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Exploiting disorder to probe spin and  
energy hydrodynamics

Pai Peng    1,6  , Bingtian Ye    2,3,6, Norman Y. Yao    2,3 & Paola Cappellaro    4,5 

An outstanding challenge in large-scale quantum platforms is to 
simultaneously achieve strong interactions, giving rise to the most 
interesting behaviours, and local addressing, which can probe them. In 
the context of correlated phases, local addressing allows one to directly 
probe the nature of the system’s order. At the same time, such addressing 
allows the study of quantum information spreading and operator growth 
in out-of-equilibrium scenarios. Here we introduce a technique that 
enables the measurement of local correlation functions, down to single-site 
resolution, despite access to only global controls. Our approach leverages 
the intrinsic disorder present in a solid-state spin ensemble to dephase the 
non-local components of the correlation function. Utilizing this toolset,  
we measure both the spin and energy transport in nuclear spin chains.  
By tuning the interaction Hamiltonian via Floquet engineering, we 
investigate the cross-over between ballistic and diffusive hydrodynamics. 
Interestingly, in certain parameter regimes, we observe the coexistence 
of diffusive spin transport with ballistic energy transport, a hallmark of 
interacting integrable systems.

The complex dynamics of isolated quantum many-body systems are 
often amenable to a simple yet powerful description given by classical 
hydrodynamics1–6. However, characterizing the nature of these hydro-
dynamical descriptions7–17 and how they emerge from microscopic 
quantum dynamics remains an area of active pursuit18–26. Recently, 
this pursuit has seen tremendous advances owing to the development 
of large-scale quantum simulation platforms ranging from ultracold 
atoms and superconducting circuits, to solid-state spin systems27–31.

To control and probe many-body dynamics in such systems, 
one typically requires a combination of strong interactions and local 
manipulation. In the majority of platforms, these two features are in 
tension: strong interactions arise when the constituent degrees of 
freedom are closely spaced, which in turn challenges the ability to 
perform local measurements32–34. The tension is particularly acute in 
solid-state platforms where electronic and nuclear spins can exhibit 
strong interactions only when spaced at nanometre length scales. 
Here, we demonstrate that disorder, often times unavoidable in solids 

and long-considered detrimental for quantum coherence and trans-
port, can be a powerful source of local control. First, by dephasing a 
homogenous state using the disorder, we demonstrate the preparation 
of states whose polarization on different sites is uncorrelated. Second, 
we show that single-site, spin–spin correlation functions can be directly 
measured using spin echo. The intuition behind our approach is the 
following—owing to the lack of spatial correlations, non-local com-
ponents of the correlation function are averaged out, leaving only a 
sum of autocorrelations. Applying our technique in the context of 
nuclear magnetic resonance, we demonstrate the direct observation 
and characterization of nanoscale spin and energy transport, without 
the need for magnetic field gradients, subdiffraction techniques or 
multiple spin species28,35–40.

Our experiments are performed on S = 1/2 19F nuclear spins within 
a single crystal of fluorapatite. The nuclear spins effectively form 
quasi-one-dimensional (1D) chains, since the interchain couplings 
are ~40 times weaker than the intrachain couplings (Fig. 1a). We place 
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to zero. An exemplary goal is to prepare and measure the random 
 Zeeman state given by 𝒪𝒪ρ = ∑jαjSjz(t), where αj are independent and 
identically distributed random variables with zero average. This would 
immediately enable the measurement of sum of single-site autocor-
relations since

∑j,k⟨αjαk⟩Tr[Sjz(t)Skz(0)] ∝ ∑j,kδjkTr[S
j
z(t)Skz(0)]

= ∑jTr[S
j
z(t)S

j
z(0)],

which is proportional to single-site autocorrelations Tr[Sjz(t)S
j
z(0)] for 

a translationally invariant Hamiltonian or a disordered Hamiltonian 
with translationally invariant statistics.

Let us now describe our disorder-based experimental protocol 
for preparing 𝒪𝒪ρ (Fig. 1c). First, we rotate the thermal polarization to 
the x axis, initializing a state proportional to ( + ϵ∑jS

j
x) . Then, we 

evolve under Hdis for a time τ, such that the excess magnetization of 
each spin is oriented along a random direction in the xy plane. To ensure 
that the time evolution during τ is generated only by Hdis, we utilize 
concatenated WAHUHA sequences (ref. 42) to dynamically decouple 
HFF. Next, we employ phase cycling to project the random polarization 
of each spin onto the y axis. A final radiofrequency pulse returns the 
polarization along z, and we obtain 𝒪𝒪ρ = ∑jαjSjz, with αj = sin(wjτ) (for 
additional details see the Supplementary Information Section III). A 
similar strategy can be used to enable a measurement of 𝒪𝒪m = ∑jαjS j

z. 
In particular, just before the final inductive measurement of ℳ , we 
refocus the random state back to a uniform magnetization by applying 
the disorder field again. The above single-site autocorrelation function 
can be used to detect spin transport. An analogous approach can be 
used to detect autocorrelations of two-site observables, such as the 
local energy density. We first use the Jeener–Broekaert pulse pair43 to 
create a homogeneous two-body correlated initial state proportional 
to + ϵ∑j(S

j
xS

j+1
y + SjyS

j+1
x )  (here we assume nearest-neighbour  

coupling for representation simplicity, but the results also hold with 
1/r3 long-range coupling; for additional details see the Supplemen-
tary Information Section III). Evolution under the disordered field  
and phase cycling yields the random double-quantum (DQ)  
state with 𝒪𝒪ρ = ∑jα

′
j (S

j
xS

j+1
x − SjyS

j+1
y )  where α′j = sin(wjτ +wj+1τ)  and  

our sample in a 7 T magnetic field along the [001] axis, which leads to a 
strong Zeeman splitting that reduces the dipolar interaction between 
19F spins to its secular form,

HFF = ∑
j<k

J
2r3jk

(2SjzSkz − SjxSkx − SjySky) , (1)

where J = 30.4 krad s−1 and rjk is the distance between sites j and k (meas-
ured in units of the lattice constant). The presence of 31P nuclear 
spin-1/2’s leads to additional Ising interactions, HFP = ∑j,k J

FP
jk S

j
zIkz/r3jk , 

where Ikz  is the spin operator of 31P and JFPjk  includes the angular depend-
ence of the dipole–dipole coupling (Methods). Crucially, the 31P nuclear 
spins are randomly polarized at room temperature and their interaction 
strength is significantly weaker than both HFF and HFP; to this end, Ikz  
can be approximated as a scalar random variable, which effectively 
plays the role of a static, on-site disorder field for the 19F spins:

Hdis = ∑
j
wjSjz, (2)

where wj is drawn from a Gaussian distribution with an estimated width 
of 6 krad s−1 (Methods and Extended Data Fig. 1).

To probe the infinite-temperature transport of spin and energy in 
our system, one must measure autocorrelation functions of the form 
∼ Tr[Sjz(t)S

j
z(0)] . To do so, we begin by evolving a weakly polarized 

thermal state ρ0 ∝ ( + ϵ∑jS
j
z) into a target initial state ρ ∝ + ϵ𝒪𝒪ρ. 

Next, we evolve this initial state under a desired Hamiltonian H for a 
time t, yielding ρ(t) = e−iHtρeiHt. Finally, we measure a tunable observable, 
𝒪𝒪m; in practice, via radiofrequency pulses, this observable is mapped 
onto the magnetization along the x axis, ℳ = ∑jS

j
x, which we directly 

read out via an inductive measurement. The resulting signal is equiva-
lent to the infinite-temperature correlation function, Tr[𝒪𝒪ρ(t)𝒪𝒪m(0)]. 
Clearly, if 𝒪𝒪ρ and 𝒪𝒪m are translationally invariant, the measured signal 
contains non-local correlations between all pairs of spins, for example 
∑jkTr[S

j
z(t)Skz(0)].

To access local correlation functions, such as the spin survival 
probability28,41, we prepare initial states and measure observables such 
that the spin-polarization at different sites is uncorrelated and averages 
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Fig. 1 | Measuring local autocorrelations by utilizing global control and 
intrinsic on-site disorder. a, Chemical structure of Fluorapatite. 19F nuclear 
spins (blue balls) form a quasi-1D structure and can exhibit different classes 
of hydrodynamics under various effective Hamiltonians realized by Floquet 
engineering. 31P atoms (grey) provide intrinsic on-site disordered fields on  
19F spins, which enables the preparation of random states and observables. b, The 
experimental protocol to obtain local autocorrelations consists of three main 
stages. The central ingredient is to realize spatially uncorrelated random states 
and observables in the preparation and the measurement stages. Hamiltonian 
engineering enables the varying of the quantum dynamics. c, The sequence to 

prepare random states and observables contains four steps: (i) initialize the 
system to a spatially homogeneous state with polarization along the x axis, 
(ii) apply a disordered field along the z axis to encode (iii) local information 
into the spin phases and (iv) perform phase cycling to eliminate the residual 
homogeneous part. The arrows represent spin operators whose bases are 
specified on the right for the random Zeeman (Z) state and the random DQ 
state, respectively. To effectively measure spatially random observables, we 
apply the same sequence in reverse order to the final state before measuring the 
homogeneous magnetization.
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⟨α′jα
′
k⟩ ∝ δjk  for large τ. An additional π/2 pulse naturally realizes 

𝒪𝒪ρ = ∑jα
′
j (S

j
yS

j+1
y − SjzS

j+1
z ) . We note that linear combinations of  

these two initial states allow us to reconstruct all of the subsequent 
operators we will consider. We can carefully characterize the  
initial state preparation, focusing on two properties: (i) demonstrating 
that 𝒪𝒪ρ has support only on the desired operators and (ii) confirming 
that ∑αj = 0 and ∑α′j = 0 . For the first property, we measure  
I(ϕ,θ, γ) =  Tr[Ur(ϕ,θ, γ)𝒪𝒪ρU†

r (ϕ,θ, γ)𝒪𝒪ρ]  for various {ϕ, θ, γ}, where 

Ur = ⊗je−iγS
j
ze−iθS

j
ye−iϕSjz . From I(ϕ, θ, γ) we can obtain the principal 

components, 𝒯𝒯μ, of the random observable up to a rotationally invariant 
component, 𝒪𝒪ρ = ∑μdμ𝒯𝒯μ, where dμ are independent random variables 

satisfying 𝔼𝔼(dμdν) = λμδμν, with λμ being the eigenvalues of the correla-
tion matrix in descending order; note that the principal components 
𝒯𝒯μ are orthonormal, Tr(𝒯𝒯μ𝒯𝒯†

ν ) = 2Lδμν. The first two principal compo-
nents are shown in Fig. 2a,b, confirming our preparation of the  
random Zeeman state 𝒪𝒪ρ = ∑jαjσ j

z  and the random DQ state 
𝒪𝒪ρ = ∑jα

′
j (σ

j
xσ

j+1
x − σ j

yσ
j+1
y ) with high fidelity. As I(ϕ, θ, γ) is quadratic 

in 𝒪𝒪ρ, it does not contain information about the sign of the individual 
random coefficients αj and α′j. Therefore, for the second property, we 
measure the overlap of a random state 𝒪𝒪ρ with its corresponding homo-
geneous state. As depicted in Fig. 2c, the overlap quickly decays to zero 
as a function of the preparation time, indicating that, for sufficient 
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Fig. 2 | Experimental verification of random initial state preparation. a,b, The 
first two principal components (PC) of the experimentally prepared random 
Zeeman (a) and DQ (b) states. The horizontal axis label stands for the sum of all 
permutations of the corresponding spin operators, for example XY corresponds 
to √2(SjxS

j+1
y + SjyS

j+1
x ) normalized such that the Frobenius norm is 2L. The 

amplitude is weighted by the square root of the eigenvalue √λi . For the random 
Zeeman state, λ1 = 0.985(1), λ2 = 0.0066(1); for the random DQ state, 
λ1 = 0.963(9), λ2 = 0.0019(5). The eigenvalues are normalized such that ∑μλμ = 1. 

The preparation time is 1.08 ms for the random Zeeman state and 0.96 ms for  
the random DQ state. The green and blue bars show the experimental results,  
and the black wireframes show the ideal states. c, Overlap of the experimentally 
prepared random Zeeman (green) and DQ (blue) states with the corresponding 
homogeneous (homo.) state quickly decaying to zero. The overlap of two 
observables 𝒪𝒪1, 𝒪𝒪2 is defined as Tr(𝒪𝒪1𝒪𝒪2)/√Tr(𝒪𝒪1𝒪𝒪1)Tr(𝒪𝒪2𝒪𝒪2). Data are 
presented as mean values ± s.d. from readout noise (for additional details see the 
Supplementary Information Section V).
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Fig. 3 | Observing different universality classes of hydrodynamics. a, Utilizing 
Floquet Hamiltonian engineering techniques, we can independently tune the 
strengths of two types of interactions (red and black wavy lines) and random 
on-site field (cyan shaded area). Different combinations of the three terms result 
in distinct classes of Hamiltonian: (1) non-interacting, (2) interacting integrable 
and (3) non-integrable. b, Parameter space of the effective Hamiltonian in 
equation (3) with varying v, h and fixed u. c–e, Local autocorrelations of spin and 
energy in non-interacting (c), interacting integrable (d) and non-integrable (e) 
systems. All these autocorrelations follow power-law decay t−1/z, in which the 
value of the dynamical exponent z distinguishes between different universality 

classes. Inset of d, the measured energy autocorrelation (dark blue dots) agrees 
better with the numerical simulation with next-nearest-neighbour coupling 
(solid curve) than without it (light blue dots), suggesting that the small deviation 
from ballistic transport at late times is due to the long-range interaction that 
weakly breaks the integrability of the system. Note that we normalize the local 
autocorrelations by the corresponding global autocorrelations, except for the 
spin autocorrelation in the non-interacting case as we do not have access to the 
collective conserved quantity ρ = ∑j(−1)

jSjz . Data are presented as mean 
values ± s.d. from readout noise (for additional details see the Supplementary 
Information Section V).

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02024-4

time evolution under the disordered field, one naturally realizes 
𝔼𝔼αj = 𝔼𝔼α′j = 0.

Probing emergent spin and energy hydrodynamics
Having verified our initial state preparation, we now turn to exploring 
the infinite-temperature transport of both spin and energy for three 
distinct classes of Hamiltonians (Fig. 3b): (1) non-interacting integrable, 
(2) interacting integrable and (3) non-integrable. Utilizing Floquet engi-
neering, we build each of these Hamiltonians from the native dipolar 
interaction44,45. In particular, our experiments enable the realization 
of the following tunable model,

H = u∑
j<k

J
r3jk
(SjxSkx − SjySky)

+v∑
j<k

J
r3jk
(SjzSkz − SjySky)

+h∑
j
wjSjz,

(3)

where the coefficients {u, v, h} can be independently controlled. For 
{v, h} = 0 and restricting to nearest-neighbour couplings (that is, trun-
cating the long-range dipolar tail), the resulting XY model is integrable 
and free (case 1). Upon adding non-zero v, the model remains integrable, 

but becomes interacting (case 2). Finally, the addition of a weak on-site 
random field, h, causes the model to generically become non-integrable 
(case 3). We note that the long-range nature of the dipolar interac-
tion renders H generically non-integrable for all of the above cases. 
However, our hope is that signatures of integrability will be present in 
the dynamics at short times; as we will see below, this is indeed borne 
out by the data.

These three different universality classes can be distinguished 
by the dynamical exponent, z, associated with their spin and energy 
transport. Crucially, z can be directly measured via the power-law 
decay of the autocorrelation function ~t−1/z, with z = 1 corresponding 
to ballistic motion and z = 2 corresponding to diffusion.

Let us begin with case 1. We tune {u, v, h} = {0.5, 0, 0} and measure 
the spin–spin autocorrelation function (Fig. 3c, green) and the energy 
autocorrelation function (Fig. 3c, blue). Both exhibit late-time power 
laws consistent with z = 1, in agreement with the expectation that quasi-
particles propagate ballistically in a non-interacting, integrable model. 
For case 2, we tune our system to {u, v, h} = {−0.15, 0.3, 0}. Intriguingly, 
we find that spin transports diffusively while energy transports bal-
listically (Fig. 3d). This phenomenon is due to the existence of stable 
spinless quasiparticles and is a central feature of infinite-temperature 
transport in the so-called XXZ model22,23,46–53. Finally, for case 3, we 
set {u, v, h} = {−0.15, 0.3, 0.23} and observe that both spin and energy 
transport diffusively (Fig. 3e), consistent with a generic non-integrable 
model4,26. The maximum time explored here is limited by the inter-
chain coupling, which, albeit being 40 times smaller than intrachain 
coupling, becomes non-negligible at vJt ≈ 50 and breaks the quasi-1D 
approximation.

Two remarks are in order. First, the energy transport data in case 
2 exhibit a weak deviation from ballistic transport at the longest times 
explored in the experiment (inset, Fig. 4d). To understand the origin 
of this deviation, we numerically compute the energy autocorrelation 
function in a 1D spin chain using density matrix truncation, with and 
without long-range couplings11. The agreement between our experi-
ment and numerics in the former case suggests that the observed 
deviation results from the weak breaking of integrability associated 
with the long-range intrachain couplings, which is eight times weaker 
than the nearest-neighbour interaction. Second, by tuning the disorder 
strength during the evolution, we can controllably break integrability 
and access the non-integrable regime on the experimental timescale. 
In Fig. 4, we measure the energy and spin transport as we tune h from 0 
to 0.3 (Methods and Extended Data Fig. 2). We extract z using different 
time windows of the autocorrelation function, starting at tstart = 7.7/J and 
ending at a variable tend. For the spin transport (Fig. 4a), after an initial 
transient, all of the models exhibit a z = 2 at intermediate times. At the 
latest times, the interchain couplings begin to play a role, causing a 
decrease in z. Meanwhile, for the energy transport at h = 0, z remains 
close to its initial ballistic value for all times. However, for h = 0.3, the 
system reaches a diffusive exponent (z = 2) at intermediate times before 
exhibiting a weak decrease (possibly owing to interchain couplings).

In summary, our results introduce a new method to probe local 
spin and energy transport in solid-state spin ensembles. Our technique 
leverages the intrinsic disorder in such systems and requires only 
collective control. Our local probe enables exploration of quantum 
many-body phenomena unavailable in homogeneous systems, such 
as the ballistic and diffusive hydrodynamics demonstrated here, or 
subdiffusion near the many-body localization transition and the emer-
gence of superdiffusion with long-range interactions18,31,54–58. In addi-
tion to two-point correlation functions, which were the focus of the 
present work, our protocols can naturally be generalized to four-point, 
out-of-time-ordered correlations, and thus used to probe many-body 
quantum information scrambling59–70. Beyond quantum simulation, 
transport measurements provide rich information of the system, 
and therefore can also boost quantum sensing applications in mate-
rial and biological science. Finally, we point out that a general static 
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inhomogeneous field can similarly induce the dephasing process and 
thus create random states, broadening the application of the present 
scheme to quantum platforms where disorder is not naturally present, 
including cold atoms, trapped ions and superconducting circuits.
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Methods
Experimental system
The sample in the experiment is a single crystal of fluorapatite with 
formula Ca5(PO4)3F. The most abundant isotopes of F and P have 1/2 
nuclear spin, while the most abundant isotopes of Ca and O have zero 
nuclear spin. Fluorapatite is a hexagonal mineral with space group 
P63/m, where the 19F spin-1/2 nuclei form linear chains along the c axis. 
Each fluorine spin in the chain is surrounded by three equidistant 31P 
spin-1/2 nuclei. The sample we used is a cut from a natural crystal of 
approximate dimensions 3 mm × 3 mm × 2 mm. The sample is placed 
at room temperature inside a superconducting magnet producing a 
uniform B = 7 T field. The total Hamiltonian of the system is given by

Htot = ωF∑
k
Skz + ωP∑

κ
sκz + Hdip (4)

The first two terms represent the Zeeman interactions of the F(S) and 
P(I) spins, respectively, with frequencies ωF = γFB ≈ (2π)282.37 MHz and 
ωP = γPB = (2π)121.51 MHz, where γF/P are the gyromagnetic ratios. The 
last term represents the natural magnetic dipole–dipole interaction 
among the spins, given by

Hdip = HFF + HFP + HPP

= ∑
j<k

ℏγjγk
|rjk |3

[Sj ⋅ Sk −
3(Sj⋅rjk) (Sk⋅rjk)

|rjk |2
] ,

(5)

where rjk  is the vector between the jk spin pair. Because the Zeeman 
interaction is much stronger than the dipole–dipole interaction, we 
can truncate the dipolar Hamiltonian to its energy-conserving part 
(secular Hamiltonian). We then obtain the homonuclear 
Hamiltonians

HFF = 1
2
∑
j<k

JFjk (2S
j
zSkz − SjxSkx − SjySky)

HPP = 1
2
∑
λ<κ

JPκλ (2I
λ
z Iκz − IλxIκx − IλyIκy)

(6)

and the heteronuclear interaction between the F and P spins,

HFP = ∑
k,κ

JFPk,κS
k
z Iκz , (7)

with Jjk = ℏγjγk
1−3 cos (θjk)

2

|rjk |3 , where θjk is the angle between the vector rjk  
and the magnetic field z axis. We align the c axis to the 7 T magnetic 
field. The maximum values of the couplings (for the closest spins) are 
given by J = JFF = −32.76 krad s−1, JPP = 1.20 krad s−1 and JFP = 6.12 krad s−1, 
respectively. Since the coupling between the 31P spins is much weaker 
than the others, the dynamics of the 31P spins can be ignored for short 
times and I only provides a static random field. In addition, as the 
temperature is much higher than the Zeeman energy, each the 31P spin 
is randomly polarized with negligible correlation between different 
31P spins. As a result, HFP can be viewed as an on-site disordered field for 
19F spins

Hdip =
1
2 ∑j<k

Jjk (2SjzSkz − SjxSkx − SjySky) +∑
j
wjSjz, (8)

where wj = ∑κJ
FP
j,κI

κ
z  is a random number.

The dynamics of this complex three-dimensional many-body 
system can be mapped to a much simpler, quasi-1D system. First, when 
the crystal is oriented with its c axis parallel to the external magnetic 
field the coupling of fluorine spins to the closest off-chain fluorine 
spin is ≈40 times weaker, while in-chain, next-nearest-neighbour cou-
plings are 8 times weaker. Previous studies on these crystals have 
indeed observed dynamics consistent with spin chain models, and the 

system has been proposed as being solid-state realizations of quantum 
wires71–73. This approximation of the experimental system to a 1D, 
short-range system, although not perfect, has been shown to reliably 
describe experiments for relevant timescales74,75. The approximation 
breaks down at longer times, with a convergence of various effects: 
long-range in-chain and cross-chain couplings, as well as pulse errors 
in the sequences used for Hamiltonian engineering. In addition, the 
system also undergoes spin relaxation, although on a much longer 
timescale (T1 = 0.8 s for our sample).

Ab initio calculation of disordered field
The disordered magnetic fields on the 19F originates from the 19F–31P 
interaction and the random orientation of 31P. This picture allows us to 
directly calculate the distribution of the disordered field strength. In 
particular, we compute the interaction strength between 19F and its 
several closest neighbouring 31P based on their relative position76 and 
gyromagnetic ratio. Then we assume each 31P points along the +z or −z 
direction with the same probability, which effectively applies a mag-
netic field on 19F along the corresponding direction and with the 
strength given by the 19F–31P interaction. Summing up the contribution 
from all 31P gives the total strength of the disorder field. In Extended 
Data Fig. 1, we include the 45 closest 31P and observe a smooth enough 
distribution of the field strength. The distribution is perfectly fitted 
by a sum of four Gaussian distributions with the same width, the centres 
at ± 1

2
JFP and ± 3

2
JFP and the height ratio of 3:3:1:1. Interestingly, even a 

single Gaussian function can still capture the distribution reasonably 
well, so we simply use a Gaussian distribution for simplicity in our 
numerical simulation. This can be qualitatively justified by comparing 
the computed T2 decay profiles of the Gaussian distribution and the 
true distribution (Extended Data Fig. 1).

Since the disorder fields on different 19F originates from the same 
31P bath, they inevitably have some statistical correlation. Here we 
evaluate the correlation of the disordered fields on two neighbouring 
19F, ⟨wjwj+1⟩

⟨w2
j ⟩

≈ −0.2 . Nevertheless, ⟨αjαj+1⟩ = ⟨sin(wjτ) sin(wj+1τ)⟩ ≈ 0  for 

τ > T2 (Extended Data Fig. 1), satisfying the condition required 
for our protocol to measure local autocorrelation (see Section IV C in 
the Supplementary Information).

Data for transport with disorder
In Fig. 4 we show the dynamical exponent for various disorder field 
strengths. We present the source data—autocorrelation as a function 
of time here—in Extended Data Fig. 2.

Data availability
Source data are provided with this paper. All other data that support 
the plots within this paper and other findings of this study are available 
from the corresponding author upon reasonable request.
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a b

Extended Data Fig. 1 | Ab initio calculation of disordered field and 
decoherence profile. Disordered on-site field generated by 31P. a. Numerical 
calculation of distribution of the on-site field strength. The four-Gaussian fit 
gives a standard deviation of 2.217(2) krad/s for each Gaussian peak. The single-
Gaussian fit gives a standard deviation of 6.05(6) krad/s. b. Left axis: Decoherence 

profile generated by the calculated distribution of on-site field and the single-
peak Gaussian approximation. Right axis: Statistical correlation between the 
random amplitudes of local observables on two closest 19F. As the coherence 
approaches zero, the statistical correlation also vanishes.
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Extended Data Fig. 2 | Raw data for transport with disorder. Spin (a) and energy (b) autocorrelation for various disorder field strength h. Data are presented as mean 
values +/- SD from readout noise (for additional details see the Supplementary Information).
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