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Feedback-cooled Bose-Einstein condensation: Near and far from equilibrium
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Continuously measured interacting quantum systems almost invariably heat, causing loss of quantum coher-
ence. Here, we study Bose-Einstein condensates (BECs) subject to repeated weak measurement of the atomic
density and describe several protocols for generating a feedback signal designed to remove excitations created
by measurement back-action. We use a stochastic Gross-Pitaevskii equation to model the system dynamics
and find that a feedback protocol utilizing momentum-dependent gain and filtering can effectively cool both
one-dimensional (1D) and two-dimensional systems. The performance of these protocols is quantified in terms
of the steady-state energy, entropy, and condensed fraction. These are the first feedback cooling protocols
demonstrated in two dimensions, and in one dimension our optimal protocol reduces the equilibrium energy by
more than a factor of 100 as compared with a previous cooling protocol developed using the same methodology.
We also use this protocol to quench-cool 1D BECs from noncondensed highly excited states and find that they
rapidly condense into a far-from-equilibrium state with energy orders of magnitude higher than the equilibrium
ground-state energy for that condensate fraction. We explain this in terms of the near integrability of our
1D system, whereby efficiently cooled low-momentum modes are effectively decoupled from the energetic
“reservoir” of the higher-momentum modes. We observe that the quench-cooled condensed states can have
nonzero integer winding numbers described by quantized supercurrents.
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I. INTRODUCTION

The repeated measurement of an interacting closed quan-
tum system typically leads to runaway heating and the
ultimate destruction of quantum correlations. In some cases,
the interplay of unitary evolution, measurement, and feed-
back can lead to physics beyond what is possible in closed
quantum systems. For example, recent developments in quan-
tum circuits with randomized measurements combined with
(sometimes random) entangling operations have shown re-
markable robustness of entanglement [1–10]. Furthermore,
many quantum error correction algorithms rely on measure-
ment of ancilla qubits followed by feedback to protect the
entanglement between the constituent (logical) qubits [11,12].
To clarify the connection between these ideas and their poten-
tial realization in steady-state many-body systems, we focus
on theoretically modeling Bose-Einstein condensates (BECs)
in which feedback conditioned on the history of measurement
outcomes provides a mechanism to retain the system in a state
of low entropy, low energy, and with long-range coherence.

Many feedback schemes have been proposed to bolster
quantum simulation capabilities. Reference [13] showed that
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weak measurement combined with classical feedback can
produce dynamics described by a nonlinear Schrödinger equa-
tion. More recent developments have shown the utility of
feedback control for creating new phase transitions, simu-
lating spin models, and preparing targeted states in optical
lattices [14–19]. Furthermore, Refs. [20,21] demonstrated
the utility of weak measurement and feedback for generat-
ing effective interactions in continuum one-dimensional (1D)
BECs, with sufficient cooling to achieve a quasisteady state.
The ability to maintain the system in a quasisteady state with
long-range coherence is paramount for experimental realiza-
tions of these proposed ideas. To this end, here we describe
and optimize cooling protocols for continuously monitored
BECs in one and two dimensions.

We build upon a previous framework of weak measurement
and classical feedback used to control BECs developed in
Refs. [20,21], where the system is modeled by a stochastic
Gross-Pitaevskii equation (GPE). These feedback schemes
work by measuring the position-resolved atomic density and
applying a feedback potential that has the observed density
distribution as its ground state. Because the measurement
provides no information regarding the condensate phase, this
procedure is imperfect. By ignoring the condensate phase,
these methods neglected dynamics that are most simply de-
scribed by phonons. The improved cooling scheme presented
here (see Fig. 1) uses signal filtering techniques to create feed-
back potentials that incorporate these effects into the feedback
protocol, thereby making it more effective.

Finally, we explore the utility of weak measurement and
feedback cooling in analog quantum simulation by preparing
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FIG. 1. Feedback cooling with spatiotemporal filtering. (a) Com-
puted postmeasurement density of a BEC weakly imaged using
an off-resonant homodyne technique where l.o. indicates the local
oscillator. (b) Flow diagram of measurement and feedback proto-
cols. The dark green arrows (inner flow chart) trace out the basic
feedback cooling protocol reviewed in Sec. II D and the pink arrows
(outer flow chart) add the enhancements discussed in Sec. III. (b-i)
Expanded view of the postmeasurement density. (b-ii) The corre-
sponding estimator ε(x). (b-iii) Integral kernel from Eq. (16). (b-iv)
Computed potential V [ε], to be fed back to the system.

far-from-equilibrium uncondensed states. Using optical
measurements as a model for weak measurement implies that
there is a resolution limit below which an observer obtains
no information about the system, even in principle. We show
that 1D systems with significant excitations below this scale
can still be feedback cooled to Bose condensation. In this
case, the long-wavelength modes are rapidly cooled while
the short-wavelength modes are left relatively untouched.
Because the 1D system is nearly integrable, there is negligible
energy transfer between these groups of modes, yielding
a low-energy system weakly coupled to a highly excited
reservoir. We observe that these far-from-equilibrium
condensed states may have nonzero integer winding numbers,
described here by quantized supercurrents.

This paper is organized as follows: In Sec. II we outline our
simulation methods and define important metrics for explor-
ing condensate properties at finite entropy. The rest of Sec. II
outlines our measurement model for phase-contrast imaging,
starting from the light-matter interaction Hamiltonian, and

briefly reviews the concepts of signal filtering and feedback
cooling essential to the protocols presented here.

Our main results are presented in Sec. III, showing feed-
back cooling protocols that have been significantly improved
by incorporating momentum-dependent feedback. We also
present the parameter space for which these protocols are op-
timal according to the final energy. In Sec. IV, we demonstrate
that in one dimension our feedback cooling protocols can
cool from highly excited uncondensed states to high-energy,
far-from-equilibrium condensed states with nonzero integer
winding numbers. In Sec. V we conclude and present some
directions for future research. Additional details regarding the
measurement model are left to the Appendixes.

II. STATE OF THE ART

A. GPE with nonzero entropy

The usual GPE accurately describes the low-temperature
properties of atomic BECs, discussed in one and two dimen-
sions in this section. Here, we use the GPE to model BECs
coupled by measurement and feedback to the environment:
an open quantum system. Inspired by classical field methods
[22,23] to describe finite-temperature systems, we begin by
studying the generic equilibrium properties of a GPE when
used to model a Bose system with nonzero entropy.

In the following sections, we model measurement back-
action as a stochastic process introducing number fluctuations
conditioned on measurement outcomes [20]. This is reminis-
cent of stochastic noise terms used in the stochastic-projective
GPE, but which are only present while the measurement
process is active. Prior to developing our feedback cooling
methodology, we identify the equilibrium properties of the
GPE by adding a fixed amount of energy in the form of
white noise and allowing the system to equilibrate under the
energy-conserving closed system evolution. We numerically
model this microcanonical ensemble by simulating many tra-
jectories with different noise realizations. Each trajectory can
be characterized by its per-particle energy and momentum
ground state (k = 0) occupation probability. An ensemble of
many trajectories can be assigned a condensed fraction and
von Neumann entropy.

The single-component GPE,

ih̄
∂

∂t
�(r, t ) =

[
− h̄2∇2

2ma
+ u0|�(r, t )|2 − μ

]
�(r, t ), (1)

describes atomic BECs in the mean-field limit. Here, �(r, t )
is a classical field describing N particles with density n(r, t ) =
|�(r, t )|2 at position r and time t , μ is the chemical potential,
and ma is the atomic mass. Since the interaction strength u0
depends on dimensionality, we will use the subscripts u0,1D
and u0,2D to mark this difference where necessary.

For each trajectory, we obtain the total energy

E [�(r, t )] =
∫

dDr

[
h̄2

2ma
|∇2�(r, t )|2 + u0

2
|�(r, t )|4

]
,

(2)

an extensive thermodynamic quantity, where the dimension
D = 1 or 2. An estimate of the condensed fraction can be
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obtained from the occupation probability of the k = 0 mode,
denoted P(k = 0).

We use the ensemble formed by Nt trajectories to compute
additional thermodynamic quantities. The ensemble is charac-
terized by the one-body density matrix

ρ(r1, r2) = 1

Nt

Nt∑
j=1

�∗
j (r1)� j (r2), (3)

where j labels different members of the ensemble. The von
Neumann entropy S = −Tr[ρ̂ log ρ̂] can be directly derived
from ρ(r1, r2), giving an extensive thermodynamic quantity,
where we implicitly set the Boltzmann constant kB = 1. Nu-
merically, the entropy computed by this method is bounded
from above by Smax = log(NS ), where NS is the smaller of Nt

or the number of points in our simulation grid, Nx.
The Penrose-Onsager [24] condensate number Nc is the

largest eigenvalue of ρ(r1, r2), giving another definition of
condensed fraction fc = Nc/Nt . A condensate is present when
this eigenvalue is ∼O(Nt ) or fc∼O(1). This definition of
condensed fraction can be directly extended to fragmented
condensates where more than one eigenvalue of ρ(r1, r2)
is ∼O(Nt ).

Simulation parameters. We numerically simulate the 1D
and two-dimensional (2D) GPE using split-step Fourier meth-
ods [25]. We simulate atomic systems with density n = 103

particles per micrometer, a spacing δx ≈ 0.1 µm between grid
points, a time step δt = 3.7 µs, and use periodic boundary
conditions. We selected 1D and 2D interaction constants u0,1D
and u0,2D to give a chemical potential μ = h×165 Hz, which
is small but reasonable for 87Rb. The chemical potential μ

determines the healing length, where ξ = h̄2/2maμ ≈ 0.6 µm
for the system. Energy is presented in units of μ throughout
the paper.

B. Continuously monitored GPE

Here we briefly review our general formalism describing
cold atomic gases [19–21] continuously monitored with an
off-resonant homodyne technique such as phase-contrast
imaging [26]. We show that the measurement back-action
appears as a random variable in the atomic equation of
motion, and that the dynamics of the BEC are described by
a stochastic wave equation. Further details and derivation of
the equations presented here are contained in Appendixes A
and C. Figure 1(a) shows a schematic of the measurement
configuration for the repeated weak measurement of a 100-µm
BEC with periodic boundary conditions in one dimension.

The dispersive interaction of far-detuned light and the
atomic ensemble is described by the second quantized light-
matter Hamiltonian

ĤLM = h̄γ

∫
dDr n̂(r) ⊗ ρ̂(r, z), (4)

where γ describes the coupling strength, D is the dimension,
n̂(r) = �̂†(r)�̂(r) measures the D-dimensional atomic den-
sity in terms of atomic field operators �̂(r), and ρ̂(r, z) =
φ̂†(r, z)φ̂(r, z) gives the optical mode occupation in terms of
optical field operators φ̂(r, z).

We consider a pulse of light incident on our D-dimensional
system that therefore travels in a (D + 1)-dimensional space.

Here, the vector r denotes the space containing the atoms and
z is the perpendicular dimension in which the light travels. For
an incident coherent state with amplitude α [i.e., φ̂(r, z)|α〉 =
α|α〉] and width z = cdt , we define a measurement strength
parameter ϕdt1/2 = γ |α|(2dt/c)1/2, a continuum analog to
the expression in Ref. [20], where c is the speed of light in
a vacuum.

Continuous weak measurements of strength ϕdt1/2 output
a measurement signal

M(r, t ) = 〈n̂(r, t )〉 + m(r, t )

ϕ
, (5)

where 〈n̂(r, t )〉 is the atomic density and m(r, t ) is the quan-
tum projection noise associated with the measurement. The
projection noise is characterized by Fourier-domain Gaussian
statistics m̃k = 0 and m̃km̃∗

k′ = LD�(k0 − |k|)dWkdW ∗
k′/2dt2,

and dWk is aWiener increment with dWk = 0 and dWkdW ∗
k′ =

dtδkk′ [27].
Fourier momenta greater than k0 = 2π/λ are removed

from the measurement signal via the Heaviside function �

due to the inability of the physical measurement process to
resolve information on length scales smaller than λ/2π .

Our protocols control the condensate by applying a feed-
back potentialV [ε], generated using an estimator ε, defined in
the following section. The measurement and quantum control
protocol is described by a stochastic equation of motion for
�(r, t ) in D = 1 and 2 dimensions [21]:

d�(r) = d�(r)|H + d�(r)|M + d�(r)|F, (6)

where

d�(r)|H = − i

h̄
[Ĥ0 + u0|�(r, t )|2 − μ]�(r)dt, (7)

d�(r)|M =
[
ϕm(r, t ) − ϕ2

π

(
k0
4

)D
]
�(r)dt, (8)

d�(r)|F = − i

h̄
V [ε](r)�(r)dt, (9)

are the contributions from closed system evolution, mea-
surement back-action, and feedback, respectively. Absent
the measurement record, these equations are similar to the
stochastic GPE derived in Ref. [28]. Figure 1(b-i) shows the
middle 20-µm section of the postmeasurement density n of the
BEC described by �(r) in the above equations of motion.

C. Signal filtering

Our simulations model a continuous measurement process,
for which the measurement noise in Eq. (5) diverges as dt →
0. In reality, any physical measurement process has a nonzero
detection time τ ; accordingly our simulations discretize time
into steps of duration δt � τ . This yields the discrete stochas-
tic equation in Appendix A which quantifies the measurement
strength in terms of κ = ϕ(δt )1/2.

In general we model a physical detector’s response with the
convolution

ε(x, t ) =
∫ 0

−∞
dt ′M(x, t ′ + t ) f (t ′), (10)
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expressed in terms of a normalized filter kernel f (t ). For
example, a single measurement of fixed duration τ would be
described by the box filter fbox(t ) = �(t + τ )�(−t )/τ .

Here, we describe our measurement in terms of the low-
pass filter

τ ε̇(x, t ) + ε(x, t ) = M(x, t ), (11)

described by filter kernel f (t ) = �(−t ) exp(−t/τ )/τ . We
term ε(x, t ) as the estimator because it is a running average
that estimates the true state of the system. Figure 1(b-ii)
displays the estimator computed following the measurement
process that resulted in the postmeasurement density shown
in Fig. 1(b-i).

This filtered measurement signal encourages us to
introduce an optimal measurement strength κ∗ for which the
filtered measurement result is equal to the postmeasurement
density n|M(x), i.e., M(x) = n|M(x). As shown in
Appendix A, this leads to the optimal measurement strength

κ∗ =
√

1

2n0

δt

τ
, (12)

which is exact only for the box filter. Reference [21]
heuristically used this expression to obtain a near-optimal
measurement strength for the exponential filter, thereby
coupling κ and τ .

In Sec. III, our momentum-dependent filtering protocols
make τ a function of k and thereby are not described by a
single optimal measurement strength. As a result, κ and τ are
not coupled in the feedback cooling protocols presented here.

D. Feedback cooling

Feedback cooling suppresses excitations, including those
present prior to any measurements as well as those added
by measurement back-action. Our feedback techniques apply
a time-dependent feedback potential, derived from the mea-
sured density. In principle, this feedback cooling is limited
because the measurement provides no information regard-
ing the condensate phase. However, this limitation can be
mitigated with the enhanced feedback cooling techniques dis-
cussed later in Sec. III.

To generate a cooling potentialVC(x) given a measurement
recordM(x), we take the stationary GPE for the postmeasure-
ment wavefunction ψ|M,

μψ|M = [Ĥ0 + u0n|M + VC]ψ|M, (13)

and, under the Thomas-Fermi (TF) approximation, substitute
u0n|M → gM and compute the potential for which the ψ|M
would be the ground state of the system:

VC(x) = μ − gM(x). (14)

Reference [21] found that g = u0 is the value of gain that
results in the best cooling; this was expected as a result of
the Thomas-Fermi approximation.

Using an estimator of the form shown in Eq. (10), the
potential expression becomes

VC(x) = μ − gε(x). (15)

Figure 1(b) shows this basic feedback cooling process using
dark green arrows (inner flow chart). The arrow between

Figs. 1(b-ii) and 1(b-iv) represents the generation of a feed-
back potential V [ε] according to Eq. (15). The arrow from
Fig. 1(b-iv) to Fig. 1(b-i) represents the application of V [ε] to
the system via the Hamiltonian term in Eq. (9).

In Sec. III, we build on the cooling capabilities of this
basic feedback protocol by implementing momentum mode-
specific feedback.

III. ENHANCED FEEDBACK COOLING

The goal of feedback cooling is to depopulate high-
momentum modes (i.e., phonons in our BEC), which are
excited during the measurement process due to measure-
ment back-action. The previous cooling protocol [21] outlined
in Sec. II D is applied uniformly to all momentum modes.
In this reference, a Bogoliubov–de Gennes analysis indi-
cated that momentum-dependent cooling protocols should
give improved performance. In this section, we introduce
momentum-dependent signal filtering and gain, describe sev-
eral different protocols that improve feedback cooling, and
discuss the merits of each.

A. Momentum-dependent cooling

The component of the density distribution with momentum
k > k0 is inaccessible to the measurement process and there-
fore remains untouched by both measurement back-action
and feedback cooling. However, the associated modes can
become populated via scattering; this contributes to heating
and prevents the system from reaching a steady state [21]. An
optimal feedback cooling protocol should rapidly depopulate
the momentum modes with k � k0, so that modes with mo-
mentum k > k0 cannot be populated by collisions.

Transitioning the discussion in Secs. II C and II D into
Fourier space allows us to straightforwardly introduce
momentum-dependent gain and filtering, e.g., g → g(k) and
τ → τ (k). This results in a general cooling protocol with
k-space estimator

ε(k, t ) =
∫ t

∞
dt ′ 1

τ (k)
M(k, t ′)e−(t−t ′ )/τ (k), (16)

giving the feedback potential

VC(x, t ) = μ − F−1[g(k)ε(k, t )](x, t ), (17)

whereF andF−1 denote the Fourier transform and its inverse,
and the argument of the function delineates between spatial
and spectral representations. The functions τ (k) and g(k) are
selected based on physical considerations discussed below.

The time constants τ (k) in the integral in Eq. (16) used
to compute ε(k, t ) allow for a momentum-dependent com-
promise between reduced noise (longer averaging times) and
rapid response to system dynamics (shorter averaging times).
Here, we used

τ (k) = τc
k0
k

, (18)

where τc is the filter time constant at k0, the maximum accessi-
ble momentum. As a result, the small k contributions to ε(k, t )
have relatively longer filter times.We designed this function to
be compatible with phonon dynamics: a phonon of wave vec-
tor k will create a density modulation whose phase changes by
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FIG. 2. Probability density for feedback-cooled BECs. The basic
protocol (top) exhibits considerable structure at short length scales
that is absent for the enhanced feedback cooling protocols (bottom).

1 rad in a time 1/(ck). Therefore, averaging the information
over longer times would not be useful in estimating the current
density of the system.

Similarly, the gain function g(k) in Eq. (17) includes the
possibility that the system’s density responds to applied poten-
tials differently on different length scales. For example, low-k
phonon excitations couple to density much more weakly than
high-k particlelike modes; this motivated us to select a g(k)
to decrease with increasing k. This is in contrast with the
optimal protocol for adiabatic feedback cooling [21], which
features increasing gain at large k. Our momentum-dependent
gain function,

g(k) = ge−k2/(2σ 2 ), (19)

significantly attenuates the gain for momenta larger than a
Gaussian width σ .

Figure 1(b) displays this enhanced feedback cooling proto-
col using pink arrows (outer flow chart). We show the kernel
of the estimator integral in Eq. (16) in Fig. 1(b-iii).

B. Results

The momentum-dependent cooling protocols outlined in
Sec. III A cool the BEC more effectively than previous pro-
tocols according to several metrics. Figure 2 displays the
differences in high-frequency density noise with and without
momentum-dependent cooling, while Fig. 3 summarizes our
results quantified in terms of total energy (top), condensed
fraction (middle), and entropy (bottom) in both one and two
dimensions. We also discuss the optimization of parameters
τC and σ .

The left column of Fig. 3 presents our 1D cooling results.
In all cases the system was initialized at t = 0 in the ground

state and approached a steady state as the cooling protocols
were applied. The pink circles depict the time evolution of
the previous best protocol [21], which was momentum inde-
pendent. We minimized the final energy by tuning the gain g
and filter time τ to obtain an optimal momentum-independent
protocol (blue triangles), reducing the total energy by a fac-
tor of about 30. Interestingly, the momentum-dependent gain
protocol (light green diamonds) reduces the steady-state en-
ergy, but performed worst as quantified by condensed fraction
and entropy. The protocols with momentum-dependent fil-
tering reduce the total energy by an additional factor of
about 4 [Fig. 3(a)]. The momentum-dependent filter (brown
squares) had the most significant effect on cooling across
all three metrics, leading to a higher condensed fraction and
lower entropy [Figs. 3(b) and 3(c)]. In contrast, incorporating
the momentum-dependent gain parameter g(k) (dark green
crosses) given by Eq. (19) provided little advantage in cooling
in terms of the total energy and led to slightly worse outcomes
in terms of the entropy and condensed fraction. This indicates
that the physical intuition that shorter-wavelength excitations
would require reduced feedback strength is either invalid, or
that our Gaussian ansatz was poorly motivated. Given the
success of an overall gain derived from the Thomas-Fermi
approximation, perhaps adjusting the k-dependent gain based
upon a higher-order expansion would be better motivated.

With our previous momentum-independent protocols, the
system did not reach steady state—as quantified by condensed
fraction, energy, and entropy—even at long times [21]. By
contrast, all of our metrics become time independent for the
momentum-dependent cooling protocols, indicating that the
system is in a steady state.

The 2D cooling results are presented in Figs. 3(d)–3(f).
Because there are no literature results for this type of feed-
back cooling in two dimensions, we do not plot the previous
best protocol. The momentum-dependent protocols reduce the
total energy by a factor of slightly less than 4 compared to the
2D momentum-independent protocol [Fig. 3(a)], very similar
to the 1D results. However, the overall energy of these proto-
cols is about a factor of 5 higher than their 1D counterparts.
By contrast, the uncondensed fraction and entropy [Figs. 3(e)
and 3(f)] are about 50 times lower than those achieved by the
1D protocols. We attribute this contrast to an overall decrease
in the occupation of excited modes, but with an increase in
energy deriving from the increased density of states for higher
momentum states. This density-of-states effect is even evident
in individual measurements, where each measurement in two
dimensions adds about 2.5 times more energy than in one
dimension.

We quantify the overall behavior of the cooling protocols
by fitting the time evolution of the energy, condensed fraction,
and entropy to fitting functions of the form

E (t ) = E∞[1 − exp (−|t/τE |αE )]. (20)

In this example for energy, E∞ denotes the asymptotic value
of the energy, τE describes the nominal timescale for equi-
libration, and αE captures the rapidity of the approach to
equilibrium.

We optimize the feedback cooling protocols by
selecting the gain and filtering parameters that resulted
in the lowest steady-state energy E∞. The symbols g and
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S

(c)
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FIG. 3. Comparison of feedback cooling protocols in [(a)–(c)] one dimension and [(d)–(f)] two dimensions. [(a), (d)] Total energy
difference �E ; [(b), (e)] uncondensed fraction 1 − fc, and (c) entropy S. The data presented in shape markers depict five different cooling
protocols: the previous best momentum-independent protocol (pink circles), the optimized momentum-independent protocol (blue triangles),
momentum-dependent gain only (light green diamonds), momentum-dependent filtering only (brown squares), and both momentum-dependent
gain and filtering (dark green crosses). The solid black curves show fits to �E , 1 − fc, and S; the fitting functions are discussed in Sec. III B.

τ f denote the momentum-independent gain and filtering
protocol parameters, respectively, while σ and τC denote the
momentum-dependent gain and filtering protocol parameters,
respectively. For each set of parameters, we simulate 16
trajectories in one dimensions and 5 in two dimensions over
a period of 1 s. The results for each protocol are presented
in Fig. 4, where a clear local minimum emerges in the final
steady-state energy. In Fig. 4 we imposed an upper limit of
E∞/μ ≈ 101; trajectories with energies beyond this limit
generally failed to reach equilibrium in 1 s and are therefore
not well fit by Eq. (20).

To reduce the parameter space for the full momentum-
dependent filtering and gain protocol, we selected the k = 0
gain g in Eq. (19) to be the optimal gain for momentum-
dependent filtering.

IV. QUENCH COOLING INTO FAR-FROM-EQUILIBRIUM
CONDENSED STATES

Section III presented an optimized protocol for continu-
ously measuring a condensate while maintaining it at very
low energy and entropy. In this section, we cool high-energy,
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FIG. 4. Final energy E∞ for two-parameter cooling protocols in
both (a) one dimension and (b) two dimensions. Numeric labels
denote parameter scans for the following protocols: (i) momentum-
dependent gain and filtering, (ii) momentum-dependent gain, (iii)
momentum-dependent filtering, and (iv) momentum-independent
gain and filtering.

high-entropy 1D systems with no initial condensate into fi-
nal steady states with large condensed fraction and nonzero
winding numbers. These integer-valued winding numbers
are described by quantized supercurrents. These condensed
steady states are far from equilibrium, with energy in ex-
cess of the “critical” energy for condensation, as discussed
below. We show that this results from significant occupation
of high-momentum states (above the imaging cutoff k0) that,
because this is a nearly integrable system, are only weakly
coupled to the low-momentum modes accessible to feedback
cooling.

A. Quasithermal excited states

In our simulations, we introduce “thermal” energy by re-
peatedly adding low-amplitude noise over the course of 37
ms and allowing 0.5 s for the system to equilibrate. The noise
has a spectrally uniform distribution up to a cutoff k0 = 2π/λ,
modeling light scattering from a near-resonant laser beam
with wavelength λ. As indicated above, we create ensembles
of nominally identical trajectories (1024 trajectories in one
dimension and 256 in two dimensions), with each trajectory
having an independent noise realization.

We find that the momentum distributions in one dimen-
sion did not approach a thermal equilibrium state; this is
the expected behavior because the 1D GPE is an integrable
model. To facilitate equilibration, we break integrability with
a disorder potential. After adding the desired energy, we adia-
batically ramp on this potential over 2 s, and allow the system
to equilibrate for 5 s before adiabatically removing it over
another 2 s. This process left the total energy unchanged but
increased the entropy, giving the 1D momentum distributions
in Fig. 5(a-i), for three values of �E chosen to give fc ≈ 1,
0.3, and 0. Our thermalization procedure yielded a smooth
distribution in the higher-energy (middle and bottom) panels.
By contrast, we can see that the lowest-energy case (top) has
a sharp peak at the k = 0 mode.

Figure 5(a-ii) shows that in one dimension the uncon-
densed fraction 1 − fc increases linearly for small �E and
crosses over to the constant value of 1 (i.e., fc = 0) at a “crit-
ical energy” Ec. The uncondensed fraction increases by no
more than 0.1 at energies greater than Ec. Finally, Fig. 5(a-iii)
plots fc as a function of the ground-state occupation prob-
ability Pk=0. We find that these quantities are nearly equal,
consistent with the intuitive picture that condensate is asso-
ciated with a macroscopic occupation of the ground (k = 0)
state.

In Fig. 5(b-i), we present the 2D momentum distributions
projected onto the kx axis for the same approximate fc values
as shown in one dimension. As expected, we observe a sharply
peaked distribution centered at k = 0 for low energy (top),
and broad smooth distributions at higher energies (middle,
bottom). No integrability-breaking disorder potential was re-
quired for thermalization in two dimensions.

Unlike the simple linear scaling of the uncondensed frac-
tion with �E observed in one dimension, Fig. 5(b-ii) shows
that in two dimensions there exist regimes of different slope.
In addition, Fig. 5(b-iii) shows an approximately quadratic
dependence of fc on the ground-state occupation P(k = 0).
Although these behaviors are not a focus of our study, it is
likely that as a function of increasing �E they result from
the role of vortex-antivortex pairs. For example, states with
a small number of vortices will have a very large P(k = 0),
but depending on the vortex configuration can have very little
wavefunction overlap leading to a small value of fc.

B. Cooling from excited states

Here we add energy as described in Sec. II A, resulting
in incoherent states above Ec, and then apply the optimized
cooling protocol to generate far-from-equilibrium condensed
states. Figure 6(a) shows �E as a function of time with
cooling starting at t = 0 s (solid green) starting with an added
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FIG. 5. GPE-simulated quasithermal systems in (a) one dimen-
sions and (b) two dimensions. (i) Momentum distributions for
systems with condensed fraction fc ≈ 1 (top), 0.3 (middle), and 0
(bottom). The 2D momentum distributions are projected onto the
kx axis. (ii) Uncondensed fraction 1 − fc as a function of �E . The
vertical red dashed line denotes the transition energy Ec. (iii) Con-
densed fraction fc versus the occupation probability of the k = 0
mode P(k = 0).

energy �E/Ec = 2.05. For this amount of added thermal
energy, our protocol quenches through the critical energy Ec

(dashed red).
We observe that the cooling protocol is quite ineffective in

energy removal for large added energy. To clarify this obser-
vation, we plot the energy divided into two parts: the kinetic
energy contributions from momentum states above (dotted)
and below (dashed) k0 (the contribution from interaction
energy is negligible). When the cooling process begins, the
kinetic energy from states with k < k0 immediately plummets
to a fraction of the total energy as those modes are efficiently
cooled. In stark contrast, the energy from states with k > k0
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FIG. 6. Time evolution following a quench from high energy.
(a) Contributions to total energy (solid green), kinetic energy from
momentum states above (dotted black) and below (dashed black) the
imaging cutoff k0. The horizontal red dashed line marks the transition
energy Ec, obtained from Fig. 5(a-ii). (b) Occupation probability of
most occupied momentum mode P(k = 0) over the quench period.
The inset shows the full final momentum distribution for the most
energetic case in (a). The vertical dashed lines in the inset denote
|k| = k0.

slowly decreases over many seconds. Because these modes
are above k > k0 they cannot be directly cooled, and instead
are slowly depopulated via scattering processes.

This effect is clearly visible in the inset to Fig. 6(b) that
shows the final-state momentum distribution with prominent
shoulders at ±k0. This distribution further displays a sharp
k = 0 condensate peak surrounded by modes with occupation
probabilities around 10−6. Relatively highly populated modes
appear starting at k = k0. We attribute the decoupling of these
groups of modes and the resulting far-from-equilibrium state
to the integrability of the 1D GPE; essentially stating that in
one dimension binary collisions do not exchange momentum.

The nonequilibrium momentum distribution in Fig. 6(b) is
not observable with our weak measurements due to the finite
imaging resolution set by k0. However, time-of-flight imaging
gives direct access to the momentum distribution; thus it could
be observed experimentally.

We find that our quench-cooling protocol can also result in
states with integer-valued winding numbers associated with
quantized supercurrents, with occurrence probability plot-
ted in Fig. 7(a) fit to a Gaussian (with rms width = 0.98).
Figure 7(b) plots the wavefunction phase as a function of
position associated with winding numbers 0, 1, and 2. These
states with nonzero winding number are still condensed, each
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FIG. 7. Winding numbers. (a) Winding number distribution of a quench-cooled 1000-trajectory ensemble. (b) Phase φ versus position x
at a single time for trajectories with winding numbers 0 (top), 1 (middle), and 2 (bottom). (c) Condensed fraction fc of the entire ensemble
(black) and for subensembles of each winding number. The subensembles include 47, 251, 418, 250, and 49 trajectories for winding numbers
−2, −1, 0, 1, and 2, respectively.

with a single highly populated k mode given by the winding
number; for example, a state with winding number 2 will be
condensed into the k = 2×2π/L mode.

When we consider an ensemble of 1000 trajectories, the
Penrose-Onsager condensed fraction fc is only about 0.4
[Fig. 7(c), black], indicative of a poor condensate. How-
ever, this is an artifact of the winding number distribution
in Fig. 7(a), which leads to a formally fragmented conden-
sate [29]: one with many macroscopically occupied modes.
To investigate this, we group the trajectories by winding
number, compute fc for each of these subensembles, and
plot these results alongside the fc in Fig. 7(c). We find that
when subensembles of each winding number are considered
separately, each subensemble has a steady-state condensate
fraction fc > 0.95.

V. OUTLOOK

We presented a continuous weak measurement and feed-
back protocol that effectively removes high-energy excita-
tions, up to the limit given by light scattering, and preserves
low-entropy BECs in both one and two dimensions. These
results show a route toward an essential feature of any continu-
ous feedback protocol, which is that the same quantum system
can be subjected to repeated measurement without requiring
an additional reservoir to remove the entropy added by the
measurement process.

We furthermore demonstrated that these feedback cooling
protocols can lead to new far-from-equilibrium condensed
states that would be inaccessible in equilibrium systems. The
observed separation of scales is reminiscent of condensation
in pumped systems such as exciton polariton condensates
that can combine a nonthermal distribution of highly excited
modes with a coherent condensate mode [30]. Interpreted
in the context of traditional feedback theory, the observed
momentum distributions are similar to feedback-stabilized
systems with Bode peaks located near the bandwidth limit.

The distribution of winding numbers in Fig. 7(a) for these
states is reminiscent of the predictions of the Kibble-Zurek
mechanism [31,32] describing quenches through phase tran-
sitions. In this work we did not study the width of these

distributions as a function of quench speed or system size,
as would be required to test if this feedback-cooling tran-
sition obeys Kibble-Zurek scaling. If it does, a potentially
interesting direction for future study would be searching
for non-mean-field exponents using systems with novel or
nonlocal feedback [19]. We note that winding numbers are
observable, and have been studied, for example, in evaporative
cooling [33] and superfluid ring experiments [34]. Here, the
winding numbers emerge as a result of applied feedback,
providing another mechanism for their realization.

Additional work is needed to characterize analogous
far-from-equilibrium condensed states in 2D systems. In
two dimensions, quantized vortices—topological defects—
are analogous to the winding number in one dimension, but
the large parameter space given by their number and positions
within the condensate make the construction of low-entropy
subensembles impossible and underlies the noncondensed
Berezinskii-Thouless-Kosterlitz superfluid, making this an in-
teresting direction for future study.

Finally, we remark on previous methods for describing
feedback-cooled BECs and compare them to our approach.
The formalism developed in Sec. II B and in Refs. [19–21]
explicitly preserves the measurement record associated with
the detection process, in contrast to the theory of BECs
undergoing weak measurement based on unraveling of the
master equation [28,35,36]. Our method is therefore well
suited to characterize BEC dynamics for specific measure-
ment protocols—such as phase-contrast imaging [37–40]—in
which the measurement record is preserved.

The coherent-state assumption for a bosonic system un-
dergoing measurement and feedback has been shown to be
valid in the limit of large atom number, by comparison to
a numerically exact Bose-Hubbard model simulation [19].
Furthermore, even if a BEC is prepared in an overall number
eigenstate, its local properties are well described by a coherent
state. Similarly a small subsystem of a trapped BEC can be
modeled using the grand canonical ensemble with the remain-
der of the BEC acting as a number and energy reservoir. Thus,
any small subsystem will necessarily have the large number
fluctuations predicted by this ensemble, although the whole
system will not [41].
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It is also important to note that the techniques developed
here are only valid in the limit of large atom number, as
previous investigations of monitored BECs in the single-atom
limit have shown the mean-field approach to produce spurious
results [28,35]. It remains an open question when precisely
the mean-field model breaks down in a BEC undergoing
measurement and feedback and could be the basis for further
investigations beyond mean-field theory.

Stochastic field methods can be sensitive to the specific
selection of an energy cutoff [23], here implemented by
selection of the maximum momentum mode kmax of the GPE
simulation. We verified that reducing kmax by a factor of 2
left our optimal cooling parameters and winding numbers
distribution unchanged. In addition, in both one and two
dimensions, the steady-state condensate fraction and entropy
changed by about 10% while the energy changed by about
30%. As such we conclude that our optimized feedback
protocols are robust, and more sophisticated simulation
methods would yield only quantitative differences.
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APPENDIX A: DISCRETE AND
CONTINUOUS MEASUREMENT

This Appendix serves to clarify the connection between
the random variable m defined on a continuous domain (both
finite and infinite) versus a discrete domain. Here we begin
with m(x, t ) with unbounded x, in contrast to the body of
the text where we focused on a compact spatial domain of
extent L.

Although our mathematical description is in terms
of a continuous-in-time random variable, any numerical
simulation must be broken down into a grid with spacing δx
and extent L, with time steps of duration δt . Recall that the
measurement outcome at time t ,

M(r, t ) = 〈n̂(r, t )〉 + m(r, t )

ϕ
, (A1)

has a contribution from the random variable m(r, t ) with
Fourier transform m(k, t ). To make the connection with finite
time steps it is convenient to define m(k, t ) in terms of its
correlation functions using a temporal Dirac delta function,

m(k, t )m∗(k′, t ′) = 1
2 f (k)δ(k − k′)δ(t − t ′),

rather than the Wiener increment. The Heaviside step
function used in the paper is a special case of a dimensionless

momentum-space apodizing function f̃ (k) with f̃ (0) = 1
and f̃ (k) = f̃ (−k), implying the spatial correlation function
m(r)m(r′) = f (r − r′)/2.

Discrete temporal domain. In numerical models we con-
sider time points spaced by δt and generally define quantities
on this grid as the average over the time interval δt , where δt
is made small enough that dynamics during this interval can
be neglected. Thus we have averages such as

Mt (r) ≡ 1

δt

∫ δt

0
M(r, t ′ + t )dt ′. (A2)

By contrast, random variables such as mt (r) require a
slightly different average,

mt (r) ≡ 1

δt1/2

∫ δt

0
m(r, t ′ + t )dt ′, (A3)

to give the temporal correlation mt mt ′ = δt,t ′/2. This results
from the usual

√
N scaling of N random events. Together

these lead to

Mt (r) = 〈n̂t (r)〉 + mt (r)
κ

, (A4)

where κ = ϕ
√

δt .
Discrete spatial domain of length L. For an accurate simula-

tion, the process of discretizing the spatial domain into a grid
with spacing δx requires that f (r) be nearly constant over a
range of δx; in our specific case this implies that 2π/δx � k0.
Applying our Fourier-transform relations (see Appendix B for
our conventions) again gives the discrete correlation function

mk,t m∗
k′,t ′ = LD

2
f̃ (k)δk,k′δt,t ′ .

Continuous finite spatial domain of length L. In this case the
problem is a straightforward application of the suitable inverse
Fourier transform under the assumption that the extent of the
domain L is much larger than the characteristic width of f (r).
This promptly gives m(k)m∗(k′) = LD f̃ (k)δk,k′/2, the spatial
part correlation function following Eq. (5) in the main text.

Optimal measurement strength. Integrating the stochastic
update rule over a time interval δt yields the updated wave-
function

� ′
j (r) =

[
1 + κmj (r) − κ2

π

(
k0
4

)D
]
� j (r), (A5)

as expected.
Following such a finite-duration measurement the conden-

sate density is

n′
t (r) ≈ 〈n̂t (r)〉[1 + 2κmt (r)] (A6)

at lowest order in κ . Equating this expression with Eq. (A4)
and assuming a constant density n0 allows us to define the
optimal measurement strength

κ∗ =
√

1

2n0
(A7)

for which the final density and measurement outcomes are
equal [21].
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This concept can be extended to estimators of the form

ε(x, t ) =
∫ ∞

0
dt ′M(x, t + t ′)K (t ), (A8)

where K (t ) is an arbitrary normalized filter kernel. For the
special case of a box kernel with width τ the estimator is

ε j (x) = 〈n̂ j (r)〉 + mest, j (r)
κ
√

τ
, (A9)

where mest, j is the filtered noise signal: a random variable
again constructed to have variance of 1/2. The corresponding
ideal measurement strength is

κ∗ =
√

1

2n0

δt

τ
. (A10)

The ideal measurement strength is reduced by a factor of√
δt/τ reflecting the fact that multiple measurements of length

δt can be taken in the time τ . This yields the expected 1/
√

N
scaling with the number of measurements taken in the time
interval τ .

APPENDIX B: FOURIER-TRANSFORM PAIRS

Many expressions in this paper depend on the specific
convention used for Fourier-transform pairs. Our Fourier-
transform conventions are documented here.

Continuous infinite (CI) domain. We make the choice

f (x) =
∫

dk

2π
f̃ (k)eikx ↔ f̃ (k) =

∫
dx f (x)e−ikx,

which is the de facto standard in physics, and forms the basis
for the following cases. A consequence of this choice is that a
unit-normalized wavefunction function ψ (x) is transformed
to ψ̃ (k) with a 2π norm; in other words, dk/(2π ) is the
measure required to retain the correct normalization. This is
made evident by the resolution of the Dirac delta functions in
this case:

δ(x) =
∫

dk

2π
ẽikx ↔ 2πδ(k) =

∫
dx e−ikx.

In writing these expressions we expressed the integrals with
their conventional form because this how they generally ap-
pear in calculations.

Continuous finite (CF) domain with length L. Here the pair

f (x) = 1

L

∑
k

f̃ (k)eikx ↔ f̃ (k) =
∫

dx f (x)e−ikx

has a sum over k that is the Riemann sum associated with the
k integral in the CI case, with δk = 2π/L. In this case we have
modified identities for the delta functions:

δ(x) = 1

L

∑
k

eikx ↔ Lδk,0 =
∫

dx e−ikx.

Discrete infinite (DI) domain with spacing δx. Similar to
the CF cases, the pair

f (x) =
∫

dk

2π
f̃ (k)eikx ↔ f̃ (k) = δx

∑
x

f (x)e−ikx

now has a sum over x associated with the x integral of the CI
case. The identities for the delta functions,

1

δx
δx,0 =

∫
dk

2π
eikx ↔ 2πδ(k) = δx

∑
x

e−ikx,

follow similarly.
Discrete finite (DF) domain consisting of N sites. In this

case we approximate the differential in both sums to arrive at

f (x) = 1

L

∑
k

f̃ (k)eikx ↔ f̃ (k) = δx
∑

x

f (x)e−ikx,

along with the delta functions

1

δx
δx,0 = 1

L

∑
k

eikx ↔ Lδk,0 = δx
∑

x

e−ikx.

Notice that this is not the standard textbook convention for
which both expressions would have prefactors of 1/N1/2

rather than 1/L and δx. Our motivation for making these
choices is that the units of f (x) and f̃ (k) are unchanged and
the connection to continuum systems is direct and clear.

APPENDIX C: STOCHASTIC WAVEFUNCTION
EVOLUTION

The stochastic evolution describing the effect of measure-
ment back-action on the BEC coherent state can be derived
from the Kraus operator formalism [42]. In this Appendix, we
outline the key steps of the calculation leading to Eq. (8) in
the main text. For continuous systems in space and time, the
Kraus operator is

K̂m = exp

[
−ϕ2dt

2

∫
dr

(
δn̂(r, t ) − m(r, t )

ϕ

)2
]
, (C1)

where m(r, t ) denotes a stochastic variable for the continuous-
time system, ϕ is the measurement strength, and δn̂(r, t ) =
n̂(r, t ) − 〈n̂(r, t )〉 is the density difference operator. As dis-
cussed previously, m(r, t ) is defined by its correlation function
and can be expressed in terms of a Wiener process as in
Sec. II B or a temporal δ function as in Appendix A.

We begin by assuming the BEC is initially in a coherent
state |�〉. The action of δn̂(r, t ) on a coherent state is

δn̂(r, t )|�〉 = [ψ̂†(r, t )�(r, t ) − |�(r, t )|2]|�〉, (C2)

where ψ̂ (r, t ) indicates a bosonic field operator and the clas-
sical field �(r, t ) is its mean-field counterpart.

The updated state after measurement is formally given
by K̂|m|�〉 which is conditioned on the measurement result
via the stochastic variable m(r, t ). Using a path integral
formalism and starting with Eq. (C2), we define a probability
distribution for the overlap of the updated state with a new
bosonic coherent state |�|m〉,

P[�∗
|m, �] ∝ |〈�|m|K̂|m|�〉|2 ≈ e−F [�∗

|m,�]−G[�], (C3)

where F[�|m, �] is a functional of the field �∗
|m, and G[�] is

a functional only of �. The state 〈�|m| that is maximally over-
lapping corresponds to the saddle point, i.e., δF/δ�∗

|m = 0.
We consider the regime where measurement strength ϕ

and time increment dt are both small, and expand the Kraus
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operator in orders of ϕm(r, t ) up to order (ϕm)2. In the follow-
ing the t index is suppressed for clarity. The Kraus operator in
this approximation is

K̂m ≈ 1 + ϕdt
∫

dr m(r)δn̂(r)

+ ϕ2

2

∫
drdr′ [dt2m(r)m(r′)

− dtδ(r − r′)]δn̂(r)δn̂(r′). (C4)

Note that the δn̂(r)δn̂(r′) term requires normal ordering of
the field operators to accurately calculate the action of K̂|m on
|�〉 to second order. We calculate the probability distribution
using Eqs. (C2), an analogous expression for δn̂(r)δn̂(r′)|�〉,
Eq. (C3), and the overlap for bosonic coherent states [43]

|〈�|m|�〉|2 = exp

[
−

∫
dr �∗2

|m − 2�∗
|m� + �2

]
. (C5)

Rewriting the expression as an exponential and taking the
functional derivative gives the saddle-point equation

δF
δ�∗

|m
= 2�∗

|m(r)
{
1 − ϕ2�(r)

∫
dr′ [2dt2m(r)m(r′) − dtδ(r − r′)]�(r′)

}

− 2�(r)
{
1 + ϕdtm(r) + ϕ2

2
[dt2m2(r) − dtδ(0+)] − ϕ2

2

∫
dr′ [2dt2m(r)m(r′) − dtδ(r − r′)]|�(r′)|2

}
. (C6)

Finally, solving the saddle-point equation gives the expression for the updated coherent state,

�|m(r) =
(
1 + ϕdtm(r) + ϕ2

2 [dt2m2(r) − dtδ(0+)] − ϕ2

2

∫
dr′ [2dt2m(r)m(r′) − dtδ(r − r′)]|�(r′)|2

1 − ϕ2�(r)
∫

dr′ [2dt2m(r)m(r′) − dtδ(r − r′)]�(r′)

)
�(r), (C7)

where there are no complex terms, so we have written �∗
|m = �|m. This formal expression can be further simplified on physical

grounds. First, we ignore the nonlocal terms ∝ ϕ2[2dt2m(r)m(r′) − dtδ(r − r′)]. These terms vanish for perfectly uncorrelated
white noise (in the spatial domain) and are small as k0 increases, which sets the scale of spatial noise correlations. We can also
replace m2(r) by its correlation function m2(r)—a reasonable approximation for fluctuating quantities.

The remaining local ϕ2 term can be further simplified as

ϕ2dt

2
lim
r→r′

[dtm(r)m(r′) − δ(r − r′)] = ϕ2dt

4

1

(2π )D
lim
r→r′

∫
dk[�(k0 − |k|) − 2]eik·(r−r′ ) ≈ −ϕ2

π

(
k0
4

)D

, (C8)

where we use the continuum limit for the noise correlation function. In going from the second to the third line, we can make the
approximation [�(k0 − |k|) − 2] ≈ −�(k0 − |k|), which is valid for large k0. The integral can then be carried out exactly. The
final result is valid for dimensions D = 1, 2 but could be generalized to higher dimensions. Finally, we are left with the updated
state

�|m(r) =
[
1 + ϕm(r) − ϕ2

π

(
k0
4

)D
]
�(r)dt . (C9)
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