉0𝜏0) =
2∏
𝑗=1

𝐿𝑣 (2𝑠 + 1 + 𝑗 , 𝜉
Q

0 𝜏
Q

0 𝜂
2− 𝑗
K/Q).

This follows from the standard formula for unramified local doubling zeta integrals [LR05, Propo-
sition 3, Remark 3].

– 𝑣 ∈ Σ ∪ {ℓ, ℓ′}. By [Wan20, Lemma 6.20] or an easy direct computation, one can see that for 𝜑 in
the space (5.6.11),

𝑍𝑣
(
𝑓𝑣 (𝑠, 𝜉0𝜏0), 𝑘𝑣 , 𝜑𝑣 , 𝜑′

𝑣

)
= 0, if 𝑘𝑣 ∉ 𝑃U(3,1) (Z𝑣 )���

1
12

−1

���
𝑃U(3,1) (Z𝑣 ),

and for 𝑘𝑣 such that 𝑍𝑣
(
𝑓𝑣 (𝑠, 𝜉0𝜏0), 𝑘𝑣 , 𝜑𝑣 , 𝜑′

𝑣

)
≠ 0,

𝑍𝑣
(
𝑓𝑣 (𝑠, 𝜉0𝜏0), 𝑘𝑣 , 𝜑𝑣 , 𝜑′

𝑣

)
= vol(𝔜𝑐𝑣 ) ·

(
(𝜉Q0 𝜏

Q

0 )𝑣 (𝑞𝑣 ) |𝑞𝑣 |
𝑠+ 3

2
𝑣

)−𝑐𝑣 〈
𝜑𝑣 , 𝜑′

𝑣

〉
,

where 𝔜𝑐𝑣 is an open subgroup of {𝑘 ′
𝑣 ∈ U(2) (Z𝑣 ) : 𝑘 ′

𝑣 ≡ 12 mod 𝑞
𝑐𝑣
𝑣 }, and 𝑐𝑣 is the positive

integer in the definition of 𝑓𝑣 (𝑠, 𝜉0𝜏0) in equation (5.7.1).
– The place p.

𝑍𝑝

(
𝑓𝑝 (𝑠, 𝜉0𝜏0), 𝑤3, 𝑝 , 𝜑𝑝 , 𝜑′

𝑝

)
= 𝛾𝑝

(
−2𝑠, (𝜉Q0 𝜏

Q

0 )
−1

)
𝛾𝑝

(
−𝑠, 𝜋𝑝 × (𝜉0𝜏0)−1

𝔭̄

) 〈
𝜑𝑝 , 𝜑′

𝑝

〉
. (6.1.6)

See §6.2 for the computation. Note that we only need the value at 𝑤3, 𝑝 ∈ GU(3, 1) (Q𝑝) rather than
a general 𝑘 𝑝 ∈ GU(3, 1) (Z𝑝). This significantly simplifies the computation. The value at a general
𝑘 𝑝 ∈ GU(3, 1) (Z𝑝) can be difficult to compute since intertwining operators are not easy to compute
completely.

Combining the local formulas, since 𝜑′ is arbitrary, we see that for 𝜏 as in Theorem 5.9.1,
𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑) (𝑥)

��
𝑠= 𝑘−3

2
is either 0 or equals

𝑑
Σ∪{∞, 𝑝,ℓ,ℓ′ }
3 (𝑠, 𝜉0𝜏0)−1 · 𝐶Σ∪{ℓ,ℓ′ } · 𝛾𝑝

(
−2𝑠, (𝜉Q0 𝜏

Q

0 )
−1

)
𝐿Σ∪{∞, 𝑝,ℓ,ℓ′ }

(
2𝑠 + 1, 𝜉

Q

0 𝜏
Q

0

)
× 𝛾𝑝

(
−𝑠, 𝜋𝑝 × (𝜉0𝜏0)−1

𝔭̄

)
𝐿Σ∪{∞,ℓ,ℓ′, 𝑝} (𝑠 + 1, BC(𝜋) × 𝜉0𝜏0)

���
𝑠= 𝑘−3

2

· 𝜑(𝑔′)

for some 𝐶Σ∪{ℓ,ℓ′ } ∈ 𝐿 independent of 𝜏. Combining this formula with the normalization (5.9.1), we

see that at all 𝜏𝑎-adic as in Theorem 5.9.1, if Φ𝑔
(
𝑬

Kling
𝜑

)
(𝑔′) is nonzero, then its value agree with the

value of 𝐶Σ∪{ℓ,ℓ′ } · LΣ∪{ℓ,ℓ′ }
𝜉 ,Q

L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

. Evaluations at these 𝜏𝑝-adic’s uniquely determine elements in

Ôur
𝐿
[[ΓK]] ⊗Z Q. Therefore, Φ𝑔

(
𝑬

Kling
𝜑

)
(𝑔′) is either 0 or equals 𝐶Σ∪{ℓ,ℓ′ } · LΣ∪{ℓ,ℓ′ }

𝜉 ,Q
L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

, and in

particular the desired divisibility holds in Ôur
𝐿
[[ΓK]] ⊗Z Q. �
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6.2. The computation of local zeta integrals at p

The ramification conditions in [Wan20, Definition 6.30] on 𝜉0, 𝑝𝜏0, 𝑝 and the characters from which
𝜋𝑝 is induced are not satisfied in our case here because our 𝜋𝑝 is unramified. Those conditions
are used in loc.cit to simplify the computation involving the intertwining operators. Here, we use
the functional equation for doubling zeta integrals to handle the intertwining operator and compute

𝑍𝑝

(
𝑓𝑝 (𝑠, 𝜉0𝜏0), 𝑤3, 𝑝 , 𝜑𝑝 , 𝜑′

𝑝

)
.

Proof of equation (6.1.6). Inside the degenerate principal series on GU(2, 2) (Q𝑝) inducing the charac-

ter (𝜉0𝜏0)−𝑐𝑝 | · |−𝑠 , we define the section 𝑓
U(2,2)
𝑝 (−𝑠, (𝜉0𝜏0)−𝑐) as

𝑓
U(2,2)
𝑝 (−𝑠, (𝜉0𝜏0)−𝑐)

(
𝑔2 =

(
𝐴 𝐵

𝐶 𝐷

))

= | det 𝐶 t𝐶̄ |𝑠−1
𝑝 (𝜉0𝜏0)𝑝 (det 𝐶) · F−1𝛼𝜉 𝜏,𝑝

(
0 𝐶−1𝐷

0 0

)
,

where the Schwartz function 𝛼𝜉 𝜏,𝑝 is defined in equation (5.7.2). Then we have

∫
𝑦1∈Q𝑝 ,𝑦2∈K2

𝑝

𝑓
big-cell
𝑝 (−𝑠, (𝜉0𝜏0)−𝑐)

(( −1
12

1
1

) (
1 −𝑦2 𝑦1

12
t 𝑦̄2 1

)
𝚥 (𝑔2)Υ−1

𝑝 𝚤(𝑤3, 𝑝 , 12)Υ𝑝
)

𝑑𝑦1𝑑𝑦2

= 𝑓
U(2,2)
𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

)
(𝑔2),

(6.2.1)

where 𝚥 : U(2, 2) → U(3, 3) is defined as

𝚥

(
𝐴 𝐵

𝐶 𝐷

)
=

�����

1
𝐴 𝐵

1
𝐶 𝐷

�����
.

To see equation (6.2.1), writing 𝑔2 =

(
𝐴 𝐵

𝐶 𝐷

)
, we have

𝜚𝔭

(( −1
12

1
1

) (
1 −𝑦2 𝑦1

12
t 𝑦̄2 1

)
𝚥 (𝑔2)Υ−1

𝑝 𝚤(𝑤3, 𝑝 , 12)Υ𝑝
)

= 𝜚𝔭

�����

0 0 −1 0
0 𝐴 0 𝐵

1 −𝑦2 𝐴 𝑦1 −𝑦2𝐵

0 𝐶 t 𝑦̄2 𝐷

�����
�����

1
12

1
12

�����
= 𝜚𝔭

�����

0 0 −1 0
𝐴 0 0 𝐵

−𝑦2 𝐴 1 𝑦1 −𝑦2𝐵

𝐶 0 t 𝑦̄2 𝐷

�����
and

𝜚𝔭

((
−𝑦2 𝐴 1

𝐶 0

)−1 (
𝑦1 −𝑦2𝐵
t 𝑦̄2 𝐷

))
= 𝜚𝔭

(
𝐶−1t 𝑦̄2 𝐶−1𝐷

𝑦1 + 𝑦2 𝐴𝐶−1t 𝑦̄2 𝑦2
t𝐶̄−1

)
.

It follows that the integrand of the left-hand side of equation (6.2.1) equals

𝑓
U(2,2)
𝑝

(
−𝑠 + 1

2
, (𝜉0𝜏0)−𝑐

)
(𝑔2) · 1Z𝑝 (𝑦1) · 1O2

K, 𝑝
(𝑦2

t𝐶̄−1),
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so

Left hand side of equation (6.2.1) = 𝑓
U(2,2)
𝑝

(
−𝑠 + 1

2
, (𝜉0𝜏0)−𝑐

)
(𝑔2) · det |𝐶 t𝐶̄ |𝑝

= 𝑓
U(2,2)
𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

)
(𝑔2).

Put S0 =

(
1 − 𝜁0

2

−1 − 𝜁0
2

)
and Υ0, 𝑝 to be the element in U(2, 2) (Q𝑝) such that 𝜚𝔭 (Υ0, 𝑝) = S−1

0 . Set

𝚤0 : U(2) × U(2) −→ U(2, 2), 𝚤0 (𝑔1, 𝑔′
1) = S−1

0

(
𝑔1

𝑔′
1

)
. (6.2.2)

By the definition of the intertwining operator 𝑀𝑝 (−𝑠, 𝜉𝜏−1
0 (𝜉0𝜏0)−𝑐) (in equations (5.7.4)) and (6.2.1),

𝑀𝑝 (−𝑠, (𝜉0𝜏0)−𝑐) 𝑓
big-cell
𝑝 (−𝑠, (𝜉0𝜏0)−𝑐)

(
𝚤(𝑤3, 𝑝 , 𝑔1)

)
=

∫
( 𝑦1 𝑦2

t 𝑦̄2 𝑦4

)
∈Her3 (K𝑝)

𝑓
big-cell
𝑝 (−𝑠, (𝜉0𝜏0)−𝑐)

(( −1
12

1
1

) (
1 −𝑦2 𝑦1

12
t 𝑦̄2 1

)
( 1

−12
1

12

) ( 1
12 𝑦4

1
12

)
𝚤(𝑤3, 𝑝 , 𝑔1)Υ𝑝

)
𝑑𝑢𝑑𝑦4

= 𝑀
U(2,2)
𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

)
𝑓

U(2,2)
𝑝 (

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

) (
𝚤0 (1, 𝑔1)Υ0, 𝑝

)
,

and

𝑓𝑝 (𝑠, 𝜉0𝜏0)
(
𝚤(𝑤3, 𝑝 , 𝑔1)

)
= 𝛾𝑝

(
−2𝑠, (𝜉Q0 𝜏

Q

0 )
−1

)
𝛾𝑝

(
−2𝑠 − 1, (𝜉Q0 𝜏

Q

0 )
−1𝜂K/Q

)
𝛾𝑝

(
−2𝑠 − 2, (𝜉Q0 𝜏

Q

0 )
−1

)

× 𝑀
U(2,2)
𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

)
𝑓

U(2,2)
𝑝 (

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

) (
𝚤0(1, 𝑔1)Υ0, 𝑝

)
.

By the functional equation of the local doubling zeta integral [LR05, (19)(25)],

∫
U(2) (Q𝑝)

𝑀
U(2,2)
𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

)
𝑓

U(2,2)
𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

) (
𝚤0(1, 𝑔1)Υ0, 𝑝

)
× (𝜉0𝜏0)𝑐𝑝 (det 𝑔1)

〈
𝜋

GU(2)
𝑝 (𝑔1)𝜑𝑝 , 𝜑′

𝑝

〉
𝑑𝑔1

= 𝑐2, 𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐 ,

(
12

12

))
𝛾𝑝 (−𝑠, BC(𝜋) × (𝜉0𝜏0)−𝑐)

×
∫

U(2) (Q𝑝)
𝑓

U(2,2)
𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

) (
𝚤0(1, 𝑔1)Υ0, 𝑝

)
(𝜉0𝜏0)𝑐𝑝 (det 𝑔1)

〈
𝜋

GU(2)
𝑝 (𝑔1)𝜑𝑝, 𝜑′

𝑝

〉
𝑑𝑔1,

with the factor

𝑐2, 𝑝

(
−𝑠 − −1

2
, (𝜉0𝜏0)−𝑐 ,

(
12

12

))
= 𝛾𝑝

(
−2𝑠 − 1, (𝜉Q0 𝜏

Q

0 )
−1𝜂K/Q

)−1
𝛾𝑝

(
−2𝑠 − 2, (𝜉Q0 𝜏

Q

0 )
−1

)−1
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as defined in equation (5.7.5). Therefore,

𝑍𝑝

(
𝑓𝑝 (𝑠, 𝜉0𝜏0), 𝑤3, 𝑝 , 𝜑𝑝 , 𝜑′

𝑝

)
= 𝛾𝑝

(
−2𝑠, (𝜉Q0 𝜏

Q

0 )
−1

)
𝛾𝑝 (−𝑠, BC(𝜋) × (𝜉0𝜏0)−𝑐)

×
∫

U(2) (Q𝑝)
𝑓

U(2,2)
𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

) (
𝚤0(1, 𝑔1)Υ0, 𝑝

)
(𝜉0𝜏0)𝑐𝑝 (det 𝑔1)

〈
𝜋

GU(2)
𝑝 (𝑔1)𝜑𝑝, 𝜑′

𝑝

〉
𝑑𝑔1.

(6.2.3)

By noting that

𝑓
U(2,2)
𝑝

(
−𝑠 − 1

2
, (𝜉0𝜏0)−𝑐

) (
𝚤0 (1, 𝑔1)Υ0, 𝑝

)
= F−1𝛼𝜉 𝜏,𝑝

(
0 𝑔1

0 0

)

and using the formula (5.7.2) for F−1𝛼𝜉 𝜏,𝑝 and that 𝜑𝑝 is spherical, an easy computation shows that

the integral on the RHS of equation (6.2.3) = 𝑝−2𝑡𝑠−2𝑡𝔤
(
(𝜉0𝜏0)−1

𝔭

)2
(𝜉0𝜏0)𝔭 (𝑝)2𝑡 ·

〈
𝜑𝑝 , 𝜑′

𝑝

〉
, (6.2.4)

where 𝑝𝑡 , 𝑡 ≥ 1, is the conductor of (𝜉0𝜏0)𝔭. Since 𝜋𝑝 is unramified with trivial central character, we
have

𝑝−2𝑡𝑠−2𝑡𝔤
(
(𝜉0𝜏0)−1

𝔭

)2
(𝜉0𝜏0)𝔭 (𝑝)2𝑡 = 𝛾𝑝

(
𝑠 + 1, 𝜋𝑝 × (𝜉0𝜏0)𝔭

)
. (6.2.5)

Combining equations (6.2.3), (6.2.4) and (6.2.5), we get

(6.2.3) = 𝛾𝑝

(
−2𝑠, (𝜉Q0 𝜏

Q

0 )
−1

)
𝛾𝑝 (−𝑠, BC(𝜋) × (𝜉0𝜏0)−𝑐)𝛾𝑝

(
𝑠 + 1, 𝜋𝑝 × (𝜉0𝜏0)𝔭

)
·
〈
𝜑𝑝 , 𝜑′

𝑝

〉
= 𝛾𝑝

(
−2𝑠, (𝜉Q0 𝜏

Q

0 )
−1

)
𝛾𝑝

(
−𝑠, 𝜋𝑝 × (𝜉0𝜏0)−1

𝔭̄

)
·
〈
𝜑𝑝 , 𝜑′

𝑝

〉
.

�

7. The nondegenerate Fourier–Jacobi coefficients of the Klingen family

The map (4.7.3) of taking the 𝛽-th Fourier–Jacobi coefficient along the boundary stratum indexed by
the cusp label 14 ∈ 𝐶 (𝐾 𝑝

𝑓
𝐾1
𝑝,𝑛)ord induces

FJ𝛽 : M𝑒𝑎𝑠
(
ΓK, 𝑉GU(3,1)

)
−→ M𝑒𝑎𝑠

(
ΓK, 𝑉

𝐽 ,𝛽

GU(2)

)
.

For 𝑢 ∈
⊗

𝑣 ∈Σns
U(1) (Q𝑣 ), let

𝑬
Kling
𝜑,𝛽,𝑢

= FJ𝛽
((
𝑢

12
𝑢

)
𝑬

Kling
𝜑

)
∈ M𝑒𝑎𝑠

(
ΓK, 𝑉

𝐽 ,𝛽

GU(2) ⊗̂ Ôur
𝐿

)
. (7.0.1)

(The group GU(3, 1) (A𝑝
𝑓
) acts on the Igusa tower and acts on 𝑉GU(3,1) , and

(
𝑢

12
𝑢

)
𝑬

Kling
𝜑 denotes the

action of
(
𝑢

12
𝑢

)
on 𝑬

Kling
𝜑 .) The goal of this section is to prove Proposition 7.11.3 on the nonvanishing

properties of the 𝑬
Kling
𝜑,𝛽,𝑢

’s.
In §7.1-§7.2, we briefly recall some basics we will use about Weil representations, theta series, Jacobi

forms and p-adic Petersson inner products. In §7.4 and §7.5, we unfold the Siegel Eisenstein series on
GU(3, 3) to compute the nondegenerate Fourier–Jacobi coefficients of the Klingen Eisenstein series on
GU(3, 1), and sketch our strategy for relating them to certain L-values, for which we can apply mod p
nonvanishing results. Following that strategy, we need to choose an auxiliary Jacobi form on U(2) and
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two CM families on U(2). §7.6-§7.10 are about constructing the auxiliary Jacobi form and CM families
and some other technical preparations. The desired nonvanishing property is proved in §7.11.

7.1. The Schrödinger model of Weil representation and the intertwining maps for different

polarizations

The nondegenerate terms in the Fourier–Jacobi expansion of an automorphic form on GU(3, 1) (A) are
Jacobi forms on the Jacobi group associated GU(2).

Let V (resp. 𝑉−) be the two-dimensional skew-Hermitian space (K2, 𝜁0) (resp. (K2,−𝜁0)). We write
elements in 𝑉,𝑉− as row vectors and fix the basis 𝑣1 = (1, 0), 𝑣2 = (0, 1) for V (resp. 𝑣−1 = (1, 0), 𝑣−2 =

(0, 1) for 𝑉−). With respect to the fixed basis, the unitary groups U(𝑉) and U(𝑉−) are naturally identified
with our U(2) (defined in equation (5.4.1)).

We fix the basis 𝑣1, 𝑣2, 𝑣−1 , 𝑣−2 for 𝑉 ⊕ 𝑉− and identify U(𝑉 ⊕ 𝑉−) with the unitary group whose
R-points are

{
𝑔 ∈ GL4(𝑅 ⊗Z OK) : t𝑔

(
𝜁0

−𝜁0

)
𝑔 =

(
𝜁0

−𝜁0

)}
.

Define the unitary group U(2, 2) as

U(2, 2) (𝑅) =
{
𝑔 ∈ GL4(𝑅 ⊗Z OK) : t𝑔

(
12

−12

)
𝑔 =

(
12

−12

)}
.

We fix the isomorphism

U(𝑉 ⊕ 𝑉−) −→ U(2, 2), 𝑔 ↦−→
(

12 − 𝜁0
2

−12 − 𝜁0
2

)−1

𝑔

(
12 − 𝜁0

2

−12 − 𝜁0
2

)
,

which induces the embedding

U(2) × U(2) −→ U(2, 2), (𝑔1, 𝑔2) ↦−→
(

12 − 𝜁0
2

−12 − 𝜁0
2

)−1 (
𝑔1

𝑔2

) (
12 − 𝜁0

2

−12 − 𝜁0
2

)
.

For a nonzero 𝛽 ∈ Her1 (K), denote by 𝑊𝛽 the one-dimensional Hermitian space (K, 𝛽). Fix a basis
𝑤𝛽 = 1 for 𝑊𝛽 , and we can identify U(𝑊𝛽) with the group U(1) defined by

U(1) (𝑅) = {𝑔 ∈ GL1(𝑅 ⊗Z OK) : 𝑔̄𝑔 = 1}.

We consider the Weil representations for the dual pairs U(2) × U(1) and U(2, 2) × U(1). The space
𝑉 ⊗K 𝑊𝛽 is a four-dimensional Q-vector space equipped with a nondegenerate symplectic pairing
induced from the skew-Hermitian form on V and the Hermitian form on 𝑊𝛽 . The group U(𝑉) ×U(𝑊𝛽)
embeds into Sp(𝑉 ⊗K 𝑊𝛽) and forms a reductive dual pair. Let S̃p(𝑉 ⊗K 𝑊𝛽) denote the metaplectic

group. Given a pair of Hecke characters 𝜆𝑉 , 𝜆𝑊𝛽
: K×\A×

K
→ C× such that 𝜆𝑉 |A×

Q
= 𝜂

dimK 𝑉
K/Q and

𝜆𝑊𝛽
|A×
Q
= 𝜂

dimK𝑊𝛽

K/Q , there is a splitting

U(𝑉𝑣 ) × U(𝑊𝛽,𝑣 ) ↩−→ S̃p(𝑉𝑣 ⊗K 𝑊𝛽,𝑣 ) (7.1.1)

for all places v of Q. The Weil representation of S̃p(𝑉𝑣 ⊗K 𝑊𝛽,𝑣 ) (with respect to our fixed additive
character eAQ : Q\AQ → C× in equation (1.0.5)) induces the Weil representation of U(𝑉𝑣 ) × U(𝑊𝛽,𝑣 ).
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Similarly, with respect to 𝜆𝑉 − , 𝜆𝑉 ⊕𝑉 − : K×\A×
K

→ C× satisfying 𝜆𝑉 − |A×
Q
= 𝜂

dimK 𝑉
−

K/Q , 𝜆𝑉 ⊕𝑉 − |A×
Q
=

𝜂
dimK 𝑉 +dimK 𝑉

−

K/Q , we have the Weil representations of U(𝑉−
𝑣 ) ×𝑈 (𝑊𝛽,𝑣 ) and U(𝑉 ⊕ 𝑉−

𝑣 ) ×𝑈 (𝑊𝛽,𝑣 ).
We choose our 𝜆𝑉 , 𝜆𝑉 − , 𝜆𝑊𝛽

as

𝜆𝑉 = 𝜆𝑉 − = 𝜆2, 𝜆𝑊𝛽
= 𝜆, (7.1.2)

where 𝜆 is the Hecke character fixed in §5.1.

Remark 7.1.1. In some literature, instead of 𝜆𝑉 = 𝜆𝑉 − = 𝜆2, 𝜆𝑉 = 𝜆𝑉 − = triv is used.

Put

𝑒1 = 𝑣1 ⊗ 𝑤𝛽 , 𝑒2 = 𝑣2 ⊗ 𝑤𝛽 , 𝑒−1 = 𝑣−1 ⊗ 𝑤𝛽 , 𝑒−2 = 𝑣−2 ⊗ 𝑤𝛽 .

Then Q𝑒1 ⊕ Q𝑒2 is a maximal isotropic subspace of the symplectic space 𝑉 ⊗K 𝑊𝛽 . We have the
polarizations

𝑉 ⊗K 𝑊𝛽 =
(
Q𝑒1 ⊕ Q𝑒2

)
⊕

(
Q𝛿𝑒1 ⊕ Q𝛿𝑒2

)
, (7.1.3)

(where 𝛿 is our fixed totally imaginary element in K.) The Schrödinger model of the Weil representation
of U(𝑉𝑣 ) × U(𝑊𝛽,𝑣 ) is an action of U(𝑉𝑣 ) × U(𝑊𝛽,𝑣 ) on S (Q𝑣𝑒1 ⊕ Q𝑣𝑒2), the space of Schwartz
functions on Q𝑣𝑒1 ⊕ Q𝑣𝑒2. We write this action as

𝜔𝛽,𝑣 (𝑔, 𝑢) : S (Q𝑣𝑒1 ⊕ Q𝑣𝑒2) −→ S (Q𝑣𝑒1 ⊕ Q𝑣𝑒2), 𝑔 ∈ U(𝑉𝑣 ), 𝑢 ∈ U(𝑊𝛽,𝑣 ).

Similarly, we have the polarization

𝑉− ⊗ 𝑊𝛽 =
(
Q𝑒−1 ⊕ Q𝑒−2

)
⊕

(
Q𝛿𝑒−1 ⊕ Q𝛿𝑒−2

)
(7.1.4)

and the Schrödinger model

𝜔𝛽,𝑣 (𝑔, 𝑢) : S (Q𝑣𝑒−1 ⊕ Q𝑣𝑒−2 ) −→ S (Q𝑣𝑒−1 ⊕ Q𝑣𝑒−2 ), 𝑔 ∈ U(𝑉−
𝑣 ), 𝑢 ∈ U(𝑊𝛽,𝑣 ).

For a place 𝑣 = 𝔳𝔳̄ split in K, we have K𝑣 � K𝔳 × K𝔳̄ with K𝔳 � K𝔳̄ � Q𝑣 . In addition to the above
polarizations, we also consider the polarizations

𝑉𝑣 ⊗ 𝑊𝛽,𝑣 =
(
K𝔳𝑒1 ⊕ K𝔳𝑒2

)
⊕

(
K𝔳̄𝑒1 ⊕ K𝔳̄𝑒2

)
,

𝑉−
𝑣 ⊗ 𝑊𝛽,𝑣 =

(
K𝔳𝑒

−
1 ⊕ K𝔳𝑒

−
2

)
⊕

(
K𝔳̄𝑒

−
1 ⊕ K𝔳̄𝑒

−
2

)
,

and the intertwining maps

S
(
K𝔳𝑒1 ⊕ K𝔳𝑒2

)
−→ S

(
Q𝑣𝑒1 + Q𝑣𝑒2

)
, (7.1.5)

S
(
K𝔳𝑒

−
1 ⊕ K𝔳𝑒

−
2

)
−→ S

(
Q𝑣𝑒−1 + Q𝑣𝑒−2

)
. (7.1.6)

For 𝑉 ⊕ 𝑉−, we have the polarization:

(𝑉 ⊕ 𝑉−) ⊗ 𝑊𝛽 =
(
K(𝑒1 + 𝑒−1 ) ⊕ K(𝑒2 + 𝑒−2 )

)
⊕

(
K(𝑒1 − 𝑒−1 ) ⊕ K(𝑒2 − 𝑒−2 )

)
.

Writing an element in K𝑣 (𝑒1 + 𝑒−1 ) ⊕ K𝑣 (𝑒2 + 𝑒−2 ) as 𝑋 ∈ 𝑀1,2 (K𝑣 ), for the Schrödinger model,
(𝑔, 𝑢) ∈ U(2, 2) × U(𝑊𝛽,𝑣 ),

𝜔𝛽,𝑣 (𝑔, 𝑢) : S
(
K(𝑒1 + 𝑒−1 ) ⊕ K(𝑒2 + 𝑒−2 )

)
−→ S

(
K(𝑒1 + 𝑒−1 ) ⊕ K(𝑒2 + 𝑒−2 )

)
,
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we have the following formulas:

𝜔𝛽,𝑣 (14, 𝑢)Φ(𝑋) = Φ(𝑢−1𝑋),

𝜔𝛽,𝑣

((
𝐴

t 𝐴̄

)
, 1

)
Φ(𝑋) = 𝜆𝑣 (det 𝐴) | det 𝐴|1/2

K𝑣
· Φ(𝑋 𝐴),

𝜔𝛽,𝑣

((
12 𝐵

12

)
, 1

)
Φ(𝑋) = e𝑣

(
𝛽 · 𝑋𝐵t 𝑋̄

)
· Φ(𝑋),

𝜔𝛽,𝑣

((
−12

12

)
, 1

)
Φ(𝑋) = |𝛽 |Q𝑣

∫
Φ(𝑌 ) · e𝑣

(
TrK𝑣/Q𝑣

(𝛽 · 𝑌 t 𝑋̄)
)
𝑑𝑌 .

(7.1.7)

7.2. The Heisenberg group and Jacobi forms

Jacobi forms on U(2) and U(2, 2) show up in our computation of the nondegenerate Fourier–Jacobi
coefficients of the evaluations at classical points of the Klingen family 𝑬

Kling.
First, we introduce Jacobi forms on U(2). Recall that V is the skew-Hermitian space (K2, 𝜁0). Denote

by 𝐻 (𝑉) the Heisenberg group associated to V. For a Q-algebra R

𝐻 (𝑉) (𝑅) = (𝑉 ⊗Q 𝑅) � 𝑅,

and the multiplication is

(𝑥1, 𝜎1) (𝑥2, 𝜎2) =
(
𝑥1 + 𝑥2, 𝜎1 + 𝜎2 +

𝑥1𝜁0
t𝑥2 + 𝑥1𝜁0

t𝑥2

2

)
.

It is easy to see that 𝐻 (𝑉) is isomorphic to 𝑈𝑃GU(3,1) via

(𝑥, 𝜎) ↦−→ 𝑢(𝑥, 𝜎) = ���
1 𝑥 𝜎 + 1

2𝑥𝜁0
t𝑥

12 𝜁0
t𝑥

1

���
. (7.2.1)

The Jacobi group associated to V is the semidirect product 𝐻 (𝑉) � U(𝑉), which we identify with a
subgroup of 𝑃GU(3,1) by

(
(𝑥, 𝜎), 𝑔1

)
↦−→ 𝑢(𝑥, 𝜎) 𝑚(𝑔1), (𝑥, 𝜎) ∈ 𝐻 (𝑊0), 𝑔1 ∈ U(𝑉), (7.2.2)

where for 𝑔1 ∈ U(𝑉),

𝑚(𝑔1) = ���
1

𝑔1

1

���
.

A Jacobi form on 𝐻 (𝑉) � U(𝑉) or a Jacobi form on U(𝑉) of index 𝛽 is a smooth function on
𝐻 (𝑉) (Q) � U(𝑉) (Q)\𝐻 (𝑉) (AQ) � U(𝑉) (AQ) such that

– for all 𝜎 ∈ AQ, the left translation by
(
(0, 𝜎), 12

)
equals the multiplication by eAQ (𝛽𝜎),

– the right translation of a maximal compact subgroup and the action of the center of the universal
enveloping Lie algebra at ∞ satisfy finiteness conditions.

It is easy to see that a Jacobi form of index 𝛽 holomorphic at ∞ of weight (0, 0) corresponds a section
in 𝐻0(𝒞,L(𝛽)) with 𝒞 a torsor over the Shimura variety of GU(2) of an abelian scheme isogeneous to
the universal abelian scheme, and L(𝛽) the invertible sheaf over 𝒞 of 𝛽-homogeneous functions.
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We will also need Jacobi forms on U(2, 2). Denote by V the skew-Hermitian space K4 equipped

with the skew-Hermitian form

(
12

−12

)
, and by 𝐻 (V) its associated Heisenberg group whose R-points

for a Q-algebra R are

𝐻 (V) (𝑅) = (V ⊗Q 𝑅) � 𝑅.

We write an element in 𝐻 (V) (𝑅) as (𝑥, 𝑦, 𝜎), 𝑥, 𝑦 ∈ 𝑅 ⊗Q K2, 𝜎 ∈ 𝑅. The multiplication is given by

(𝑥1, 𝑦1, 𝜎1) (𝑥2, 𝑦2, 𝜎2) =
(
𝑥1 + 𝑥2, 𝑦1 + 𝑦2, , 𝜎1 + 𝜎2 +

𝑥1
t 𝑦̄2 + 𝑥1

t𝑦2 − t𝑦1𝑥2 − 𝑦̄1
t𝑥2

2

)
.

The Jacobi group associated to V is the semidirect product 𝐻 (V) � U(V).
Denote by 𝑃GU(3,3) the parabolic subgroup of GU(3, 3) consisting of elements whose entries in the

first column are all 0 except the (1, 1) entry, and denote by 𝑈𝑃GU(3,3) its unipotent subgroup. We identify
𝐻 (V) with 𝑈𝑃GU(3,3) by

(𝑥, 𝑦, 𝜎) ↦−→ 𝑢(𝑥, 𝑦, 𝜎) =
�����

1 𝑥 𝜎 + 𝑥t 𝑦̄−𝑦t 𝑥̄
2 𝑦

12
t 𝑦̄

1
−t𝑥 12

�����
,

and identify 𝐻 (V) � U(2, 2) with a subgroup of 𝑃GU(3,3) by(
(𝑥, 𝑦, 𝜎), 𝑔

)
↦−→ 𝑢(𝑥, 𝑦, 𝜎) 𝑚(𝑔), (𝑥, 𝑦, 𝜎) ∈ 𝐻 (W0), 𝑔 ∈ U(2, 2), (7.2.3)

where for 𝑔 =

(
𝐴 𝐵

𝐶 𝐷

)
∈ U(2, 2),

𝑚(𝑔) =
�����

1
𝐴 𝐵

1
𝐶 𝐷

�����
. (7.2.4)

Similarly as above, we define Jacobi forms on U(V) of index 𝛽 to be smooth functions on 𝐻 (V) (Q) �
U(V) (Q)\𝐻 (V) (AQ)�U(V) (AQ) on which the left translation of

(
(0, 0, 𝜎), 14

)
equal the multiplication

of eAQ (𝛽𝜎) plus finiteness conditions for the right translation of a maximal compact subgroup and the
center of the universal enveloping Lie algebra at ∞.

We have the following embedding of skew-Hermitian spaces

𝑉 −→ V, 𝑥 ↦−→
(
𝑥,−𝑥𝜁0

2

)
.

It induces the embedding of unitary groups

U(𝑉) −→ U(V) = U(2, 2), 𝑔1 −→
(

12 − 𝜁0
2

−12 − 𝜁0
2

)−1 (
𝑔1

12

) (
12 − 𝜁0

2

−12 − 𝜁0
2

)

and induces an embedding of the Jacobi groups

𝐻 (𝑉) � U(𝑉) −→ 𝐻 (V) � U(V),(
(𝑥, 𝜎),

(
𝑎 𝑏

𝑐 𝑑

))
↦−→

((
𝑥,−𝑥𝜁0

2
, 𝜎

)
,

(
12 − 𝜁0

2

−12 − 𝜁0
2

)−1 (
𝑔1

12

) (
12 − 𝜁0

2

−12 − 𝜁0
2

))
.

(7.2.5)

https://doi.org/10.1017/fms.2022.95 Published online by Cambridge University Press



Forum of Mathematics, Sigma 61

From this embedding, we also get the embedding

(
𝐻 (𝑉) � U(𝑉)

)
× U(𝑉−) −→ 𝐻 (V) � U(V),

(
((𝑥, 𝜎), 𝑔1), 𝑔2

)
↦−→

((
𝑥,−𝑥𝜁0

2
, 𝜎

)
,

(
12 − 𝜁0

2

−12 − 𝜁0
2

)−1 (
𝑔1

𝑔2

) (
12 − 𝜁0

2

−12 − 𝜁0
2

))
.

(7.2.6)

The embeddings (7.2.2)(7.2.3)(7.2.6) are compatible with the embedding 𝚤 in equation (5.5.1) in the
sense that the following diagram commutes:

(
𝐻 (𝑉) � U(𝑉)

)
× U(𝑉−) � � (7.2.2)×id

��

(7.2.6)
��

GU(3, 1) ×G𝑚
GU(2)

𝚤

��

𝐻 (V) � U(V) � � (7.2.3)
�� GU(3, 3).

7.3. Theta series

Given a Schwartz function 𝜙 ∈
⊗′

𝑣 S (Q𝑣𝑒1 ⊕Q𝑣𝑒2) (with 𝜙𝑣 = 1Z𝑣𝑒1+Z𝑣𝑒2 for all most all finite places
v), we define the theta series 𝜃 (𝜙, • ), which is an automorphic form on U(𝑉) (AQ), as

𝜃 (𝜙, 𝑔) =
∑

𝑥∈Q𝑒1⊕Q𝑒2

𝜔𝛽 (𝑔)Φ(𝑥).

We can also define the Jacobi theta series 𝜃𝐽 (𝜙, • , • ), which is a Jacobi form on 𝐻 (𝑉) � U(2), as

𝜃𝐽 (𝜙, (𝑦, 𝜎), 𝑔) =
∑

𝑥∈Q𝑒1⊕Q𝑒2

eAQ

(
𝛽(𝜎 + 1

2
𝑦𝜁0

t𝑥)
)
· 𝜔𝛽 (𝑔)Φ(𝑥 + 𝑦). (7.3.1)

Similarly, given 𝜙 ∈
⊗′

𝑣 S (Q𝑣𝑒−1 ⊕ Q𝑣𝑒−2 ), we can define the theta series 𝜃𝛽 (𝜙, • ) on U(𝑉−) (AQ).

7.4. The unfolding

Given a holomorphic automorphic formF on GU(3, 1) (A) and 𝑔 ∈ GU(3, 1) (AQ) and 𝛽 ∈ Her1(K)>0 =

Q>0, the 𝛽-th Fourier–Jacobi coefficient of F at g is defined as

𝑎𝛽 (𝑔;F) =
∫
𝜎∈Her1 (K)\Her1 (AK)

F
���
���
1 𝜎

12

1

���
𝑔
���
eA(−𝛽𝜎) 𝑑𝜎.

With 𝑔 ∈ GU(3, 1) (AQ) fixed, the function

𝐻 (𝑉) (AQ) � U(𝑉) (AQ) −→ C(
(𝑥, 𝜎), 𝑔1

)
↦−→ 𝑎𝛽

(
𝑢(𝑥, 𝜎)𝑚(𝑔1);F

)

is a Jacobi form on 𝐻 (𝑉) � U(𝑉) of index 𝛽.
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The Klingen Eisenstein family 𝑬
Kling
𝜑 interpolates a normalization of the Klingen Eisenstein series

𝐸Kling
(
• ; 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)

)
, which can be expressed as the integral in equation (5.10.3). We can compute

its 𝛽-th Fourier–Jacobi coefficients by first computing

𝐸
Sieg
𝛽

(𝑔; 𝑓 (𝑠, 𝜉0𝜏0))

=

∫
Her1 (K)\Her1 (AK)

𝐸Sieg
�����
�����

1 𝜎

12

1
12

�����
𝑔; 𝑓 (𝑠, 𝜉0𝜏0)

�����
eAQ (−𝛽𝜎) 𝑑𝜎,

(7.4.1)

and then pairing its restriction to GU(3, 1) ×G𝑚
GU(2) with 𝜑 on GU(2). By unfolding the Siegel

Eisenstein series in the integrand on the right-hand side of equation (7.4.1), it’s not difficult to show that

𝐸
Sieg
𝛽

(ℎ; 𝑓 (𝑠, 𝜉0𝜏0)) =
∑

𝛾∈𝑄U(2,2) (Q)\U(2,2) (Q)

∑
𝑥∈K2

∫
Her1 (AK)

𝑓 (𝑠, 𝜉0𝜏0)
�����
(

13

−13

)�����

1 𝜍 𝑥

12
t𝑥

1
12

�����
𝑚

((
12

−12

)
𝛾

)
ℎ

�����
eAQ (−𝛽𝜎) 𝑑𝜍,

(7.4.2)

where 𝑚( • ) is the embedding of U(2, 2) into U(3, 3) as defined in equation (7.2.4). (cf [Wan15, Section
3C1])

Definition 7.4.1. For 𝑔𝑣 ∈ GU(3, 3) (Q𝑣 ), 𝑥𝑣 ∈ K2
𝑣 and 𝑓𝑣 (𝑠, 𝜉0𝜏0) ∈ 𝐼𝑄GU(3,3) ,𝑣 (𝑠, 𝜉0𝜏0), define

FJ𝛽,𝑣
(
𝑔𝑣 , 𝑥𝑣 ; 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)

=

∫
Her1 (K𝑣 )

𝑓𝑣 (𝑠, 𝜉0𝜏0)
�����
(

13

−13

)�����

1 𝜍 𝑥𝑣
12

t𝑥𝑣
1

12

�����
𝑚

(
12

−12

)
𝑔𝑣

�����
eA(−𝛽𝜎) 𝑑𝜎.

For 𝑔 ∈ GU(3, 3) (AQ), 𝑥 ∈ A2
K

and 𝑓 (𝑠, 𝜉0𝜏0) = ⊗𝑣 𝑓𝑣 (𝑠, 𝜉0𝜏0), let

FJ𝛽
(
𝑔, 𝑥; 𝑓 (𝑠, 𝜉0𝜏0)

)
= ⊗𝑣FJ𝛽,𝑣

(
𝑔𝑣 , 𝑥𝑣 ; 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
.

The unfolding result (7.4.2) gives the following proposition.

Proposition 7.4.2. Let 𝛽 ∈ Her1(K)>0 and 𝑓 (𝑠, 𝜉0𝜏0) ∈ 𝐼𝑄GU(3,3) (𝑠, 𝜉0𝜏0). The 𝛽-th Fourier–Jacobi

coefficient of the Siegel Eisenstein series 𝐸Sieg
(
• ; 𝑓 (𝑠, 𝜉0𝜏0)

)
at 𝑔 ∈ U(3, 3) (AQ) equals

𝐸
Sieg
𝛽

(𝑔; 𝑓 (𝑠, 𝜉0𝜏0)) =
∑

𝛾∈𝑄U(2,2) (Q)\U(2,2) (Q)

∑
𝑥∈K2

FJ𝛽
(
𝑚(𝛾)𝑔, 𝑥; 𝑓 (𝑠, 𝜉0𝜏0)

)
,

with FJ𝛽 defined as in Definition 7.4.1 and 𝑚( • ) the embedding (7.2.4).

One can easily check that FJ𝛽,𝑣 satisfies

FJ𝛽,𝑣 (𝑢(𝑥, 𝑦, 𝜎)𝑔, 𝑥0; 𝑓𝑣 (𝑠, 𝜉0𝜏0)) = e𝑣

(
𝛽(𝜎 + 𝑥t 𝑦̄ − 𝑦t𝑥

2
)
)

FJ𝛽,𝑣
(
𝑔, 𝑥0 + 𝑥; 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
,

FJ𝛽,𝑣

(
𝑚

(
𝐴 𝐵

0 t 𝐴̄−1

)
𝑔, 𝑥0; 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
= | det 𝐴t 𝐴̄|𝑠+1

𝑣 𝜉0𝜏0(det 𝐴) · | det 𝐴t 𝐴̄|
1
2
𝑣 e𝑣 (𝛽𝑥𝐵t 𝐴̄t𝑥)

× FJ𝛽,𝑣
(
𝑔, 𝑥0 𝐴; 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
.
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Comparing them with the formulas in equation (7.1.7) for the Schrödinger model of Weil representations,
we see that for a fixed 𝑔𝑣 ∈ U(3, 3) (Q𝑣 ), FJ𝛽,𝑣

(
𝑢(𝑥𝑣 , 𝑦𝑣 , 𝜎𝑣 ) 𝑚(𝑔1,𝑣 )𝑔𝑣 , 𝑥0; 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
is essentially

(a finite sum of) the product

𝑓2,𝑣

(
𝑠, 𝜉0𝜏0𝜆

−1
)
(𝑔1,𝑣 ) · 𝜔𝛽,𝑣

(
𝑢(𝑥𝑣 , 𝑦𝑣 , 𝜎𝑣 ) 𝑚(𝑔1,𝑣 )

)
Φ𝑣 (𝑥0),

with 𝑓2,𝑣
(
𝑠, 𝜉0𝜏0𝜆

−1
)

a section in the degenerate principal series 𝐼𝑄U(2,2) ,𝑣

(
𝑠, 𝜉0𝜏0𝜆

−1
)
, Φ𝑣 a Schwartz

function onK2
𝑣 and 𝜔𝛽,𝑣 the Weil representation of U(2, 2) briefly recalled in §7.1. Both 𝑓2,𝑣

(
𝑠, 𝜉0𝜏0𝜆

−1
)

and Φ𝑣 are determined by 𝑓𝑣 (𝑠, 𝜉0𝜏0) ∈ 𝐼𝑄GU(3,3) ,𝑣 (𝑠, 𝜉0𝜏0) and 𝑔𝑣 ∈ GU(3, 3) (Q𝑣 ). The computation
at an unramified place v gives

FJ𝛽,𝑣
(
𝑢(𝑥, 𝑦, 𝜎)𝑚(𝑔1,𝑣 ), 𝑥0; 𝑓

sph
𝑣 (𝑠, 𝜉0𝜏0)

)
= 𝐿𝑣

(
2𝑠 + 3, 𝜉

Q

0 𝜏
Q

0

)−1
· 𝑓

sph
2,𝑣 (𝑠, 𝜉0𝜏0𝜆

−1) (𝑔1,𝑣 ) · 𝜔𝛽,𝑣
(
𝑢(𝑥, 𝑦, 𝜎)𝑚(𝑔1,𝑣 )

)
1O2

K,𝑣
(𝑥0).

Therefore, the Jacobi form on 𝐻 (V) � U(2, 2) given by(
(𝑥, 𝑦, 𝜎), 𝑔

)
↦−→ 𝐸

Sieg
𝛽

(𝑢(𝑥, 𝑦, 𝜎)𝑚(𝑔); 𝑓 (𝑠, 𝜉0𝜏0))

is essentially (a finite sum of) the product

𝐿
(
2𝑠 + 3, 𝜉

Q

0 𝜏
Q

0

)−1
· 𝐸

Sieg
2

(
𝑠, 𝜉0𝜏0𝜆

−1
)
· Θ𝐽 ,

with 𝐸
Sieg
2

(
𝑠, 𝜉0𝜏0𝜆

−1
)

a Siegel Eisenstein series on U(2, 2) and Θ𝐽 a Jacobi theta function on the
𝐻 (V) � U(2, 2). The restriction of Θ𝐽 from 𝐻 (V) � U(2, 2) to

(
𝐻 (𝑉) � U(2)

)
× U(2) via equation

(7.2.3) is essentially (a finite sum of) 𝜃𝐽3 � 𝜃2, with 𝜃𝐽3 (resp. 𝜃2) a Jacobi theta function (resp. theta
function) on 𝐻 (𝑉) �U(2) (resp. U(2)) attached to a Schwartz function 𝜙3 (resp. 𝜙2) on AK. Therefore,

𝐸
Sieg
𝛽

( • ; 𝑓 (𝑠, 𝜉0𝜏0))
��� (
𝐻 (𝑉 )�U(2)

)
×U(2)

≈ 𝐿
(
2𝑠 + 3, 𝜉

Q

0 𝜏
Q

0

)−1
· 𝜃𝐽3 � 𝜃2 · 𝐸

Sieg
2

(
𝑠, 𝜉0𝜏0𝜆

−1
)���U(2)×U(2) .

(7.4.3)

Here, ≈ means equal up to normalizations and more precise formulas for local sections are needed to
be an actual identity. We will also use the notation ≈ several times in the next section. All the identities
with ≈ are only for the purpose of illustrating the ideas of relating the nondegenerate Fourier–Jacobi
coefficients with L-values and will not be used for our rigorous analysis of 𝑬Kling

𝜑,𝛽,𝑢
starting from §7.6.

7.5. Our strategy of analyzing the nondegenerate Fourier–Jacobi coefficients of the Klingen

Eisenstein family

Before we move on to the involved computations, we give a brief explanation of how we choose
the auxiliary data to study the pairing of equation (7.4.3) with 𝜑. The discussion in this section
should also explain why the choices of the auxiliary data in §5.6 are made for constructing 𝑬

Kling
𝜑

and guaranteeing that its nondegenerate Fourier–Jacobi coefficients satisfy the nonvanishing properties
needed for applications.

7.5.1. Choosing the auxiliary 𝜃𝐽1
The first step to analyze equation (7.4.3) is to pick a suitable Schwartz function 𝜙1 on AK, to which we
can associate a Jacobi theta function 𝜃𝐽1 on 𝐻 (𝑉) �U(2) (defined as in equation (7.3.1)), and define the
linear functional

𝑙𝜃 𝐽1
: {Jacobi forms on 𝐻 (𝑉) � U(2)} −→ {automorphic forms on U(2)}
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by

𝑙𝜃 𝐽1
(𝜑𝐽 ) (𝑔1) =

∫
𝐻 (𝑉 ) (Q)\𝐻 (𝑉 ) (A)

𝜃𝐽1
(
(𝑥, 𝜎), 𝑔1

)
𝜑𝐽

(
(𝑥, 𝜎), 𝑔1

)
𝑑𝑥𝑑𝜎. (7.5.1)

Applying 𝑙𝜃 𝐽1
to equation (7.4.3), we obtain an automorphic form on U(2)×U(2) whose value at (𝑔1, 𝑔2)

equals

∫
𝐻 (𝑉 ) (Q)\𝐻 (𝑉 ) (A)

𝜃𝐽1
(
(𝑤, 𝜎), 𝑔1

)
· 𝐸

Sieg
𝛽

(
𝚤(𝑢(𝑥, 𝜎)𝑚(𝑔1), 𝑔2); 𝑓 (𝑠, 𝜉0𝜏0)

)
𝑑𝑥𝑑𝜎. (7.5.2)

It is a standard fact that for two Schwartz functions 𝜙, 𝜙′ on AK,

∫
𝐻 (𝑉 ) (Q)\𝐻 (𝑉 ) (A)

𝜃𝐽𝜙
(
(𝑥, 𝜎), 𝑔1

)
𝜃𝐽𝜙′

(
(𝑥, 𝜎), 𝑔1

)
𝑑𝑥𝑑𝜎 =

〈
𝜙, 𝜙′〉 = ∫

K\AK

𝜙(𝑥)𝜙′(𝑥) 𝑑𝑥,

independent of 𝑔1 ∈ U(2). Thanks to this fact, from equations (7.4.3) and (7.5.2) we obtain

𝑙𝜃 𝐽1

(
𝐸

Sieg
𝛽

( • ; 𝑓 (𝑠, 𝜉0𝜏0𝜆
−1))

���(
𝐻 (𝑉 )�U(2)

)
×U(2)

)

≈ 〈𝜙1, 𝜙3〉
𝐿
(
2𝑠 + 3, 𝜉

Q

0 𝜏
Q

0

) · (1 � 𝜃2) · 𝐸
Sieg
2 (𝑠, 𝜉0𝜏0)

���U(2)×U(2) .
(7.5.3)

Here, 1� 𝜃2 denotes the automorphic form on U(2) ×U(2) which is the constant function 1 on the first
factor and 𝜃2 on the second factor.

For an automorphic form on F on U(2) and a Hecke character 𝜒 : K×\A×
K
→ C×, we use the notation

F𝜒 to denote the form

F
𝜒 (𝑔) = F(𝑔) · 𝜒(det 𝑔), 𝑔 ∈ U(2) (AQ). (7.5.4)

Our Klingen Eisenstein series 𝐸Kling
(
• ; 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)

)
is obtained by pairing the restriction of the

Siegel Eisenstein series with 𝜑𝜉0𝜏0 , so we have

𝑙𝜃 𝐽1

(
𝐸

Kling
𝛽

(
• ; 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)

) )
≈ 〈𝜙1, 𝜙3〉

𝐿
(
2𝑠 + 3, 𝜉

Q

0 𝜏
Q

0

) ·
〈
𝜃2𝜑𝜉0𝜏0 , 𝐸

Sieg
2

(
𝑠, 𝜉0𝜏0𝜆

−1
)���U(2)×U(2)

〉
1×U(2)

,
(7.5.5)

where 〈·, ·〉1×U(2) means integration over the second copy of U(2).
The standard doubling method formula [LR05] implies

𝐸
Sieg
2

(
𝑠, 𝜉0𝜏0𝜆

−1
)���U(2)×U(2) ≈

∑
ℎ

𝐿
(
𝑠 + 1

2 , BC(𝜋ℎ) × 𝜉0𝜏0𝜆
−1

)
𝐿
(
2𝑠 + 1, 𝜉

Q

0 𝜏
Q

0

)
𝐿
(
2𝑠 + 2, 𝜉

Q

0 𝜏
Q

0 𝜂K/Q
) ℎ � ℎ𝜉0𝜏0𝜆〈

ℎ, ℎ
〉 ,
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where h runs over a certain orthonormal basis of automorphic forms on U(2) of certain level. By picking
an h, we have 〈

𝑙𝜃 𝐽1

(
𝐸

Kling
𝛽

(
−; 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)

) )
, ℎ

〉

≈ 〈𝜙1, 𝜙3〉
𝐿
(
𝑠 + 1

2 , BC(𝜋ℎ) × 𝜉0𝜏0𝜆
−1

)
𝑑3(𝑠, 𝜉0𝜏0)

〈
𝜃2𝜑𝜉0𝜏0 , ℎ𝜉0𝜏0𝜆

〉

= 〈𝜙1, 𝜙3〉
𝐿
(
𝑠 + 1

2 , BC(𝜋ℎ) × 𝜉0𝜏0𝜆
−1

)
𝑑3(𝑠, 𝜉0𝜏0)

〈
𝜃𝜆2 𝜑, ℎ

〉
,

(7.5.6)

where 𝑑3 (𝑠, 𝜉0𝜏0) is as in equation (5.9.2). The Petersson inner product
〈
𝜃𝜆2 𝜑, ℎ

〉
is related to the central

value of a triple product L-function by Ichino’s formula.

7.5.2. Choosing auxiliary h and 𝜃 and relating to L-values

We will choose suitable CM forms h and 𝜃 on U(2) such that we can apply the available mod p

nonvanishing results to study 𝐿
(
𝑠 + 1

2 , BC(𝜋ℎ) × 𝜉0𝜏0𝜆
−1

)
and

〈
𝜃𝜆2 𝜑, ℎ

〉
in equation (7.5.6).

Let 𝜒ℎ and 𝜒𝜃 be two unitary Hecke characters of K×\A×
K

such that 𝜒ℎ𝜒𝑐𝜃 |A×
Q
= triv (as chosen in

§5.6). Let ℎ0 be the theta lift of 𝜒−1
ℎ
|U(1) to U(2), and h be the automorphic form on U(2) obtained from

ℎ0 by

ℎ(𝑔) = 𝜒ℎ𝜒𝑐𝜃 (𝑎) · ℎ0 (𝑔), 𝑔 ∈ U(2), 𝑎 ∈ A×
K

, det 𝑔 = 𝑎𝑎̄−1. (7.5.7)

Thanks to the condition 𝜒ℎ𝜒𝑐𝜃 |A×
Q
= triv, the definition of ℎ(𝑔) does not depend on the choice of 𝑎 ∈ A×

K
.

The form 𝜃2 does not generate an irreducible representation of U(2). Let 𝜃 be the projection of 𝜃2 to
its 𝜒𝜃𝜆

2 |U(1) -eigenspace for the action of the center of U(2). Then 𝜃 is a theta lift of 𝜒𝜃𝜆
2 |U(1) . Since

our 𝜑 is assumed to have the trivial central character and h has the central character 𝜒−1
𝜃 |U(1) , we have

〈
𝜃𝜆2 𝜑, ℎ

〉
=

〈
𝜃𝜆𝜑, ℎ

〉
. (7.5.8)

By [GI14, Theorem C.5], with the choice of the splitting characters for the theta correspondence
between U(2) and U(1) as in equation (7.1.2), we have

BC(𝜋ℎ) = BC
(
𝜋ℎ0

)
⊗ 𝜒ℎ𝜒𝑐𝜃 =

(
BC

(
𝜒−1
ℎ |U(1)

)
𝜆−1 ⊕ 𝜆

)
⊗ 𝜒ℎ𝜒𝑐𝜃

=
(
𝜒−1
ℎ 𝜒𝑐ℎ𝜆

−1 ⊕ 𝜆
)
⊗ 𝜒ℎ𝜒𝑐𝜃 = 𝜒𝑐ℎ𝜒𝑐𝜃𝜆

−1 ⊕ 𝜒ℎ𝜒𝑐𝜃𝜆,
(7.5.9)

and

BC
(
𝜋
𝜃𝜆

)
=

(
BC

(
𝜒𝜃𝜆

2 |U(1)
)
𝜆−1 ⊕ 𝜆

)
𝜆̄𝜆̄−𝑐 =

(
𝜒𝜃 𝜒−𝑐

𝜃 𝜆3 ⊕ 𝜆
)
𝜆−2 = 𝜒𝜃 𝜒−𝑐

𝜃 𝜆 ⊕ 𝜆−1. (7.5.10)

Thus, we have

𝐿

(
𝑠 + 1

2
, BC(𝜋ℎ) × 𝜆−1𝜉0𝜏0

)

= 𝐿

(
𝑠 + 1

2
, 𝜆−2 𝜒𝑐ℎ𝜒𝑐𝜃𝜉0𝜏0

)
𝐿

(
𝑠 + 1

2
, 𝜒ℎ𝜒𝑐𝜃𝜉0𝜏0

)

= 𝐿

(
𝑠 + 1

2
, 𝜆2 𝜒ℎ𝜒𝜃𝜉

𝑐
0 𝜏𝑐0

)
𝐿

(
𝑠 + 1

2
, 𝜒ℎ𝜒𝑐𝜃𝜉0𝜏0

)
.

(7.5.11)
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By the triple product formula,

〈
𝜃𝜆̄𝜑, ℎ

〉〈
𝜃𝜆3 𝜑̃, ℎ̃3

〉
≈

〈
𝜑, 𝜑̃

〉
𝐿(1, 𝜋, Ad)

〈
ℎ, ℎ̃3

〉
𝜁K (1) 𝐿(1, 𝜒ℎ𝜒−1

ℎ
𝜆2)

〈
𝜃, 𝜃3

〉
𝜁K (1) 𝐿(1, 𝜒𝜃 𝜒−𝑐

𝜃
𝜆2)

× 𝐿

(
1

2
, BC(𝜋) × 𝜒ℎ𝜒𝜃𝜆

2

)
𝐿

(
1

2
, BC(𝜋) × 𝜒ℎ𝜒𝑐𝜃

)
,

(7.5.12)

where 𝜑̃ (resp. ℎ̃3, 𝜃3) are suitable forms taken from the dual representation of 𝜋U(2) = 𝜋𝜑 (resp. 𝜋ℎ ,
𝜋𝜃 ). (In our case here, the triple product L-function for 𝜋𝐷 × 𝜋𝐷𝜃 × 𝜋𝐷

ℎ
factorizes as the product of the

two L-functions in equation (7.5.12). Also, note that Ichino’s triple product formula is for automorphic

forms on 𝐷×, we actually need to relate the integral on U(2) for
〈
𝜃𝜆̄𝜑, ℎ

〉〈
𝜃𝜆3 𝜑̃, ℎ̃3

〉
to an integral on

𝐷×. In §7.10, we discuss extending automorphic forms on U(2) to GU(2). Thanks to equation (5.4.3),
the integral over GU(2) is the same as the integral over 𝐷×.)

Combining equations (7.5.6)(7.5.8)(7.5.11)(7.5.12), we get

𝑑3(𝑠, 𝜉0𝜏0) ·
〈
𝑙𝜃 𝐽1

(
𝐸

Kling
𝛽

(
• ; 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)

) )
, ℎ

〉〈
𝜃𝜆3 𝜑̃, ℎ̃3

〉
≈ 〈𝜙1, 𝜙3〉

〈
𝜑, 𝜑̃

〉
𝐿(1, 𝜋, Ad) ·

〈
ℎ, ℎ̃3

〉
𝜁K (1) 𝐿(1, 𝜒ℎ𝜒−1

ℎ
𝜆2)

〈
𝜃, 𝜃3

〉
𝜁K (1) 𝐿(1, 𝜒𝜃 𝜒−𝑐

𝜃
𝜆2)

× 𝐿

(
𝑠 + 1

2
, 𝜆2 𝜒ℎ𝜒𝜃𝜉

𝑐
0 𝜏𝑐0

)
𝐿

(
𝑠 + 1

2
, 𝜒ℎ𝜒𝑐𝜃𝜉0𝜏0

)

× 𝐿

(
1

2
, BC(𝜋) × 𝜒ℎ𝜒𝜃𝜆

2

)
𝐿

(
1

2
, BC(𝜋) × 𝜒ℎ𝜒𝑐𝜃

)
.

(7.5.13)

The relation between 𝐸
Kling
𝛽

(
−; 𝐹 ( 𝑓 (𝑠, 𝜉0𝜏0), 𝜑)

)
and L-values illustrated in equation (7.5.13) ex-

plains the nonvanishing conditions on the L-values in equations (5.6.1)(5.6.2)(5.6.3)(5.6.4) in our choice
of the auxiliary Hecke characters 𝜒𝜃 and 𝜒ℎ in §5.6.

In the following, guided by the strategy described in this section, we carry out the necessary local
computations and the construction of the auxiliary objects to prove the desired property of 𝑬Kling

𝜑,𝛽,𝑢
with

𝛽 = 1. The computation is place by place, and we have the following cases:

– For the Archimedean place, we only need to consider the cases for which there are standard choices
of local sections and computations are easy.

– For unramified places, we have the standard formulas for spherical sections.
– For the place p and the places in Σs ∪ {ℓ}, we compute precise formulas.
– For the places in Σns ∪ {ℓ′}, we do not attempt to compute precise formulas. At these places, the

local data actually do not change when 𝜏 varies in a p-adic family, and we only make sure that local
integrals contribute a nonzero scalar.

7.6. The auxiliary Jacobi form 𝜃𝐽1

Given a Schwartz function 𝜙 on A2
Q

such that 𝜙∞ is the standard Gaussian function, let 𝜃𝐽 be its

associated Jacobi form on U(2) (as defined in equation (7.3.1)). The map attached to this 𝜃𝐽 defined in
equation (7.5.1) extends to 𝑉

𝐽 ,𝛽

GU(2) and induces

𝑙𝜃 𝐽 : M𝑒𝑎𝑠
(
ΓK, 𝑉

𝐽 ,𝛽

GU(2)

)
−→ M𝑒𝑎𝑠

(
ΓK, 𝑉U(2)

)
. (7.6.1)
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Apply it to 𝑬
Kling
𝜑,𝛽,𝑢

(defined in equation (7.0.1)), we get

𝑙𝜃 𝐽
(
𝑬

Kling
𝜑,𝛽,𝑢

)
∈ M𝑒𝑎𝑠

(
ΓK, 𝑉U(2) , 𝜉 ⊗̂ Ôur

𝐿

) ♮
.

Proposition 7.6.1. Let 𝛽 = 1 ∈ Her1 (K). There exists a Schwartz function 𝜙1 on A2
Q

with 𝜙1,∞ the

standard Gaussian function, elements 𝑢1, . . . , 𝑢𝑟 ∈
⊗

𝑣 ∈Σns∪{ℓ′ }
U(1) (Q𝑣 ), and constants 𝑏1, . . . , 𝑏𝑟 ∈

O𝐿 , (all independent of 𝜏), such that, denoting 𝑙𝜃 𝐽1
the map (7.6.1) attached to the Jacobi form 𝜃𝐽1

corresponding to 𝜙1,

𝑙𝜃 𝐽1

(∑
𝑖

𝑏𝑖𝑬
Kling
𝜑,𝛽,𝑢𝑖

)
∈ M𝑒𝑎𝑠

(
ΓK, 𝑉U(2) , 𝜉

) ♮

satisfies the following interpolation properties: For all 𝜏 such that 𝜉𝜏 is ramified at 𝔭 and satisfies the
conditions in Theorem 5.9.1,

𝑙𝜃 𝐽1

(∑
𝑖
𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

)
(𝜏𝑝-adic) = 𝑑

Σ∪{𝑝,ℓ,ℓ′ }
2

(
𝑠, 𝜉0𝜏0𝜆

−1
)

×
〈
𝜃 (𝜙2,𝜏)

(
•

(
−1

1

))
𝜑𝜉0𝜏0 , 𝐸

Sieg
2

(
− ; 𝑓2(𝑠, 𝜉0𝜏0𝜆

−1)
)���U(2)×U(2)

〉
1×U(2)

,
(7.6.2)

with 𝜙2, 𝜉 𝜏 ∈ S (A2
Q
) (independent of 𝜏 except 𝑣 = 𝑝) and 𝑓2 (𝑠, 𝜉0𝜏0𝜆

−1) ∈
⊗

𝑣 𝐼𝑄U(2,2) ,𝑣 (𝑠, 𝜉0𝜏0𝜆
−1)

described as follows:

– 𝑣 = ∞.

𝜙2, 𝜉 𝜏,∞(𝑦1, 𝑦2) =
𝔰1/4Nm(𝛿)1/4

2
𝑒
−2𝜋

√
Nm(𝛿) ( 𝑦1 𝑦2 )𝜁0

(
𝑦1
𝑦2

)
,

𝑓2,∞ (𝑠, 𝜉0𝜏0𝜆
−1)

(
𝑔′ =

(
𝐴 𝐵

𝐶 𝐷

))
=

(−2𝜋𝑖)𝑘
Γ(𝑘) · det

(
𝐶

𝜁0

2
+ 𝐷

)−𝑘 ����𝐶 𝜁0

2
+ 𝐷

����−𝑠+1+ 𝑘
2

C

– 𝑣 ∉ Σ ∪ {ℓ, ℓ′, 𝑝}.

𝜙2, 𝜉 𝜏,𝑣 = 1Z𝑣 × 1Z𝑣 ,

𝑓2,𝑣 (𝑠, 𝜉0𝜏0𝜆
−1) = 𝐿𝑣

(
2𝑠 + 3, 𝜉

Q

0 𝜏
Q

0

)−1
· 𝑓

sph
2,𝑣 (𝑠, 𝜉0𝜏0𝜆

−1)

– 𝑣 = 𝔳𝔳 ∈ Σs ∪ {ℓ}.

𝜙2, 𝜉 𝜏,𝑣 = Image of equation (7.1.6) of
(
(𝑦1, 𝑦2) ↦−→ 1OK,𝔳

(𝑦1) · 1O×
K,𝔳̄

(𝑦2)𝜒𝜃,𝔳̄𝜆𝔳̄ (𝑦2)
)

𝑓2,𝑣 (𝑠, 𝜉0𝜏0𝜆
−1)

(
𝑔′ =

(
𝐴 𝐵

𝐶 𝐷

))
= | det 𝐶 t𝐶̄ |−𝑠−1 (𝜉0𝜏0𝜆

−1)𝑣
(
det 𝐶̄−1

)

× 1Her2 (OK,𝑣 )
(
𝐶−1𝐷 + 𝑞−𝑐𝑣

𝑣 · 12

) (7.6.3)

– 𝑣 ∈ Σns ∪ {ℓ′}.

𝜙2, 𝜉 𝜏,𝑣 = a nonzero Schwartz function on Q2
𝑣 inside the 𝜒𝜃𝜆

2 |U(1) (Q𝑣 ) -eigenspace

for the action of U(1) (Q𝑣 ), invariant under 𝐾𝑣 , independent of 𝜏,

𝑓2,𝑣 (𝑠, 𝜉0𝜏0𝜆
−1) = same as equation (7.6.3).
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– The place p.

𝜙2, 𝜉 𝜏, 𝑝 = Image of equation (7.1.6) of(
(𝑦1, 𝑦2) ↦−→ 𝑝−2𝑡𝔤

(
(𝜉0𝜏0)−1

𝔭

)
· 1Z×𝑝 (𝑝

𝑡 𝑦1) (𝜉0𝜏0)𝔭 (−𝑝𝑡 𝑦1) · 1Z𝑝 (𝑝𝑡 𝑦2)
)
,

(7.6.4)

𝑓2, 𝑝 (𝑠, 𝜉0𝜏0𝜆
−1) = 𝛾𝑝

(
−2𝑠, (𝜉Q0 𝜏

Q

0 )
−1𝜂K/Q

)
𝛾𝑝

(
−2𝑠 − 1, (𝜉Q0 𝜏

Q

0 )
−1

)
× 𝑀 ′

𝑝

(
−𝑠, (𝜉0𝜏0𝜆

−1)−𝑐
)

𝑓
big−cell
2, 𝑝 (−𝑠, (𝜉0𝜏0𝜆)−𝑐)( • Υ′

𝑝),

where

◦ 𝑀 ′
𝑝 (−𝑠, (𝜉0𝜏0𝜆)−𝑐) : 𝐼𝑄U(2,2) , 𝑝 (−𝑠, (𝜉0𝜏0𝜆)−𝑐) → 𝐼𝑄U(2,2) , 𝑝 (𝑠, 𝜉0𝜏0𝜆

−1) is the intertwining operator,

◦ Υ′
𝑝 is the element in U(2, 2) (Q𝑝) with 𝜚𝔭 (Υ′

𝑝) =
(

11 − 𝜁0
2

−12 − 𝜁0
2

)−1

,

◦ writing 𝑡 = ord𝑝 (cond(𝜉𝔭𝜏𝔭)), 𝜚𝔭 (𝑥) =
(
𝑥11 𝑥12

𝑥21 𝑥22

)
,

𝑓
big−cell
2, 𝑝 (−𝑠, (𝜉0𝜏0𝜆)−𝑐)

(
𝐴 𝐵

𝐶 𝐷

)

= | det 𝐶 t𝐶̄ |𝑠−1
𝑝 (𝜉0𝜏0𝜆

−1)𝑝 (det 𝐶) · 𝛼′
𝜉 𝜏,𝑝 (𝐶−1𝐷),

with 𝛼′
𝜉 𝜏,𝑝 the Schwartz function on Her2(K𝑝) defined as

𝛼′
𝜉 𝜏,𝑝 (𝑥) = 𝔤

(
(𝜉0𝜏0)−1

𝔭

)
· 1Z3

𝑝
(𝑥11, 𝑥21, 𝑥22) · 1Z×𝑝 (𝑝

𝑡𝑥12) (𝜉0𝜏0)𝔭 (𝑝𝑡𝑥12).

Proof. This proposition is proved in [Wan20, sections 6.E-6.H] by computing FJ𝛽,𝑣
(
𝑔, 𝑥; 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
place by place. The place ∞ is done in Lemmas 6.9 and 6.11 and the unramified places are done

in Lemma 6.18. (Note that, at the unramified places, we have 𝑑2,𝑣 (𝑠, 𝜉0𝜏0𝜆
−1) = 𝑑3,𝑣 (𝑠, 𝜉0𝜏0)

𝐿𝑣 (2𝑠+3, 𝜉Q0 𝜏
Q

0 )
.) The

places in Σs ∪ {ℓ} are done in Lemmas 6.22 and 6.24, and the places in Σns ∪ {ℓ′} are done in Lemmas
6.22 and 6.26. Note that Lemma 6.26 loc.cit is already recalled in Proposition 5.6.1 and in §5.6 we
choose 𝜒𝜃 such that at 𝑣 ∈ Σns ∪ {ℓ′} we have nonzero 𝜙2, 𝜉 𝜏,𝑣 described in this proposition. The place
p is done from Lemma 6.35 to the end of the Section 6.H. The Schwartz function 𝜙2,𝜏0 , 𝑝 is the 𝜙′

2, 𝑝

given below Definition 6.38. Note that our FJ𝛽,𝑣
(
𝑔, 𝑥; 𝑓𝑣 (𝑠, 𝜉0𝜏0)

)
defined in Definition 7.4.1 equals

FJ𝛽 ( 𝑓𝑠𝑖𝑒𝑔,𝑣 ; 𝑧, 𝑥, 𝑔𝜂−1, 1) in [Wan20] with 𝑧 = 𝑠 and 𝜂 =

(
12

−12

)
, so the results in loc.cit all contain

the extra 𝜂 but the formulas in this proposition do not.
At the place p, in fact the pairing of 𝜙1, 𝑝 (𝑥) and FJ𝛽,𝑝

(
𝑔, (𝑥, 𝑦)𝑝; 𝑓𝑝 (𝑠, 𝜉0𝜏0

)
along x does not directly

equal 𝜙2,𝜏, 𝑝 (𝑦) · 𝑓2, 𝑝 (𝑠, 𝜉0𝜏0𝜆
−1) (𝑔) but equals the average

∫
Z𝑝

𝜔𝛽,𝑝

(
𝜚−1
𝔭

(
1 0
𝑛 1

)
, 1

)
𝜙2,𝜏, 𝑝 (𝑦) · 𝑓2, 𝑝 (𝑠, 𝜏0𝜆

−1)
�����
𝑔Υ′

𝑝

�����

1
1

1
𝑛 1

�����
�����

𝑑𝑛. (7.6.5)

Meanwhile, 𝜑 is spherical at p, in particular invariant under the right translation by

(
1
Z𝑝 1

)
, so replacing

equation (7.6.5) by 𝜙2,𝜏, 𝑝 (𝑦) · 𝑓2, 𝑝 (𝑠, 𝜉0𝜏0𝜆
−1) (𝑔) does not change the resulting Petersson inner product

with 𝜑 over U(𝑉−) = U(2).
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The Schwartz function (7.6.4) is the (𝑣3, 𝑣4)-part of ΦD, 𝑝 , the Schwartz function on Q4
𝑝 defined and

appearing in [Wan20, Lemma 6.37, Definition 6.36]. As mentioned above, our formula in the proposition

corresponds to replacing g by 𝑔𝜂−1 in the formula in loc.cit, so there is a translation by

(
−1

1

)
in the

theta series in equation (7.6.2). �

7.7. The construction of the auxiliary CM families ℎ, ℎ̃3, 𝜃, 𝜃3

Besides 𝜃𝐽1 , our strategy described in §7.5 also includes auxiliary CM forms. We want to construct a

CM family 𝒉 on U(𝑉) = U(2) and pair it with 𝑙𝜃 𝐽1

(∑
𝑖 𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

)
. The splitting characters for the theta

correspondence between U(2) and U(1) are chosen as in equation (7.1.2).

7.7.1. The auxiliary group 𝑈K, 𝑝

First, we note that for 𝜏𝑝-adic as in Theorem 5.9.1, the nebentypus of 𝑙𝜃 𝐽1

(∑
𝑖 𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

)
at p is(

triv, (𝜉0𝜏0)𝔭 |Z×𝑝
)
, that is, 𝜚−1

𝔭

(
∗ ∗
0 𝑎2

)
∈ U(2) (Z𝑝)acts by (𝜉0𝜏0)𝔭 (𝑎2)). In order to get a CM family 𝒉with

the correct nebentypus to pair with 𝑙𝜃 𝐽1

(∑
𝑖 𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

)
, we want Hecke characters of K×\A×

K
unramified

away from 𝑝∞ with restriction
(
𝜏0,𝔭 |Z×𝑝 , triv

)
on O×

K, 𝑝 . However, in general there is no canonical way to

extend local characters
(
𝜏0,𝔭 |Z×𝑝 , triv

)
of O×

K, 𝑝 to global Hecke characters. Hence, we need to consider

an auxiliary group 𝑈K, 𝑝 and the nonstandard type of p-adic measures defined in equation (5.8.9).
Let 𝑈K, 𝑝 = 1 + 𝑝OK, 𝑝 and 𝑈K,𝔭 = 1 + 𝑝OK,𝔭, 𝑈K,𝔭̄ = 1 + 𝑝OK,𝔭̄. Then the natural map

𝑈K, 𝑝 −→ K×\A×
K, 𝑓 −→ ΓK

is an injection. We can pick N, a nonnegative power of p, such that raising to the N-th power maps ΓK
into 𝑈K, 𝑝 . Define

PN : ΓK 𝑈K, 𝑝 𝑈K,𝔭 � 1 + 𝑝Z𝑝 .
N-th power natural proj.

Then given a (local) p-adic character 𝜖 : 𝑈K,𝔭 → Q
×
𝑝 , the composition 𝜖 ◦ PN is a (global) p-adic

character of ΓK whose restriction back to 𝑈K, 𝑝 = 𝑈K,𝔭 ×𝑈K,𝔭̄ is
(
𝜖N, triv

)
.

In particular, for an algebraic Hecke character 𝜏 : K×\A×
K

→ C× of ∞-type (0, 𝑘) whose p-adic
avatar 𝜏𝑝-adic factors through ΓK, we can define

𝜏𝔭,PN = 𝜏𝑝-adic

��
𝑈K,𝔭

◦ P𝑁 .

Then 𝜏𝔭,PN is a p-adic Hecke character of ΓK with

𝜏𝔭,PN |O×
K, 𝑝

=
(
𝜏N𝔭 |Z×𝑝 , triv

)
=

(
𝜏N0,𝔭 |Z×𝑝 , triv

)
.

Because 𝜏 has ∞-type (0, 𝑘), the local character 𝜏𝑝-adic |𝑈K,𝔭
is of finite order, and it follows that the

(global) character 𝜏𝔭,PN : ΓK → Q×
𝑝 is also of finite order. Hence, it takes values in Q

×
and is also an

algebraic Hecke character of K×\A×
K

of ∞-type (0, 0). (From the definition of p-adic avatars recalled
in §5.3, we can see that the p-adic avatar of a Hecke character of ∞-type (0, 0) is itself.)
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The map PN induces a map

PN,∗ : M𝑒𝑎𝑠
(
ΓK, 𝑉U(2)

) ♮ −→ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑉U(2)

) ♮
. (7.7.1)

(See §5.8.3 for the definition of these spaces of p-adic measures.) We have

PN,∗
(
𝑙𝜃 𝐽1

(∑
𝑖
𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

)) (
𝜏𝑝-adic |𝑈K,𝑝

)
= 𝑙𝜃 𝐽1

(∑
𝑖
𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

)
(𝜏N𝑝-adic)

for every 𝜏𝑝-adic ∈ Homcont

(
ΓK,Q

×
𝑝

)
. In order to show the nonvanishing property of 𝑙𝜃 𝐽1

(∑
𝑖 𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

)
in Proposition 7.11.3, it suffices to show the nonvanishing property for PN,∗

(
𝑙𝜃 𝐽1

(∑
𝑖 𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

))
.

Next, we construct auxiliary CM families 𝒉, 𝒉̃3, 𝜽 , 𝜽̃3 on U(2) as p-adic measures on 𝑈K, 𝑝 .

7.7.2. The auxiliary CM families h and ℎ̃3

Proposition 7.7.1. There exist a CM family 𝒉0 ∈ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑒ord𝑉

′
U(2) , 𝜉−1 ⊗̂ Ôur

𝐿

) ♮
⊗Z Q and a CM

family 𝒉
′
0 ∈ M𝑒𝑎𝑠

(
𝑈K, 𝑝 , 𝑒ord𝑉U(2) , 𝜉 ⊗̂ Ôur

𝐿

) ♮
⊗Z Q such that for every 𝜏𝑝-adic as in Theorem 5.9.1

sufficiently ramified at p,

𝒉0

(
𝜏𝑝-adic |𝑈K, 𝑝

)
(𝑔) =

∫
U(1) (Q)\U(1) (AQ)

𝜃
(
𝜙ℎ,𝜏

)
(𝑔, 𝑢)

(
𝜒ℎ𝜏𝔭,PN

)
(𝑢) 𝑑𝑢,

𝒉
′
0

(
𝜏𝑝-adic |𝑈K, 𝑝

)
(𝑔) =

∫
U(1) (Q)\U(1) (AQ)

𝜃
(
𝜙′
ℎ,𝜏

)
(𝑔, 𝑢)

(
𝜒−1
ℎ 𝜏−1

𝔭,PN

)
(𝑢) 𝑑𝑢,

the theta lift of 𝜒−1
ℎ

𝜏−1
𝔭,PN

���
U(1)

(resp. 𝜒ℎ𝜏𝔭,PN

���
U(1)

) to U(2)) with respect to the Schwartz function 𝜙ℎ,𝜏

(resp. 𝜙′
ℎ,𝜏

) on A2
Q

described as follows:

– 𝑣 ∉ Σ ∪ {ℓ, ℓ′, 𝑝}.

𝜙ℎ,𝜏,𝑣 = 𝜙′
ℎ,𝜏,𝑣 = 𝜙2, 𝜉 𝜏N ,𝑣 in Proposition 7.6.1.

– 𝑣 = 𝔳𝔳̄ ∈ Σs ∪ {ℓ}. We have 𝜒ℎ𝜏𝔭,PN |O×
K,𝑣

= 𝜒ℎ |O×
K,𝑣

.

𝜙ℎ,𝜏,𝑣 = Image of equation (7.1.6) of
(
(𝑦1, 𝑦2) ↦−→ 1Z𝑣 (𝑦1) · 1Z×𝑣 (𝑦2)𝜒ℎ,𝔳𝜒−1

ℎ,𝔳̄𝜆
−1
𝔳̄ (𝑦2)

)
,

𝜙′
ℎ,𝜏,𝑣 = Image of equation (7.1.6) of

(
(𝑦1, 𝑦2) ↦−→ 1Z𝑣 (𝑦1) · 1Z×𝑣 (𝑦2)𝜒−1

ℎ,𝔳𝜒ℎ,𝔳̄𝜆𝔳̄ (𝑦2)
)
.

– 𝑣 ∈ Σns ∪ {ℓ′}. We have 𝜒ℎ𝜏𝔭,PN

��
U(1) (Q𝑣 ) = 𝜒ℎ |U(1) (Q𝑣 ) .

𝜙ℎ,𝜏,𝑣 = a Schwartz function on Q2
𝑣 invariant under 𝐾𝑣 , independent of 𝜏,

belonging to the 𝜒−1
ℎ,𝑣 |U(1) (Q𝑣 ) -eigenspace for the action of U(1) (Q𝑣 ),

𝜙′
ℎ,𝜏,𝑣 = a Schwartz function on Q2

𝑣 invariant under 𝐾𝑣 , , independent of 𝜏,

belonging to the 𝜒ℎ,𝑣 |U(1) (Q𝑣 ) -eigenspace for the action of U(1) (Q𝑣 ),

and

∫
Q2

𝑣

𝜙ℎ,𝜏,𝑣 (𝑦)𝜙′
ℎ,𝜏,𝑣 (𝑦) 𝑑𝑦 ≠ 0.
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– 𝑣 = 𝑝. We have (𝜒ℎ𝜏𝔭,PN)𝔭 = (𝜉0𝜏N0 )𝔭. Let 𝑡 = ord𝑝
(
cond

(
(𝜉0𝜏N0 )𝔭

) )
.

𝜙ℎ,𝜏, 𝑝 = Image of equation (7.1.6) of(
(𝑦1, 𝑦2) ↦−→ 𝑝−𝑡𝔤

(
(𝜉0𝜏N0 )−1

𝔭

)
) · 1𝑝−𝑡Z×𝑝 (𝑦2) (𝜉0𝜏N0 )𝔭 (−𝑝𝑡 𝑦2) · 1Z𝑝 (𝑦1)

)
,

𝜙′
ℎ,𝜏, 𝑝 = Image of equation (7.1.6) of

(
(𝑦1, 𝑦2) ↦−→ 1Z×𝑝 (𝑦1) (𝜉0𝜏N0 )𝔭 (𝑦1) · 1Z𝑝 (𝑦2)

)
.

Proof. See [Wan20, §8B]. The idea of constructing 𝒉0 (resp. 𝒉′
0) is to first use suitably chosen Schwartz

functions to construct a family of theta series on U(2, 2) by interpolating the q-expansions and then
restrict the family to U(𝑉) × U(𝑉−) and evaluate at a suitable point 𝑢𝑎𝑢𝑥 ∈ U(𝑉) (AQ) (resp. 𝑢′

𝑎𝑢𝑥 ∈
U(𝑉−) (AQ)) to get the desired family on U(𝑉−) (resp. U(𝑉)). �

Definition 7.7.2. The map (7.5.7) between automorphic forms on U(2) defined in terms of the tame
character 𝜒ℎ𝜒𝑐𝜃 extends to a map from 𝑉U(2) to 𝑉U(2) . Applying this twisting map to 𝒉0 in Proposi-

tion 7.7.1 defines the CM family 𝒉 ∈ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑒ord𝑉

′
U(2) , 𝜉−1

) ♮
⊗Z Q.

Replacing 𝜒ℎ𝜒𝑐𝜃 by 𝜒−1
ℎ

𝜒−𝑐
𝜃 and applying the corresponding twisting map to 𝒉

′
0 in Proposition 7.7.1

defines the CM family 𝒉̃3 ∈ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑒ord𝑉U(2) , 𝜉

) ♮ ⊗Z Q.

7.7.3. The auxiliary CM families 𝜃 and 𝜃3

We construct a CM family 𝜽 whose specializations are closely related to the theta series 𝜃 (𝜙2,𝜏) in
Proposition 7.6.1. (The theta series 𝜃 (𝜙2,𝜏) is not an eigenform and does not belong to the theta lift of
one character of U(1). The specialization of 𝜽 at 𝜏𝑝-adic |𝑈K, 𝑝

is essentially the projection of 𝜃 (𝜙2,𝜏N) to
the theta lift of 𝜆2 𝜒𝜃𝜏

−𝑐
𝔭,PN

|U(1) .) We also construct a CM family 𝜽̃3 dual to 𝜽 .

Proposition 7.7.3. (1) There exists a CM family 𝜽 ∈ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑒ord𝑉U(2) , 𝜉 ⊗̂ Ôur

𝐿

) ♮
⊗ZQ and also a

CM family 𝜽̃3 ∈ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑒ord𝑉

′
U(2) , 𝜉−1 ⊗̂ Ôur

𝐿

) ♮
⊗ZQ such that for every 𝜏𝑝-adic as in Theorem 5.9.1

ramified at p,

𝜽

(
𝜏𝑝-adic |𝑈K, 𝑝

)
(𝑔) =

∫
U(1) (Q)\U(1) (AQ)

𝜃
(
𝜙𝜃,𝜏

)
(𝑔, 𝑢)

(
𝜆2 𝜒𝜃𝜏

−𝑐
𝔭,PN

)−1
(𝑢) 𝑑𝑢,

𝜽̃3

(
𝜏𝑝-adic |𝑈K, 𝑝

)
(𝑔) =

∫
U(1) (Q)\U(1) (AQ)

𝜃
(
𝜙′
𝜃,𝜏

)
(𝑔, 𝑢) (𝜆2 𝜒𝜃𝜏

−𝑐
𝔭,PN

) (𝑢) 𝑑𝑢,

(7.7.2)

the theta lift of 𝜆2 𝜒𝜃𝜏
−𝑐
𝔭,PN

���
U(1)

(resp. 𝜆−2 𝜒−1
𝜃 𝜏𝑐𝔭,PN

���
U(1)

) to U(2) with respect to the Schwartz function

𝜙𝜃,𝜏 (resp. 𝜙′
𝜃,𝜏) on A2

Q
described as follows:

– 𝑣 ∉ Σ ∪ {ℓ, ℓ′, 𝑝}.

𝜙𝜃,𝜏,𝑣 = 𝜙′
𝜃,𝜏,𝑣 = 𝜙2, 𝜉 𝜏N ,𝑣 in Proposition 7.6.1.

– 𝑣 = 𝔳𝔳̄ ∈ Σs ∪ {ℓ′}. We have 𝜒𝜃𝜏
−𝑐
𝔭,PN

|O×
K,𝑣

= 𝜒𝜃 |O×
K,𝑣

and 𝜒𝜃,𝔳 unramified.

𝜙𝜃,𝜏,𝑣 = Image of equation (7.1.6) of
(
(𝑦1, 𝑦2) ↦−→ 1OK,𝔳

(𝑦1) · 1O×
K,𝔳̄

(𝑦2)𝜒𝜃,𝔳̄𝜆𝔳̄ (𝑦2)
)

= 𝜙2,𝜏N ,𝑣 in Proposition 7.6.1,

𝜙′
𝜃,𝜏,𝑣 = Image of equation (7.1.6) of

(
(𝑦1, 𝑦2) ↦−→ 1OK,𝔳

(𝑦1) · 1O×
K,𝔳̄

(𝑦2) (𝜒𝜃,𝔳̄𝜆𝔳̄)−1(𝑦2)
)
.
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– 𝑣 ∈ Σns ∪ {ℓ′}. We have 𝜒𝜃𝜏
−𝑐
𝔭,PN

|U(1) (Q𝑣 ) = 𝜒𝜃 |U(1) (Q𝑣 ) .

𝜙𝜃,𝜏,𝑣 = 𝜙2, 𝜉 𝜏N ,𝑣 in Proposition 7.6.1,

𝜙′
𝜃,𝜏,𝑣 = a Schwartz function on Q2

𝑣 invariant under 𝐾𝑣 , independent of 𝜏,

belonging to the 𝜒−1
𝜃 𝜆−2 |U(1) (Q𝑣 ) -eigenspace for the action of U(1) (Q𝑣 ),

and

∫
Q2

𝑣

𝜙𝜃,𝜏,𝑣 (𝑦)𝜙′
𝜃,𝜏,𝑣 (𝑦) 𝑑𝑦 ≠ 0.

– 𝑣 = 𝑝. We have (𝜒𝜃𝜏−𝑐𝔭,PN
)𝔭̄ = (𝜉0𝜏N0 )−1

𝔭 . Let 𝑡 = ord𝑝
(
cond

(
(𝜉0𝜏N0 )𝔭

) )
.

𝜙𝜃,𝜏, 𝑝 = Image of equation (7.1.6) of(
(𝑦1, 𝑦2) ↦−→ 𝑝−𝑡𝔤

(
(𝜉0𝜏N0 )−1

𝔭

)
· 1𝑝−𝑡Z×𝑝 (𝑦1) (𝜉0𝜏N0 )𝔭 (−𝑝𝑡 𝑦1) · 1Z𝑝 (𝑦2)

)
,

=
∑
Z/𝑝𝑡Z

𝜔𝛽,𝑝

((
1 0
𝑛 1

)
, 1

)
𝜙2,𝜏N , 𝑝 ,

𝜙′
𝜃,𝜏, 𝑝 = Image of equation (7.1.6) of

(
(𝑦1, 𝑦2) ↦−→ 1Z𝑝 (𝑦1) · 1Z×𝑝 (𝑦2) (𝜉0𝜏N0 )𝔭 (𝑦2) ·

)
,

where 𝜙2,𝜏N , 𝑝 is as in Proposition 7.6.1.

(2) The specialization 𝜽

(
𝜏𝑝-adic |𝑈K, 𝑝

)
equals the projection of

∑
𝑛∈Z/𝑝𝑡Z

𝜃 (𝜙2,𝜏N)
(
𝑔

(
1 0
𝑛 1

))
to the

𝜆2 𝜒𝜃𝜏
−𝑐
𝔭,PN

���U(1) -eigenspace for the action of the center of U(2). (Note that the projection of a theta

series to the 𝜆2 𝜒𝜃𝜏
−𝑐
𝔭,PN

���U(1) -eigenspace for the action of the center is a theta lift of 𝜆2 𝜒𝜃𝜏
−𝑐
𝔭,PN

���U(1) .)

Proof. See [Wan20, §8B]. The idea is the same as the construction of 𝒉0 and 𝒉
′
0, and (2) follows

immediately from (1). �

7.8. p-adic Petersson inner product on U(2)
We need p-adic Petersson inner product for families on U(2). Let 𝑉U(2) , 𝑒ord𝑉

′
U(2) be as defined in

§5.8.3, an 𝐾 ′
𝑝,0(𝑝𝑛) ⊂ U(2) (Z𝑝) be the subgroup consisting of g with𝔭(𝑔) ≡

(
∗ ∗
0 ∗

)
mod 𝑝𝑛. Following

[Hsi21, p.33], we can define a p-adic Petersson inner product

〈 • , • 〉𝑝-adic : 𝑒ord𝑉
′
U(2) ×𝑉U(2) −→ O𝐿 (7.8.1)

such that for all 𝜙 ∈ 𝑉U(2) with 𝐾 ′
𝑝,0(𝑝𝑛)-nebentypus (triv, 𝜒) and 𝜙′ ∈ 𝑒ord𝑉

′
U(2) with 𝐾 ′

𝑝,0(𝑝𝑛)-
nebentypus (𝜒′, triv),

〈𝜙′, 𝜙〉𝑝-adic =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
𝑔
(𝑈−𝑛

𝑝 𝜙′)
(
𝑔𝜚−1

𝔭

(
1

−𝑝𝑛

))
𝜙(𝑔), 𝜒𝜒′ = triv,

0, 𝜒𝜒′ ≠ triv,

where in the summation, g runs over the finite set U(2) (Q)\U(2) (AQ, 𝑓 )/𝐾 ′𝑝
𝑓

𝐾 ′
𝑝,0(𝑝𝑛). A useful

property of this p-adic Petersson inner product is that〈
𝜙′, 𝑈𝑝𝜙

〉
𝑝-adic = 𝜔𝜙′, 𝑝 (𝜚−1

𝔭 (𝑝))−1
〈
𝑈𝑝𝜙, 𝜙′〉

𝑝-adic

if 𝜙′ has central character 𝜔𝜙′ . Here, 𝜚−1
𝔭 is the isomorphism from Q×

𝑝 to U(1) (Q𝑝).
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The p-adic Petersson inner product in equation (7.8.1) induces the p-adic Petersson inner product for
p-adic families on U(2):

〈 • , • 〉𝑝-adic :M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑒ord𝑉

′
U(2) , 𝜉−1

) ♮ ×M𝑒𝑎𝑠
(
𝑈K, 𝑝 , 𝑉U(2) , 𝜉

) ♮
−→ M𝑒𝑎𝑠

(
𝑈K, 𝑝 ,O𝐿

)
� O𝐿 [[𝑈K, 𝑝]] .

(7.8.2)

7.9. The Rallis inner product formulas for
〈
𝜽 , 𝜃3

〉
𝑝-adic and

〈
𝒉, ℎ̃3

〉
𝑝-adic.

From the description of our strategy in §7.5, in particular equation (7.5.13), we see that we need a
formula relating

〈
𝜽 , 𝜽̃2

〉
𝑝-adic and

〈
𝒉, 𝒉̃3

〉
𝑝-adic to certain p-adic L-functions.

LetL3,L4 ∈ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , Ôur

𝐿

)
⊗ZQ � Ôur

𝐿
[[𝑈K, 𝑝]] ⊗ZQ be the L-function interpolating the special

value at 𝑠 = 1 of 𝐿
(
𝑠, 𝜋

GL2
𝜃

, Ad
)
, 𝐿

(
𝑠, 𝜋

GL2
ℎ

, Ad
)
, which factorize as

𝐿
(
𝑠, 𝜋

GL2
𝜃

, Ad
)
= 𝐿

(
𝑠, 𝜂K/Q

)
𝐿
(
𝑠, 𝜆2 𝜒𝜃 𝜒−𝑐

𝜃 𝜏𝔭,PN𝜏
−𝑐
𝔭,PN

)
,

𝐿
(
𝑠, 𝜋

GL2
ℎ

, Ad
)
= 𝐿

(
𝑠, 𝜂K/Q

)
𝐿
(
𝑠, 𝜆−2 𝜒−1

ℎ 𝜒𝑐ℎ𝜏−1
𝔭,PN𝜏

𝑐
𝔭,PN

)
= 𝐿

(
𝑠, 𝜂K/Q

)
𝐿
(
𝑠, 𝜆2 𝜒ℎ𝜒−𝑐

ℎ 𝜏𝔭,PN𝜏
−𝑐
𝔭,PN

)
.

More precisely, for 𝜏𝑝-adic as in Theorem 5.9.1,

L3

(
𝜏𝑝-adic |𝑈K, 𝑝

)
= 𝜋−1 · 𝐿∞ (

1, 𝜂K/Q
)

×
(
Ω𝑝

Ω∞

)2

𝜋−2 · 𝛾𝔭̄

(
0, 𝜆2 𝜒𝜃 𝜒−𝑐

𝜃 𝜏𝔭,PN𝜏
−𝑐
𝔭,PN

)−1
· 𝐿 𝑝∞

(
1, 𝜆2 𝜒𝜃 𝜒−𝑐

𝜃 𝜏𝔭,PN𝜏
−𝑐
𝔭,PN

)
,

L4

(
𝜏𝑝-adic |𝑈K, 𝑝

)
= 𝜋−1 · 𝐿∞ (

1, 𝜂K/Q
)

×
(
Ω𝑝

Ω∞

)2

𝜋−2 · 𝛾𝔭̄

(
0, 𝜆2 𝜒ℎ𝜒−𝑐

ℎ 𝜏𝔭,PN𝜏
−𝑐
𝔭,PN

)−1
· 𝐿 𝑝∞

(
1, 𝜆2 𝜒ℎ𝜒−𝑐

ℎ 𝜏𝔭,PN𝜏
−𝑐
𝔭,PN

)
.

The existence of L3,L4 follows from Katz p-adic L-functions [Kat78, HT93].

Proposition 7.9.1. There exists 𝐶𝜃 , 𝐶ℎ ∈ 𝐿× such that〈
𝜽̃3, 𝜽

〉
𝑝-adic = 𝐶𝜃 · L3,

〈
𝒉, 𝒉̃3

〉
𝑝-adic = 𝐶ℎ · L4.

(See equation (7.8.2) for the definition of the p-adic Petersson inner product for families.)

Proof. The proof is the same as [Wan20, Proposition 8.9], which computes the specializations of the
left-hand side by using the Rallis inner product formula. �

7.10. Extending CM forms on U(2) to GU(2)
Let 𝐻 = GU(2) (Q)𝑍GU(2) (AQ) U(2) (AQ). Then H is a subgroup of GU(AQ) of index 2 consisting of
𝑔 ∈ GU(2) (A) with 𝜈(𝑔) ∈ Q×Nm(A×

K
). Suppose that 𝜙 is an automorphic form on U(2) and generates

an irreducible automorphic representation 𝜋𝜙 of U(2) (AQ). Let 𝜔 : K×\A×
K
→ C× be a Hecke character

extending the central character of 𝜋𝜙 . We can first extend 𝜙 to a function on H by

𝛾𝑎𝑔1 ↦−→ 𝜔(𝑎)𝜙(𝑔1), 𝛾 ∈ GU(2) (Q), 𝑎 ∈ 𝑍GU(2) (AQ), 𝑔1 ∈ U(2) (AQ)

and then extend this function by zero from H to GU(2) (AQ). We denote this extension of 𝜙 to GU(2) (AQ)
by 𝜙. This 𝜙 is an automorphic form on GU(2) (AQ).
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Proposition 7.10.1. Suppose that 𝜋𝜙 is a theta lift from U(1). Then 𝜙 generates an irreducible auto-
morphic representation 𝜋 𝜙̆ of GU(2) (A). Moreover, if 𝜙 ∈ 𝜋𝜙 is a pure tensor in 𝜋𝜙 �

⊗
𝑣 𝜋𝜙,𝑣 , then

𝜙 is also a pure tensor in 𝜋 𝜙̆ �
⊗

𝑣 𝜋 𝜙̆,𝑣 .

Proof. Let 𝜋 𝜙̆ be the automorphic representation of GU(2) (AQ) generated by 𝜙, and 𝜋𝐷
𝜙̆

be the

corresponding automorphic representation of 𝐷× (AQ) (via equation (5.4.3)). Let 𝜎 be an irreducible
direct summand of 𝜋𝐷

𝜙̆
and BC(𝜎) be the base change to GL(2)/K. Then for each prime 𝔳 of K over

a split prime v in Q, we have BC(𝜎)𝔳 � 𝜔𝔳𝜆
−1
𝔳 ⊕ 𝜔𝑐𝔳𝜆−𝑐

𝔳 . Therefore, BC(𝜎) � BC(𝜋𝐷𝜔) with 𝜋𝐷𝜔
the automorphic representation of 𝐷× (AQ) corresponding to the theta lift of 𝜔 from GU(1) to GU(2)
([Ram15, Corollary B]). It follows that 𝜎 = 𝜋𝐷𝜔 , and we see that all the irreducible direct summands of
𝜋𝐷
𝜙̆

are isomorphic. Hence, 𝜋𝐷
𝜙̆

is irreducible and so is 𝜋 𝜙̆ . (See also [Wan20, Lemma 8.1].)

Since 𝜙 is obtained by extension by zero, it belongs to the direct summand 𝜋𝜙 in 𝜋 𝜙̆ |U(2) . Hence, 𝜙

being a pure tensor in 𝜋𝜙 implies that 𝜙 is a pure tensor in 𝜋 𝜙̆ . �

The above extension from U(2) to GU(2) also works for p-adic automorphic forms. We denote by 𝒉̆

the extension of 𝒉 whose specialization at 𝜏𝑝-adic is the extension by zero of 𝒉(𝜏𝑝-adic) to GU(2) with

respect to the character 𝜒−1
𝜃 𝜏−1

𝔭,PN
. Similarly, we denote by ˘̃

𝒉3 (resp. 𝜽̆ , ˘̃
𝜽3) the extension of 𝒉̃3 whose

specialization at 𝜏𝑝-adic is the extension by zero of 𝒉̃3 (𝜏𝑝-adic) to GU(2) with respect to the character
𝜒𝜃𝜏𝔭,PN (resp. 𝜒𝜃𝜏𝔭,PN , 𝜒−1

𝜃 𝜏−1
𝔭,PN

).

7.11. The nonvanishing property of the degenerate Fourier–Jacobi coefficients of the Klingen

Eisenstein family

Let L5,L6 ∈ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , Ôur

𝐿

)
⊗ZQ � Ôur

𝐿
[[𝑈K, 𝑝]] ⊗ZQ be the Katz p-adic L-functions interpolating

special values of 𝐿
(
𝑠, 𝜒ℎ𝜒𝑐𝜃𝜉0𝜏N0

)
, 𝐿

(
𝑠, 𝜆2 𝜒ℎ𝜒𝜃 𝜏−1

𝔭,PN
𝜏𝑐𝔭,PN (𝜉0𝜏N0 )𝑐

)
. In particular, for a Hecke character

𝜏 : K×\A×
K
→ C× as in Theorem 5.9.1,

L5

(
𝜏𝑝-adic |𝑈K, 𝑝

)
=

(
Ω𝑝

Ω∞

)N𝑘
2𝜋𝑖 Γ(N𝑘 − 1) · 𝛾𝔭̄

(
4 − N𝑘

2
, (𝜒ℎ𝜒𝑐𝜃𝜉0𝜏N0 )−1

)

× 𝐿𝑝∞
(
N𝑘 − 2

2
, 𝜒ℎ𝜒𝑐𝜃𝜉0𝜏N0

)
,

L6

(
𝜏𝑝-adic |𝑈K, 𝑝

)
=

(
Ω𝑝

Ω∞

)N𝑘−2

Γ(N𝑘 − 2) · 𝐿𝔭

(
N𝑘 − 2

2
, 𝜆2 𝜒ℎ𝜒𝜃𝜏𝔭,PN𝜏

−𝑐
𝔭,PN

(𝜉0𝜏N0 )𝑐
)
,

× 𝐿𝑝∞
(
N𝑘 − 2

2
, 𝜆2 𝜒ℎ𝜒𝜃𝜏𝔭,PN𝜏

−𝑐
𝔭,PN

(𝜉0𝜏N0 )𝑐
)
.

The product of L5L6 interpolates the special values of 𝐿(𝑠, BC(𝜋ℎ) × 𝜉0𝜏0𝜆
−1), where 𝜋ℎ is the

automorphic representation associated to specializations of the CM family 𝒉. Note that the restriction

of 𝜆2 𝜒ℎ𝜒𝜃𝜏𝔭,PN𝜏
−𝑐
𝔭,PN

(𝜉0𝜏N0 )𝑐 to O×
K, 𝑝 is

(
𝜉0,𝔭𝜉0,𝔭̄𝜏N0,𝔭𝜏N0,𝔭̄, triv

)
, so L6 is essentially of one variable. In

fact, L6 is the so-called ‘improved’ p-adic L-function, for which the local factor at p in the interpolation
formula is a partial local L-factor instead of a partial local 𝛾-factor.

Proposition 7.11.1. For 𝜑 inside the space (5.6.11), an operator𝒯ns ∈
⊗

𝑣 ∈Σns∪{ℓ′ }
O𝐿

[
GU(2)

(
Q𝑣

) ]
such

that 𝒯ns𝒉 is still invariant under the tame level group 𝐾
′𝑝
𝑓

(defined equation (5.6.7)), and 𝑢1, . . . , 𝑢𝑟 ∈⊗
𝑣 ∈Σns∪{ℓ′ }

U(1) (Q𝑣 ), 𝑏1, . . . , 𝑏𝑟 ∈ O𝐿 as in Proposition 7.6.1,
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〈(
𝒯ns 𝒉̆

)
|U(2) , P𝑁 ,∗

(
𝑙𝜃 𝐽1

(∑
𝑖
𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

))〉
𝑝-adic

=C1 · L5L6 ·
〈(
𝒯ns 𝒉̆

)
|U(2) , 𝜽

𝜆̄𝜑
〉
𝑝-adic

,
(7.11.1)

where 𝜽
𝜆̄ = 𝜽 · (𝜆̄ ◦ det) and C1 ∈

(
Ôur
𝐿
[[𝑈K, 𝑝]] ⊗Z Q

)×
.

Proof. The identity is proved by comparing the evaluations of both sides at 𝜏𝑝-adic as in Theorem 5.9.1.
For such a 𝜏𝑝-adic, put 𝜃𝜏 = 𝜽 (𝜏𝑝-adic |𝑈K, 𝑝

) and ℎ𝜏 = 𝒉(𝜏𝑝-adic |𝑈K, 𝑝
), which are classical ordinary

CM forms. The description of 𝑙𝜃 𝐽1

(∑
𝑖 𝑏𝑖𝑬

Kling
𝜑,𝛽,𝑢𝑖

)
in Proposition 7.6.1 and the definition of the p-adic

Petersson inner product in §7.8 imply that

(
Ω𝑝

Ω∞

)−2N𝑘+2

· LHS of equation (7.11.1) evaluated at 𝜏𝑝-adic

= 𝑑
Σ∪{𝑝,ℓ,ℓ′ }
2

(
𝑠, 𝜉0𝜏N0 𝜆−1

) ∫
U(2) (Q)\U(2) (AQ)

𝜃𝜏

(
𝑔2 𝜚−1

𝔭

(
1

−1

))
𝜑𝜉0 𝜏̄

N
0 (𝑔2)∫

U(2) (Q)\U(2) (AQ)
𝐸

Sieg
2

(
𝚤0(𝑔1, 𝑔2); 𝑓2(𝑠, 𝜉0𝜏N0 𝜆−1

)
𝜉−1

0 𝜏−N0 𝜆(det 𝑔1)

× (𝑈−𝑚
𝑝 𝒯ns ℎ̆𝜏)

(
𝑔1

(
1

−𝑝𝑚

)
𝑝

)
𝑑𝑔1𝑑𝑔2

�����𝑠= N𝑘−3
2

=

∫
U(2) (Q)\U(2) (AQ)

𝜃𝜆̄𝜏 (𝑔2)𝜑(𝑔2) ℎ′
𝜏 (𝑔2) 𝑑𝑔2

(7.11.2)

with 𝚤0 defined in equation (6.2.2) and

ℎ′
𝜏 (𝑔2) = 𝑑

Σ∪{𝑝,ℓ,ℓ′ }
2

(
𝑠, 𝜉0𝜏N0 𝜆−1

)−1
·
∫

U(2) (AQ)
𝑓2,𝑣

(
𝑠, 𝜉0𝜏N0 𝜆−1

) (
𝚤0

((
1

−1

)
𝑝

𝑔, 1

))

× (𝑈−𝑚
𝑝 𝒯ns ℎ̆𝜏)

(
𝑔2𝑔

(
1

−𝑝𝑚

)
𝑝

)
𝑑𝑔

�����𝑠= N𝑘−3
2

,

where m is any sufficiently large integer. The integral over g is essentially doubling local zeta integral.
By using the same computation results in the proof of Theorem 6.1.1 for all 𝑣 ≠ 𝑝, we obtain

ℎ′
𝜏 (𝑔2) = C1(𝜏𝑝-adic) ·

Γ(N𝑘 − 1)Γ(N𝑘 − 2)
(2𝜋𝑖)2N𝑘−3

· 𝐿 𝑝∞
(
N𝑘 − 2

2
, BC(𝜋ℎ𝜏 ) × 𝜉0𝜏N0 𝜆−1

)

×
∫

U(2) (Q𝑝)
𝑓2, 𝑝

(
𝑠, 𝜉0𝜏N0 𝜆−1

) (
𝚤0

((
1

−1

)
𝑝

𝑔, 1

))

× (𝑈−𝑚
𝑝 𝒯ns ℎ̆𝜏)

(
𝑔2𝑔

(
1

−𝑝𝑚

)
𝑝

)
𝑑𝑔

�����𝑠= N𝑘−3
2

,

(7.11.3)

where C1 is the product of

◦ the local doubling zeta integrals at 𝑣 ∈ Σ ∪{ℓ, ℓ′}, which is a nonzero constant in L by our choice, and

◦ the element in Ôur
𝐿
[[𝑈K, 𝑝]] interpolating 𝐿𝑞

(
N𝑘−2

2 , 𝜒ℎ𝜒𝑐𝜃𝜉0𝜏N0

)−1
, which is a unit by our assumption

on equation (5.6.5).

Our choice of 𝜒ℎ , 𝜒𝜃 implies that 𝐿𝑣
(
𝑠, BC(𝜋ℎ𝜏 ) × 𝜉0𝜏0𝜆

−1
)
= 1 for 𝑣 ∈ Σ ∪ {ℓ, ℓ′}. The computa-

tion at p is slightly different from that in the construction of p-adic L-functions because the section
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𝑓2, 𝑝 (𝑠, 𝜉0𝜏0𝜆
−1) is slightly different from the one for p-adic L-functions. The Schwartz function 𝛼′

𝜉 𝜏,𝑝

in the description of 𝑓2, 𝑝 (𝑠, 𝜉0𝜏0𝜆
−1) in Proposition 7.6.1 only requires 𝑥12 to be supported on 𝑝−𝑡Z×𝑝 .

Unlike the section for constructing p-adic L-functions, 𝛼′
𝜉 𝜏,𝑝 does not require the whole

(
𝑥11 𝑥12

𝑥21 𝑥22

)
to

be supported on 𝑝−𝑡 GL2(Z𝑝). (In fact, 𝑓2, 𝑝 (𝑠, 𝜏0𝜆
−1) is essentially of the same type as the section in

[LR20, Table 2 on p.210] for constructing the ‘improved’ p-adic L-function.) The computation at p is
done in [Wan20, 6I], and plugging it into equation (7.11.3), we get

ℎ′
𝜏 (𝑔2) = C1(𝜏𝑝-adic) ·

Γ(N𝑘 − 1)Γ(N𝑘 − 2)
(2𝜋𝑖)2N𝑘−3

· 𝐿 𝑝∞
(
N𝑘 − 2

2
, BC(𝜋ℎ𝜏 ) × 𝜉0𝜏0𝜆

−1

)

× 𝛾𝔭̄

(
4 − N𝑘

2
, (𝜒ℎ𝜒𝑐𝜃𝜉0𝜏N0 )−1

)
𝐿𝔭

(
N𝑘 − 2

2
, 𝜆2 𝜒ℎ𝜒𝜃𝜏𝔭,PN𝜏

−𝑐
𝔭,PN

(𝜉0𝜏N0 )𝑐
)

× (𝑈−𝑚
𝑝 𝒯ns ℎ̆𝜏)

(
𝑔2

(
1

−𝑝𝑚

)
𝑝

)
.

Plugging this into equation (7.11.2), we see that the evaluations at 𝜏𝑝-adic of the two sides of equation
(7.11.1) are equal. �

We introduce some more p-adic L-functions. Let L1 ∈ M𝑒𝑎𝑠
(
𝑈K, 𝑝 , Ôur

𝐿

)
⊗ZQ � Ôur

𝐿
[[𝑈K, 𝑝]] ⊗ZQ

be the p-adic L-function interpolating the central values of 𝐿
(
𝑠, BC(𝜋) × 𝜆2 𝜒ℎ𝜒𝜃𝜏

−1
𝔭,PN

𝜏𝑐𝔭,PN

)
, that is, for

𝜏𝑝-adic as in Theorem 5.9.1,

L1

(
𝜏𝑝-adic |𝑈K, 𝑝

)
=

(
Ω𝑝

Ω∞

)4

𝜋−3 · 𝛾𝑝

(
1

2
, 𝜋 𝑓 , 𝑝 ×

(
𝜆2 𝜒ℎ𝜒𝜃𝜏𝔭,PN𝜏

−𝑐
𝔭,PN

)
𝔭̄

)−1

× 𝐿 𝑝∞
(
1

2
, BC(𝜋) × 𝜆2 𝜒ℎ𝜒𝜃𝜏𝔭,PN𝜏

−𝑐
𝔭,PN

)
.

The existence of such a p-adic L-function follows from [Hsi14b]. Let

L2 = 𝜋−2
〈

𝑓 , 𝑓
〉−1 · 𝐿∞

(
1

2
, BC(𝜋) × 𝜒ℎ𝜒𝑐𝜃

)
∈ 𝐿ur.

The product of L1L2 interpolates the central values of 𝐿
(
𝑠, 𝜋 × 𝜋

GL2
ℎ

× 𝜋
GL2

𝜃 𝜆̄

)
with h, 𝜃 specializations

of the CM families 𝒉, 𝜽 .

Note that because 𝜋 has trivial central character and 𝜒ℎ𝜒𝑐𝜃 |A×
Q
= triv, when cond

(
𝜉0, 𝑝𝜏N0,𝔭

)
= 𝑝𝑡 ,

𝛾𝑝

(
1

2
, 𝜋𝑝 ×

(
𝜆2 𝜒ℎ𝜒𝜃𝜏𝔭,PN𝜏

−𝑐
𝔭,PN

)
𝔭̄

)−1

= 𝔤
(
(𝜉0𝜏N0 )−1

𝔭

)2
·
(
𝜆2
𝔭̄𝜒ℎ,𝔭̄𝜒𝜃,𝔭̄𝜏−N0,𝔭 (𝑝)𝑝1/2

)−2𝑡

= 𝑝−𝑡 · 𝔤
(
(𝜉0𝜏N0 )−1

𝔭

) (
𝜆2
𝔭̄𝜒𝜃,𝔭̄𝜒−1

𝜃,𝔭𝜏−N0,𝔭 (𝑝)
)−𝑡

· 𝔤
(
(𝜉0𝜏N0 )−1

𝔭

) (
𝜆2
𝔭̄𝜒ℎ,𝔭̄𝜒−1

ℎ,𝔭𝜏−N0,𝔭 (𝑝)
)−𝑡

= 𝑝−𝑡 · 𝛾𝔭̄

(
0, 𝜆2 𝜒𝜃 𝜒−𝑐

𝜃 𝜏𝔭,PN𝜏
−𝑐
𝔭,PN

)−1
· 𝛾𝔭̄

(
0, 𝜆2 𝜒ℎ𝜒−𝑐

ℎ 𝜏𝔭,PN𝜏
−𝑐
𝔭,PN

)−1
.

(7.11.4)

Combining equation(7.11.4), the above interpolation formulas for L1,L2, and the interpolation

formulas for L3,L4 in §7.9, we see that when cond
(
𝜉0, 𝑝𝜏N0,𝔭

)
= 𝑝𝑡 ,
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(
L1L2

L3L4

) (
𝜏𝑝-adic |𝑈K, 𝑝

)

= 𝜋 · 𝑝−𝑡𝐿𝑝

(
1

2
, BC(𝜋) × 𝜒ℎ𝜒𝑐𝜃

)

×
𝐿 𝑝∞

(
1
2 , BC(𝜋) × 𝜆2 𝜒ℎ𝜒𝜃𝜏𝔭,PN𝜏

−𝑐
𝔭,PN

)
· 𝐿 𝑝∞

(
1
2 , BC(𝜋) × 𝜒ℎ𝜒𝑐𝜃

)
𝐿∞ (1, 𝜂K,Q)2 · 𝐿 𝑝∞

(
1, 𝜆2 𝜒𝜃 𝜒−𝑐

𝜃
𝜏𝔭,PN𝜏

−𝑐
𝔭,PN

)
· 𝐿 𝑝∞

(
1, 𝜆2 𝜒ℎ𝜒−𝑐

ℎ
𝜏𝔭,PN𝜏

−𝑐
𝔭,PN

)

= 𝜋
𝐿∞ (1, 𝜋, Ad)〈

𝑓 , 𝑓
〉 · 𝑝−𝑡

𝐿𝑝

(
1
2 , BC(𝜋) × 𝜒ℎ𝜒𝑐𝜃

)
𝐿𝑝

(
1, 𝜂K/Q

)2 · 𝐿𝑝 (1, 𝜋, Ad)

×
𝐿 𝑝∞

(
1
2 , 𝜋 × 𝜋

GL2
ℎ

× 𝜋
GL2

𝜃 𝜆̄

)
𝐿 𝑝∞(1, 𝜋, Ad) · 𝐿 𝑝∞

(
1, 𝜋

GL2
𝜃

, Ad
)
· 𝐿 𝑝∞

(
1, 𝜋

GL2
ℎ

, Ad
) .

(7.11.5)

Proposition 7.11.2. There exist operators 𝒯ns,𝒯
′

ns ∈
⊗

𝑣 ∈Σns∪{ℓ′ }
O𝐿

[
GU(2)

(
Q𝑣

) ]
, and 𝜑 inside the

space (5.6.11), 𝜑′ inside the space (5.6.10) such that 𝒯ns𝒉 is invariant under the tame level group 𝐾
′𝑝
𝑓

(defined in equation (5.6.7)) and

〈(
𝒯ns 𝒉̆

)
|U(2) , 𝜽

𝜆̄𝜑
〉
𝑝-adic

〈(
𝒯 ′

ns
˘̃
𝒉3

)
|U(2) , 𝜽̃

𝜆
3 𝜑′

〉
𝑝-adic

=𝐶2 ·
〈
𝜽 , 𝜽̃3

〉
𝑝-adic

〈
𝒉, 𝒉̃3

〉
𝑝-adic ·

L1L2

L3L4

(7.11.6)

with 𝐶2 ∈ 𝐿×.

Proof. For 𝒯ns,𝒯
′

ns ∈
⊗

𝑣 ∈Σns∪{ℓ′ }
O𝐿

[
GU(2)

(
Q𝑣

) ]
and 𝜑, 𝜑′ in equation (5.6.11) corresponding to pure

tensors in
⊗

𝑣 𝜋
GU(2)
𝑣 , we consider evaluations at 𝜏𝑝-adic as in Theorem 5.9.1 with cond(𝜏𝔭) = 𝑝𝑡 . Put

𝜃𝜏 = 𝜽 (𝜏𝑝-adic) and ℎ𝜏 = 𝒉(𝜏𝑝-adic).

LHS of equation (7.11.6)
valued at 𝜏𝑝-adic

=

∫
U(2) (Q)\U(2) (AQ)

𝜃𝜆̄𝜏 (𝑔) 𝜑(𝑔)
(
𝒯ns ℎ̆𝜏

) (
𝑔
(

1
−𝑝𝑡

)
𝑝

)
𝑑𝑔

×
∫

U(2) (Q)\U(2) (AQ)
𝜃𝜆𝜏 (𝑔) 𝜑′(𝑔)

(
𝒯′

ns
˘̃ℎ𝜏

) (
𝑔
(

1
−𝑝𝑡

)
𝑝

)
𝑑𝑔.

(7.11.7)

We can replace 𝜃𝜆̄𝜏 (resp. 𝜃𝜆𝜏) in the integrand by 𝜃𝜆̄𝜏 (resp. ˘̃𝜃𝜆𝜏), its extension by zero to GU(2) with
respect the character 𝜒𝜃𝜏𝔭,𝜏N (resp. 𝜒−1

𝜃 𝜏−1
𝔭,𝜏N

) (as described at the beginning of §7.10) and replace
the domain of integration by GU(2) (Q)𝑍GU(2) (AQ)\GU(2) (AQ). Thanks to equation (5.4.3), we can
further replace GU(2) (Q)𝑍GU(2) (AQ)\GU(2) (AQ) by 𝐷× (Q)𝑍𝐷 (AQ)\𝐷×(AQ). Then for 𝒯ns,𝒯

′
ns ∈⊗

𝑣 ∈Σns∪{ℓ′ }
O𝐿 [𝐷× (Q𝑣 )] ⊂

⊗
𝑣 ∈Σns∪{ℓ′ }

O𝐿 [GU(2) (Q𝑣 )], we can rewrite equation (7.11.7) as

LHS of equation (7.11.6)
valued at 𝜏𝑝-adic

=

∫
A×
Q
\𝐷× (AQ)

𝜃𝜆̄𝜏 (𝑔) 𝜑(𝑔) (𝒯ns ℎ̆𝜏)
(
𝑔
(

1
−𝑝𝑡

)
𝑝

)
𝑑𝑔

×
∫
A×
Q
\𝐷× (AQ)

˘̃𝜃𝜆𝜏 (𝑔) 𝜑′(𝑔) (𝒯 ′
ns

˘̃ℎ𝜏)
(
𝑔
(

1
−𝑝𝑡

)
𝑝

)
𝑑𝑔.

(7.11.8)

This is the triple product integral.
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Let

𝐹𝜏 =
(
𝜃𝜆̄𝜏 ⊗ 𝜑 ⊗ 𝒯ns ℎ̆𝜏

)
|𝐷× (A) , 𝐹 ′

𝜏 =
(
˘̃𝜃𝜆3,𝜏 ⊗ 𝜑′ ⊗ 𝒯′

ns
˘̃ℎ3,𝜏

)
|𝐷× (A) .

Then 𝐹𝜏 generates Π𝜏 = 𝜋𝐷
𝜃 𝜆̄𝜏
⊗𝜋𝐷

ℎ𝜏
⊗𝜋𝐷 , where 𝜋𝐷

𝜃 𝜆̄𝜏
(resp. 𝜋𝐷

ℎ𝜏
, 𝜋𝐷) is the automorphic representation of

𝐷× (AQ) generated by the restriction of 𝜃𝜆̄𝜏 (resp. ℎ̆𝜏 , 𝜑) to 𝐷×, and 𝐹 ′
𝜏 generates Π̃𝜏 , the contragredient

representation of Π𝜏 . By the isomorphism (5.4.3) and Proposition 7.10.1, we know that 𝜋𝐷
𝜃 𝜆̄𝜏

, 𝜋𝐷
ℎ𝜏

are

irreducible and 𝜃𝜆̄𝜏 , ℎ̆𝜏 are pure tensors. By the definition of 𝜑, we know that 𝜋𝐷𝜑 = 𝜋𝐷 . Hence, Π𝜏
(resp. Π̃𝜏) is irreducible, and the image of 𝐹𝜏 (resp. 𝐹 ′

𝜏) under Π𝜏 �
⊗

𝑣 Π𝜏,𝑣 (Π̃𝜏 �
⊗

𝑣 Π̃𝜏,𝑣 ) is
a pure tensor

⊗
𝑣 𝐹𝜏,𝑣 (resp.

⊗
𝑣 𝐹 ′

𝜏,𝑣 ). By Ichino’s triple product formula [Ich08], equation (7.11.8)
becomes

LHS of equation (7.11.6) valued at 𝜏𝑝-adic

=
∏
𝑣

∫
A×
Q
\𝐷× (AQ)

〈
Π𝑣 (𝑔𝑣 )𝐹𝜏,𝑣 , 𝐹 ′

𝜏,𝑣

〉
𝑣

𝑑𝑔𝑣

=
〈

𝑓 𝐷 , 𝑓 𝐷
〉〈

𝜃𝜏 , 𝜃3,𝜏
〉
𝑝-adic

〈
ℎ𝜏 , ℎ̃3,𝜏

〉
𝑝-adic ·

𝜁Σ∪{∞, 𝑝,ℓ,ℓ′ } (2)2 · 𝐿Σ∪{∞, 𝑝,ℓ,ℓ′ }
(

1
2 ,Π

)
𝐿Σ∪{∞, 𝑝,ℓ,ℓ′ } (1,Π, Ad)

×
∏

𝑣 ∈Σ∪{∞,ℓ,ℓ′ }

∫
Q×

𝑣\𝐷× (Q𝑣 )
〈
Π𝑣 (𝑔)𝐹𝜏,𝑣 , 𝐹 ′

𝜏,𝑣

〉
𝑣

𝑑𝑔〈
𝑓 𝐷𝑣 , 𝑓 𝐷𝑣

〉
𝑣

〈
𝜃𝜏,𝑣 , 𝜃3,𝜏,𝑣

〉
𝑣

〈
ℎ𝜏,𝑣 , ℎ̃3,𝜏,𝑣

〉
𝑣

×

∫
Q×

𝑝\𝐷× (Q𝑝)
〈
Π𝑝 (𝑔)𝐹𝜏,𝑝, 𝐹 ′

𝜏,𝑝

〉
𝑝

𝑑𝑔〈
𝑓 𝐷𝑝 , 𝑓 𝐷𝑝

〉
𝑝

〈
𝜃𝜏,𝑝 ,

(
1

−𝑝𝑡
)
𝜃3,𝜏,𝑣

〉
𝑝

〈
ℎ𝜏,𝑝 ,

(
1

−𝑝𝑡
)
ℎ̃3,𝜏, 𝑝

〉
𝑝

.

(7.11.9)

We have the following results for the local integrals at 𝑣 ∈ Σ ∪ {∞, 𝑝, ℓ, ℓ′}:

– 𝑣 ∈ Σs ∪ {∞, ℓ}.∫
Q×

𝑣\𝐷× (Q𝑣 )
〈
Π𝑣 (𝑔)𝜙𝑣 , 𝜙′

𝑣

〉
𝑣

𝑑𝑔〈
𝑓 𝐷𝑣 , 𝑓 𝐷𝑣

〉
𝑣

〈
𝜃𝜏,𝑣 , 𝜃3,𝜏,𝑣

〉
𝑣

〈
ℎ𝜏,𝑣 , ℎ̃3,𝜏,𝑣

〉
𝑣

= a nonzero constant independent of 𝜏.

For 𝑣 = ∞, the integral is 1 because Π∞ is the trivial representation. For 𝑣 = Σs ∪ {ℓ}, this is
[Wan20, Lemmas 8.13-8.17]. Note that the twist at 𝑣 ∈ Σs ∪ {ℓ} in equation (5.6.9) guarantees that
the local integrals are nonzero constants.

– 𝑣 ∈ Σns ∪ {ℓ′}. There exist 𝒯𝑣 ,𝒯 ′
𝑣 ∈ O𝐿 [𝐷× (Q𝑣 )] ⊂ O𝐿 [GU(2) (Q𝑣 )] and 𝜑𝑣 , 𝜑′

𝑣 ∈ 𝜋
GU(2)
𝑣 such

that 𝜑𝑣 and 𝒯𝑣𝒉 are invariant under the level group 𝐾𝑣 (defined in equation (5.6.6)) and∫
Q×

𝑣\𝐷× (Q𝑣 )
〈
Π𝑣 (𝑔)𝐹𝜏,𝑣 , 𝐹 ′

𝜏,𝑣

〉
𝑣

𝑑𝑔〈
𝑓 𝐷𝑣 , 𝑓 𝐷𝑣

〉
𝑣

〈
𝜃𝜏,𝑣 , 𝜃3,𝜏,𝑣

〉
𝑣

〈
ℎ𝜏,𝑣 , ℎ̃3,𝜏,𝑣

〉
𝑣

= a nonzero constant independent of 𝜏

This is proved in the following §7.12.
– 𝑣 = 𝑝. ∫

Q×
𝑝\𝐷× (Q𝑝)

〈
Π𝑝 (𝑔)𝐹𝜏,𝑝 , 𝐹 ′

𝜏,𝑝

〉
𝑝

𝑑𝑔〈
𝑓 𝐷𝑝 , 𝑓 𝐷𝑝

〉
𝑝

〈
𝜃𝜏,𝑝 ,

(
1

−𝑝𝑡
)
𝜃3,𝜏,𝑣

〉
𝑝

〈
ℎ𝜏,𝑝 ,

(
1

−𝑝𝑡
)
ℎ̃3,𝜏, 𝑝

〉
𝑝

= 𝑝−𝑡
𝜁𝑝 (2)2 · 𝐿𝑝

(
1
2 , BC(𝜋) × 𝜒ℎ𝜒𝑐𝜃

)
𝐿𝑝

(
1, 𝜂K/Q

)2 · 𝐿𝑝 (1, 𝜋, Ad)
.

https://doi.org/10.1017/fms.2022.95 Published online by Cambridge University Press



Forum of Mathematics, Sigma 79

This is a direct consequence of [Hsi21, Proposition 6.3]. We also use the formulas for local norms of
the chosen vectors in the proof of Lemma 6.4 of loc.cit..

Plug these results on local integrals into equation (7.11.9) and compare with equation (7.11.5), we see
that

LHS of equation (7.11.6) valued at 𝜏𝑝-adic

=𝐶2 ·
〈
𝜃𝜏 , 𝜃3,𝜏

〉
𝑝-adic

〈
ℎ𝜏 , ℎ̃3,𝜏

〉
𝑝-adic ·

(
L1L2

L3L4

) (
𝜏𝑝-adic |𝑈K, 𝑝

)

with 𝐶2 ∈ 𝐿× the product of

◦ the local triple product integrals divided by the norms at 𝑣 ∈ Σ∪{ℓ, ℓ′}, which are nonzero constants,

◦
∏

𝑣 ∈Σ∪{ℓ,ℓ′ }

(
𝜁𝑣 (2)2𝐿𝑣 ( 1

2 ,Π)
𝐿𝑣 (1,Π,Ad)

)−1
, which, by our choice of the Hecke characters 𝜒𝜃 , 𝜒ℎ , equals

𝐿𝑞

(
1
2 , BC(𝜋) × 𝜒ℎ𝜒𝑐𝜃

)−1 ∏
𝑣 ∈Σ∪{ℓ,ℓ′ }

𝜁𝑣 (2)−2𝐿𝑣
(
1, 𝜂K/Q

)2
𝐿𝑣 (1, 𝜋, Ad), a nonzero constant,

◦

(
𝜋
𝐿∞ (1, 𝜋,Ad)
〈 𝑓 , 𝑓 〉 ·

〈
𝑓 𝐷 , 𝑓 𝐷

〉)−1
∈ Q×.

�

Given 𝑔 ∈ U(2) (AQ, 𝑓 ), evaluating a p-adic form at g induces a map

M𝑒𝑎𝑠
(
ΓK, 𝑉U(2) ⊗̂Ôur

𝐿

) ♮
−→ M𝑒𝑎𝑠

(
ΓK, Ôur

𝐿

)
� Ôur

𝐿 [[ΓK]] .

Denote by 𝑙𝜃 𝐽1

(
𝑬

Kling
𝜑,𝛽,𝑢

)
(𝑔) ∈ Ôur

𝐿
[[ΓK]] the image of 𝑙𝜃 𝐽1

(
𝑬

Kling
𝜑,𝛽,𝑢

)
under this map.

Proposition 7.11.3. Let 𝛽 = 1 ∈ Her1 (K), 𝜃𝐽1 be the Fourier–Jacobi form on U(2) as in Proposi-

tion 7.6.1 and 𝜑 be an automorphic form on U(2) as in Proposition 7.11.2. Let 𝐽 ⊆ Ôur
𝐿
[[ΓK]] ⊗Z Q be

the ideal generated by

𝑙𝜃 𝐽1

(
𝑬

Kling
𝜑,𝛽,𝑢

)
(𝑔), 𝑔 ∈ U(2) (AQ, 𝑓 ), 𝑢 ∈

⊗
𝑣 ∈Σns∪{ℓ′ }

U(1) (Q𝑣 ).

Then 𝐽 = Ôur
𝐿
[[ΓK]] ⊗Z Q.

Proof. Suppose that 𝐽 ≠ Ôur
𝐿
[[ΓK]] ⊗Z Q. Then J is contained in a maximal ideal of Ôur

𝐿
[[ΓK]] ⊗Z Q so

is contained in the maximal ideal associated to a p-adic character 𝜅 : ΓK → Q×
𝑝 . Let 𝜅′ : ΓK → Q×

𝑝 be
a p-adic character whose N-th power is 𝜅. Then

PN,∗
(
𝑙𝜃 𝐽1

(
𝑬

Kling
𝜑,𝛽,𝑢

))
(𝜅′ |𝑈K, 𝑝

) = 𝑙𝜃 𝐽1

(
𝑬

Kling
𝜑,𝛽,𝑢

)
(𝜅) = 0

for all 𝑢 ∈
⊗

𝑣 ∈Σns∪{ℓ′ } U(1) (Q𝑣 ). Then it follows from Propositions 7.11.1 and 7.11.2 that

(〈
𝜽 , 𝜽̃3

〉
𝑝-adic

〈
𝒉, 𝒉̃3

〉
𝑝-adic ·

L1L2L5L6

L3L4

)
(𝜅′ |𝑈K, 𝑝

) = 0,

which, combining with Proposition 7.9.1, implies that

(L1L2L5L6)(𝜅′ |𝑈K, 𝑝
) = 0.
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However, the condition (3) in our choice of 𝜒ℎ , 𝜒𝜃 in §5.6 implies thatL1L2L5L6 is a unit in Ôur
𝐿
[[ΓK]]⊗Z

Q so is nonzero at all characters in Homcont

(
𝑈K, 𝑝 ,Q

×
𝑝

)
. We get a contradiction. Therefore, 𝐽 =

Ôur
𝐿
[[ΓK]] ⊗Z Q. �

7.12. The local triple product integrals at nonsplit places

Lemma 7.12.1. Let v be a place of Q nonsplit in K and 𝜎 : K×
𝑣 → C× be a character nontrivial on the

kernel of NmK𝑣/Q𝑣
. Let 𝜋𝜎 be the dihedral supercuspidal representation of GL2 (Q𝑣 ) obtained by the

theta lift of 𝜎. (See [Sch02, §1.2] for the precise definition.) Then by [Sch02, Theorem in §2.3.2], we
have the formula for the conductor of 𝜋𝜎:

𝑐(𝜋𝜎) =
{

2cond(𝜎), 𝑣 inert,
cond(𝜎) + 1, 𝑣 ramified.

(7.12.1)

Let W be the Kirillov model of 𝜋𝜎 with respect to the additive character e±1
𝑣 of Q𝑣 . (W consists of

Schwartz functions on Q×
𝑣 since 𝜋𝜎 is supercuspidal.) For 𝑤 ∈ 𝑊 , define

𝑛(𝑤) = min

{
𝑛 ∈ Z : 𝑤 is fixed by

(
1 0

𝜛𝑛
𝑣Z𝑣 1

)}
. (7.12.2)

Let 𝜗 be a character of Z×𝑣 and 𝜗∗ be its extension toQ×
𝑣 taking value 1 at 𝜛𝑣 . For each integer m, define

𝑤𝑚
𝜗
∈ 𝑊 as

𝑤𝑚𝜗 (𝑥) = 1𝜛𝑚
𝑣 Z

×
𝑣
(𝑥) 𝜗∗(𝑥).

Then the following hold:

(1) Let 𝑤 =
𝑙2∑
𝑚=𝑙1

𝑐𝑚𝑤𝑚
𝜗

with 𝑐𝑙2 ≠ 0. Then 𝑛(𝑤) = 𝑛(𝑤𝑙2
𝜗
) = 𝑛(𝑤0

𝜗
) + 𝑙2.

(2) We have

𝑛(𝑤𝑚𝜗 ) = 𝑚 + 𝑐(𝜋𝜎 ⊗ 𝜗∗−1) =
{

𝑚 + 2cond(𝜎 · 𝜗∗−1 ◦ NmK𝑣/Q𝑣
), 𝑣 inert,

𝑚 + cond(𝜎 · 𝜗∗−1 ◦ NmK𝑣/Q𝑣
) + 1, 𝑣 ramified.

Proof. The action 𝐵(Q𝑣 ) ⊂ GL2 (Q𝑣 ) on W has the formula:

(
𝑎 𝑏

0 𝑑

)
· 𝑤(𝑥) = 𝜔𝜎 (𝑑) e±1

𝑣 (𝑏𝑑−1𝑥) 𝑤(𝑎𝑑−1𝑥), 𝑤 ∈ 𝑊, (7.12.3)

where 𝜔𝜎 is the central character of 𝜎 .

(1) It is easy to see that

(
𝜛𝑙
𝑣

1

)
· 𝑤𝑚

𝜗
= 𝑤𝑚−𝑙

𝜗
. Thus, 𝑛(𝑤𝑚

𝜗
) = 𝑛(𝑤0

𝜗
) + 𝑚. It follows that 𝑛(𝑤𝑚

𝜗
) ≤

𝑛(𝑤𝑙2
𝜗
) for all 𝑚 ≤ 𝑙2, so 𝑛(𝑤) ≤ 𝑛(𝑤𝑙2

𝜗
). On the other hand, if 𝑛(𝑤) ≤ 𝑛(𝑤𝑙2

𝜗
) − 1, then 𝑛(𝑤𝑙2

𝜗
) =

𝑛
(
𝑐−1
𝑙2
(𝑤 −

𝑙2−1∑
𝑙1

𝑐𝑚𝑤𝑚
𝜗
)
)
≤ 𝑛(𝑤𝑙2

𝜗
) − 1. This is a contradiction. Hence, 𝑛(𝑤) = 𝑛(𝑤𝑙2

𝜗
).

(2) Let 𝑊 ′ the representation of GL2 (Q𝑣 ) whose underlying C-vector space equals that of W with the
action of GL2 (Q𝑣 ) defined as the action of GL2 (Q𝑣 ) on W twisted by 𝜗∗−1◦det, that is, for 𝑔 ∈ GL2 (Q𝑣 )
and 𝑤 ∈ 𝑊 ′, the action of g on w gives 𝜗∗−1(det 𝑔) (𝑔 · 𝑤), where 𝑔 · 𝑤 denotes the action of g on
w viewed as an element in W. Then 𝑊 ′

� 𝜋𝜎 ⊗ 𝜗∗−1. Suppose that 𝑤′ ∈ 𝑊 ′ is the new vector, then(
Z×𝑣 Z𝑣
0 𝑑

)
, 𝑑 ∈ Z×𝑣 , acts on it by the scalar 𝜎𝜗−2(𝑑), and we have 𝑤′ =

𝑙2∑
𝑚=𝑙1

𝑐𝑚𝑤𝑚
𝜗

with 𝑐𝑙1 ≠ 0 for some
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𝑙1 ≥ 0. (In this equality, we view 𝑤𝑚
𝜗

as a vector in 𝑊 ′. From the formula (7.12.3) and the definition of

𝑤𝑚
𝜗

, we know that the invariance of 𝑤′ under the action of

(
1 Z𝑣
0 1

)
implies that 𝑙1 ≥ 0.) Then

𝑛(𝑤0
𝜗) ≥ 𝑐(𝜋𝜎 ⊗ 𝜗∗−1) = 𝑛(𝑤′) = 𝑛(𝑤0

𝜗) + 𝑙2, (7.12.4)

where the first inequality follows from the definition of new vectors with 𝑤0
𝜗

viewed as a vector in 𝑊 ′,
the middle equality is because 𝑤′ is the new vector, and the right equality follows from (1). Equation
(7.12.4) implies that 𝑙1 = 𝑙2 = 0, 𝑤0

𝜗
is the new vector in 𝑊 ′, and 𝑛(𝑤0

𝜗
) = 𝑐(𝜋𝜎 ⊗ 𝜗∗−1). Since

𝑛(𝑤𝑚
𝜗
) = 𝑛(𝑤0

𝜗
) + 𝑚, we see that 𝑛(𝑤𝑚

𝜗
) = 𝑚 + 𝑐(𝜋𝜎 ⊗ 𝜗∗−1). �

Proposition 7.12.2. For 𝑣 ∈ Σns ∪ {ℓ′}, there exist 𝒯𝑣 ,𝒯 ′
𝑣 ∈ O𝐿 [𝐷× (Q𝑣 )] ⊂ O𝐿 [GU(2) (Q𝑣 )] and

𝜑𝑣 , 𝜑′
𝑣 ∈ 𝜋𝐷𝑣 such that 𝜑𝑣 and 𝒯𝑣𝒉 are invariant under the level group 𝐾𝑣 (defined in equation (5.6.6)),

and

∫
Q×

𝑣\𝐷× (Q𝑣 )

〈
Π𝑣 (𝑔)𝐹𝜏,𝑣 , 𝐹 ′

𝜏,𝑣

〉
𝑣

𝑑𝑔 = a nonzero constant independent of 𝜏, (7.12.5)

where

𝐹𝜏,𝑣 =
(
𝜃𝜆̄𝜏,𝑣 ⊗ 𝜑𝑣 ⊗ 𝒯𝑣 ℎ̆𝜏,𝑣

)
|𝐷× (Q𝑣 ) , 𝐹 ′

𝜏,𝑣 =
(
˘̃𝜃𝜆3,𝜏,𝑣 ⊗ 𝜑′

𝑣 ⊗ 𝒯 ′
𝑣

˘̃ℎ3,𝜏,𝑣

)
|𝐷× (Q𝑣 ) .

Proof. Let v be a place in Σns ∪ {ℓ′}. Then U(1) (Q𝑣 ) ⊂ O×
K,𝑣 and 𝜏𝔭,PN |U(1) (Q𝑣 ) is trivial. From the

construction of 𝒉, 𝒉̃3 in §7.7.2 and 𝜽 , 𝜽̃3 in §7.7.3, we see that 𝜋ℎ𝜏 ,𝑣 , 𝜋𝜃𝜏 ,𝑣 and ℎ𝜏,𝑣 , ℎ̃3,𝜏,𝑣 , 𝜃𝜏,𝑣 , 𝜃3,𝜏,𝑣

do not change when 𝜏 varies. It follows that the left-hand side of equation (7.12.5) is independent of 𝜏.
Next, we show the nonvanishing. By our choice of 𝜒ℎ , 𝜒𝜃 , we have Hom𝐷× (Q𝑣 ) (Π𝑣 ,C) ≠ 0. By

[Pra90, Theorem 1.4], we can pick 𝒯′
𝑣 ∈ O𝐿 [𝐷× (Q𝑣 )] and 𝜑′

𝑣 ∈ 𝜋𝐷𝑣 such that the linear functional

ℒ𝐹 ′
𝜏,𝑣

: Π𝑣 −→ C, ℒ𝐹 ′
𝜏,𝑣

(𝐹𝑣 ) =
∫
Q×

𝑣\𝐷× (Q𝑣 )

〈
Π𝑣 (𝑔)𝐹𝑣 , 𝐹 ′

𝜏,𝑣

〉
𝑣

𝑑𝑔 (7.12.6)

is nonzero and spans the one-dimensional space Hom𝐷× (Q𝑣 ) (Π𝑣 ,C). What we need to show is that there
exists 𝒯𝑣 ℎ̆𝜏,𝑣 ∈ 𝜋𝐷

ℎ𝜏 ,𝑣
and 𝜑𝑣 ∈ 𝜋𝐷𝑣 invariant under the level group 𝐾𝑣 defined in equation (5.6.6) such

that ℒ𝐹 ′
𝜏,𝑣

(
𝜃𝜆̄𝜏,𝑣 ⊗ 𝜑𝑣 ⊗ 𝒯𝑣 ℎ̆𝜏,𝑣

)
≠ 0. Since 𝜃𝜆̄𝜏,𝑣 is invariant under 𝐾𝑣 , it suffices to show that there

exists 𝒯𝑣 ℎ̆𝜏,𝑣 ∈ 𝜋𝐷
ℎ𝜏 ,𝑣

invariant under 𝐾𝑣 such that the linear functional

ℒ𝐹 ′
𝜏,𝑣

(
𝜃𝜆̄𝜏,𝑣 ⊗ • ⊗ 𝒯𝑣 ℎ̆𝜏,𝑣

)
: 𝜋𝑣 −→ C (7.12.7)

is nonzero. There are two cases.
Case 1: 𝑣 ≠ 𝑞, 𝐷× (Q𝑣 ) � GL2(Q𝑣 ). Recall that at the beginning of §5.4, we have fixed the positive

integer 𝔰 and the totally imaginary element 𝛿 in K, and U(2) is the unitary group for the skew-Hermitian

form 𝜁0 = 𝛿

(
𝔰

1

)
. By our assumption on 𝔰, there exists 𝔯 ∈ O×

K,𝑣 such that NmK𝑣/Q𝑣
(𝔯) = −𝔰. We fix

the following isomorphism

𝔦 : GU(2) (Q𝑣 )
�−→ GU(1, 1) (Q𝑣 ), 𝑔 ↦−→

(
𝛿
2

𝛿𝔯
2

1 −𝔯

)
𝑔

(
𝛿
2

𝛿𝔯
2

1 −𝔯

)−1

,
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where GU(1, 1) denotes the unitary group attached to the skew-Hermitian form

(
1

−1

)
.Let 𝐾

GL2
𝑣 =

𝔦(𝐾𝑣 ) ∩ GL2 (Z𝑣 ). By our assumptions in §5.2, 𝑣 ≠ 2. One can check that

𝐾GL2
𝑣 =

(
1 + 𝜛

𝑐𝑣
𝑣 Z𝑣 𝜛

𝑐𝑣+𝜖𝑣
𝑣 Z𝑣

𝜛
𝑐𝑣
𝑣 Z𝑣 1 + 𝜛

𝑐𝑣
𝑣 Z𝑣

)
⊂ GL2(Z𝑣 ),

where 𝜖𝑣 =

{
0, 𝑣 inert

1, 𝑣 ramified
.

Given a character 𝜒𝑣 : Q×
𝑣 → C×, we denote also by 𝜒𝑣 the character 𝐵(Q𝑣 ) → C×,

(
𝑎 𝑏

0 𝑑

)
↦→

𝜒𝑣 (𝑎𝑑−1), and IndGL2
𝐵

(𝜒𝑣 ) the (normalized) induction of 𝜒𝑣 . By our assumption on 𝜋, 𝜋𝑣 is either

isomorphic to IndGL(2)
𝐵

(𝜒𝑣 ) for an unramified character 𝜒𝑣 ≠ | · |±1/2
Q𝑣

or is isomorphic to the irreducible

quotient of IndGL(2)
𝐵

(𝜒𝑣 ) with 𝜒𝑣 = | · |−1/2
Q𝑣

. Let 𝜓1 = e𝑣 , the additive character ofQ𝑣 defined in equation

(1.0.5), 𝜓2 = ē𝑣 , and 𝑊1 (resp. 𝑊2) be the Kirillov model of 𝜋1 = 𝜋𝐷
𝜃 𝜆̄𝜏 ,𝑣

(resp. 𝜋2 = 𝜋𝐷
ℎ𝜏 ,𝑣

) with respect

to 𝜓1 (resp. 𝜓2). We have

HomGL2 (Q𝑣 ) (𝑊1 ⊗ 𝑊2, 𝜋̃) � HomGL2 (Q𝑣 )
(
𝑊1 ⊗ 𝑊2, IndGL2

𝐵
(𝜒−1
𝑣 )

)
� Hom𝐵 (Q𝑣 )

(
𝑊1 ⊗ 𝑊2, 𝜒−1

𝑣 | · |1/2
Q𝑣

)
,

(7.12.8)

where the second isomorphism is deduced from the Frobenius reciprocity, and when 𝜒𝑣 = | · |−1/2
Q𝑣

, the

first isomorphism is because by our choice of 𝜒𝜃 , 𝜒ℎ , 𝑊1 � 𝑊̃2. It is easy to see that the map

ℒ(𝑤1, 𝑤2) =
∫
Q×

𝑣

𝑤1(𝑥)𝑤2 (𝑥) · 𝜒𝑣 (𝑥) |𝑥 |−1/2
Q𝑣

𝑑×𝑥, 𝑤1 ∈ 𝑊1, 𝑤2 ∈ 𝑊2 (7.12.9)

is a nonzero element in the second line of equation (7.12.8), which is one dimensional, so it equals the

image of ℒ𝐹 ′
𝜏,𝑣

(
𝜃𝜆̄𝜏,𝑣 ⊗ • ⊗ •

)
in the second line of equation (7.12.8) up to a nonzero scalar. Hence,

showing the existence of 𝒯𝑣 ℎ̆𝜏,𝑣 ∈ 𝜋𝐷
ℎ𝜏 ,𝑣

invariant under 𝐾𝑣 such that equation (7.12.7) is nonzero

reduces to showing the existence of y2 ∈ 𝑊2 invariant under 𝐾
GL2
𝑣 such that ℒ(y1, y2) ≠ 0, where

y1 ∈ 𝑊1 is the vector invariant under 𝐾
GL2
𝑣 corresponding to 𝜃𝜆̄𝜏,𝑣 ∈ 𝜋𝐷

𝜃 𝜆̄𝜏 ,𝑣
.

For a character 𝜗 : Z×𝑣 → C×, put

y1,𝜗 (𝑥) =
∫
Z×𝑣

𝜗−1(𝑎)y1(𝑎𝑥) 𝑑𝑥,

the projection of y1 to the 𝜗-eigenspace for the action of diag(Z×𝑣 , 1). Let 𝜗∗ be the extension of 𝜗 to Q×
𝑣

taking value 1 at 𝜛𝑣 . For each integer m, put define 𝑤𝑚
𝑗,𝜗

∈ 𝑊 𝑗 , 𝑗 = 1, 2, as

𝑤𝑚𝑗,𝜗 (𝑥) = 1𝜛𝑚
𝑣 Z

×
𝑣
(𝑥) 𝜗∗(𝑥).

Then we have y1,𝜗 =
∑
𝑚 𝑐𝑚𝑤𝑚1,𝜗 with 𝑐𝑚 ∈ C finitely many nonzero m, and ℒ(y1, 𝑤𝑚

2,𝜗−1) =

ℒ(y1,𝜗 , 𝑤𝑚
2,𝜗−1). We can take a 𝜗 of conductor ≤ 𝜛

𝑐𝑣
𝑣 such that y1,𝜗 ≠ 0. This y1,𝜗 is still invari-

ant under 𝐾
GL2
𝑣 . By the formula (7.12.3) and (1) of Lemma 7.12.1, we deduce that

y1,𝜗 =

𝑐𝑣−𝑛(𝑤0
1,𝜗 )∑

𝑚=−(𝑐𝑣+𝜖𝑣 )
𝑐𝑚𝑤𝑚1,𝜗 , 𝑐𝑚 ∈ C,
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with 𝑛(𝑤0
1,𝜗) defined as in equation (7.12.2). Take −(𝑐𝑣 + 𝜖𝑣 ) ≤ 𝑚0 ≤ 𝑐𝑣 − 𝑛(𝑤0

1,𝜗) such that 𝑐𝑚0 ≠ 0.
Then

ℒ(y1, 𝑤
𝑚0

2,𝜗−1) = 𝑐𝑚0ℒ(𝑤𝑚0
1,𝜗 , 𝑤

𝑚0

2,𝜗−1) ≠ 0,

and by the formula (7.12.3), we know that 𝑤
𝑚0

2,𝜗−1 is invariant under

(
1 + 𝜛

𝑐𝑣
𝑣 Z𝑣 𝜛

𝑐𝑣+𝜖𝑣
𝑣 Z𝑣

0 1 + 𝜛
𝑐𝑣
𝑣

)
, and by

(2) of Lemma 7.12.1, we know that

𝑛(𝑤𝑚0

2,𝜗−1 ) = 𝑚0 + 𝑐(𝜋2 ⊗ 𝜗) ≤ 𝑐𝑣 − 𝑛(𝑤0
1,𝜗) + 𝑐(𝜋2 ⊗ 𝜗∗) = 𝑐𝑣 − 𝑐(𝜋1 ⊗ 𝜗∗−1) + 𝑐(𝜋2 ⊗ 𝜗∗).

By our choice of 𝜒𝜃 , 𝜒ℎ and the formula (7.12.1), we have 𝑐(𝜋1 ⊗ 𝜗∗−1) ≥ 𝑐(𝜋2 ⊗ 𝜗∗). Hence,

𝑛(𝑤𝑚0

2,𝜗−1 ) ≥ 𝑐𝑣 , and 𝑤
𝑚0

2,𝜗−1 is invariant under

(
1 0

𝜛
𝑐𝑣
𝑣 Z𝑣 1

)
. Therefore, y2 = 𝑤

𝑚0

2,𝜗−1 is the desired vector

in 𝑊2 invariant under 𝐾
GL2
𝑣 such that ℒ(y1, y2) ≠ 0.

Case 2: 𝑣 = 𝑞, 𝐷× (Q𝑞) modulo its center is compact and 𝜋𝐷𝑣 is one-dimensional isomorphic to
𝜒𝑞 ◦ Nm𝐷 , where 𝜒𝑞 is the unramified quadratic character in condition (5) in the choice of 𝜒𝜃 , 𝜒ℎ at
the beginning of §5.6, and Nm𝐷 denotes the norm of D. By our choice of 𝜒𝜃 , 𝜒ℎ , we have

𝜋𝐷
𝜃 𝜆̄𝜏 ,𝑞

⊗ 𝜒𝑞 ◦ Nm𝐷 � 𝜋̃𝐷ℎ𝜏 ,𝑞 .

It follows that there exists 𝒯𝑞 ∈ O𝐿 [𝐷× (Q𝑣 )] such that equation (7.12.7) is nonzero. Since 𝐾𝑣 is a
normal subgroup of 𝐷× (Q𝑞), 𝒯𝑞 ℎ̆𝜏,𝑞 is still invariant under 𝐾𝑣 . �

8. Proof of Greenberg–Iwasawa main conjecture

8.1. The Klingen Eisenstein ideal

Let Mso = HomΛso

(
V ∗

so,Λso
)

be the O𝐿 [[𝑇so (Z𝑝)]]-module of semiordinary families on GU(3, 1) of
tame level 𝐾

𝑝

𝑓
as in Theorem 2.9.1. Identifying 𝑇so (Z𝑝) with Z×𝑝 × Z×𝑝 � O×

K, 𝑝 , we have the map

𝑇so (Z𝑝) −→ O×
K, 𝑝 −→ ΓK, (8.1.1)

with kernel 𝜇𝑝 × 𝜇𝑝 . Denote by Vso, 𝜉 (resp. Mso, 𝜉 ) the sub-O𝐿 [[𝑇so (Z𝑝)]]-module of 𝑒soV (resp.
Mso) on which 𝜇𝑝 × 𝜇𝑝 acts through 𝜉𝑝-adic. We make 𝑇so (Z𝑝) act on Vso, 𝜉 and Mso, 𝜉 through its
usual action multiplied by the character 𝜉−1

𝑝-adic. Then this action factors through the image of 𝑇so (Z𝑝) in

ΓK under the map (8.1.1). Let V 0
so, 𝜉 ⊂ Vso, 𝜉 , M0

so, 𝜉 ⊂ Mso, 𝜉 be the cuspidal part. We consider the
O𝐿 [[ΓK]]-modules

Mso, 𝜉 ,ΓK
= Mso, 𝜉 ⊗O𝐿 [[𝑇so (Z𝑝) ]] Ô

ur
𝐿 [[ΓK]],

M0
so, 𝜉 ,ΓK

= M0
so, 𝜉 ⊗O𝐿 [[𝑇so (Z𝑝) ]] Ô

ur
𝐿 [[ΓK]] .

The semiordinary Klingen Eisenstein family 𝑬
Kling
𝜑 constructed in §5.10 belongs to the space

M𝑒𝑎𝑠
(
ΓK, 𝑒so𝑉GU(3,1) , 𝜉 ⊗̂Ôur

𝐿

)
⊗Z Q. By the natural pairing between 𝑉GU(3,1) ,so and the space V ∗

so

in Theorem 2.9.1, we see that there is a natural map

M𝑒𝑎𝑠
(
ΓK, 𝑒so𝑉GU(3,1) , 𝜉 ⊗̂Ôur

𝐿

)
× (Vso, 𝜉 )∗ −→ M𝑒𝑎𝑠

(
ΓK, Ôur

𝐿

)
� Ôur

𝐿 [[ΓK]],

and it induces a Ôur
𝐿
[[ΓK]]-linear Hecke-equivariant map

M𝑒𝑎𝑠
(
ΓK, 𝑒so𝑉GU(3,1) , 𝜉 ⊗̂Ôur

𝐿

)
−→ HomO𝐿 [[𝑇so (Z𝑝) ]]

(
(V ∗

so, 𝜉 , Ôur
𝐿 [[ΓK]]

)
= Mso, 𝜉 ,ΓK

.
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Therefore, we can view 𝑬
Kling
𝜑 as an element in Mso, 𝜉 ,ΓK

⊗Z Q. Let T be the abstract algebra generated

by the unramified Hecke algebras away from Σ ∪ {𝑝, ℓ, ℓ′} and U𝑝-operators at p. Then 𝑬
Kling
𝜑 is an

eigen-family for the action of T, and we denote by 𝜆Eis, 𝜋, 𝜉 : T→ Ôur
𝐿
[[ΓK]] the corresponding eigen-

system.
Let T0

so, 𝜉 ,ΓK

be the reduced Hecke algebra generated by T acting on M0
so, 𝜉 ,ΓK

. Let IEis, 𝜋, 𝜉 ⊂
T0

so, 𝜉 ,ΓK

be the ideal generated by the images of 𝑇 − 𝜆Eis, 𝜋, 𝜉 (𝑇) in T0
so, 𝜉 ,ΓK

, 𝑇 ∈ T. We define the
Klingen Eisenstein ideal as

E𝜋, 𝜉 = ker
(
Ôur
𝐿
[[ΓK]] T0

so, 𝜉 ,ΓK

/IEis, 𝜋, 𝜉

)
.

structure
map

It measures the congruences between the Hecke eigen-systems in T0
so, 𝜉 ,ΓK

and the Hecke eigen-system

𝜆Eis, 𝜋, 𝜉 attached to 𝑬
Kling
𝜑 .

Theorem 8.1.1. Let 𝜑 be as in Proposition 7.11.2. Let P be a height one prime ideal of Ôur
𝐿
[[ΓK]] such

that 𝑃 ∩ Ôur
𝐿
= (0). Then

ord𝑃
(
L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

L
Σ∪{ℓ,ℓ′ }
𝜉 ,Q

)
≤ ord𝑃 (E𝜋, 𝜉 ),

(where L
Σ∪{ℓ,ℓ′ }
𝜉 ,Q

,L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

∈ Ôur
𝐿
[[ΓK]] ⊗Z Q are the p-adic L-function satisfying the interpolation

property in equation (6.1.1)(6.1.2)).

Proof. By Theorem 2.9.1, we have the fundamental exact sequence

0 → M0
so, 𝜉 ,ΓK

→ Mso, 𝜉 ,ΓK
→

⊕
𝑔∈𝐶 (𝐾 𝑝

𝑓
)
𝑀GU(2)

(
𝐾

′𝑝
𝑓 ,𝑔

𝐾 ′
𝑝,0, Ôur

𝐿

)
⊗Z𝑝 Z𝑝 [[ΓK]] → 0.

Combining it with Theorem 6.1.1 on the degenerate Fourier–Jacobi coefficients of 𝑬Kling
𝜑 , we deduce

that there exists 𝑬 ′ ∈ Mso, 𝜉 ,ΓK
such that

𝑭 = 𝑬
Kling
𝜑 − L

Σ∪{ℓ,ℓ′ }
𝜉 ,Q

L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

· 𝑬 ′ ∈ M0
so, 𝜉 ,ΓK

⊗Z Q.

Let P be a height one prime ideal of Ôur
𝐿
[[ΓK]] such that

𝑃 ∩ Ôur
𝐿 = (0), ord𝑃

(
L
Σ∪{ℓ,ℓ′ }
𝜉 ,Q

L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

)
= 𝑚 ≥ 1.

By Proposition 7.11.3, for 𝛽 = 1, there exists 𝑔 ∈ U(2) (AQ) and 𝑢 ∈
⊗

𝑣 ∈Σns∪{ℓ′ } U(1) (Q𝑣 ) such that

𝑙𝜃 𝐽1

(
𝑬

Kling
𝜑,𝛽,𝑢

)
(𝑔) ∉ 𝑃. Then 𝑙𝜃 𝐽1

(
𝑭𝛽,𝑢

)
(𝑔) ∉ 𝑃, and we have the Ôur

𝐿
[[ΓK]]𝑃-linear map

(
T0

so, 𝜉 ,ΓK

)
𝑃
−→ Ôur

K
[[ΓK]]𝑃/𝑃𝑚Ôur

K
[[ΓK]]𝑃 , (8.1.2)

which sends the image of 𝑇 ∈ T in
(
T0

so, 𝜉 ,ΓK

)
𝑃

to

𝑙𝜃 𝐽1

(
(𝑇 · 𝑭)𝛽,𝑢

)
(𝑔)

𝑙𝜃 𝐽1

(
𝑭𝛽,𝑢

)
(𝑔) ≡

𝑙𝜃 𝐽1

(
(𝑇 · 𝑬Kling

𝜑 )𝛽,𝑢
)
(𝑔)

𝑙𝜃 𝐽1

(
𝑬

Kling
𝜑,𝛽,𝑢

)
(𝑔)

≡ 𝜆Eis, 𝜋, 𝜉 (𝑇) mod 𝑃𝑚.
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We see that equation (8.1.2) factors through
(
T0

so, 𝜉 ,ΓK

)
𝑃

/
IEis, 𝜋, 𝜉

(
T0

so, 𝜉 ,ΓK

)
𝑃

. It follows that the

composition

Ôur
K
[[ΓK]]𝑃

(
T0

so, 𝜉 ,ΓK

)
𝑃

Ôur
K
[[ΓK]]𝑃/𝑃𝑚Ôur

K
[[ΓK]]𝑃structure

map

(8.1.2)
(8.1.3)

factors through Ôur
K
[[ΓK]]𝑃/E𝜋, 𝜉 Ôur

K
[[ΓK]]𝑃 . By the definition of equation (8.1.2), we also know that the

composition (8.1.3) is the natural projection. Hence, we deduce that E𝜋, 𝜉 Ôur
K
[[ΓK]]𝑃 ⊂ 𝑃𝑚Ôur

K
[[ΓK]]𝑃 ,

and

ord𝑃
(
E𝜋, 𝜉

)
≥ 𝑚 = ord𝑃

(
L
Σ∪{ℓ,ℓ′ }
𝜉 ,Q

L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

)
.

�

8.2. The main theorem

By relaxing the conditions at 𝑣 ∈ Σ∪ {ℓ, ℓ′} in the definition of Sel𝜋,K, 𝜉 in equation (1.0.1) and 𝑋𝜋,K, 𝜉
in equation (1.0.2), we define the Σ ∪ {ℓ, ℓ′}-primitive Selmer group:

SelΣ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

= ker

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝐻1 (K, 𝑇𝜋,K, 𝜉 ⊗O𝐿
O𝐿 [[ΓK]]∗

)
−→

∏
𝔳≠𝔭

𝔳 � places in Σ∪{ℓ,ℓ′ }

𝐻1 (𝐼𝔳, 𝑇𝜋,K, 𝜉 ⊗O𝐿
O𝐿 [[ΓK]]∗

)⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

and

𝑋
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

:= HomZ𝑝

(
SelΣ∪{ℓ,ℓ′ }

𝜋,K, 𝜉
, Q𝑝/Z𝑝

)
.

Denote by Γ+
K

the rank one Z𝑝-module of ΓK on which the complex conjugation acts by +1, and put

R = Our
𝐿 [[ΓK]] ⊗O𝐿 [[Γ+

K
]] Frac

(
O𝐿 [[Γ+

K
]]
)
. (8.2.1)

Theorem 8.2.1. For an imaginary quadratic field K, a prime 𝑝 ≥ 3 split in K and 𝜋, 𝜉 as in §5.2,(
L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

)
⊃ charR

(
𝑋
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

⊗O𝐿 [[ΓK ]] R
)
, (8.2.2)

as ideals of R . (Here L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

∈ Ôur
𝐿
[[ΓK]] ⊗Z Q is the p-adic L-function constructed in [EW16] with

the interpolation properties described in equation (6.1.2).)

Proof. We can assume that the module 𝑋
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

is R -torsion (since otherwise its characteristic ideal
is defined to be (0) and the inclusion (8.2.2) automatically holds). We need to show that given a height
one prime ideal 𝑃 ⊂ Ôur

𝐿
[[ΓK]] such that 𝑃 ∩ Ôur

𝐿
[[Γ+

K
]] = (0), we have the inequality

ord𝑃
(
L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

)
≤ lengthOur

𝐿
[[ΓK ]]𝑃

((
𝑋
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

)
𝑃

)
. (8.2.3)

By Theorem 8.1.1, we reduce to showing that

ord𝑃
(
E𝜋, 𝜉

)
≤ lengthOur

𝐿
[[ΓK ]]𝑃

((
𝑋
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

)
𝑃

)
. (8.2.4)

We have the following setup.

◦ 𝐴0 = Ôur
𝐿
[[ΓK]] and 𝐴 = 𝐴̂0,𝑃 .

◦ 𝑅0 = T0
so, 𝜉 ,ΓK

, a prime ideal 𝑄 ⊂ 𝑅 such that 𝑄 ∩ 𝐴0 = 𝑃, and 𝑅 = 𝑅̂0,𝑄.

◦ 𝐻 = 𝐺Q = Gal(Q/Q) and 𝐺 = 𝐺K = Gal(Q/K).
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The following data give us the setup (1)–(5) on [Wan20, page 478].

(1) Let 𝜈 : 𝐻 → 𝐴×
0 be the trivial character.

(2) 𝜒 = 𝜉ΨK : 𝐺 → 𝐴×
0 , with 𝜒 � 𝜒−𝑐 modulo the maximal ideal of 𝐴0 by the choice of 𝜉.

(3) 𝜌 : 𝐺 → Aut𝐴(𝑉), a Galois representation obtained from the two-dimensional Galois representation
𝜌𝜋 : 𝐻 → GL(𝑉𝜋) with 𝑉 = 𝑇𝜋 ⊗O𝐿

𝐴 and 𝑇𝜋 ⊂ 𝑉𝜋 a G-stable lattice.
(4) 𝜎 : 𝐺 → Aut𝑅⊗𝐴𝐹 (𝑀), a Galois representation on 𝑀 = (𝑅 ⊗𝐴 Frac(𝐴))4 obtained as the pseudo-

representation associated to 𝑅0 as in [SU14, Proposition 7.2.1]
(5) 𝐼 = E𝜋, 𝜉 𝐴𝑃 and 𝐽 = ker(𝑅 → 𝐴/𝐼), where the map 𝑅 → 𝐴 is defined as the map (8.1.2) and is

surjective, and 𝐴/𝐼 = 𝑅/𝐽.

Moreover, the data satisfy the properties (6)–(9) on [Wan20, page 478]. Properties (6)–(8) are checked
in the same way as loc.cit.

Property (9) is about the irreducibility of 𝜎. It requires that, for each Frac(𝐴)-algebra homomorphism
𝜆 : 𝑅 ⊗𝐴Frac(A) → 𝐾 , K a finite extension of Frac(𝐴), the representation 𝜎𝜆 : 𝐺 → GL4(𝐾) obtained
from 𝜎 via 𝜆 is either absolutely irreducible or contains an absolutely irreducible two-dimensional
subrepresentation whose trace is congruent to 𝜒 + 𝜒−𝑐 mod I. It can be checked as follows. Let
T : 𝐺 → 𝐴 be the pseudo representation giving rise to 𝜎. Suppose that 𝜎 does not satisfy (9).
Then T = 𝛿1 + 𝛿2 + 𝛿3 with 𝛿1, 𝛿2 characters and 𝛿3 a two-dimensional pseudo-representation with
irreducible residual representation is Tr𝜌̄𝜋 . Take an arithmetic point 𝑥 : T0

so, 𝜉 ,ΓK

→ Q𝑝 corresponding
to an automorphic representation Π of U(3, 1) (AQ) generated by a classical semiordinary cuspidal
automorphic form fixed by 𝐾0

𝑝,1 of weight (0, 0, 𝑡+; 𝑡−), 0 � 𝑡+ � −𝑡−. We can associate a two-

dimensional (irreducible) Galois representation 𝜌3,𝑥 : 𝐺→GL2 (Q𝑝) to the specialization of 𝛿3 at

x. As in [SU14, Theorem 7.5], a twist of 𝜌3,𝑥 descends to Gal(Q/Q), which we denote by 𝜌′
3,𝑥 :

Gal(Q/Q)→GL2(Q𝑝).
If 𝜋 is ordinary at p, then Π is ordinary at p. By the argument in [SU14, Theorem 7.5], we know

that 𝜌′
3,𝑥 is modular and Π is cuspidal associated to parabolic subgroup (CAP), but the condition on the

weights (0, 0, 𝑡+; 𝑡−) excludes this possibility ([Har84, Theorem 2.5.6]).
If 𝜋 is not ordinary at p, then 𝜌̄𝜋 |𝐺K,𝔭

� 𝜌̄𝜋 |𝐺Q, 𝑝 is irreducible by [Edi92]. Since 𝜌̄Π � 𝜌̄𝜋 |𝐺 ⊕
two characters, we deduce that the semisimplification of 𝜌Π |𝐺K,𝔭

is not a direct sum of four characters.
Identify U(3, 1) (Q𝑝) with GL4(Q𝑝), and let 𝑄 ⊂ GL4 be a parabolic subgroup with its Levi subgroup
isomorphic to GL2 ×GL1 ×GL1. As in the proof of Proposition 3.0.5, it follows from the theory of

Jacquet modules that Π𝑝 is isomorphic to a subquotient of Ind
GL4 (Q𝑝)
𝑄 (Q𝑝) 𝜎 � 𝜒 � 𝜒′ with 𝜒, 𝜒′ characters

of Q×
𝑝 and 𝜎 an irreducible admissible representation of GL2(Q𝑝) containing a nonzero vector fixed by

the Iwahori subgroup. Since the semisimplification of 𝜌Π |𝐺K, 𝑝
is not a direct sum of four characters, 𝜎 is

not Steinberg or a twist of Steinberg, and must be unramified. Hence, Π𝑝 is isomorphic to a subquotient

of Ind
GL4 (Q𝑝)
𝐵 (Q𝑝) 𝜒1 � 𝜒2 � 𝜒3 � 𝜒4 with 𝜒1, 𝜒2, 𝜒3, 𝜒4 unramified characters of Q×

𝑝 . Let 𝛼 𝑗 = 𝜒 𝑗 (𝑝),
1 ≤ 𝑗 ≤ 4. We can assume that val𝑝 (𝛼1) ≤ val𝑝 (𝛼2) ≤ val𝑝 (𝛼3) ≤ val𝑝 (𝛼4). The semiordinarity of Π
at p implies that

val𝑝 (𝛼1) + val𝑝 (𝛼2) = 0, val𝑝 (𝛼3) = −𝑡+ + 3

2
, val𝑝 (𝛼4) = 𝑡− − 3

2
, (8.2.5)

and the integrality of the operator 𝑈+
𝑝,1 (defined in equation (3.0.7)) implies that

val𝑝 (𝛼1), val𝑝 (𝛼2) ≥ −1

2
. (8.2.6)

Thanks to the condition 0 � 𝑡+ � −𝑡−, equations (8.2.5) and (8.2.6) imply that 𝛼𝑖𝛼
−1
𝑗 ≠ 𝑝±1 unless

{𝑖, 𝑗} = {1, 2} and val𝑝 (𝛼1) = − 1
2 , val𝑝 (𝛼2) = 1

2 . However, val𝑝 (𝛼1) = − 1
2 , val𝑝 (𝛼2) = 1

2 imply that Π
is ordinary at p and this contradicts that 𝜌Π |𝐺K,𝔭

is not a direct sum of four characters. Therefore, we
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have 𝛼𝑖𝛼
−1
𝑗 ≠ 𝑝±1 for all 𝑖, 𝑗 , so Ind

GL4 (Q𝑝)
𝑄 (Q𝑝) 𝜎 � 𝜒 � 𝜒′ is irreducible and Π𝑝 is unramified. It follows

that 𝜌Π |𝐺K,𝔭
is crystalline, so 𝜌′

3,𝑥 |𝐺Q, 𝑝 is crystalline. Also, 𝜌̄′
3,𝑥 ≡ 𝜌̄𝜋 is not induced from a Galois

character for Q
(√

(−1) (𝑝−1)/2𝑝
)
, because its restriction to 𝐼𝑝 has semisimplification 𝜔𝑖2 ⊕ 𝜔

𝑝𝑖

2 with 𝜔2

the fundamental character of level 2 and 𝑖 ≡ 1mod (𝑝−1) (since 𝜌𝜋 |𝐺Q, 𝑝 is crystalline of weight (0, 1)),
and if 𝜋̄ was induced from a Galois character for Q

(√
(−1) (𝑝−1)/2𝑝

)
, i must be a multiple of 𝑝+1

2 , which

is impossible when p is odd. Thus, we can apply [Kis09], we deduce that 𝜌′
3,𝑥 is modular. Then Π is

CAP, that is, it has the same system of Hecke eigenvalues as a Klingen-type Eisenstein series. This is
impossible thanks to the condition on the weights (0, 0, 𝑡+; 𝑡−) by [Har84, Theorem 2.5.6]. Property (9)
is verified.

Let

𝑋
Σ∪{ℓ,ℓ′ }
𝜉◦Nm = HomZ𝑝

(
ker

{
𝐻1

(
Q, 𝜉ΨK ◦ Nm

)
→

∏
𝑣∉Σ∪{ℓ,ℓ′ }

𝐻1

(
𝐼𝑣 , 𝜉ΨK ◦ Nm

)}
, Q𝑝/Z𝑝

)
,

where 𝜉ΨK ◦ Nm is understood as a character of Gal(Q̄/Q) valued in Ôur
𝐿
[[ΓK]]∗. With the input (1)–

(5) satisfying the properties (6)–(9), applying the lattice construction [Wan20, Proposition 9.2], one
proves that if 𝑃 ⊂ Our

𝐿
[[ΓK]] is a height one prime such that ord𝑃

(
E𝜋, 𝜉

)
> 0 and

(
𝑋𝜉◦Nm ⊗Z Q)

)
𝑃 = 0,

then the inequality (8.2.4) holds. It follows that for all height one prime ideals 𝑃 ⊂ Our
𝐿
[[ΓK]] with

𝑃 ∩Our
𝐿
[[Γ+

K
]] = (0), the desired inequality (8.2.3) holds.

(The congruence ideal E𝜋, 𝜉 is bounded by the product LΣ∪{ℓ,ℓ′ }
𝜉 ,Q

L
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

and is expected to give

a bound for the product of the characteristic ideals of 𝑋
Σ∪{ℓ,ℓ′ }
𝜉◦Nm and 𝑋

Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

. Although, the char-

acteristic ideals of 𝑋
Σ∪{ℓ,ℓ′ }
𝜉◦Nm is known to be generated by L

Σ∪{ℓ,ℓ′ }
𝜉 ,Q

by the Iwasawa main conjecture
proved in [MW84], the lattice construction argument in [SU14, Wan20] only proves the desired bound

for ord𝑃
(
charOur

𝐿
[[ΓK ]]

(
𝑋
Σ∪{ℓ,ℓ′ }
𝜋,K, 𝜉

))
when

(
𝑋𝜉◦Nm ⊗Z Q)

)
𝑃 = 0. In [Wan20], height one primes in

Our
𝐿
[[Γ+

K
]] ⊗Z Q do not need to be excluded thanks to Lemma 9.3 in loc.cit and the fact that L𝜋,K, 𝜉 is

not contained in any height one prime ideal in Our
𝐿
[[ΓK]] by [Hsi14b]. However, in our case with 𝜋 fixed

instead of moving in a family, we cannot prove an analogue of Lemma 9.3 in [Wan20].) �

Next, we deduce partial results towards Conjecture 1.0.2 from Theorem 8.2.1. We first introduce the
following integral primitive p-adic L-function.

Proposition 8.2.2. Suppose that 𝜉 (fixed in §5.2) further satisfies the following conditions:

– 𝜉𝔭 � 𝜉𝔭̄ modulo the maximal ideal of O𝐿 (so that IndQ
K

𝜌𝜉 , the p-adic Galois representation cor-
responding to a CM eigenform associated to 𝜉, is residually absolutely irreducible and the two

characters of
(
IndQ

K
𝜉
)
|𝐺Q, 𝑝 on the diagonal are distinct),

– the conductor of 𝜉 is only divisible by primes split in K/Q.

Then there exists a p-adic L-function L𝜋,K, 𝜉 ∈ Ôur
𝐿
[[ΓK]] such that for all algebraic Hecke characters

𝜏 : K×\A×
K
→ C× with 𝜏𝑝-adic factoring through ΓK and 𝜉𝜏 of ∞-type (𝑘1, 𝑘2) with 𝑘1, 𝑘2 ∈ Z, 𝑘1 ≤ 0,

𝑘2 ≥ 2 − 𝑘1,

L𝜋,K, 𝜉 (𝜏𝑝-adic) =
(
Ω𝑝

Ω∞

)2(𝑘2−𝑘1) Γ(𝑘2)Γ(𝑘2 − 1)
(2𝜋𝑖)2𝑘2−1

· 𝛾𝑝

(
3 − (𝑘1 + 𝑘2)

2
, 𝜋∨
𝑝 × (𝜉0𝜏0)−1

𝔭̄

)

× 𝐿 {∞, 𝑝}
(
𝑘1 + 𝑘2 − 1

2
, BC(𝜋) × 𝜉0𝜏0

)
.

Proof. When both modular forms are ordinary and move in Hida families, the three-variable
(nonintegral) p-adic Rankin–Selberg p-adic L-function is constructed in [Hid91], and the integral
p-adic L-function obtained by multiplying a generator of a congruence ideal is constructed in
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[Wan20, Definition 7.8] when the dominant-weight family is CM, and in [CH20] for the general case
under the assumption that the Galois representation associated to the weight-dominant form is residually
absolutely irreducible and residually p-distinguished, which guarantees that its associated congruence
ideals is principal. In fact, when the form of nondominant weight, that is, our f here) is fixed, the ordi-
narity assumption on it is not necessary for constructing the two-variable p-adic Rankin–Selberg p-adic
L-function.

Like in [Wan20, Definition 7.8], we let 𝜉 ′ = 𝜉 · (𝜒tw
𝑔𝜉

◦NmK/Q) with 𝜒tw
𝑔𝜉

a finite-order Dirichlet char-
acter unramified outside Σ∪ {𝑝} such that the automorphic representation of GL(2,AQ) corresponding
to 𝜉 ′ is minimal in the sense of [HT93, Section 7] at all finite places. Denote by g𝜉 ′ the ordinary CM
family associated to 𝜉 ′ΨK.

In [Hid91], a three-variable Eisenstein measure valued in p-adic modular forms is constructed.
Denote by 𝑬 the restriction of the three-variable Eisenstein measure to the two-variable weight space
corresponding to f being fixed. Let 𝑓 ′ be the twist of f by 𝜒

tw,−1
𝑔𝜉 . Then the product 𝑓 ′𝑬 gives a two-

variable p-adic measure valued in p-adic modular forms. We can apply to it the ordinary projector and
get an ordinary family 𝑒ord ( 𝑓 𝑬). Applying the Hecke projector 1g𝜉′ to 𝑒ord( 𝑓 𝑬) and taking the first

Fourier coefficient gives an element in Lfrac
𝜋,K, 𝜉

∈ Frac
(
Ôur
𝐿
[[ΓK]]

)
. Under the assumptions on 𝜉, the

same argument in [Wan20, Definition 7.8] shows that the desired p-adic L-function (up to a p-adic unit)
can be obtained by multiplying ClK · LKatz

K, 𝜉
to Lfrac

𝜋,K, 𝜉
. �

Theorem 8.2.3. Let K be an imaginary quadratic field, 𝑝 ≥ 3 be a prime split in K, and 𝜋, 𝜉 as in §5.2
with 𝜉 also satisfying the conditions in Proposition 8.2.2.

(1) As ideals of R , (
L𝜋,K, 𝜉

)
⊃ charR

(
𝑋𝜋,K, 𝜉 ⊗O𝐿 [[ΓK ]] R

)
(where the ring R is defined in equation (8.2.1), the O𝐿 [[ΓK]]-module 𝑋𝜋,K, 𝜉 and its charac-

teristic ideal are defined in §1, and the p-adic L-function L𝜋,K, 𝜉 is given in Proposition 8.2.2).
(2) If 𝜉 further satisfies:

– 𝜉 |A×
Q
= 𝜔2 with 𝜔 : Q×\A×

Q
→ C× the Teichmüller character, and 𝑘0 ≡ 0mod 2(𝑝 − 1),

– for every finite place of Q nonsplit in K, 𝜖𝑣

(
1
2 , BC(𝜋) × 𝜉0

)
= 1,

then (
L𝜋,K, 𝜉

)
⊃ charOur

𝐿
[[ΓK ]]

(
𝑋𝜋,K, 𝜉

)
.

Proof.

(1) By the same argument as in the proof of [JSW17, Theorem 6.1.6], which uses the fact that the sizes
of the unramified cohomology groups at primes outside p are controlled by the local Euler factors
of the p-adic L-functions, the inclusion in (1) follows from Theorem 8.2.1.

(2) With those further conditions on 𝜉, one can use the vanishing of the anticyclotomic 𝜇-invariant
proved in [Hsi14b] to deduce that the L𝜋,K, 𝜉 is not divisible by any height one prime ideal in
Our
𝐿
[[Γ+

K
]]. Thus, the inclusion in (1) implies the inclusion in (2).

�
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