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Abstract: Image reconstruction is the process of recovering an image from raw, under-sampled
signal measurements, and is a critical step in diagnostic medical imaging, such as magnetic resonance
imaging (MRI). Recently, data-driven methods have led to improved image quality in MRI reconstruc-
tion using a limited number of measurements, but these methods typically rely on the existence of a
large, centralized database of fully sampled scans for training. In this work, we investigate federated
learning for MRI reconstruction using end-to-end unrolled deep learning models as a means of
training global models across multiple clients (data sites), while keeping individual scans local. We
empirically identify a low-data regime across a large number of heterogeneous scans, where a small
number of training samples per client are available and non-collaborative models lead to performance
drops. In this regime, we investigate the performance of adaptive federated optimization algorithms
as a function of client data distribution and communication budget. Experimental results show that
adaptive optimization algorithms are well suited for the federated learning of unrolled models, even
in a limited-data regime (50 slices per data site), and that client-sided personalization can improve
reconstruction quality for clients that did not participate in training.

Keywords: MRI reconstruction; federated learning; unrolled optimization; accelerated MRI

1. Introduction

Magnetic resonance imaging (MRI) is a medical imaging modality that has seen
widespread clinical adoption due to its superior soft tissue contrast and use of non-ionizing
radiation. In particular, multi-coil (parallel) MRI acquisition combined with sub-sampling
represents a means of reducing scan time and increasing scanner throughput [1-3]. Given
that sampling below the Nyquist rate gives rise to an ill-posed inverse problem, and hence
can produce artifacts in reconstructed images, a wide area of research has been dedicated to
image reconstruction algorithms for accelerated MRI. Recently, deep learning has achieved
substantial improvements in reconstruction quality compared to classical methods [4-6],
and is rapidly heading toward clinical validation [7].

One particular challenge that data-driven MRI reconstruction methods face is the
availability of large datasets containing raw signal measurements (called k-space) acquired
at a specific data site (client) in a multi-clinic setting. As independent institutions are
often equipped with MRI scanners supplied by different vendors, together with different
clinical needs in terms of patient population and institutional scanning protocols, this
leads to a data heterogeneity problem, where a particular site may have both disparate
and insufficient data to train a high-fidelity model. This has motivated researchers to
investigate the transfer capabilities of deep learning for MRI reconstruction [8] and led
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to the use of federated learning [9]—a collaborative learning technique which leverages
decentralized training—for medical image reconstruction in a cross-silo setting. Given
data scarcity issues, together with regulatory and privacy constraints that prevent raw
data from being shared between institutions [10], federated learning is a promising tool
for achieving robust generalization. Finally, models learned using federated learning have
the potential to be further personalized [11,12], where models are adapted at the client
side after learning has concluded in order to improve performance on the local sample
distributions. One such application is for sites that may only be capable of acquiring
and processing a limited number of fully sampled scans (e.g., due to specialized system
hardware or limited resources) to also benefit from the learned model without having
participated during training in the first place.

End-to-end unrolled optimization methods [13] are considered state of the art for
under-sampled MRI reconstruction [8], and are the focus of this work. We investigate
established adaptive federated learning algorithms applied to 2D (per slice) MRI recon-
struction with end-to-end unrolled optimization. In the main federated learning stage, an
adaptive optimization algorithm is used to learn an MRI reconstruction model without
sharing data or features between clients. Subsequently, in the personalization stage, a client
uses the small number of available fully sampled MRI scans (as few as 50 2D slices) to
fine tune the global model on the target distribution using cross-validation early stopping.
We perform experiments using subsets from the fastMRI [14] knee and brain datasets, as
well as publicly available axial knee and abdominal datasets [15], and demonstrate that
adaptive federated learning algorithms can efficiently learn reconstruction models across a
wide range of anatomies, contrasts, and communication rates, and are also amenable to
personalization via simple fine tuning.

1.1. Background
1.1.1. Federated Learning for MRI Reconstruction

Federated learning [16] has recently gained substantial research interest in the broader
machine learning field [17] due to its ability to learn models in a distributed and privacy-
oriented manner. A baseline federated optimization algorithm is given by federated
averaging (FedAvg) [16], where individual clients periodically upload their model weights
to a central server, which performs simple averaging of the client-sided model weights.
Powerful, FedAvg performance is known to degrade when data across clients are het-
erogeneous. The work in [18] introduces the Scaffold algorithm as a solution to learning
shared representations for heterogeneous data by including an adaptive momentum term
at each communication round. Similarly, the work in [19] proposes a family of adaptive
optimization algorithms (termed FedAdam, FedAdaGrad, and FedYogi after their classical
counterparts) for federated learning. In this work, we investigate the performance of these
adaptive algorithms when applied to unrolled MRI reconstruction with deep networks.

Federated learning has recently been applied to medical imaging in the context of a
synchronous, cross-silo setting, and is foreseen to have an impact on the future of digital
health [10]. Important challenges when dealing with medical image data are given by
data heterogeneity [20,21], as well as the sensitive nature of raw patient data [22]. When
applied to MRI reconstruction, the FL-MRCM algorithm [9] proposes an adversarial feature
learning approach for handling the heterogeneous nature of the data. In this method, one
of the clients is designated as an explicit target, and the feature representations of all other
clients are optimized to be indistinguishable from that of the target. The recent work in [23]
used generative adversarial networks (GANSs) to build on the FedGAN approach [24]
and proposed learning a deep generative prior using federated learning that is further
personalized for each individual scan during test time. However, it is an open question if
adversarial learning approaches are suitable for scenarios with very limited training data
at client sites. The work in [25] proposed a model splitting approach inspired by the layer
personalization method in [26] but this is only suitable for non-unrolled architectures, such
as U-Net [27]. The work in [28] discussed strategies for splitting unrolled reconstruction
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models in centralized multi-task settings, but leaves as future work to investigate these in
conjunction with federated learning and heterogeneous clients.

Client-sided personalization using fine tuning was previously introduced in [29],
where the authors investigated the efficiency of this approach on language tasks. The work
in [30] introduced a framework based on knowledge distillation to personalize the models
in the final communication round in computation-bound settings. More recently, the work
in [31] provided theoretical justification for fine tuning in the context of linear models and
the Fed Avg algorithm. Inspired by this line of work, we also investigate the performance of
fine tuning as a simple and efficient method of personalizing MRI reconstruction models.

1.1.2. Unrolled Optimization for MRI Reconstruction

Model-based unrolled optimization architectures represent a large area of research in
ill-posed inverse problems [13,32], including medical imaging. The work in [4] introduced
the variational network (VarNet) approach, where differentiable optimization steps are
interleaved with a forward pass of a deep neural network, and the entire architecture is
trained end-to-end using a supervised reconstruction objective. A similar method was
given by the model-based deep learning (MoDL) approach [33], with differences in the
type of unrolled optimization used. Extensions of these methods have been proposed to
include automatic sensitivity map estimation [34-36], dual domain (image and k-space)
formulations [37,38], and self-supervised settings [39].

While these works have greatly advanced MRI reconstruction benchmarks [8], there
are still open questions regarding how they scale in a federated learning regime with few
local samples, as well as the best approach for handling domain shift [21]. Our work aims
to address the current research gap that exists at the intersection of federated learning
and unrolled end-to-end optimization for MRI reconstruction. We focus on the baseline
MoDL approach introduced in [33], and investigate its performance in a federated setting,
under different optimization algorithms and communication rates. We consider a multi-coil
learning setup using realistic k-space measurements. This is in contrast to other works,
where some of the measurements are simulated from coil-combined images. While the
latter allows for simple implementations of deep learning methods, the results may not
directly translate to a clinical settings [40]. We investigate reconstruction performance
in federated learning regimes with a small number of samples (slices) available for local
training or personalization (as low as 50). Previous work in federated MRI reconstruction
only considered up to four clients during learning [9,23], each having access to at least
hundreds of training samples. While this is a valid setup for cross-silo federated learning,
acquiring large amounts of data in under-resourced clinics may be untenable. In addition,
previous work has shown that this data regime may already be sufficient to train unrolled
models for MRI [41], which we confirm in our experiments.

1.2. Contributions
A summary of our contributions in this work is the following:

*  We perform extensive experimental evaluations to determine the low data regime
of federated learning end-to-end unrolled MRI reconstruction. This is the regime
where each client has an insufficient number of samples to accommodate local (non-
collaborative) learning, enabling federated learning to benefit every participant. We
find that, across a wide range of anatomies and contrasts, this regime consistently
occurs when fewer than 50 slices (across five patients) are available at each site.

¢  We evaluate non-adaptive and adaptive federated learning algorithms (FedAvg,
FedAdam, FedAdagrad, FedYogi, and Scaffold) applied to unrolled MRI reconstruc-
tion in the low data regime. We investigate both independent and identically dis-
tributed (i.i.d.) and non-i.i.d. client settings, as well as their performance as a function
of the frequency of communication in a setting with fixed total computational power.
Our findings indicate that federated unrolled optimization for MRI reconstruction is
feasible with as few as four infrequent communication rounds.
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*  We evaluate a client-sided model personalization via fine tuning after federated
learning, using a small amount of fully sampled MRI scans. We find that this can
learn an improved reconstruction network without heavily overfitting in the low-data
regime, even for clients that did not originally participate in training. Fine tuning
constitutes an easy, reproducible benchmark for future federated learning researchers
to build and improve on.

The code for the experiments in this paper is publicly available (https:/ /github.com/
utesilab/Unrolled_FedLrn, accessed on 6 February 2023).

2. Theory
2.1. System Model

Two-dimensional MRI operates by measuring the k-space (spatial frequency) do-
main of a complex-valued image x € CN, where we use lowercase letters to indicate
the vectorized version of a multidimensional data array, and N denotes the length of the
vectorized data. Letting F € CN*N be the two-dimensional Fourier operator matrix, and
P € {0,1}M*N be a binary selection (diagonal) matrix, the noisy, under-sampled vector of
measurements ¥ € CM for the case of single-coil MRI with Cartesian sampling is given by

y=PFx+n, D)

where 1 is (without loss of generality) zero-mean complex-valued white Gaussian noise.

Multi-coil MRI measures the same image x with an array of radio-frequency receive
coils, each with a spatially varying sensitivity profile, producing a set of parallel measure-
ments y;, where i € {1, .., NC}, and N, represents the number of receive coils. Each coil
is characterized by the coil sensitivity map diagonal matrix S; € CN*N, and the forward
model for a single coil is given by [2]

Yi = PPSI'X + n;. (2)

We define R = M/ N as the acceleration factor. Importantly, because the receive coil
sensitivity profiles generally vary smoothly, measurements acquired from different coils
are correlated, making the inverse problem of recovering x from multi-coil measurements
potentially ill-posed, even at relatively low R. For the remainder of this work, we abuse
notation and let y and n denote the concatenated vectors of multi-coil measurements and
additive noise, respectively, S the concatenated matrix of sensitivity maps, and A = PFS
the summarized forward operator that encompasses all three operations in sequence. We
obtain that the multi-coil forward MRI model is given by

y=Ax+n. 3)

The goal of MRI reconstruction is to recover the image x from the under-sampled mea-
surements y, and can be formulated as the solution to the following optimization problem:

argmin %Hy — Ax|3 + AR (x), (4)
X

where R and A are a suitably chosen prior and regularization coefficient, respectively.
Designing or learning the correct prior is a critical aspect in recovering signals from under-
sampled measurements. For example, compressed sensing based recovery [42] utilizes
R(x) = |[Wx||1, where W is a wavelet operator, while deep learning methods use a learned
prior either explicitly or implicitly represented by a neural network D(+; ®) with learnable
weights © [4,33-35,43]. We note that this regularized linear inverse problem formulation is
also applicable to other imaging modalities, such as computed tomography, making signal
processing methods that work for one medical imaging modality potentially applicable
to others.
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2.2. MRI Reconstruction with End-to-End Unrolled Models

End-to-end unrolled models are a family of powerful, data-driven recovery algorithms
that have been successfully applied to medical imaging, as well as to other areas of com-
putational science [6]. In the centralized setting, a large corpus of training samples are
available at a central location, and an unrolled model is trained end to end. When different
sites have different data distributions, then the centralized algorithm is assumed to have
access to data from all sites. In this work, we consider the setting of MoDL [33], where
image reconstruction is formulated as the solution to the optimization problem:

argmin [|y — Ax|| + A D(x;©) — x13, ®)

where D(+;©) is a deep neural network with weights ®. Using an alternating minimiza-
tion approach leads to the following iterative algorithm [33] for approximately solving
Equation (5):

Z1 = argmin |y — Az[3 + Az, — 23, ©)

Xpi1 = D(z441;0). ()

The solution to (6) can be expressed in closed-form as
-1
Zpp1 = (AHA + M) (AHy + /\xn>, ®)

where AH is the Hermitian transpose (adjoint) of A. In practice, due to the large variable
sizes, the solution to (8) is approximated using a finite number of iterations of the conjugate
gradient (CG) algorithm [44]. The overall image reconstruction process alternates between
a number of iterations of CG, followed by passing the resulting image through the network
D, and repeated for a number of Ny, unrolls, yielding the output image xy,. The weights ®
are trained using a supervised image reconstruction loss. In this work, we use the structural
similarity index (SSIM) [45] for training as

Lirain(©) = —Ey, [SSIM(RSS(xn, ), RSS(x))], )

where the RSS function consists in applying the sensitivity map operator S and taking
root-sum-of-squares (RSS) along the coil axis to obtain a magnitude-only image, and RSS(x)
is the RSS obtained after an inverse Fourier transform of the fully sampled measurements.
The expectation is taken over a dataset of ground truth images x, and retrospectively
under-sampled measurements y.

2.3. Federated Unrolled Optimization

In the federated learning setting, clients collaborate to train a global MRI reconstruction
model without sharing raw data (such as k-space and RSS images), or features (such as
derived representations of the data). Instead, a number of K clients upload model weights
@} after training local models for a given number of local optimization steps in the i-th
round, which are aggregated by the central server to yield ®%, and broadcast back to clients.
For the remainder of this work, we make the following two assumptions:

*  Synchronicity: Clients optimize their local models for the same number of steps, and
upload their weights to the server synchronously.
e Full participation: After every round, all clients upload their weights to the server.

A schematic of the federated learning process is shown in Figure 1. The two assump-
tions above are common in the cross-silo federated learning setting [17], which may match
clinical settings well. The server can use any meaningful update rule to aggregate the
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weights. A baseline method is given by simple weight averaging in the form of the Fed Avg
algorithm [16]:

A 1&
IG:RZi@;;. (10)
1=

Adaptive federated optimization algorithms seek to prevent client drift and improve
convergence rates [17-19], which is relevant in settings with non-i.i.d. clients. In general,
these methods introduce auxiliary variables which are updated along with the network
weights. At a high level, the server performs weight aggregation using a functional f and
auxiliary variables ¢ in the form

0L = f(O,...,0 " ¢). (11)

Unseen Client during Federated Training

Novel Clinic/Hospital

Server
' O » FedAvg baseline
1 08

J GG = _Z@l 1
* Adaptive Optimization

0h= (6,05, ...,0k % ¢)

i ol
9% Clients Participating in ¢

Federated Training

Cl 1 Cl K m-th client model at i-th round
1mc 1111C

Data consistency block
¥, X Local MRI data
o} '
G Global model after i-th federated update
@ Momentum term

Unrolled Netwm'k f Adaptive weight update
=== Clients download weights from server

Clients upload weights to server

0 Local client training

Figure 1. High-level block diagram of federated unrolled optimization for accelerated MRI recon-
struction. Local data are not shared with the server or between participating clients. After federated
training, all clients (seen and unseen at federated training time) receive weights @é and perform fine

tuning using only local samples.

When applied to unrolled optimization, we assume that each client trains, uploads, and
downloads the regularization model D(-; @;() After the R-th and final round is completed,
the server broadcasts the final model D¢ (-; ©X) to all clients, who then apply Ny, iterations
of (6) and (7) during inference.

3. Methods
3.1. Datasets and Model Architecture

We use three publicly available datasets in the experiments: fastMRI [14], abdominal
scans from [15], which we refer to as the Stanford dataset, and axial knee scans from [15],
which we refer to as the NYU axial knee dataset. We use fastMRI for training due to its large
number of available contrasts and field strengths, which allows us to simulate a federated
scenario with heterogeneous client data distributions. In particular, we simulate a scenario
with ten clients, each with different combinations of anatomy (knee and brain), contrast
(PD, PDFS, T1, T2, and FLAIR), and field strength (1.5T and 3T). We use the Stanford and
NYU axial knee datasets, in addition to two other anatomy and contrast combinations
from fastMRI, as means of investigating reconstruction performance of clients that did not
participate in the federated learning.
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For all experiments, we assume an acceleration factor R = 4 with a random under-
sampling mask along the phase encode (PE) direction and a fully sampled central region,
which was taken as 8% of the total PE lines present. As the readout direction of the
Stanford abdomen is horizontal, we first rotate k-space prior to reconstruction, and rotate
back after. All data are normalized by the maximum value of the RSS image computed
using the fully sampled central lines of k-space. We use the ESPIRIT algorithm [46] in the
BART toolbox [47] to estimate the coil sensitivity maps. We use an MoDL architecture
consisting of Ny, = 6 unrolls. Data consistency blocks are implemented with Ncg = 6 steps.
The regularization network is a U-Net architecture which takes two input channels (real,
imaginary), and consists of 481,092 trainable weights. Local clients were updated using the
Adam optimizer [48] with a batch size of one.

3.2. Low Data Regime for Federated Learning

As federated training of MRI reconstruction models aim to solve the issue of limited
amounts of fully sampled data for some institutions, we first aim to determine the local
sample count, which characterizes this notion of “limited data” for our setting. Specifically,
we are interested in the number of local samples that causes a considerable drop in local
performance but is still reasonably large to enable federated learning gains. To quantify this
drop, we train local models using a variable amount of local training samples, without any
federated learning involved, and empirically determine this dropping point. Specifically,
we train centralized MoDL networks on each data distribution listed in Table 1 (separate
models for each) using a varying number of fully sampled training scans.

Table 1. fastMRI client list.

Site Anatomy Contrast Field Strength IID Training Non-IID Training

1 Knee PDFS 3T Unseen Present(x1)
2 Knee PDFS 1.5T Present(x10) Present(x1)
3 Knee PD 3T Unseen Unseen

4 Knee PD 1.5T Unseen Present(x1)
5 Brain T2 3T Unseen Present(x1)
6 Brain T2 1.5T Unseen Present(x1)
7 Brain FLAIR 3T Unseen Present(x1)
8 Brain FLAIR 1.5T Unseen Present(x1)
9 Brain T1 POSTCON 3T Unseen Present(x1)
10 Brain T1 POSTCON 1.5T Unseen Present(x1)
11 Brain T1 PRECON 3T Unseen Present(x1)
12 Brain T1 PRECON 1.5T Unseen Unseen

3.3. i.i.d. vs. Non-i.i.d. Client Distributions

Different client data distributions are a key issue that impacts the convergence of
federated learning optimization, and are also highly common to MRI. In this section, we
describe the methodology used to investigate the impact of heterogeneous, differently
distributed clients on federated end-to-end unrolled approaches, and whether adaptive
algorithms can mitigate these shifts. We first investigate the performance when all ten
clients are composed of non-overlapping PDFS 1.5T scans (site 2) from the fastMRI dataset.
In the case of non-i.i.d. client distributions, we sample the local data of each client from one
of ten different distributions (sites), as summarized in Table 1. This leads to no two clients
sharing the same anatomy, contrast, or field strength combination, and is a realistic cross-
silo federated learning setting. In both cases, we perform synchronous, full-participation
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federated learning for 240 aggregation rounds, where each round consists of two local
epochs of training (100 local optimization steps).

We evaluate the following four adaptive federated optimization algorithms: Scaffold,
FedAdam, FedYogi, and FedAdaGrad. We also evaluate the FL-MRCM approach in [9],
where we include the two additional Sites 4 and 12 in the federation for the non-i.i.d. case,
and designate them as targets for the adversarial objective.

*  Scaffold [18] is summarized in Algorithm 1 and uses auxiliary variables c¢ and ¢, that
represent global and local momentum terms, respectively. During client optimization,
their difference can be seen as an estimate of the client drift, and they are incorporated
in the local updates (line 7 in Algorithm 1) to counteract this.

o FedAdam, FedYogi, and FedAdaGrad [19] are the federated versions of their namesake
centralized algorithms.

¢ The FL-MRCM approach in [9] proposes a solution to the problem of non-i.i.d. clients
in federated learning by using an adversarial loss on the feature space of each client’s
local reconstruction network. A key idea of the approach is to designate a specific
client as a target, and to share its feature representations of the data with all other
clients, where an adversarial feature objective between the local and the target client’s
is used to make the feature representations as similar as possible.

Algorithm 1 Scaffold [18]
Global inputs: Initial oY, cg, and global step size 7.

Client inputs: Local client datasets D = {Dl, ..., DK }, initial cg, and local step size 7;.
Output: Global model weights ©F.
1: forroundi=1,...,Rdo

2: download @ic and cfg for all K clients
3: for client k in K do
4 for optimization step s = 1...,§ do
5: Compute gradient g (@} (x;s))
6: O} < O} — 1 (8k(O}(xs5)) — ¢ +c5)))
7. () gk(Q;), or (i) ¢ — cg + ﬁ(@fG - Qi)
8: upload (A®}, Ac},ch) « (O} — O, ¢ —ci,cl)
9: (A@E,Aci)l — %Z(AQ” ,Ac}%) ' '
10 OF" + O + ;A0 and ¢!« ¢} + Ac!

3.4. Personalized Unrolled Optimization

After a number of R communication rounds are completed, the server stops requesting
weight uploads and communicates @é to all clients. This is a global model, trained to
reconstruct multiple, potentially heterogeneous images resulting from differences in scan
protocol, imaging anatomy, or system hardware. Therefore, there are two prevailing issues
with directly using the global model that we study in this work:

*  Reconstruction performance may not be satisfactory for certain clients that participated
in the federated learning process because characteristics of their image distributions
(such as anatomy or contrast) are under-represented, hence client-sided personaliza-
tion is an efficient tool for boosting performance.

*  New clients that do not have access to large training datasets may not benefit by from
only using the pre-trained models provided by federated learning, if their data types
are not well represented in the original federation of clients. This makes client-sided
personalization a necessary component for acceptable quality reconstructions.

To address the above issues, we test the impact of client-sided personalization through
fine tuning, which has recently been shown to be a competitive approach for improving
performance on a local dataset [31]. Formally, fine tuning is done with the same SSIM loss
as in (9) and is summarized in the right side of Figure 1 for a new client. There are two
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important hyper-parameters that control personalization through fine-tuning: the learning
rate rgne, and the number of fine-tuning epochs Nipe. To select these hyper-parameters,
we propose that each client perform a five-fold cross-validation approach using only its
own local training data. We then use all available local client data and the selected hyper-
parameter values to fine tune the federated model to the local client distribution.

We also investigate the impact of the communication budget on the personalization
results after training. We focus on the non-i.i.d. case with Scaffold. In each scenario, the
same total number of local update steps is allocated (24,000 local steps), except now a
varying number of federated communication rounds (240, 120, 80, 60, 40, 24, or 4) is allowed.
After learning the federated models, we test reconstruction performance both on clients
that participated in the federated training and new, unseen clients.

3.5. Quantitative Metrics

We evaluate quantitative reconstruction performance using SSIM as defined in (9)
(higher is better) and normalized root mean squared error (NRMSE) between the RSS
reconstruction and the fully sampled RSS (lower is better), where NRMSE between a
reference x and reconstruction £ is defined as

. x— X2
NRMSE(x, £) = IIx = £ll2 Htz”

(12)
Tables reporting SSIM and NRMSE represent the average value of the metric on the valida-
tion set.

4. Results
4.1. Finding the Low Data Regime

The impact of number of training samples on reconstruction performance is shown in
Figure 2. When at least 250 local training samples are available to the unrolled model at
training time, the performance saturates, and additional training samples have marginal
impact on the validation performance. In contrast, training using 50 local scans leads to a
decrease in performance across different sites. Using this information, we chose 50 local
samples for each client in the remainder of experiments. A similar plot is provided for
a U-Net reconstruction architecture in Figure Al in Appendix A. We observe that SSIM
and NRMSE should not be directly compared across different sites due to different points
of performance saturation, even in the high-data regime. This is well documented, as the
reconstruction quality is heavily influenced by anatomy, contrast, and field strength [21].

Validation NRMSE vs. Training Set Size Validation SSIM vs. Training Set Size

—o— Site 1

Site 2 091
—8— Site 3
—8— Site 4
—&— Site 5
—i— Site 6 08+

Site 7
—&— Site 8

Site 9
—&— Site 10
—&— Site 11
Site 12

0.6 §

0.5

0.4 i
07 —e— Site1

Site 2
—8— Site 3
—8— Site 4
—&— Site 5
—i&— Site 6
Site 7
—&— Site 8
Site 9
¢ —— Site 10
—&— Site 11
Site 12

0.3 1

Validation NRMSE
Validation S5IM

0.6 4

0.2 1
0.5 4

0.1+

0.4 4

T T T T
10* 102 10* 10?
Training Slices Training Slices

Figure 2. Validation normalized root mean squared error (NRMSE, (left)), and structural similarity
index measure (SSIM, (right)) for varying number of local training samples (2D slices) in centralized
training scenario. All fastMRI sites were trained and tested individually.
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4.2. i.i.d. vs. Non-i.i.d. Clients

Based on the findings in Section 4.1, we selected 10 slices each from five different
subjects, for a total of 50 local slices per client from the fastMRI dataset—this holds both for
the i.i.d. and non-i.i.d. settings. The result of i.i.d. training is summarized in Table 2, which
shows the average performance across all 10 sites that participated in training. For brevity,
we report the average as we found that i.i.d. performance generally matched centralized
training. All federated methods perform about the same or slightly better than centralized
training in SSIM. The same is true with NRMSE. Centralized training and the federated
unrolled optimization methods outperformed FL-MRCM. Figure 3 shows an example
reconstruction for the i.i.d. case, comparing the ground-truth (GT) to FedAvg, Scaffold,
FL-MRCM, and centralized training. Scaffold performed slightly better than Fed Avg for
this particular slice, and on-par with centralized, while FL-MRCM is poor, consistent with
the results in Table 2.

Table 2. i.i.d. performance across 10 sites. The average loss values over entire validation dataset
are shown for the structural similarity index measure (SSIM) and normalized root mean squared
error (NRMSE). Top performing values are shown in bold font.

Algorithm SSIM 1 Increase NRMSE | Decrease
Centralized 0.708 - 0.135 -

FedAvg 0.710 +0.28% 0.134 —1%
FedAdam 0.713 +0.71% 0.151 +12%
FedYogi 0.712 +0.57% 0.138 +2%
FedAdaGrad 0.712 +0.57% 0.139 +3%
Scaffold 0.711 +0.42% 0.130 —4%
FL-MRCM 0.489 —31% 0.167 +23%

GT FedAvg Scaffold MRCM Centralized

NRMSE: 0.129 NRMSE: 0.124 NRMSE: 0.174 ] NRMSE: 0.120

SSIM: 0.741 4 k SSIM: 0.734 4 3 SSIM: 0.466 4 . . SSIM: 0.740
R F

Figure 3. Example reconstructions for knee PDFS 1.5T obtained in the i.i.d. client (knee PDFS 1.5T)
scenario, and 240 communication rounds.

The results of non-i.i.d. experiments are summarized in Tables 3 and Al in Appendix A
for all fastMRI sites that participated in training. In this case, centralized and Fed Avg per-
form about the same, while the adaptive federated algorithms typically perform slightly
better. FL-MRCM is not competitive in this regime. Figure 4 shows example reconstructions
of slices from two different sites. In this case, there is a clear qualitative and quantitative
improvement between Scaffold and FedAvg, where the latter performs on par with central-
ized training.
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GT FedAvg Scaffold MRCM Centralized

N{SE: 0.172
SSIM: 0.644

Figure 4. Example reconstructions obtained in the non-i.i.d. client scenario with 240 communication
rounds: (Top) Brain T1-POSTCON 3T, (Bottom) Knee PD 3T.

Table 3. Non-i.i.d. performance for 12 fastMRI clients. The average loss values over entire validation
dataset are shown for the structural similarity index measure (SSIM) and normalized root mean
squared error (NRMSE). The best performance (highest SSIM, lowest NRMSE) is shown in bold font.
For all sites, adaptive algorithms have the best performance.

Algorithm Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE
FedAvg 0.767 0.142 0.653 0.229 0.824 0.111 0.844 0.089 0.919 0.107 0.900 0.109
FedAdam 0.768 0.142 0.677 0.183 0.821 0.117 0.845 0.093 0.928 0.096 0.901 0.104
FedYogi 0.770 0.140 0.675 0.192 0.826 0.105 0.848 0.090 0.922 0.102 0.900 0.106
FedAdaGrad 0.766 0.144 0.675 0.190 0.826 0.113 0.846 0.092 0.919 0.109 0.898 0.109
Scaffold 0.771 0.134 0.680 0.166 0.838 0.098 0.848 0.083 0.929 0.098 0.902 0.107
MEIEM 0.609 0.208 0.458 0.230 0.670 0.193 0.682 0.185 0.806 0.266 0.761 0.294
Centralized  0.762 0.142 0.674 0.172 0.824 0.118 0.836 0.095 0.917 0.116 0.892 0.127
Algorithm Site 7 Site 8 Site 9 Site 10 Site 11 Site 12
SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE
FedAvg 0.872 0.098 0.803 0.146 0.920 0.086 0.925 0.106 0.851 0.106 0.905 0.113
FedAdam 0.874 0.097 0.814 0.133 0.926 0.079 0.928 0.100 0.853 0.105 0.904 0.108
FedYogi 0.874 0.097 0.815 0.129 0.926 0.079 0.929 0.098 0.856 0.100 0.906 0.108
FedAdaGrad 0.873 0.097 0.811 0.137 0.924 0.082 0.929 0.105 0.854 0.103 0.903 0.111
Scaffold 0.872 0.097 0.812 0.131 0.927 0.082 0.929 0.102 0.859 0.098 0.903 0.112
MF{IEM 0.568 0.278 0.521 0.258 0.757 0.370 0.749 0.293 0.743 0.211 0.738 0.284
Centralized  0.863 0.107 0.800 0.145 0.920 0.097 0.920 0.121 0.852 0.107 0.897 0.134

4.3. Personalization and Impact of Communication Budget

As mentioned in Section 3.4, after training, we personalized the model at each new
site through fine tuning. We tuned two client-specific hyper-parameters ( r¢ne and Ngpe) at
one seen site (site 2) and two unseen sites (Stanford and NYU axial knee) using a five-fold
cross-validation scheme on the available 50 local slices. The resulting hyper-parameters
are displayed in Table 4. We picked site 2 (fastMRI, fat suppressed knee, 3T) from the
sites present during training because it comes from the anatomy less represented among
all clients, leaving room for more personalization gains similar to the unseen sites during
training. Exemplar reconstructions are shown for one out-of-distribution client (Stanford
abdomen) at 240 communication rounds and one in-distribution client (site 2) at four
communication rounds in Figures 5 and 6, respectively. In both cases, there is a substantial
drop in performance for Scaffold, which is recovered after fine tuning,.
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Quantitative reconstruction results as a function of communication rounds are shown
in Figure 7 for three different clients using: (i) models only trained using Scaffold federated
learning (Scaffold), and (ii) models trained using Scaffold federated learning, followed by
personalization on local data (Scaffold + personalization). The exemplar clients that were
chosen are site 2, NYU axial knee, and Stanford abdomen. We chose site 2 (fastMRI knee,
fat-suppressed) to contrast the performance, and optimal hyper-parameters, of a site seen
during training and sites unseen during training (NYU axial knee, Stanford abdomen).
Results for additional sites are shown in Figure A2.

Table 4. Fine-tuning hyper parameter result.

Client Non-i.i.d. Training Tfine Nine

Site 2 Present 1x107° 170
Stanford Unseen 1x107* 200
NYU axial knee Unseen 1x107* 200

Scaffold Scaffold + Personalization

-

NRMSE = 0.5669 NRMSE = 0.2024
SSIM = 0.6671 SSIM = 0.8831

Figure 5. Example reconstructions on a new client (Stanford) using (Center) only the pre-trained
Scaffold model, (Right) Scaffold + personalization.

Scaffold +
Scaffold Personalization

NRMSE = 0.2188

4
NRMSE = 0.1187 £
SSIM = 0.8021 .

SSIM = 0.8456

Figure 6. Example reconstructions on a participating client (site 2), with four communication rounds,
using (Center) only the pre-trained Scaffold model, (Right) Scaffold + personalization.

We note that model personalization via fine-tuning displays major benefits primarily
for under-represented clients in federated training (i.e., knee scans), as well as those unseen
(that did not participate) during federated training. For clients who are seen during training,
we note that as the communication budget decreases (less frequent weight sharing), test
performance decreases noticeably in Figures 7 and A2. Fine tuning these models using the
same data samples after federated training is able to help bridge the gap between the base
model performance at a low communication rate and the base model performance at a high
communication rate. This is especially evident in the case of clients who are never seen
during training. However, for several brain sites, the model overfits during fine tuning, as
shown in Figure A2 in Appendix A. This likely happens because brain sites are the majority
sample distribution at training time, leading to reconstruction performance already being
saturated before any fine tuning.
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Figure 8 displays the output of the network D(-; ©y) after every two unrolls in the
reconstruction, for an unseen site, immediately after federated training (Scaffold), as well as
after fine-tuning (Scaffold + personalization). Artifacts are amplified in the baseline model,
and personalization helps reduce their intensity.

Communication Budget vs Reconstruction Performance

0.9 e s ™
M — —0
0.8
0.7
= 0.6
n
"
0.51
~ .
041 '\ —a= Scaffold (NYU axial knee)
\\ === Scaffold + Personalization (NYU axial knee)
\ —e=Scaffold (Stanford)
0.31 \~ —e= Scaffold + Personalization (Stanford)
S == Scaffold (site 2)
=== Scaffold + Personalization (site 2)
0.2 ! I I I .
0 50 100 150 200 250

Communication Rounds

Figure 7. Structural similarity index measure (SSIM) comparison between baseline (Scaffold only)
and Scaffold + personalization, as communication budget varies, for three different distributions:
NYU axial knee (unseen at federated training), Stanford (unseen at federated training), and PDFS
knee (seen in federated training).

Unroll 2 Unroll 4 Unroll 6

Scaffold

Scaffold +
Personalization

Figure 8. Images across unrolls (output of D(-;®y)) for: (Top) Scaffold initialized model, and
(Bottom) Scaffold + personalization model applied to an unseen client distribution.
5. Discussion

To train powerful data-driven reconstructions, it is crucial to procure large training
datasets which faithfully represent the test data distribution. Due to privacy and regulatory



Bioengineering 2023, 10, 364

14 of 19

constraints concerning sharing medical data, it may be infeasible for clinics to accrue a
dataset locally which is both large enough and has the same distribution as the desired test
data. Traditional federated learning attempts to solve the former in a privacy-preserving
fashion by only sharing model weights across client institutions via model averaging. As
data are often heterogeneous in an inter-client sense, client drift can inhibit the resulting
federated model. A number of methods tailored to MRI reconstruction have been recently
proposed to tackle this challenge, primarily by constraining the latent space of a feature
representation either explicitly [9] or implicitly [25].

Unrolled methods are a powerful class of data-driven approaches for solving medical
imaging inverse problems, and in a centralized scenario, they provide good reconstruction
quality with as few as 250 training slices (Figure 2). This characteristic motivates their
use in federated scenarios where local data are limited in a meaningful sense. It is not
immediately clear how to apply latent-space constrained methods to unrolled algorithms.
Alternative reconstruction methods based on deep generative priors have recently shown
competitive performance with end-to-end unrolled models [43,49,50], and have a proclivity
to be more robust to distribution shifts. FedGIMP [23] in particular is a promising federated
approach based on deep generative priors but requires adversarial training, which carries
with it challenges, such as large training set sizes. Reconstruction times for generative
models may also be an issue.

Recent work investigated the low-data regime for single-pass, supervised U-Net
reconstruction of the RSS image directly, where it was shown that this approach requires at
least thousands of local samples to saturate reconstruction performance [41]. We validate
this trend in Figure A1, though we do not reach the saturation point in our experiments.
This is in contrast to our findings on unrolled end-to-end models, where performance
saturates when using as few as 100 local training samples. FL-MRCM shows a large
decrease in performance compared to federated end-to-end approaches, which can likely
be attributed to the single-pass U-Net reconstruction backbone it relies on and the same
observation for the low-data regime.

At its core, federated learning seeks to provide a model that generalizes well to all
clients (participating and not participating). This was the driving motivation for adaptive
methods [51,52]. Table 2 shows that adaptive approaches at training time have little
impact in the scenario where all clients are homogeneous (i.i.d). Adaptivity becomes more
important in the heterogeneous (non-i.i.d) case as we show in Table 3 and Figure 3. Table 3
shows the average validation performance evaluated on data from the same type that the
client had access to during training. Adaptive approaches surpass the more simplistic
weight aggregation in FedAvg, due to their use of auxiliary optimization variables at
training time, designed to combat client drift. Not only do adaptive approaches surpass
FedAvg in the non-i.i.d. scenario, they also often outperform the centralized model for
high communication rates (Table 3). This finding can be explained with the observation
that, in the process of averaging individual models, each model is implicitly undergoing a
form of regularization. Unlike the federated setting, the centralized setting we utilize does
not use make use of any assumption of data heterogeneity, which may sometimes place
its performance below that of adaptive federated learning algorithms that are designed
with data heterogeneity in mind. This could in turn provide an approach to improve the
performance of the centralized approach via a multi-task formulation, such as the one
investigated in [28].

Another aspect in federated learning is the effect of a limited communication budget.
When training is performed synchronously, global updates occur when at least a subset
of individual clients are ready. This can create a communication bottleneck that restricts
the number of global update rounds that occur during the training process. We found
that limited communication between clients and the global server has an adverse effect for
clients who are actively participating in the federated training. Interestingly, we find that a
new client’s performance is almost agnostic to the communication rate, with the important
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caveat that reconstructions for novel clients at various communication rates may not be of
diagnostic quality (Figure 5).

To overcome the performance drop experienced by participating clients in communica-
tion constrained settings, as well as to novel clients, we investigated simple personalization
through model fine tuning. We observed that fine tuning enabled performance boosts both
for under-represented clients participating in training and for those that did not partici-
pate in federated training at any time (Figure 7). We found that 50 slices with five-fold
cross-validation were sufficient to fine tune the model at each site.

In this work, we made several design choices, which do not cover all federated learning
scenarios. The simplifications we assumed were synchronous training between clients,
and no client drop-out at each communication round. We also assumed a single fixed
acceleration factor and sampling pattern for all data. In future work, it will be crucial
to investigate both the effects of asynchronous learning, varying levels of client dropout,
and differences in scan protocol. Additionally, a promising future research direction is to
investigate the performance of larger client pools (>>10), varying dataset sizes at each site,
and varying scanning conditions, such as acceleration factor.

6. Conclusions

Due to their need for relatively small training set sizes when compared to feed-forward
networks or generative model based reconstruction methods, unrolled networks are an
interesting application of federated MRI reconstruction. With this in mind, we explored i.i.d.
and non-i.i.d. federated learning scenarios, with realistic data distributional shifts (anatomy,
contrast, field strength) and varying communication budgets. Additionally, we showed
that by personalizing federated unrolled networks through fine tuning on limited data, we
were able to boost the performance of both under-represented clients present in federated
training and clients absent at federated training time. Our experimental results show that
federated learning using unrolled networks can help bridge the gap between low resource
areas and large institutions by enabling smaller institutions to utilize state-of-the-art deep
learning methods without a large number of local samples for model training and tuning.
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Abbreviations

The following abbreviations are used in this manuscript:

CG Conjugate Gradient

FL Federated Learning

FLAIR Fluid Attenuated Inversion Recovery
MoDL Model-Based Deep Learning

MRI Magnetic Resonance Imaging
NRMSE Normalized Root Mean Squared Error
PD Proton Density

PDFS Proton Density Fat-Suppressed

RSS Root Sum of Squares

SSIM Structural Similarity Index Measure
Appendix A

In Figure A1, we report the results of centralized training using the U-Net recon-
struction architecture. In contrast to unrolled methods (Figure 2), we find that U-Net
reconstructions do not saturate in performance, even at 500 slices. This is consistent with
results in the literature [41].

Validation NRMSE vs. Training Set Size (U-Net) Validation SSIM vs. Training Set Size (U-Net)
—o— Site1
0.6 —o— Site 2 0.9
—e— Site 3
—eo— Site 4
—&— Site 5
0.5 —&— Site 6 0.8
Site 7
—&— Site 8
] Site 9 s
204 —— Site 10 | @ 0.7
(%] A
i —&— Site 11 s —e— Site 1
S —— Site12 | = —o— Site 2
3 2 —eo— Site 3
= 0.3 ©
g > 0.6 —e— Site 4
—&— Site 5
—&— Site 6
0.2 Site 7
0.5 —4— Site 8
Site 9
—&— Site 10
0.1 —&— Site 11
0.4 —— Site 12
10t 10?2 10! 10?
Training Slices Training Slices

Figure A1. Validation NRMSE (left), and SSIM (right) for varying number of local training samples
(2D slices) in centralized training scenario using U-Net reconstruction. All fastMRI sites were trained
and tested individually.

Figure A2 shows the performance of the learned model with Scaffold on each site
present during training (all sites except 2 and 12), as well as the performance following
personalization via fine tuning as a function of the communication rounds. Increasing the
number of communication rounds generally leads to improved performance, though in
some cases, fine tuning can lead to overfitting. When the communication budget is small,
personalization helps improve performance.

Table A1 shows the non-i.i.d. performance of the same setup as in Table 3 measured
via the peak signal-to-noise ratio (PSNR).
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Figure A2. Comparison between no personalization (Scaffold only) and Scaffold + personalization,
as communication budget varies, for additional sites at varying communication rates.

Table A1. Non-i.i.d. performance for 12 fastMRI clients. The average loss values over entire validation
dataset are shown for peak signal-to-noise ratio (PSNR).

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10 Site 11 Site 12

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR
FedAvg 30.4 259 29.5 31.9 33.5 334 322 29.7 34.8 35.1 30.2 347
FedAdam 30.3 27.9 29.2 31.8 344 33.8 322 30.5 35.5 35.7 30.4 35.2
FedYogi 30.4 27.6 30.0 31.8 342 337 325 30.8 35.5 35.8 30.7 35.2
FedAdaGrad  30.2 27.6 29.5 31.8 34.0 334 322 30.2 35.1 35.2 30.5 35.0
Scaffold 30.8 28.9 30.6 325 342 335 322 30.6 35.1 35.5 30.9 349
Centralized 30.15 284 29.2 314 327 32.0 31.3 29.7 33.7 34.0 30.1 333
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