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Probabilistic computing has emerged as a viable approach to solve hard optimization 
problems. Devices with inherent stochasticity can greatly simplify their implementation in 
electronic hardware. Here, we demonstrate intrinsic stochastic resistance switching 
controlled via electric fields in perovskite nickelates doped with hydrogen. The ability of 
hydrogen ions to reside in various metastable configurations in the lattice leads to a 
distribution of transport gaps. With experimentally characterized p-bits, a shared-synapse 
p-bit architecture demonstrates highly-parallelized and energy-efficient solutions to 
optimization problems such as integer factorization and Boolean-satisfiability. The results 
introduce perovskite nickelates as scalable potential candidates for probabilistic computing 
and showcase the potential of light-element dopants in next-generation correlated 
semiconductors.  
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Probabilistic computing with p-bits has recently emerged as a domain-specific 
computational paradigm which can accelerate randomized algorithms in many areas related to 
machine learning and artificial intelligence1,2. Specifically, p-bits and p-circuits can be applied to 
statistical machine learning models such as energy-based neural networks3, efficient sampling and 
inference for Bayesian networks4. P-circuits have also been demonstrated to accelerate hard 
optimization problems5–7 and quantum Monte Carlo algorithms8,9. Probabilistic bits have 
previously been implemented in existing CMOS technology. However these implementations 
suffer from costly (pseudo) random number generators requiring thousands of transistors10–12 and 
poor quality of randomness, increasing energy and area costs for stochastic circuits. Even when 
the most advanced technology nodes are used, the ultimate scalability of standard digital CMOS-
based p-bits are limited. Therefore, nanodevices whose intrinsic randomness can be exploited to 
design energy-efficient p-bits is highly desirable and represents an early-stage research field. 
Along these lines, there have been proposals to build probabilistic bits using magnetic and 
spintronic implementations13,14 and thermal phase transitions15,16. In addition to sources of 
randomness extracted from nanodevices (such as stochastic magnetic tunnel junctions), p-bits 
typically require additional circuitry (transistors) to generate the desired tunable randomness in 
their implementations17.   

 Here, we introduce perovskite nickelates as efficient probabilistic computing building 
blocks utilizing their intrinsic stochastic switching. The electrical properties of rare-earth 
nickelates are governed by strong electron-electron correlations18. For example, perovskite 
NdNiO3 (NNO) are correlated metals at room temperature19, however electron doping with 
hydrogen donors in NNO causes several orders of increase in the electrical resistivity. During 
hydrogenation, the protons (H+) reside in the interstitial sites of NiO6 octahedra, while the electrons 
from the hydrogens occupy Ni 𝑒𝑔 orbitals, opening up a large Mott gap and changing the electronic 
structure20. Owing to their small size of the order of 10-4 Å, protons can take on multiple metastable 
configurations with subtle changes to electronic structure21. By perturbing the hydrogen ions 
locally near Pd electrodes with electric fields, p-bit functionality is first demonstrated. We then 
introduce the algorithmic concept of synapse-sharing where all replicas of an original network are 
driven by the synaptic inputs obtained only from the main replica, greatly simplifying design and 
device operation while enabling a high degree of parallelism (Figure 1(a)). The compact 
combination of stochastic activation and synaptic summation obtained from simple perovskite 
nickelates devices is in stark contrast with other p-circuit implementations where the synapse 
operation is typically achieved by large external CMOS circuitry. We demonstrate feasibility in 
sampling as well as combinatorial optimization (Figure 1(b)). For a given hard optimization 
problem, there is no general method of knowing how many samples will be required. However, 
reducing the energy taken per sample and obtaining more probabilistic samples in compact 
hardware improve key metrics including energy-to-solution and time-to-solution. The framework 
we present in this paper helps with both these metrics: perovskite nickelate based p-bits reduce 
energy per random bit and area per random bit, with promising scalability in hardware. By 
activating multiple arrays of p-bits with the same synaptic input, the shared synapse algorithm 
leads to parallelism in the sampling throughput. 



The stochastic switching behavior of our nickelate devices are summarized in Figure 2. 
NNO films (50 nm) were deposited on LaAlO3 (LAO) substrates and structural characterization 
of pristine NNO films are shown in Supplementary Figure S1. After the hydrogen doping, the 
conductance of the nickelate films decreased by 4 orders of magnitude (Supplementary Figure 
S1(d)). Optical image of hydrogen doped NNO (H-NNO) p-bit device with schematic of electrical 
measurement setup is shown in Figure 2(a). To investigate switching variation of the nickelate 
device, cycling tests and statistical analysis of H-NNO devices were performed, as shown in 
Supplementary Figure S2 and S3. By applying consecutive voltage pulses to the Pd electrode on 
H-NNO p-bits, abrupt changes in the resistance states of the device were observed (Figure 2(b)). 
The stochastic switching behavior of H-NNO p-bits in response to different pulse magnitude and 
width is presented in Figure 2(c). As voltage pulse increases, a sigmoidal distribution of spiking 
probability of H-NNO p-bit device was obtained and can be tuned by the pulse width. We 
characterized our experiments with a probabilistic description of a two-state system separated by 
an energy barrier using a 1-D Fokker Planck Equation (FPE), an approach successfully utilized to 
describe bistable magnetic systems22. We assume that two states corresponding to high resistance 
state (RH) and low resistance state (RL) are separated by an energy barrier, that is consistent with 
experimental measurements. We also assumed that the switching voltage acts as a driving force 
that modulates the energy minima of the two-state system, preferentially minimizing the energy of 
one state with respect to the other. This situation is reminiscent of magnetic systems being driven 
by spin-polarized currents or magnetic fields23,24 (see Methods section for details of the FPE 
model). Using the same set of fitting parameters, the model was used predictively to describe 
different pulse width behavior, resulting in good quantitative agreement between the experimental 
results and the theoretical model. The logic configuration of H-NNO p-bits upon voltage pulses 
with different pulse magnitude are presented in Figure 2(d) and Supplementary Figure S4. As 
both pulse voltage magnitude and width increased, the population of the logic state 1 (RL) became 
more dominant, indicating changes in hydrogen configuration in the NNO lattice. To demonstrate 
proof-of-concept use cases of our H-NNO p-bit for probabilistic computing, H-NNO p-bits were 
connected in various configurations and their probabilistic switching behavior were studied via 
experiment and simulations, as shown in Supplementary Figure S6-S15. Details of simulation of 
connected H-NNO p-bits can be found in Supplementary Figure S6 and S7. Switching 
probability histograms of connected H-NNO p-bits demonstrated good agreement between 
experiment and simulated cases, as shown in Supplementary Figure S11-S13. Details can also 
be found in Supplementary Note 2. 

In order to understand microscopic origins of the physical mechanism of stochastic switching 
behavior of H-NNO p-bits, we have performed first principles calculations based on RL sampled 
configurations25,26. Figure 3 shows the probability of finding a metastable configuration in a 
hydrogen-doped nickelate unit cell – the states are found to be distributed over an energy gap of 
~0.8 eV. The metastable configurations were sorted with respect to their energies (left to right). 
The probability of occurrence of a metastable phase, 𝑖 , is given by: 

𝑃𝑖 =  
𝑒−(𝐸𝑖−𝐸min)/𝐾𝑇

∑ 𝑒−(𝐸𝑖−𝐸min)/𝐾𝑇
𝑖

 



where, K is the Boltzmann constant, T is the temperature, 𝐸𝑖  is the energy of the metastable 
configuration i and 𝐸𝑚𝑖𝑛 is the energy of the lowest energy configuration found using the first 
principles calculations based on RL sampled configurations. Thus, at a given temperature, higher 
the energy of the metastable phase, lower is the probability of its occurrence. (See SI for details) 
The degree of non-equilibrium or metastability is shown by a corresponding heat map that depicts 
the configurational energy differences ∆𝐸𝑖 of all the metastable configurations with respect to the 
configuration which has the lowest energy. Our first principles calculations show that pristine 
NNO is metallic whereas the introduction of H within the NNO lattice opens up a band-gap. For a 
1H:1NNO doping fraction, the probability of finding a given metastable H:NNO configuration 
(LHS y-axis) at temperature T=300 K is shown by the black curve and their corresponding gap 
(Eg) values are shown on the RHS y-axis. Representative metastable configurations for 1H:1NNO 
are presented in Supplementary Figure S16. We note a wide distribution of resistance states for 
the given stoichiometry and find that the resistance states are strongly correlated to the extent of 
metastability. In general, we find that near-equilibrium or low energy metastable 1H:1NNO 
configurations have a bandgap that varies from 0.2 to 0.8 eV. At 300 K, the most probable band 
gap value <Eg> , (calculated using Pi × Egi  i.e. probability of metastable state i multiplied with its 
band gap) is 0.52 eV as shown by the horizontal grey line. Configurations far away from energy 
minima tend to display a metallic behavior but are much less probable in the absence of an external 
stimuli. Most of the low energy configurations have semiconducting characteristic with subtle 
changes in the H locations in the NNO lattice and their band-gaps can be modulated with relatively 
low electric fields. Note that Pi and Eg are computed values from independent calculations. Eg (or 
bandgap) is a direct outcome of the underlying structure of the metastable phase. On the other 
hand, Pi values are influenced by the relative energy the metastable phase in the context of all other 
configurations participating in the partition function. Thus, relative energy of a metastable phase 
determines its probability of occurrence Pi, while its structure determines the bandgap Eg. From 
Figure 3, it appears that low energy configurations (with higher Pi values) tend to have high Eg. 
while high energy configurations have relatively low Eg.  

With the model for stochastic switching of the nickelate device, we show that H-NNO p-
bits can be implemented in synapse-sharing algorithms (Figure 4(a)). In this algorithm, we 
construct a network in an N × N crossbar array with N2 p-bits. These p-bits are split into N columns 
where one column is randomly chosen as the main replica while the remaining are chosen as the 
shared replicas. The key idea is to perform the multiply-accumulate (MAC) where a local field is 
computed for a given p-bit based on the state of its neighbors in the main replica. All replicas of a 
given p-bit are then updated with the same local field. The system involves a controller unit 
interacting with the crossbar array. Probabilistic circuits (p-circuits) employ two main equations, 
one for the stochastic activation and another for the synaptic operation. Typically, the stochastic 
activation is given by:  

𝑠𝑖 = Θ[−𝑟𝑎𝑛𝑑 + 𝜎(𝛽𝐼𝑖)]    (Eq. 1) 

where 𝐼𝑖  is the dimensionless analog input, s is the binary state of a p-bit (either 0 or 1), 𝛽 is the 
dimensionless inverse temperature, and rand is a uniformly generated random number between 0 



and 1. 𝜎 is the sigmoid function ( 1
1+exp(−𝑥)

 ) and Θ is the Heaviside step function. The synaptic 

equation corresponding to two-local interactions is given by: 

𝐼𝑖 = ∑ 𝐽𝑖𝑗𝑠𝑗
j

+ ℎ𝑖     (Eq. 2) 

where 𝐽𝑖𝑗  are the weights between p-bits and ℎ𝑗 are the bias terms for each p-bit. The main function 
of the controller array is to provide voltage pulses 𝑉𝑖𝑗 and 𝑉𝑖  corresponding to the weights (𝐽𝑖𝑗) 
and bias (ℎ𝑖) parameters of a chosen problem (Figure 4(b)). RH and RL of the H-NNO p-bits 
represent logic 0 and logic 1, respectively. Resistances (Rj) encode the stochastic state of the p-
bits (sj), whereas the voltage pulses applied from the controller encode the weight values (Jij). The 
operation of a p-circuit consists of three main phases: deterministic dot product (read), stochastic 
switching (write) and read-out for bias correction (see Supplementary Note 1.1). Given a 
probabilistic network, the problem is introduced to the system by the weights (𝐽𝑖𝑗) mapped to a 
voltage set 𝑉𝑖𝑗, and a bias (ℎ𝑖) vector mapped to the voltage set 𝑉𝑖 (see details of mapping in the 
Methods section). These voltages are chosen such that the system eventually samples from the 
corresponding Boltzmann distribution27. A digital controller arranges  𝑉𝑖𝑗, 𝑉𝑖 and 𝑉𝑤𝑟𝑖𝑡𝑒 voltages 
for the read (𝑉𝑖𝑗, 𝑉𝑖) and write phases (𝑉𝑤𝑟𝑖𝑡𝑒). We envision the controller as a digital system that 
reads and converts the analog MAC voltages (Eq. 3) to digital voltages. The digital controller then 
schedules the write voltages to each replica sequentially, after appropriate scaling (described in 
the mapping to the hardware section of the Methods). During the read phase, ith row of the weight 
matrix is chosen by the control unit (with some prescribed order), along with the ith bias voltage 
(𝑉𝑖). The ith unit of the chosen weight array is excluded since the diagonals of the weight matrix is 
zero. As typically performed in crossbar arrays, the natural addition of currents according to 
Kirchhoff's Current Law (KCL) resulting in:  

𝐼𝑀𝐴𝐶 = ∑ 𝑉𝑖𝑗 

𝑅𝑗j
+ 𝑉i

𝑅bias 
           (Eq. 3) 

Given a row of p-bits (ith row) to be updated, this equation naturally maps to Eq. 2. After, the MAC 
current is turned into a voltage and digitized by an analog to digital converter, it goes back to the 
controller circuit (read phase complete). Next, a pulse voltage Vwrite corresponding to IMAC is 
applied to ith row-line of the crossbar, updating the ith p-bits in all replicas (write phase complete). 
For a given annealing schedule 𝛽(𝑡 ), Vwrite is scaled by the digital controller with the 
corresponding 𝛽  at time t. Alternatively, the pulse width dependence of the sigmoidal 
characteristics of the p-bits could be used to facilitate annealing. Subsequent p-bits in each replica 
are updated by consecutive read and write operations in this manner. In the shared synapse 
algorithm, N p-bits are updated per each write phase where each p-bits has access to its own 
uncorrelated randomness. This introduces natural parallelism to our algorithm, as we discuss next 
in solving hard combinatorial optimization problems. Figure 4(c) shows a neural network 
representation of the overall probabilistic network with the shared synapse algorithm. Discussion 
on the shared synapse algorithm is also provided in Supplementary Note 1.2. 



 We then demonstrated probabilistic Boolean gates utilizing H-NNO p-networks. In 
traditional digital design, Boolean gates are designed to be feedforward such that the input bits 
uniquely determine the output bits and the outputs are isolated from the inputs. This is an important 
(and desired) feature of digital gates enabling hierarchical design. By contrast, probabilistic gates 
can be designed to be bidirectional, enabling unique functionalities. For example, probabilistic 
AND gates can not only compute an output with respect to given inputs, but they can also be 
operated in the reverse mode where given an output, the circuit finds the input bits consistent with 
these outputs28,29.  As we discuss below, this feature is useful in encoding optimization problems 
in probabilistic networks. In solving combinatorial optimization problems by probabilistic 
methods, typically an energy function is introduced:  

−𝐸 = ∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗
<𝑖,𝑗>

+ ∑ ℎ𝑖𝑠𝑖𝑖      (Eq. 4) 

Generally, a dimensionless energy is expressed heuristically30 whose ground state corresponds to 
a problem of interest which is sampled according to the Boltzmann distribution, with inverse 
temperature :  

𝑝 = 1
𝑍

exp (−𝐸)     (Eq. 5)  

The objective of the p-computer is to map an optimization problem into the form of (Eq. 4) and 
sample the low energy states with high probability, as  is increased. Instead of expressing the 
energy functions heuristically, we follow the systematic composition of invertible Boolean 
gates29,31. This approach allows a sparse and systematic formulation of cost functions to express 
hard optimization problems. As a proof-of-principle, we focus on the problem of integer 
factorization and Boolean satisfiability.  

Figure 5(a-b) shows the solution of the integer factorization problem by a probabilistic 
network in an 8-bit invertible multiplier32. This requires 52 p-bits in each replica. In an N × N 
crossbar layout, this corresponds to a total of 52 × 52 = 2704 p-bits in the system. For the main 
replica, a linear simulated annealing schedule is applied by changing 𝛽 (Eq. 1) from 0 to 1.5 
linearly (see Figure 5(a) and (c) inset). Each sample corresponds to an updating event for a single 
p-bit in a replica, and in total, the system, including the shared replica takes 52 × 5 × 104 samples. 
Figure 5(a) shows the energy as a heatmap for all replicas with respect to samples taken, when 𝛽 
is increased linearly. We observe that at the end of an annealing schedule, the correct factors are 
found (Figure 5(b)). We see that the replica energies are also systematically converging to the 
ground energy but with different paths, indicating that the replicas explore useful alternatives in 
the rough energy landscape of the problem, a key advantage of the shared synapse algorithm. Next, 
we show an example Boolean satisfiability (3-SAT) problem, expressed in terms of invertible p-
circuits (Figure 5(c-d)). Like integer factorization, Boolean satisfiability is a hard constraint 
satisfaction problem, widely used in many different applications ranging from planning in AI, 
software verification, and real-world optimization problems33. We choose an example instance, 
namely the UF20-91 from the UBC SAT library34 with 20-literals and 91-clause as a representative 
benchmark.  For this problem, we require 112 p-bits for each replica and therefore construct a 112 
× 112 crossbar array with 12544 p-bits. We use a linear annealing schedule, changing 𝛽 from 0 to 



2 in 104 steps. Like the integer factorization, the energy of each replica is presented as a heatmap 
which shows how replicas take different paths but converge to the same, correct answer, despite 
being driven by the main replica in the shared synapse algorithm. Both results demonstrate the 
potential of probabilistic computing with inherently stochastic H-NNO p-bits as well as the use of 
additional probabilistic samples that can be obtained by the shared synapse method. In 
Supplementary Figure  S20 and S21, we perform a systematic comparison of the shared synapse 
algorithm, comparing it with classical and replicated classical annealing where we show that the 
SS algorithm can provide computational advantages when there is a large availability of synapse-
less replicas with p-bits. Recent research35 showed that sophisticated and powerful replica-based 
optimization algorithms such as parallel tempering (PT) can be performed with p-bits. Indeed, 
modifications to our algorithm to perform PT where replicas are driven at different temperatures 
by the same synaptic input from the main replica may lead to parallelized and hardware-aware 
sampling schemes in future. Benchmarks for random number generation using perovskite-based 
p-bits are presented for reference in Supplementary Figure S22.  

 We have introduced nanoscale perovskite nickelate crystals as a p-bit platform for 
probabilistic computing. Electrical properties of individual and connected nanoscale devices have 
been studied via combination of experiments and modeling. Probabilistic networks simulated with 
experimentally measured stochastic switching behavior of the nickelate p-bits efficiently solved 
combination optimization problems such as integer factorization and Boolean satisfiability. The 
results suggest the potential of light-element doping of correlated perovskite crystals as an 
interesting platform for future computing technologies. 

 
Supporting Information: The details on experimental and simulation methods; structure 
characterization of NNO thin films (S1); electrical characteristics of H-NNO p-bit device (S2-S5); 
experimental and simulated probabilistic behavior of connected H-NNO p-bit devices (S6-S15); 
metastable configurations of H atoms in H-NNO samples (S16); The detailed description of shared 
synapse p-computing using H-NNO p-bits (S17-21); Benchmarking comparisons of obtaining 
random bits with different hardware (S22).  
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Figure 1. Perovskite bits for probabilistic computing (a) Probabilistic computer architecture 
with H-NNO p-bits utilizing a shared synapse algorithm. Main replica p-bits are used to compute 
a synapse to drive the full system with replicas. Each H-NNO acts as a p-bit, stochastically 
changing states from HRS (0) to LRS (1) by an applied pulse. Average switching probability was 
obtained at different pulse amplitudes. (b) Representative probability landscape for hard 
optimization problems at different inverse temperatures,  (Eq. (4-5)). Each state is occupied with 
probability pi  exp [- Ei], where Ei is a scalar energy defined by discrete states, corresponding 
to possible Factors A and B.  The correct factors (such that AB = BA= Product) have the lowest 
energy and labeled "ground states". These have the highest pi, but they are accompanied by many 
other local minima with nearly the same pi, signaling computational hardness.  



 

Figure 2. Measured probabilistic switching behavior of H-NdNiO3 p-bit device. (a) Optical 
microscope image of H-NNO p-bit device and the electrical measurement scheme. Pd and Au 
electrodes were patterned on NNO films (dashed square). Voltage pulses were applied to Pd 
electrode and Au electrode was grounded. Scale bar, 30 µm. (b) Resistance changes of H-NNO p-
bit device was monitored upon consecutive voltage pulses (top panel). Pulse voltage profile to the 
nickelate device as a function of number of pulses were presented (bottom panel). Negative voltage 
pulses (-4.5V, 500 ns) were applied to the nickelate device at high resistance state (RH) until the 
resistance states were switched. After the switching, positive reset voltage (+4.5V, 500 ns) was 
applied to recover RH state. (c) Switching probability of H-NNO p-bit device as a function of 
applied pulse voltage with different pulse widths. A Fokker-Planck-Equation (FPE) based model 
has been used to model the pulse width and pulse voltage dependence. (d) Logic configuration of 
H-NNO p-bit device, 0 and 1 denote RH and RL, respectively. 10 separate pulses (denoted by the 
colored columns) are applied at each indicated magnitude. For a fixed pulse width of 500 ns, a 
gradual increase in the population of the logic 1 state was observed as the applied pulse voltages 
were increased.  

  



 
Figure 3. Reinforcement learning-based first principles calculations to determine probability 
distribution plot for locating a metastable 1H:1NNO configuration at T= 300 K. We sampled 
275 different low energy metastable configurations which are shown in x-axis based on their 
energy ordering relative to the lowest energy 1H:1NNO configuration (from left to right with 
incresing energy in meV/atom as shown by the heatmap). Left y-axis shows the probability of 
finding metastable configuration i i.e. Pi and RHS y-axis shows their corresponding band gap 
values calculated using a DFT+U framework. At T=300K, the most probable bandgap value for 
1H:1NNO stoichiometry is 0.52 eV as shown by the horizontal grey line. The band-gap values 
vary widely and continuously over an 0.8 eV range. The application of an e-field can be used to 
perturb H within the NNO lattice – we note that subtle H displacements within the NNO lattice 
can allow us to access a wide range of semiconducting resistance states whereas higher fields can 
even allow for metallic states to be accessed (which typically has a low probability in the absence 
of any e-field). 

 
  



 

Figure 4. Probabilistic computing architecture using resistive crossbar arrays, state encoding 
and the shared synapse algorithm. (a) Physical structure of the crossbar array with N × N H-
NNO p-bits. A multiply accumulate current (IMAC) for a single p-bit is obtained over the main 
replica with N p-bits, converted to a voltage (Vwrite) and digitized by an ADC. Then, a full row of 
N p-bits (over N-replicas including the main) are updated with the shared (Vwrite) voltage. (b) Ising 
model and state encoding: low resistance and high resistance states (LRS, HRS) correspond to 
stochastic binary values, 1 and 0, respectively. Weights (Jij) and biases (hi) are described by 
voltages Vij and Vi applied from the controller. (c) A neural network representation of the shared 
synapse algorithm: The inputs obtained from main replica p-bits drive neighboring p-bits in shared 
replicas in addition to the main replica.  Biases are applied individually to each replica (only shown 
for s1, for simplicity). See Supplementary Figure S17 for details of the shared synapse algorithm.



 

Figure 5. Solving the Integer Factorization and Boolean Satisfiability (3-SAT) problems with 
the shared synapse algorithm (a) Offset energy (where EGS is the ground state energy) as a 
function of samples size for an 8-bit integer factorization problem (143 = 11 × 13). The simulation 
is performed on a 52 × 52 p-bit grid with 2704 p-bits with annealing over 5 × 105 samples. (b) 
Factors A and B when the product is fixed to 143 in an inverse multiplier p-circuit, measured over 
the entire range of samples. Heatmap of factors A and B measured as the system is annealed over 
5 × 105 samples. (c) Offset energy as a function of sample size for the UF20-91 instance of the 3-
SAT (Boolean Satisfiability) problem. (Inset) Shows linear annealing schedule of the inverse 
temperature, β. The energy is a heatmap over all replicas (N=112) where 111 shared replicas are 
driven by the main replica. Red line shows the average energy over all replicas. (d) Number of 
unsatisfied clauses in the 3-SATinstance, as a function of sample size showing a heatmap over all 
replicas. The replica heatmap shows how each replica individually converges to the right answer, 
though showing individual variations (Red line shows average replica energy). In both examples, 
despite sharing the synaptic input from the main replica, being endowed with uncorrelated random 
p-bits shared replicas show variations over the course of annealing, eventually converging to the 
same (correct) answer. 
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