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Abstract
We establish a dataset of over 1.6× 104 experimental images of Bose–Einstein condensates
containing solitonic excitations to enable machine learning (ML) for many-body physics research.
About 33% of this dataset has manually assigned and carefully curated labels. The remainder is
automatically labeled using SolDet—an implementation of a physics-informed ML data analysis
framework—consisting of a convolutional-neural-network-based classifier and object detector as
well as a statistically motivated physics-informed classifier and a quality metric. This technical note
constitutes the definitive reference of the dataset, providing an opportunity for the data science
community to develop more sophisticated analysis tools, to further understand nonlinear
many-body physics, and even advance cold atom experiments.

1. Introduction

Advances in machine learning (ML), and especially in the area of deep learning, are data driven. Yet, in many
fields of science it is a common practice for researchers to either make data available only upon ‘reasonable
request,’ or to not share it at all. As a result, the development of specialized ML techniques as well as trained
models is often stymied by the lack of high-quality relevant datasets. Cold atom experiments produce vast
amounts of data—images of atom clouds—making cold atoms an ideal system where data availability can
both advance ML research and provide new applications relevant to experiment [1–4]. Here we provide a
two component dataset consisting of absorption images of dark solitons in atomic Bose–Einstein
condensates (BECs). The first component of this dataset is a curated revision of the Dark solitons in BECs
dataset v.1.0 [5, 6] containing over 6× 103 images, which we carefully amend to assure high quality labels.
The second component contains approximately 1× 104 additional preprocessed and automatically labeled
images.

BECs are widely investigated systems that exhibit quantum phenomena on a macroscopic scale. For
example, they can be manipulated to contain solitonic excitations including conventional solitons, vortices,
and many more. Broadly speaking, solitonic excitations are solitary waves that retain their size and shape and
often propagate at constant speed. They are present in many systems, at scales ranging from
microscopic [7, 8], to terrestrial [9–15] and even astronomical [16].

Unlike naturally occurring physical systems, the parameters governing BECs are under strict
experimental control. In atomic BECs, solitons can be classified as dark or bright, generally occurring for
systems with repulsive or attractive interactions, respectively. Here, we focus on repulsively interacting BECs
that therefore support dark solitons. In one-dimensional (1D) BECs, only a single type of dark soliton exists,
corresponding to the kink soliton in three-dimensional (3D) systems. Even in highly elongated 3D BECs,
kink solitons are stable only when strict conditions on the propagation velocity and the trap geometry are
satisfied. Otherwise they decay, ultimately producing solitonic vortices, stable solitonic excitations in 3D
BECs.
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Kink solitons manifest as a plane-like reduction in the BEC’s 3D density, while solitonic vortices add to
this reduction a vortex-line of zero density about which the BEC flows (with either sense of vorticity).
Visually, kink solitons and solitonic vortices both appear as depletions in the BEC’s atomic density, with
solitonic vortices having additional structure that is not present for kink solitons. Given this, one might
expect such images of BECs to be straightforward to classify. However, due to physical limitations of the
imaging system capturing only a single-sided view of the 3D BEC, they are not. For example, the plane of
reduced density can be canted with respect to the BEC, both for kink solitons and solitonic vortices (leading
to our label ‘canted excitation’). The solitonic vortex [17, 18] can be predominantly confined to the top or the
bottom of the BEC (leading to what we label as ‘top partial’ and ‘bottom partial’ excitations, respectively); in
addition, vorticity leaves its imprint on density as well (giving our labels ‘clockwise vortex’ and
‘counterclockwise vortex’). Finally, when viewed from the side, the density-zero of a solitonic vortex becomes
indistinguishable from a shallow kink soliton [18] (leading to our joint label of ‘longitudinal soliton’).

The expanded dataset, Dark solitons in BECs dataset v.2.0, contains experimental images of dark solitons
created using the procedure described in reference [19]. The constituent images reflect a diverse range of
parameters, for example containing from zero to upwards of four excitations of numerous types that
themselves have a wide range of velocities. Due to the similarities between kink solitons and other excitations
present in our images, annotators can potentially mislabel data, attributing different labels to the same type
of excitation.

The full dataset contains over 1.6× 104 experimental images, including 5378 images manually classified
into three carefully curated classes: ‘no excitations’ (class-0), ‘lone excitation’ (class-1), and ‘other excitations’
(class-2). The lone excitation class is additionally tagged with the excitation position, the physics-informed
excitation (PIE) class, and quality score. The remaining images are not manually classified; rather they are
automatically labeled using the SolDet package [20]. This dataset is available via the National Institute of
Standards and Technology Public Data Repository [5] to provide an opportunity for the data science
community to develop more sophisticated analysis tools for soliton research and to further understand
nonlinear many-body physics.

2. Dataset curating: materials andmethods

In 2021, we released the ‘Dark solitons in BECs dataset’ [5] consisting of approximately 6.3× 103

preprocessed absorption images taken from multiple experiments performed in a single lab over a span of
two months with human assigned labels. Based upon the number of solitonic excitations observed in a given
image of a BEC, the data was organized into three classes: no excitations (class-0, accounting for 19.8% of the
dataset), lone excitation (class-1, accounting for 55.4%), and other excitations (class-2, accounting for
24.8%). While the initial agreement rate between annotators was relatively high at 87%, the remaining 13%
of the dataset had to be ‘further analyzed and discussed until an agreement’ between annotators was
reached4, as stated in reference [6]. Such discussions of labels might introduce an undesirable bias in the
labels, especially when the data is challenging to interpret. This bias is in turn imprinted into any ML model
trained using that data, thereby putting the model’s reliability into question.

While manually re-examining the dataset in the context of reference [4], we confirmed the presence of
inconsistencies in the human assigned labels. We found three types of labeling errors:

(e1) Images in class-2 containing only a single excitation.
(e2) Images in class-1 containing more than one solitonic excitation.
(e3) Images in class-0 containing a distinct excitation.

Moreover, in reference [6], the excitation’s location for the lone excitation class was determined using fits
centered on the deepest density depletion. Our reexamination showed that some solitonic excitations were
far from this point (error type (e4)). As a result, we decided to use a combination of ML and statistical
analyses to identify potentially incorrectly labeled data as well as to curate the dataset.

Building on the deep ensembles approach, originally proposed as a means to estimate models’ predictive
uncertainty [21], we implement an iterative five-fold cross-validations5 with strict agreement constraints to
curate the original dataset. As described in detail below, we employ two classifications schemes for the

4 The agreement was substantially higher for the easier to interpret class-0 (95.7%) than for other two cases (88.7% for class-1 and 76.3%
for class-2), indicating a likely decrease in label reliability with increased data complexity.
5 The k-fold cross-validation is a resampling method that involves dividing the full dataset into k partitions and then performing a series
of training and testing runs, with each run using k− 1 partitions to train a given module and the remaining one partition to test it. The
process is repeated k times to fully cover the dataset.
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Figure 1. (a)–(c) Raw data from which dataset element 2019-07-12_0061_20190523_BEC_F1_NewODT_DMD_365 (shown in
(e)) is derived: (a) with atoms IA, (b) probe only IP, and (c) background IBG (data scaled by 500). The red boxes in each raw image
indicate the region where the BEC is located. (d)–(f) Representative preprocessed absorption images from the curated dataset.
(d) No soliton [element: 2019-07-15_0058_20190523_BEC_F1_NewODT_DMD_331], (e) single soliton, and (f) other
excitations [element: 2019-09-25_0080_20190910_BEC_F1_NewODT_DMD_10].

cross-validation. First, we verify the human assigned labels using a set of convolutional neural network
(CNN) classifiers trained using the original dataset. In addition, to ensure diversity of the trained
models [22], we use a set of object detectors (ODs) [23, 24] trained to localize all solitonic excitations within
each BEC image and compare the number of detected excitations with both the original and CNN labels.
After each iteration, images with insufficient agreement are further analyzed and, if necessary, removed from
the dataset and set aside. Following the data curation process, we add the location of all excitations obtained
from the ODs as an additional label.

The curated dataset is used to train an implementation of SolDet [20], a general-purpose framework for
feature identification in cold atom experiments [4]. We then use the PIE classifier SolDet module to add
fine-grained and physically-motivated labels (e.g. longitudinal solitons, solitonic vortices, and ‘partial’
solitons) for the lone excitation class. Furthermore, we employ SolDet to automatically label about 1× 104

additional experimental images (class-9) as well as all images set aside during the curation process
(class-8) [5].

2.1. Data preprocessing
In the raw data, shown in figures 1(a)–(c), the BEC occupies only a small region of the image (inside the red
box) and the long axis of the BEC is rotated with respect to the camera. The horizontal and vertical axes in
figures 1(a)–(c) are labeled in terms of camera pixels i and j.

The angle between the camera and the BEC depends on the experimental setup and is obtained from fits
to a representative subset of absorption images (in the case of our data the rotation angle is about ϕ= 40
degrees). The BEC’s angle, position, and size—all necessary for proper cropping—are determined by fitting
every image to a column-integrated 3D Thomas-Fermi distribution

nTFi, j = n0max

{[
1−

(
iϕ
Ri

)2

−
(

jϕ
R j

)2
]
,0

}3/2

+ δn, (1)

describing the density distribution of 3D BECs integrated along the imaging axis [25]. There are seven
parameters in this fit: the rotation angle ϕ; the BEC center coordinates [i0, j0] in the original image frame; the
peak 2D density n0; the Thomas–Fermi radii [Ri, Rj]; and an offset δn (from small changes in probe intensity
between images). We define the rotated coordinates as iϕ = (i− i0)cos(ϕ)+ ( j− j0) sin(ϕ) and
jϕ = ( j− j0)cos(ϕ)− (i− i0) sin(ϕ). The initial estimates for [i0, j0] are obtained by summing the 2D
density image along the vertical and horizontal directions to obtain two 1D projections and selecting the
average position of the five largest values. The largest value of the image is taken as the estimate for n0 and
[Ri,R j] = [66,55] as the estimate for the radii. The estimate for the offset δn is zero. The 164× 132 pixel
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Table 1. Labeling statistics. The first two rows describe the labeling distribution in Dark solitons in BECs dataset v.1.0 and include the
number of images with full agreement in each class. The third row counts the number of images in each class that pass the first round of
CNN and OD tests. The last row shows the number of images remaining in each class in the curated dataset.

Labeling phase Class-0 Class-1 Class-2 Class-8 Class-9

Original dataset 1237 3468 1552 — —
Original dataset: 3-agree 1184 3077 1184 — —
CNN and OD test 1234 3449 1388 186 —
Curated dataset 1130 3212 1036 879 10 221

extent of the cropping region is determined from the average radii [Ri,R j] = [66(5),58(3)] obtained from fits
to the original 6.2× 103 images6. In the resulting images, dark solitons appear as vertically aligned density
depletions and are often easily visually identified, see figures 1(e) and (f).

To ease the manual analysis and labeling process and facilitate training of the ML models, the absorption
images are first rotated to align the BEC with the image frame and then cropped to discard the large fraction
of the image that does not contain relevant information. Finally, an elliptical mask (determined based on the
[Ri,R j] radii) is applied to the image to eliminate the noise outside the BEC [6].

The same preprocessing techniques are applied to the over 1× 104 previously unlabeled absorption
images now included in the expanded ‘Dark solitons in BECs dataset 2.0’.

2.2. Data labeling process: dark solitons in BECs dataset v.1.0
As discussed in reference [6], the Dark solitons in BECs dataset v.1.0 [5] consists of images labeled by three
independent annotators. These labels organized the data into three disjoint classes: class-0 indicating no
excitations, class-1 indicating lone excitation, and class-2 indicating other excitations (e.g. different types of
excitations, multiple excitations, ambiguous data). The expectation was for class-0 to consist of images that
unambiguously contain no solitonic excitations; for the class-1 to contain images with exactly one solitonic
excitation; and for class-2 to contain all other images.

The initial labeling process was carried out in batches. At each stage, a subset of anywhere between 508
and 1209 images were independently labeled by each annotator and the resulting labels were compared. The
labels with full agreement were accepted. When only two out of three annotators agreed (moderate
disagreement), the images were reinspected and further discussed until an agreement was reached. Finally,
images labeled differently by each annotator (strong disagreement), were added to class-2. The top two rows
in table 1 show the distribution of images between classes in Dark solitons in BECs dataset v.1.0, as well as the
number of images with full agreement between annotators in each class.

2.3. Data labeling process: dark solitons in BECs dataset v.2.0
During the first phase of data curating, we performed a pair of five-fold cross validation tests using the
original dataset. The first cross validation used CNN models trained on all three classes and the second used
ODs trained with only class-0 and class-1. After cross validation we tagged each excitation located by the OD
with a quality estimate [4]. The quality estimator yields the likelihood that a fit to the 1D profile of a given
excitation has parameters in the range expected for a solitonic excitation. The likelihood was established
based on a statistical analysis of fits to features previously identified as solitonic excitations in comparison
with all other density depletions.

The cross-validations results in each image in class-0 and class-1 being assigned two predicted labels that
are used to identify ambiguous data. To enable direct comparison of the two models, the OD predicted label
is class-0 if no excitations are identified, class-1 if one excitation is found, and class-2 in all other cases. An
image is flagged as potentially mislabeled if and only if

(a) the CNN prediction disagrees with the assigned class and
(b) the CNN and OD predictions are the same.

We found 343 potentially mislabeled images: 14 in class-0, 40 in class-1, and 289 in class-2. We note that
our intent is to use cross-validation and deep ensembles to assist data curating, not to change the ground
truth. Thus, we do not overwrite the original class labels during the curating process. Rather, all flagged
images are further analyzed and all potential excitations are tested with the quality metric. At this stage, all

6 We use a notation value(uncertainty) to express uncertainties, for example 1.5(6)cm would be interpreted as (1.5± 0.6)cm. All uncer-
tainties herein reflect the uncorrelated combination of single-sigma statistical and systematic uncertainties.
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Table 2. Complete dictionary of the labels appearing in Dark solitons in BECs dataset v.2.0. For each element we provide the key,
definition together with all possible instances of a given label, and data type. The excitation_position, excitation_PIE, and
excitation_quality labels are assigned only to data where label_v3 = 1. The SolDet labeles (soldet_CNN, soldet_OD,
soldet_PIE, and soldet_QE) are assigned to all of the class-8 and class-9 data as well as to the 10% of the curated manually labeled
data used for testing during SolDet training.

Dictionary key Definition Data type

file_name Information about which data file a given set of labels refers to String
label_v1 the original, human assigned label as in Dark solitons in BECs dataset v.1.0 Integer

0: no excitations
1: lone excitation
2: other excitations
9: unlabeled

3-agree Indicates whether all annotators agreed on the originally assigned label Integer
1: true
0: false

−1: unlabeled data
label_v2 Intermediate label resulting from the first curation phase Integer

0,1,2,9: same as for label_v1
8: data determined to be potentially mislabeled

label_v3 Curated label Integer
0,1,2,8,9: same as for label_v2

excitation_position True position of the excitation for the lone excitation class List
excitation_PIE Physically-motivated label provided by the PIE classifier List

A: longitudinal soliton (0)
B: top partial (1)
C: bottom partial soliton (2)
D: clockwise solitonic vortex (3)
E: counterclockwise solitonic vortex (4)
F: canted (5)

excitation_quality Quality metric for excitations in the lone excitation class List
soldet_CNN CNN classifier label from SolDet Integer
soldet_OD List of positions returned by SolDet List
soldet_PIE List of classes returned by PIE classifier for all excitation localized in soldet_OD List
soldet_QE List of quality estimates for all excitation localized in soldet_OD List

images in the extended Dark solitons in BECs dataset v.2.0 have label_v1 (either the original label or class-9
for new, therefore unlabeled, data), and in addition they are assigned a new intermediate label label_v2
(see table 2). label_v2 is set equal to label_v1 except for data determined to be truly mislabeled where
label_v2 is assigned to a new class-8 effectively removing it from the curated dataset. The resulting
distributions between classes is shown in table 1.

In the next stage of data curating, we further refine labels for the data that are not in class-8 or class-9 in
label_v2 using five distinct deep ensembles of size ten trained through a repeated five-fold cross-validation.
Prior research suggest that ensembles of ten models are sufficient to reliably assess the predictive
uncertainty [21]. Building on that, we use ten five-fold-cross-validated OD models7 trained using label_v2
class-0 and class-1 (4683 images in total).

Each image is tagged with ten OD predicted labels, each consisting of the number of excitations detected
and their positions. Given the random initialization of the training sessions, we treat the deep ensemble as
giving a uniformly-weighted set of predicted labels, with each model prediction considered equally
reliable [21]. The OD class predictions are used to define a measure of class-based disagreement

Dclass =
#(OD class prediction ̸= label_v2)

M
, (2)

where#(·) denotes the number of instances for which condition (·) occurs andM is the size of the deep
ensemble. A score of 0 indicates full agreement within the deep ensemble with the ground truth label while
score of 1 indicates that all models predict an incorrect class. In addition, each image in class-1 is assigned a
preliminary excitation position (FITpos): the minimum of the background subtracted 1D density
profile [6, 19].

7 There were 50 models in total—ten per cross-validation—each trained on 80% of the data. To ensure diversity of models, the dataset
was shuffled between the ten training sessions.
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The subsequent data analysis continues our aim of identifying mislabeled images and is carried out
separately for class-0, 1, and 2. The result of this analysis is stored in label_v3.

Class-0: Deep ensemble disagreement. For each image, we calculate the class-based disagreement score Dclass.
Since the initial agreement rate between annotators was around 87%, we opt to require at least 90%
agreement between the ODs. Thus, images with Dclass-0 ⩽ 0.1 are retained in the curated dataset
with label_v3 set equal to label_v2 (1130 images). We note that the remaining 104 images had
either (a) Dclass ∈ (0.1,0.5] (75 images); or (b) half or more models predicting class-1 (29 images).
All of these are assigned to class-8.

Class-1: Step 1: Deep ensemble disagreement. Like for class-0, we first compare the number of OD-identified
excitations with label_v2 and find 3222 images for which Dclass ⩽ 0.1. Of the remaining 227 there
are 178 for which Dclass ∈ (0.1,0.5], 28 images for which five or more models predict class-0, and 21
images in which five or more models assign class-2. All these images are assigned to class-8.
Step 2: Position range check.While the ODs agree on the number of solitonic excitations, the

positions in pixel units found by the ODs might differ. All images for which
max(ODpos)−min(ODpos)> 3 are assigned to class-8 (10 images)8. Here ODpos is the
vector of OD position predictions and max(v) and min(v) denote the maximum and
minimum element of the of the vector v, respectively.

Step 3: Position alignment check. As an additional consistency check, we compare the average OD
position for images against the preliminary FITpos position. Images for which
|ODpos − FITpos|> 3 (15 images) were manually reviewed. We found that in each case the
excitation position was better located by the OD, so the excitation position label was
updated to that returned by the OD.

Class-2: Step 1: Deep ensemble disagreement. Data in class-2, by design, includes ambiguous images. Thus,
the goal of curating this class is to ensure that it does not contain images that would with high
confidence be classified as belonging to either class-0 or class-1 by the deep ensemble. Since all
models were trained only on the class-0 and class-1 data, we use an ensemble consisting of all 50
models. We find that out of the 1388 images in class-2, 30 had 90% of models predict class-0 (and
were therefore assigned to class-8) and 336 had 90% of models predict class-1 (and were further
analyzed in step 2). The remaining 1022 images are retained in the curated dataset with label_v3
set equal to label_v2.
Step 2: Position range check. To confirm the OD predicted class-1, we compare the range of OD

positions for those models predicting one excitation and find that
max(ODpos)−min(ODpos)< 3 for 322 of images, suggesting that these are very likely
class-1 data mislabeled as class-2. These images are also assigned to class-8.

The deep-ensembles-based data curating process resulted in assigning to class-8 a total of 693 images
from the original dataset. The resulting dataset contains 1130 images in class-0, 3212 in class-1, 1036 in
class-2, and 879 in class-8 (data labeled as class-9, associated with unlabeled data, are unchanged). The final
classifications are contained in label_v3.

2.4. Label refinement: dark solitons in BECs dataset v.2.0
To further refine labels for images in class-1, we use the PIE classifier and quality estimator from the SolDet
package [20]. PIE classifier partitions class-1 into physically-motivated sub-classes stored in
excitation_PIE. The PIE classifier operates by splitting each image into top and bottom halves and
determining the associated 1D profiles to which the quality estimator is separately applied. In addition to
returning an overall quality estimate, stored in excitation_quality, this algorithm also returns
parameters such as the excitation position, width, and so forth.

Then, a sequence of thresholds driven by different top-bottom combinations of these parameters is
applied to determine the label. The values defining all thresholds were arrived at by exploring the data
accepted and rejected by the cut to minimize the false positive identification of longitudinal solitons, as
described in reference [4].

Within the 3212 images in class-1, the PIE classifier categorized 2229 images as proper longitudinal
solitons (class-A). Out of the remaining images, 378 were classified as top ‘partial’ solitons (class-B) and 418
as bottom ‘partial’ solitons (class-C); 28 were categorized as clockwise vortex (class-D) and 38 as
counterclockwise vortex (class-E); 121 were categorized as canted excitations (class-F).

8 This threshold corresponds to the average width of solitons in our images which we observed to be about four pixels.
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Figure 2. SolDet flow chart labeling results. (a) A high-level view of the SolDet algorithm (adapted from reference [4]), where
black arrows follow the data flow between blocks describing each analysis stage as well as added labels. The bottom four panels
histogram the results from each stage of the SolDet labeling process: (b) CNN classification; (c) number of excitations identified
by OD; (d) type of excitation identified by the PIE classifier; and (e) quality metric of all detected excitations. These panels show
the 10% curated data set aside for validation (yellow), the mislabeled class-8 data (green), and the previously unlabeled class-9
data (blue).

3. Automated expansion of the dataset v.1.0

In this section, we describe how we leverage the full SolDet package [20] to automatically analyze and label
previously unlabeled images (a subset of about 1× 104 identified in label_v3 as class-9) that were not part
of Dark solitons in BECs dataset v.1.0. These data include images representing class-0, 1, and 2; many class-2
candidates possess multiple excitations as well as ambiguous and confusing structures that may hinder
human labeling. Since these data were not previously considered, they make an ideal test case for the SolDet
package [4]. Roughly 90% of the class-0, 1, and 2 data from the curated dataset were used to train SolDet,
leaving the remaining 10% of these classes for validation. In addition, we also apply SolDet to all of class-8
allowing us to cross-check the mislabeled assignment.

For this application, the SolDet package is configured to give the labeling flow depicted in figure 2(a),
involving a sequential application of CNN and OD modules followed by the PIE classifier. The CNN module
categorizes images as class-0, 1, or 2 while the OD module tags each image with positions of all detected
excitations. If OD assigns class-0, the image is labeled accordingly and the process terminates for that image.
Otherwise, the PIE classifier is executed for each excitation detected by the OD. Finally, all excitations located
by OD are additionally tagged with a quality estimate [4].

The output of each module is included as a separate label: soldet_CNN for the CNN classifier;
soldet_OD for the vector of positions; soldet_PIE for the vector of classes returned by PIE classifier; and
soldet_QE for the vector of quality estimates. This enables the end user to choose a desired level of
agreement between the labeling modules or the longitudinal solitons’ quality necessary for a particular
application. Thus, unlike images in the curated dataset, these previously unlabeled images are not assigned a
single ground truth class.

Figures 2(b)–(d) compares the label assignment for three different subsets of our dataset: a subset of the
curated data (10%) automatically generated by SolDet for validation (shown in yellow), class-8 (mislabeled
data; shown in green), and class-9 (unlabeled data; shown in blue). Panel (b) shows that CNN classes for
each case follow a very similar distribution, but where data in class-8 has a reduced likelihood of being
classified in class-0. While the OD results depicted in panel (c) are very similar to the data in (b), there are
slight differences. For example in the class-8 data, the OD finds somewhat more class-1 excitations than the
the CNN did (by about 17.3%). This likely results from the annotators disagreeing on the labeling of partial
solitons and solitonic vortices, all of which are identified as a single excitation by the OD. The PIE classifier in
(d) finds a modest deficit of class-A (longitudinal soliton) in the mislabeled data, confirming that such
excitations are the most straightforward to annotate. Lastly, figure 2(e) shows that the quality metric for all
excitations identified by the OD are consistent across the three subsets of our data.

Figure 3 compares the outcome of the CNN and OD modules for (a) class-8 data and (b) class-9 data. In
both cases when the CNN classifier assigns class-0 or class-1, the OD is unlikely to find any or other number
than one excitation, respectively. However, when the CNN assigns class-2, the OD assignment is strongly
biased to class-1 for the class-8 (mislabeled) data, with 73% assessed to contain only one excitation. This bias
likely results from the process of labeling and curation in which many class-1 candidates were moved into
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Figure 3.Matrices comparing the outputs of the CNN module and the OD module for (a) the mislabeled class-8 data as well as
(b) the previously unlabeled class-9 data.

Figure 4. Representative class-9 data from the Dark solitons in BECs dataset v.2.0. (a) Longitudinal soliton; (b) top partial;
(c) bottom partial; (d) clockwise solitonic vortex; (e) counterclockwise solitonic vortex; (f) canted excitation; (g) no excitation;
(h) two excitations; and (i) three or more excitations. Red arrows indicate longitudinal solitons while orange ones are for other
solitonic excitations.

class-8 to avoid false positives. The OD assignment seems almost random for the previously unlabeled class-9
data assigned class-2 by the CNN, with 42% assessed to contain only one excitation and 49% assessed to
contain two excitations.

For the mislabeled (class-8) data the performance is significantly degraded in the converse case: about
30% of the OD class-0 and 1 data and almost 50% of OD class-2 data is assigned one of the alternative CNN
classes. For the unlabeled (class-9) data, the disagreement between OD and CNN assigned classes is much
lower, at 7%, 14%, and 8% for OD class-0, 1, and 2+, respectively.

Figure 4 depicts 18 images, with a variety of classifications and positions, all from the automatically
labeled (class-9) portion of the expanded dataset. By design, SolDet effectively categorizes class-1-A images,
giving the examples in (a). Panels (b)–(f) show illustrative examples from the remaining classes. Because the
primary function of the PIE classifier is to reject images that are not class-1-A (avoid false positive
longitudinal solitons) the B–F labels are of lower quality. The bottom row displays data from class-0 (no
excitations; panel (g)) and class-2 (other excitations; panels (h)–(i)). Together, these show that SolDet is very
effective in delineating between class-0,1 and 2.

In each panel the arrows identify the location of the excitation from the OD, showing it is effective
across-the-board in locating excitations. The arrows are colored according to the PIE classifier result: Red
arrows mark the location of longitudinal solitons (class-∗-A) and the orange arrows mark all other classes.
Even in cases with many excitations (h), (i), SolDet correctly identifies high quality longitudinal solitons.
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4. Conclusion and outlook

We find that SolDet reliably labels new experimental data (class-9) as well as data categorized as potentially
mislabeled (class-8). An inspection of the images shows that the the assigned classes are visually similar to the
manually labeled data. Furthermore, the labels automatically assigned to class-9 have a statistical distribution
that is very similar to the training dataset. By contrast, the labels assigned to class-8—a selectively filtered
subset of the original dataset—are significantly different.

As we mentioned, SolDet is configured to identify and correctly locate longitudinal soliton within BEC
(class-∗-A). The reliability of the additional PIE classes could be improved by, e.g. further refining cuts
defining the physically-motivated categories or slicing the image into more than two pieces.

The enlarged Dark solitons in BECs dataset v.2.0 dataset includes quantitative estimates of all longitudinal
solitons quality as well as new fine-grained solitonic excitation categories of all detected excitations. It is a
freely available to the whole ML and physics community the opportunity to develop novel ML techniques to
cold atom systems and to further explore the intersection of ML and quantum physics.
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Appendix

Experimental setup
In our experiments, we implement well established techniques to achieve the Bose–Einstein condensation of
neutral atoms [26]. Our 87Rb BECs contain N≈ 2.4× 105 atoms in an elongated crossed optical dipole trap
with harmonic frequencies

[
ωx,ωy,ωz

]
= 2π× [9.1(1),94.5(6),153(1)]Hz.

To create solitons, we manipulate the BEC local density and phase by applying an external potential
generated by a far detunned laser light patterned by a digital micromiror device (DMD). The DMD (Texas
Instruments DLP LightCrafter Module—DLP3000) 9 has an array of 608× 684 mirrors,≈7.6µm on a side,
that can be independently flipped to create arbitrary patterns. The pattern generated by the DMD is imaged
onto the atoms using an imaging system that demagnifies the light 12 times and the intensity of the laser
light is controlled by an acousto-optic modulator.

The protocol to create solitons, which starts after the BEC is formed, is summarized as follows: with the
DMD previously programmed to reflect a narrow 3 px wide stripe, we increase the laser power creating a
dimple potential that depletes the BEC local density by about 70%. We then change the DMD pattern to
illuminate half of the BEC extension and pulse the light for a variable time to imprint the phase. Since the
accumulated phase is proportional to the duration in which the light is pulsed, the pulse duration is varied to
create solitons at different speeds. To avoid creating additional density modulations after imprinting the
phase, the DMD is reconfigured back to the narrow stripe, the dimple is reapplied and its magnitude is
ramped to zero. More details about this protocol can be found in [19].

After solitons are created we let them oscillate in the trap for a variable evolution time that allow us to
obtain variation in the soliton properties, such as the oscillation amplitude, initial position, propagation
velocity, and lifetime. Since our elongated trap geometry does not produce truly 1D BECs, kink solitons that
are initially created can eventually decay into solitonic vortices during the time they oscillate in the trap. After

9 Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
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the evolution time, the trap is turned off and the cloud expands for 12ms before it is imaged using standard
absorption imaging [26].

In the standard absorption imaging technique, the fraction of a resonant probe light absorbed by the
atomic cloud is used to extract information about the atoms. For the standard absorption imaging, we
acquire three images that are combined to obtain the optical density. In the first image IAi, j, the atomic cloud
is illuminated with the probe light and its shadow is recorded in a CCD camera, see figure 1(a). To compute
the fraction of the light that is absorbed by the atoms, a second image IPi, j of the probe beam, without atoms,

is acquired, figure 1(b). The third image IBGi, j is then acquired without the probe light to get the background
light in the experiment, figure 1(c). All images are acquired with the same duration and the probe beam has
the same intensity for the first two images. The three images are then combined to to obtain the 2D optical
density

σ0 ni, j ≈− ln

[
IAi, j − IBGi, j
IPi, j − IBGi, j

]
, (3)

where σ0 = 3λ2/(2π) is the resonant cross-section and λ is wavelength of the probe laser.
All images (figures 1(a)–(c)) are acquired by a 648× 488 pixel camera (Point Grey FL3) with 5.6µm

square pixels, labeled by i and j. The imaging system, with an optical resolution of≈ 2.8µm, has≈6×
magnification, generating images with effective pixel size of 0.93µm.
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