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Real-time systems are susceptible to adversarial factors such as faults and attacks, leading to severe consequences. This paper

presents an optimal checkpoint scheme to bolster fault resilience in real-time systems, addressing both logical consistency

and timing correctness. First, we partition message-passing processes into a directed acyclic graph (DAG) based on their

dependencies, ensuring checkpoint logical consistency. Then, we identify the DAG’s critical path, representing the longest

sequential path, and analyze the optimal checkpoint strategy along this path to minimize overall execution time, including

checkpointing overhead. Upon fault detection, the system rolls back to the nearest valid checkpoints for recovery. Our

algorithm derives the optimal checkpoint count and intervals, and we evaluate its performance through extensive simulations

and a case study. Results show a 99.97% and 67.86% reduction in execution time compared to checkpoint-free systems in

simulations and the case study, respectively. Moreover, our proposed strategy outperforms prior work and baseline methods,

increasing deadline achievement rates by 31.41% and 2.92% for small-scale tasks and 78.53% and 4.15% for large-scale tasks.

CCS Concepts: · Computer systems organization → Real-time system speciication; Reliability; · Security and privacy

→ Security services.

Additional Key Words and Phrases: Real-time systems, fault resilience, checkpointing, logical consistency, timing correctness

1 INTRODUCTION

As real-time systems such as automobiles become more complex and open architectures, they are vulnerable

to many adversarial factors such as faults and attacks [2, 12, 40, 46]. With these adversaries, the controller may

make dangerous decisions and cause serious consequences such as vehicle crashes and loss of human lives

[1, 8, 21, 39, 44]. Resilience to such adversarial factors is essential to the safety of such systems[5, 9, 16].

In this paper, we study the problem of tolerating transient faults for a controller executing in computational

nodes. In general, there are two popular research threads for fault resilience: redundancy and checkpointing. One

thread relies on redundant components (e.g., standby processors [13, 19, 31, 33] or task replica [20, 24, 32, 42]),

where if some components are faulty, other components can still process forward to inish the job. The other

thread occasionally checkpoints system states, and the system rolls back to a consistent state (checkpointed in

history) when detecting faults [14, 15, 17, 28]. This work aligns with the second thread and studies checkpointing

protocols for real-time parallel processes.

Existing checkpointing works can be divided into two groups. One group focuses on checkpointing computing

tasks in general-purpose (non-real-time) systems. The goal is to guarantee the logical consistency of checkpoints
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(value correctness), which represents the cause-efect relation deined by messages sent and received among tasks

[14, 17, 22]. The other targets real-time systems and carries out checkpointing under timing constraints (deadlines)

[29, 34, 37, 47, 48]. There are three main protocols setting checkpoints: uncoordinated checkpointing, coordinated

checkpointing, and communication-induced checkpointing(CIC). Uncoordinated checkpointing enables tasks to

set checkpoints when convenient for a better schedule[18, 38]. Coordinated checkpointing forces all the tasks

to synchronize checkpoints and make recoveries simpler [7, 23]. Communication-induced checkpointing, also

known as message induced checkpointing, enables tasks to establish separate checkpoints while also creating

compulsory additional checkpoints as needed [3, 6, 41]. This approach promotes independence in detecting errors

during execution. However, these works are incapable of tackling checkpointing real-time parallel processes,

where both logical and timing correctness need to be guaranteed.

To ill this gap, we propose a new three-step checkpointing protocol that considers both types of correctness.

In the irst step, we partition the real-time parallel processes into a directed acyclic graph (DAG) of tasks, where

each edge represents the message communicated between tasks. We then place compulsive checkpoints to ensure

logical correctness for each task. The second step involves identifying the critical path, which is the longest

execution path in the DAG. Finally, we ensure timing correctness by minimizing the overall execution time,

which includes both task execution time and checkpointing overhead. To accomplish this, we propose efective

and eicient algorithms for each step. Finally, we evaluate our checkpointing protocol with extensive simulations

and a case study of a real system using CRIU [10]. Note that the checkpoints in this work only consider cyber

states and are not related to physical states [43ś46].

The rest of this paper is organized as follows. Section 2 describes the overview of the optimal checkpointing

strategy, gives the system model and threat model, and lists most notations. Section 3, Section 4, and Section 5

present task partition, inding the critical path, and placing optional checkpoints for timing correctness, respec-

tively. Section 6 evaluates our method, Section 8 concludes the paper, and Section 7 discusses the limitation of

this paper.

2 PRELIMINARIES AND DESIGN OVERVIEW

this section, we present the problem statement, an overview of the proposed checkpointing strategy, system and

fault models, and notations used in this paper.

2.1 Problem Statement

We consider a multiprocessor real-time system whose processes perform repetitive tasks, where each process

aims at a speciic function such as sensor data collection and data processing. During process execution, each

process may send messages to other processes, forming the processes’ dependencies.We study a checkpointing

problem in such a system. When a fault is detected, the system rollbacks to the nearest valid checkpoint, which

saves states of the processes and avoids redoing all valuable work during recovery. The objective is to determine

an optimal checkpointing strategy, which achieves (i) logical consistency of checkpoints considering process

dependencies and (ii) the shortest execution time considering checkpointing overhead and recovery time.

2.2 Overview of the Checkpointing Strategy

We obtain the optimal checkpoint strategy in three steps, as shown in Figure 1: (i) process partition, (ii) critical

path extraction, and (iii) optional checkpoint placement. The following briely describes these steps, and we will

present their detailed design in Sections 3, 4, and 5.

ACM Trans. Embedd. Comput. Syst.
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Fig. 1. The Overview of Optimal Checkpointing Strategy. The proposed optimal checkpointing strategy comprises three

steps: process partitioning, critical path extraction, and optional checkpoint placement.

• Process partition. Execution of processes is dependent on message passing, and to ensure successful fault

tolerance and recovery, checkpoints must be placed considering these dependencies. This involves partition-

ing dependent processes into a DAG graph and placing compulsive checkpoints that meet the requirements

of logical dependency, while also avoiding the domino efect.

• Critical path extraction. In the DAG, most tasks can be executed in parallel with the multiprocessor. However,

tasks in a dependent path must be executed in sequence. This step involves identifying the critical path,

which is the longest dependent path in the DAG. The critical path determines the performance of the

checkpointing and recovery process. While tasks in non-critical paths can also set up checkpoints, their

execution time is typically less than that of tasks on the critical path. Therefore, in the proposed model,

only the critical path should be considered.

• Optional checkpoint placement. If too few checkpoints are placed, a signiicant amount of progress will be

lost on the critical path following a fault. Conversely, if too many checkpoints are placed, the checkpointing

overhead will dominate. This step involves solving optimization problems to determine the optimal number

and intervals of checkpoints, striking a balance between progress loss and checkpointing overhead.

2.3 Models and Preliminaries

Symbols and notations used in this paper are listed in Table 1.

2.3.1 System Model. We consider a multiprocessor real-time system that has multiple processes, where the

messages exchanged between these processes form the process dependencies. We partition the processes into

tasks (��� represents the �-th task on the �-th process) according to the dependencies. By partitioning the

processes, we obtain a directed acyclic graph (DAG)where tasks are represented as nodes and process dependencies

are represented as edges. We place compulsory checkpoints (see section 3) on this DAG to guarantee logical

consistency and prevent the domino efect. Then, the critical path (see section 4) is identiied as the longest

dependent path, and the tasks in this path are renamed to �� (i.e, the �-th task in the critical path). Finally,

we place optional checkpoints (see section 5) according to our strategy to achieve a shorter execution time. The

optional checkpoints split each task into some segments (��� is the � -th segment in �� ). Figure 2 is an example

that illustrates the relationship among processes, tasks, and segments.

ACM Trans. Embedd. Comput. Syst.
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Table 1. Symbols and Notations Used in This Paper

Symbol Description

�� �-th process in the system

�� �-th task in the critical path

�� � �-th segment in the Task �

� the recovery overhead from the initial state

� the recovery overhead from checkpoints

�� the overhead of checkpointing

�� the invalid rate of optional checkpoints in the Task �

�� the valid rate of optional checkpoints in the Task �

� the number of tasks in the critical path

�� the number of optional checkpoints in the Task �

��∗ the optimal number of optional checkpoints in the Task �

�� the failure rate of the Task �

�� � the total execution time before �� � in the Task �

ℎ� � the total execution time of �� � in the Task �

�� � the expectation of�� �

�� � the completion time of �� � before a fault

�� � the expectation of �� �
�� � the probability that the fault occurs in �� �
�� the fault-free computation time (excluding �� ) of Task �

�� � the fault-free execution time (including �� ) of Segment �� �

Fig. 2. Relationship of Process, Task, And Segment. Each of the two processes (�0 and �1) has four tasks. Ater inserting

compulsory checkpoints, the critical path (i.e., longest dependent path) is determined (marked in orange). It includes four

tasks (�10, �01, �02, and �12) that are renamed as �0, �1, �2, and �3. The task �3 is divided by optional checkpoints into�3 + 1

segments from �30 to �3�3 , where�3 and the intervals between checkpoints are derived by our approach.

We assume that the system stores all compulsory checkpoints in the current critical path and only stores the

latest optimal checkpoint because of limited resources.

2.3.2 Fault Model. Fault occurrence is generally regarded as random and independent, so we assume that the

arrival of faults is a Poisson process with a failure rate of �. However, our proposed method is not limited to

ACM Trans. Embedd. Comput. Syst.
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Fig. 3. Notations of the Model in Critical Path. Critical tasks {�0, ...,��−1} have {�0 + 1, ...,��−1 + 1} segments that are

divided by {�0, ...,��−1} optional checkpoints. �� � and ℎ� � represent the total execution time before segment � and the

execution time of segment � in Segments �� , respectively. �� and �� are the probability of recovering from the beginning and

last checkpoint, respectively.

a speciic distribution and can be applied to various other distributions. The reason why our paper adopts the

Poisson process is for easy presentation and its wide use in many existing works such as [11, 25, 26, 35, 36]. For

generality, we set a diferent failure rate for each task on the critical path, and �� denotes the failure rate of the

�-th task. Then, the time interval � between two faults is subject to an exponential distribution with a constant

failure rate �� , and its probability density function (PDF) is �� (�) = ���
−��� , � ≥ 0, � ≥ 0.

When a fault arrives, there is a �� chance for task �� rollback to the latest checkpoint. However, there is also a

�� = 1 − �� chance for a task to roll back to the latest compulsory checkpoint because of the optional checkpoint

availability. If a task rollback to a checkpoint, there is a checkpoint recovery overhead � . However, if a task

rollback to the initial state of the critical path, there is a restart recovery overhead � .

2.3.3 Notations in the Critical Path. The critical path is illustrated in Figure 3. For the �-th task�� on this path, the

original fault-free computation time is �� . We place optional checkpoints to divide the task into�� task segments,

i.e., ��0, ��1, . . . , ����
. �� � denotes the fault-free execution time of �� � that includes task computation time and

checkpoint overhead �� .

The probability that the fault occurs in Segment �� � is

�� � (�� � ) = � (� ≤ �� � ) = 1 − � (� ≥ �� � ) = 1 − �−��� � , � �� 1 ≤ � < �, 0 ≤ � ≤ �� (1)

Besides, �� � denotes the time interval from the beginning of �� � to the time the fault occurs in �� � , that is, the task

performed before the fault during �� � . The PDF of �� � is

��� � (�) =
�� (�)

�� � (�� � )
=

���
−���

1 − �−���� �
, � �� 0 ≤ � ≤ �� �

The expectation of �� � is

�� � =

∫ �� �

0

� ��� � (�)�� =
1

��
−

�� ��
−���� �

1 − �−���� �
(2)

Considering rollbacks, �� � denotes the execution time from the beginning of Task � to the irst beginning of

Segment �� � .�� � is the expectation of�� � . ℎ� � denotes the execution time of the segment �� � .
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To make the derivation brief, we also deine some abbreviations as follows:

�� =
1

��
+ � (3a)

�� =
1

��
+ ��� + ��� (3b)

�� =
1

��
+ � (3c)

�� � = ����� � − 1 (3d)

�� � = ���
���� � + �� (3e)

3 PROCESS PARTITION WITH LOGICAL CONSISTENCY

Processes in real-time systems perform some recurrent tasks, between which the sending and receiving messages

form the dependencies. When a transient fault occurs, the system needs to be recovered back to normal. We back

up some checkpoints so that the systems can re-execute from these states to tolerate the fault.

In this step, our checkpoints should meet the logical consistency requirements (Deinition 1) to ensure that the

recovery process runs smoothly [14]. For example, the states in Figure 4a are inconsistent because �1 (process 1)

indicates the�0 reception while �0 (process 0) does not relect the sending of�0; the states in Figure 4b satisfy

Deinition 1 because �2 (process 2) indicates the�1 reception and �1 relects the sending of�1, although �1
does not relect the�0 reception particularly. We can conclude that all states satisfy Deinition 1 if all processes

checkpoint after sending a message.

Definition 1 (Logical Consistency). Logical consistency is deined as an attribute of the system state that

ensures that sender processes relect the sending of messages once the corresponding receiver processes indicate the

message reception.

Another notable phenomenon is the domino efect, which occurs when an invalid message reception leads to

an invalid message sending. This can result in a series of rollbacks, ultimately returning the system to its initial

state. The domino efect leads to a signiicant loss of useful work and makes real-time performance uncontrollable.

(a) Logical inconsistency. Ater recovering, system states

roll back to the doted line. Process 1 reflects the reception

of message 0 while the corresponding process 0 does not

reflect the message sending. Thus, system states marked

by the red doted line are not logically consistent.

(b) Logical consistency. Ater recovering, process 1 and

process 2 reflect the sending and reception of message 1

at the same time. Although process 1 does not reflect the

reception of message 0, this does not violate the definition

of logical consistency.

Fig. 4. Examples of Logical Inconsistency and Logical Consistency. P and m are processes and messages. Blue diamonds are

checkpoints, and dot lines denote the system state ater recovering.
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Fig. 5. Domino Efect. Incorrect checkpointing may lead to the domino efect, resulting in a series of rollbacks that ultimately

return the system to its initial state.

For instance, Figure 5 shows a rollback scenario, in which a fault occurs on the process �0. The fault forces �0 to

roll back to its latest checkpoint, and message�0 becomes invalid, which forces process �1 to roll back to its

latest checkpoint as well. In turn, the message�1 becomes invalid, and this backward propagation stops until the

initial state. If all processes checkpoint before receiving a message, the domino efect can be avoided.

We partition processes into tasks based on their message sending and receiving behavior. We add edges

between neighboring tasks within the same process and from a task sending a message to a task receiving the

message, creating a partition graph. The weight of each vertex in this graph represents the fault-free execution

time of the corresponding task, while the edges represent the dependencies between tasks. We also account for

checkpoint overhead in the weight of each vertex. When a process sends a message, a compulsory checkpoint

is placed immediately following it to relect the message sent and ensure logical consistency. When a process

receives a message, a compulsory checkpoint is placed to backup all work before the message, avoiding the

domino efect. This can typically be accomplished by piggybacking a command to set up a compulsory checkpoint

with the actual processing command after receiving a message. Now, we get a task graph in which all states

satisfy Deinition 1. This graph is a DAG because no task can send a message back to a previous time to form a

(a) Dependencies of processes. Compulsory checkpoints

(orange diamonds) are placed immediately ater message

sendings and before message receptions to ensure logical

consistency and prevent the domino efect.

(b) DAG of tasks. Edges are the dependencies between

tasks, while vertices represent partitioned tasks. The

weight of each vertex is the sum of the fault-free execution

time and the overheads of the compulsory checkpoints.

Fig. 6. An Example of Process Partition. The processes are partitioned into fourteen tasks based on their message sending

and receiving behavior.

ACM Trans. Embedd. Comput. Syst.
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(a) Extract critical path from DAG (b) Critical path includes compulsory checkpoints

Fig. 7. An Examples of The Critical Path

circle. For instance, Figure 6a shows a basic scenario with 4 processes - �0, �1, �2 and �3. After partitioning, we

obtain a DAG graph, i.e., Figure 6b. In this graph, each vertex is a task partitioning from processes. The weights

of vertices in the partition graph are equal to the fault-free execution time of the corresponding task plus the

overheads of the compulsory checkpoints placed on it.

Remark 3.1. Compulsory checkpoints satisfy logical consistency and avoid the domino efect.

When a failure occurs, and the system rolls back to the compulsory checkpoints, the sender processes show

that they have sent the messages, while the corresponding receiver processes indicate that they have not yet

received them. This demonstrates that the messages have been sent but not yet received [14], which is in line with

the deinition of logical consistency. On the other hand, because the sender processes set compulsory checkpoints

after sending the messages, the system will not invalidate the messages, thereby preventing further rollbacks, i.e.,

the domino efect.

4 CRITICAL PATH EXTRACTION

In a system with multiple processors, most tasks can be executed in parallel. However, tasks connected by

edges in the DAG must be performed in sequence because of the dependencies. Identifying the critical path

(Deinition 2) in the DAG gives us the maximum length of tasks that must be executed in sequence to ensure

logical consistency and avoid the domino efect. This critical path determines the total execution time of these

processes. It’s important to note that the critical path is extracted after inserting the compulsory checkpoints.

Definition 2 (Critical Path). In a DAG of tasks, the critical path is a path in which the total sum of the weight

of the vertices is no less than that of any other path.

Algorithm 1 shows an algorithm to ind a critical path based on the topological sort and dynamic programming.

First, we topologically sort the DAG and get an ordered vertex set � with a complexity of � ( |� |). Then, we use

dynamic programming to calculate the maximum total weight ending with vertex � , i.e., �� (�). A transition

function is deined as

�� (�) =���{�� (�) +� (�)} (4)

where (�, �) is an edge in � and� (�) is the weight of the vertex � . The computation is performed in the topological

order of � . Given that the maximum number of computing �� (·) is equal to the number of edges, the algorithmic

complexity is� ( |� |). Finally, we select the maximum value of �� (�) as the highest total weight of � and reconstruct

the critical path � using each optimal choice � .�ℎ���� we record.

The critical path is the worst-case for the following analysis. Figure 7a shows a critical path partitioned from

processes, in which we already placed compulsory checkpoints (shown in Figure 7b) for logical consistency.

However, it’s challenging to meet real-time requirements using only compulsory checkpoints with long intervals.

When a fault occurs, the system needs to roll back to a consistent state containing only compulsory checkpoints.

This rollback can violate timing correctness (Deinition 3), making it diicult to meet real-time requirements.

ACM Trans. Embedd. Comput. Syst.
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Algorithm 1 The Critical Path Extraction

Input: DAG � = (� , �)

Output: Critical path � , largest total weight �

1: Initialization: Topologically sort �

2: for each vertex � ∈ � in topological order do

3: �� (�) ← 0

4: for each edge (�, �) ∈ � do

5: if �� (�) +� (�) > �� (�) then

6: �� (�) ← �� (�) +� (�)

7: � .�ℎ���� ← �

8: end if

9: end for

10: if �� (�) > � then

11: � ← �� (�), � ← �

12: end if

13: end for

14: for � .�ℎ���� ≠ ���� do

15: � .��� (�)

16: � ← � .�ℎ����

17: end for

18: return �, �

Definition 3 (Timing Correctness). Timing Correctness means that all tasks in each process catch up with the

deadline of this process in a real-time system.

5 CHECKPOINT PLACEMENT FOR TIMING CORRECTNESS

In this section, we focus on placing optional checkpoints on each task of the critical path to minimize the total

execution time, denoted as�� . If no optional checkpoints are placed, a long rollback may occur, leading to a

waste of useful work. However, placing too many checkpoints results in signiicant checkpoint overhead. To ind

a balance, we formulate an optimization problem for each task to determine the appropriate number and length

of checkpoint segments.

As shown in Figure 7b, the irst task �0 in the critical path starts from the initial state, while other tasks

�1, . . . ,�� − 1 start from a compulsory checkpoint. Thus, we apply the proposed optimization method to the two

conditions separately.

5.1 Optimization for the First Task

The irst task,�0, is exceptional. If the task rollback to an optional checkpoint, the rollback overhead is � . However,

if the task rollback to a checkpoint unsuccessfully, the task restarts with a higher overhead � , because there is no

checkpoint at the beginning of the task �0. In Segment �00, the task is restarted if a fault is detected. Hence, the

total execution time is updated because of it:

�01 =

{
�00 � = 1 − �00 (�00)

�00 + � +�01 � = �00 (�00)
(5)

ACM Trans. Embedd. Comput. Syst.
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From Eq.(1), (2), (5), we can derive the expectation of�01:

�01 = �00 +
�00 (�00)

1 − �00 (�00)
(�00 + �) = (

1

�1
+ �)(��0�00 − 1) = �0�00 (6)

In other segments, �0� , there is no fault with 1 − �0� (�0� ) chance. The task rollbacks to the latest checkpoint with

probability �0 or restarts with probability �0 if a fault is detected. Hence, the total execution time is

�0( �+1) = �0� + ℎ0� (7)

where

ℎ0� =




�0� � = 1 − �0� (�0� )

�0� + � + ℎ0� � = �0� (�0� )�0

�0� + � +�0( �+1) � = �0� (�0� )�0

From Eq.(1), (2), (7), we can get the expectation of�0( �+1) :

�0( �+1) =
1 − �0�0� (�0� )

1 − �0� (�0� )
�0� + �0� +

�0� (�0� )

1 − �0� (�0� )
(�0� + �0� + �0�)

= (���1�1� + �1)�1� + (��1�1� − 1) (
1

�
+ �1� + �1�) = �0��0� + �0��0

(8)

Using Eq.(6) and Eq.(8) recursively, we derive the expectation of the total execution time of the irst task:

�0 =�0(�0+1)

= �0�00

�0∏

�=1

�0� + �0�01

�0∏

�=2

�0� + �0�02

�0∏

�=3

�0� + ... + �0�0(�0−1)�0�0 + ��0�0

(9)

The optimization problem is expressed as:

argmin
�0,�0�

�0

s.t.

�0︁

�=0

�0� = �1 + (�0 + 1)��
(10)

Because there are two variables in the problem, we irst assume that�0 is given and try to ind the relations

between �0� . Then, we try to compute the optimal�0.

We introduce a Lagrange multiplier � and get the Lagrange function.

L(�0� , � ) =�0 (�0� ) − ��(�0� ), where �(�0� ) = �0 + (�0 + 1)�� −

�0︁

�=0

�0� (11)

The optimal solution satisies

∇L(�0� , � ) = 0 (12)

From Eq.(12), we get the equation:
��0

��00
=

��0

��01
= ... =

��0

��0�0

(13)

From Equation (13), we can obtain the relations between the fault-free execution time of segments �00, �01, . . . , �0�0 :

�01 = �02 = · · · = �0�0 = �0∗

�00 = �0∗ + ��
(14)

ACM Trans. Embedd. Comput. Syst.
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where �� =
1
�0
��( 1+�0�1+�0�

). Hence,�0 becomes

�0 = �0�00�
�
0∗ + �0�0∗

�0−1︁

�=0

��0∗ = (�0�00 + �0�
−1
0 )��0∗ − �0�

−1
0 (15)

where

�0∗ =
�0 − ��

�0 + 1
+ ��

�0∗ = ��0�0∗ − 1

�0∗ = �0�
�0�0∗ + �0

We get the optimal number of checkpoints in the irst task�0∗ by solving
��0

��0
= 0, and choose the best value of

two nearest integers as the optimal solution. According to the optimal�0∗ and Equation (14), we can determine

where to checkpoint in Task 0.

5.2 Optimization for Other Tasks

For tasks after�0, the task rolls back to a compulsory or optional checkpoint with overhead � , if a fault is detected.

There is no restart overhead because there is a compulsory checkpoint at the beginning of the task �� . Therefore,

the total execution time for �� � is

�� ( �+1) =

{
ℎ�0 � = 0

�� � + ℎ� � 1 ≤ � ≤ ��

(16)

where

ℎ� � =




�� � � = 1 − �� � (�� � )

�� � + � + ℎ� � � = �� � (�� � )��

�� � + � +�� ( �+1) � = �� � (�� � )��

(17)

From Eq.(1), (2), (16), (17), we can derive the expectation of�� ( �+1) :

�� ( �+1) =
1 − ���� � (�� � )

1 − �� � (�� � )
�� � + �� � +

�� � (�� � )

1 − �� � (�� � )
(�� � + � )

= (���
��� � + �� )�� � + (���� � − 1) (

1

��
+ � ) = �� ��� � + �� ���

(18)

We add Eq.(18) recursively, and we can derive the expectation of the total execution time of the task �� :

�� =�� (��+1)

= ����0

��∏

�=1

�� � + ����1

��∏

�=2

�� � + ����2

��∏

�=3

�� � + ... + ���� (��−1)����
+ ������

(19)

The optimization problem is expressed as:

argmin
�� ,�� �

��

s.t.

��︁

�=0

�� � = �� + (�� + 1)��
(20)
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The Lagrange function is

L(�� � , � ) =�� (�� � ) − ��(�� � ), where �(�� � ) = �� + (�� + 1)�� −

��︁

�=0

�� � (21)

The optimal solution satisies

∇L(�� � , � ) = 0 (22)

From Eq.(22), we can get the following equation:

���

���0
=

���

���1
= ... =

���

�����

(23)

From Equation (23), we can get the relations between the fault-free execution time of Segments ��0, ��1, . . . , ����
:

��0 = ��1 = · · · = ����
= ��∗ (24)

Hence,�� becomes

�� = ����∗

��︁

�=0

�
�
�∗ = −���

−1
� (1 − ���+1

�∗ ) (25)

where

��∗ =
��

�� + 1
+ ��

��∗ = �����∗ − 1

��∗ = ���
����∗ + ��

By solving ���

���
= 0, and choosing the best value of two nearest integers, we get the optimal��∗. Then, we can

checkpoint at equidistance in Task � according to Equation (24).

Remark 5.1. Optional checkpoint placement in the critical path, which is computed by solving the above opti-

mization problem, achieves the shortest total execution time.

The optimization objectives for both the irst and other tasks are the total execution time including overheads.

Thus the number of optional checkpoints and their intervals that are computed by solving the optimization

problem lead to the shortest total execution time.

6 EVALUATION

In this section, we evaluate the efectiveness of our proposed optional checkpointing strategy through extensive

simulations and a case study. For the simulations, we randomly generate a system with dependent processes and

evaluate our approach based on four aspects: prevention of the domino efect, optimization of optional checkpoint

intervals, optimization of checkpoint numbers, and performance under diferent scales. In the case study, we

demonstrate how our approach works in a real system.

6.1 Simulation

6.1.1 Simulation Seting. The generated processes with dependencies are shown in Figure 8a. According to

Section 3, we partition these processes into a DAG of tasks, shown in Figure 8b. The fault-free execution times of

each task are marked beside the vertices. According to Section 4, We extracted the critical path from the DAG and

marked it in orange. The critical path consists of four tasks, each with time lengths of 400, 300, 200, and 200. The

overall deadline for completing all tasks is 3300, which is equivalent to three times the fault-free computation

time of the tasks on the critical path.
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Considering the simplicity of setting up the experiment and the directness of illustrating the advantage of

our model, the parameters mentioned in the Section 2.3.3 are as follow. Some parameters are based on real-

world experiences, such as the checkpointing overhead for placement and recovery, while others can be set

arbitrarily and do not afect the fairness among diferent strategies. We choose the same fault rate for each task,

i.e., �0 = �1 = �2 = �3 = 0.01, which means one fault is expected to occur every 100 units of time. The checkpoint

placement overhead �� is 4. When a fault arrives, the system rollback to an optional checkpoint with a probability

of � = 0.8, and to a compulsory checkpoint (the initial state for �1) with a probability of � = 0.2. The recovery

overhead from a checkpoint is � = 12, and the recovery overhead from the initial state is � = 20.

To simulate the time interval between two faults, we use the equation in [27] for the exponential distribution:

������������ =
−���

�

where� is a random value between 0 and 1.

According to the Section 5, we can obtain the optimal number of checkpoints in each task of the critical path,

which are 13, 9, 6, 6 checkpoints. According to Eq.(14) and (24), we can also get corresponding intervals between

every two checkpoints.

6.1.2 Simulation Result. We perform four simulations to evaluate our strategy of setting checkpoints. The irst

simulation aims to determine whether our model can prevent the domino efect and thus reduce the execution

time. The second and the third simulation aims to prove our model optimizes the interval of checkpoints and the

number of checkpoints, respectively. The fourth simulation shows that our model performs well in a wide range

of scales.

Simulation 1: Domino Efect Prevention. The processes with dependencies in Fig.9a sufer from the domino

efect if we set checkpoints randomly, for example, the blue checkpoints. Instead, setting checkpoints based

on our strategy prevents the system from rolling back to the initial state whenever faults happen. Thus, the

system’s execution time will be shortened. We simulate the critical path 100000 times with four strategies: (a) no

checkpoints, place no checkpoints in the system; (b) only compulsory checkpoints, place no optional checkpoints;

(c) only optional checkpoints, place no compulsory checkpoints; (d) optimal checkpoints, place both compulsory

and optional checkpoints (the proposed strategy). Among them, (a) and (c) are afected by the domino efect.

The result shows that the domino efect leads to a large execution time. There are two observations: (i) the

average execution time of strategy (a) is about 750 times longer than that of strategy (b), (ii) the average execution

(a) Simulation processes (b) DAG of tasks

Fig. 8. Simulation Seting

ACM Trans. Embedd. Comput. Syst.



14 • Lin Zhang, Zifan Wang, and Fanxin Kong

(a) With domino efect (b) Without domino efect

Fig. 9. Simulation 1 - Domino Efect Prevention

Table 2. The Result of Simulation 1 - Domino Efect Prevention. Avg Exec: Average Execution Time, Min Exec: Minimum

Execution Time, Max Exec: Maximum Execution Time, %Deadline: the Percentage of Simulations that Meet the Deadline.

Strategies: NC: (a) No Checkpoints, CO: (b) Only compulsory Checkpoints, OO: (c) Only Optional Checkpoints, OP: (d)

Optimal Checkpoints (the Proposed Strategy).

Strategy Avg Exec Min Exec Max Exec %Deadline

NC 7581500.85 8378.91 45725624.63 0.00

CO 10067.38 1116.00 70697.98 6.22

OO 10340.65 1287.56 111719.27 20.67

OP 2616.95 1264.34 10702.18 81.82

time of (b) is about 4 times longer than that of strategy (d). The reason behind the noteworthy diference is

from the compulsory checkpoints, which make the system free from the domino efect. For (a), the system

rollback to the initial state when a fault occurs, but for (b), the system only rollback to the nearest compulsory

checkpoints. Thus, a large amount of useful work can be saved. Although the system can rollback to an optional

checkpoint when a fault occurs for strategy (c), but there is also a possibility � that the optional checkpoint is

not valid. Under this condition, the system has to rollback to the initial state, which leads to a larger execution

time in strategy (c). The domino efect is also avoided in strategy (d). This analysis highlights the importance of

compulsory checkpoints that prevent the domino efect, reduce the execution time, and increase the inishing

process percentage on time.

Simulation 2: Performance Regarding Checkpoint Interval. The second simulation compares our checkpoint

placement strategy with four other strategies on the critical path with respect to checkpoint intervals. We consider

ive types of diferent checkpoint placement strategies, the same in the number of checkpoints but diferent in the

checkpoint interval. They are: (a) optimal placement strategy obtained from Section 5; (b) two-state strategy [36]:

a strong prior work that has two stages of setting checkpoints, and the irst stage delays the checkpoints as much

as possible avoiding checkpointing overheads. (c) uniformI (I stands for intervals): place checkpoints based on

uniform distribution; (d) Gauss distribution placement strategy: place checkpoints based on Gauss distribution

with �/2 as the mean and �/4 as the standard deviation; (e) narrowing placement strategy: gradually narrow the

interval between two checkpoints; (f) widening placement strategy: gradually widen the interval between two

checkpoints. The placement strategy (d) is based on the algorithm: the � + 1-th checkpoint in a task is placed at

the irst third of the interval between the �-th checkpoint and the end. The placement strategy (e) is the reverse

process of strategy (d). We simulate the critical path process 100000 times and list the result in Table 3.
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Table 3. The Result of Simulation 2 - Performance Regarding Diferent Checkpoint Interval. Strategies: (a) Optimal, (b)

TwoState, (c)UniformI, (d) Gauss, (e) Narrowing, (f) Widening.

Strategy Avg Exec Min Exec Max Exec %Deadline

Optimal 2616.12 1252.00 11995.20 81.88

TwoState 2761.80 1398.50 8682.60 80.96

UniformI 2744.79 1236.00 11732.31 77.80

Gauss 2732.77 1254.44 10993.74 78.19

Narrowing 2946.51 1250.99 14325.78 70.97

Widening 2941.82 1265.67 13142.09 71.02

The result shows that our model optimizes the interval between checkpoints. We notice that our optimal

strategy (a) has the shortest average execution time and the highest percentage of inishing processes on time.

Strategy (b), (c), and (d) have shorter average execution times than strategy (d) and (e), but still longer than

strategy (a). The prior work (b) yields a competitive rate of meeting deadlines with the proposed strategy but it

behaves worse than the proposed strategy and baseline strategies (c) and (d) in terms of average and minimum

execution time. This is because of its concentrated distribution of execution time. This strategy reduces the

maximum execution time and increases the percentage of meeting deadlines, however, it also increases the

minimum execution time and thus increases the average execution time. Strategy (c) places the checkpoints

uniformly on each task, making it worse but close to our model’s result. The performance of strategy (d) depends

on the value of the mean and standard deviation, and in this case, it has a better performance than strategy (c).

Note, the maximum execution time of strategy (d) being less than other strategies is due to randomness, i.e. fewer

faults happen during some runs in strategy (d). Our model cannot guarantee to perform the best every time, but

it promises a better average result when running time accumulates.

Simulation 3: Performance Regarding Checkpoint Number. The third simulation compares our checkpoint

placement strategy with three other strategies on the critical path with respect to checkpoint numbers. We

consider four types of checkpoint placement strategy in this simulation: (a) optimal placement strategy obtained

from Section 5; (b) MelhemInt: The algorithm of determining the number of checkpoints that is used in many

prior work [4, 30]; (c) uniformM (M stands for the number of checkpoints �), placing the same number of

checkpoints in each task, and the total number of checkpoints is close to that in (a); (d) light-weight placement

strategy, place fewer checkpoints than (a), but the number of checkpoints in each task is proportional to the

computation time of each task; (e) heavy-weight placement strategy, place more checkpoints than (a), but the

number of checkpoints in each task is proportional to the computation time of each task. All strategies share the

same pattern of determining intervals, i.e., our model. We simulate the critical path process 100000 times, and the

result is listed in Table 4.

The result shows that our model optimizes the number of checkpoints. The other three strategies slightly

change the number of checkpoints for each task, and none of them performs better than our model. Our strategy

reduces the average execution time and increases the percentage of processes completed on time. The prior work

(b) and the lightweight placement baseline place inadequate checkpoints, wasting useful work and leading to

longer execution time. On the other hand, the heavy-weight placement strategy places too many checkpoints, and

their overheads contribute more execution time. Only our proposed strategy meets the trade-of between useful

work waste and checkpointing overhead. Note that the light-weight placement strategy’s minimum execution

time is smaller than our model because it places fewer checkpoints. The scale, i.e. the size of the DAG and the

length of the critical path, is small in this simulation, which leads to the slight improvement from other strategies

to the proposed model. Improvement will be increased in simulation 4.
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Table 4. The Result of Simulation 3 - Performance Regarding Diferent Checkpoint Numbers. CP No.: Number of Checkpoints

in The Critical Path Tasks. %DDL: The Percentage of Simulations That Meet the Deadline. Strategies: (a) Optimal, (b)

MelhemInt, (c) UniformM, (d) Light-weight, (e) Heavy-weight.

Strategy CP No. Avg Exec Min Exec Max Exec %DDL

Optimal 13, 9, 6, 6 2617.39 1267.73 11791.90 81.90

MelhemInt 4, 3, 3, 3 3636.14 1167.65 35886.96 51.79

UniformM 9, 9, 9, 9 2653.03 1293.53 11901.07 80.67

Light-wt 10, 7, 5, 5 2628.57 1236.94 10821.43 81.47

Heavy-wt 16, 11, 7, 7 2637.40 1314.42 11609.88 81.27

Simulation 4: Performance Regarding Scalability. The fourth simulation shows the scalability of our checkpoint

placement strategy. First, we gradually add the number of processes and their lengths. The execution time for

each task is chosen randomly from 50 to 650 units of time. Second, we randomly generate dependencies between

tasks: for each task, there is 0.4 chance that no message is sent out, 0.5 chance that 1 message is sent to another

process, and 0.1 chance that 2 messages are sent to other processes. By selecting and adjusting the number and

length of processes, the scale of the DAG can be controlled to an expected range. Then according to Section 3,

we partition these processes into a DAG of tasks. Finally, according to Section 4, we extract the critical path of

the DAG. The set of parameters, i.e. �, �� , �, �, �, � is the same as the above value. And the deadline for inishing

all tasks is also 3 times the fault-free computation time of tasks on the critical path. The scale and critical path

details are shown in Table 5 and Table 6 respectively.

Table 5. The Scales of Simulation 4 - Performance Regarding Scalability. Proc No.: Number of Processes, Avg Proc Len:

Average Process length, Msg No.: Number of Messages, Critical Path Len: Length of Critical Path.

Proc No. Avg Proc Len Msg No. Critical Path Len

3 40 91 48

4 80 206 93

5 120 444 142

6 160 680 191

7 200 978 238

8 240 1319 292

The optimal checkpoint numbers are calculated by the proposed model. We simulate the critical path process

100000 times and list the result in Table 7. We also simulate the two best baselines in the previous simulation for

better comparison: the TwoState strategy in simulation 2 and the light-weight strategy in simulation 3. Besides,

we simulate the strategy of using compulsory checkpoints only.

The result shows that our model stays strong in diferent aspects of scale and proves again that it performs

better than other strategies. We notice that as the critical path becomes longer, the average execution time of all

four strategies increases. The strategy to place only compulsory checkpoints cost the system over 10 times longer

than the other three strategies to complete the tasks. Moreover, the percentage of meeting the deadline remains

0 on all scales. This unacceptable result is due to repeated work without proper checkpointing. The TwoState

strategy that had a competitive performance as our approach in simulation 2 has unacceptable performance on

execution time and deadline meeting rate at all scales. As the scale grows, its performance degrades signiicantly

because its motivation to delay the irst checkpoint leads to a long rollback for the irst fault. Also, in contrast to
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Table 6. The Detail of Critical Path of Simulation 4 - Performance Regarding Scalability. Path Len: Number of Tasks in the

Critical Path. Opt CP No.: The Optimal Number of Checkpoints in the Critical Path, FF Exec: Fault-free Execution Time, Task

Avg: Average Execution Time of All the Tasks, Task S.D.: Standard Deviation of All the Tasks.

Path Len Opt CP No. FF Exec Task Avg Task S.D.

48 522 16945 353.02 166.84

93 1002 32656 351.14 173.85

142 1541 50097 352.79 174.42

191 2095 68033 356.19 171.24

238 2610 84779 356.21 174.76

292 3183 103359 353.97 175.49

Table 7. The Result of Simulation 4 - Performance Regarding Scalability. P Len: Length of Critical Path, Strategies: Opt: The

Proposed Strategy, TwoState: Prior Work proposed in [36], L-wt: Light-weight Placement Strategy, CO: Only Compulsory

Checkpoints

P Len Strat Avg Exec Min Exec Max Exec %DDL

48

Opt 46658.36 29043.16 79035.80 79.52

TwoState 54044.17 37780.91 79985.81 48.11

L-wt 47159.98 29690.36 78796.84 76.60

CO 549115.45 183697.60 1433248.68 0.00

93

Opt 90962.30 63480.37 131047.60 82.37

TwoState 107625.32 82879.86 147974.87 26.12

L-wt 92036.61 67042.33 132859.30 78.44

CO 1174630.43 525642.00 2287054.97 0.00

142

Opt 142221.44 107544.19 189782.72 83.71

TwoState 162806.04 129464.32 208093.57 14.80

L-wt 143888.79 106922.95 191786.89 79.07

CO 1893677.80 1048011.40 3309548.29 0.00

191

Opt 190392.98 148406.07 247362.28 88.54

TwoState 231139.34 189596.35 285603.39 2.45

L-wt 192664.35 148323.16 247667.30 84.14

CO 2628444.25 1516961.52 4276293.98 0.00

238

Opt 238168.00 192514.41 309228.85 89.70

TwoState 285246.53 237750.67 342616.35 13.18

L-wt 240934.17 192965.68 304839.08 85.08

CO 3223960.78 2017579.28 5132395.45 0.00

292

Opt 289887.27 240952.28 358688.84 92.30

TwoState 324411.12 274018.52 387484.72 13.77

L-wt 293287.77 239438.80 356610.61 88.15

CO 3872775.91 2507589.88 5993822.13 0.00

the more concentrated distribution of execution times, the TwoState strategy has an overall longer execution time

in average, minimum, and maximum, and the diference increases as the scale grows. The lightweight placing

strategy has a competitive result, but still fails to surpass our model in terms of both average execution time and
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(a) DAG of case study (b) Result of case study

Fig. 10. DAG and Result of Case Study. NF: No Faults happen, Opt C: Optimal Checkpoints (the Proposed Strategy), No C:

No Checkpoints placed

percentage of meeting deadline. The reason is that given the relatively low fault rate, the overhead of setting

checkpoints makes up the gap between performances. Another noteworthy observation shown in the result

is that the uniform distribution strategy’s percentage of meeting the deadline goes low as the scale becomes

large, while our model and lightweight strategy have an opposite trend. This is because i) our model performs

better as the scale grows and random data become stable, ii) the light-weight strategy’s performance is relative to

our model as it has a ixed ratio of fewer checkpoints, iii) the absolute more execution time of uniform strategy

becomes large as the scale expands so the percentage of meeting the deadline drops.

6.2 Case Study

In this section, we apply and test our model on an environmental monitoring system that monitors, records, and

analyses the campus environment, including atmospheric composition, tap water ingredients, environmental

noise, and twelve more aspects of data. The program has three processes: (a) data processing process: iterate a

database, ilter, and retrieve the target records; (b) logic processing process: analyze and sort the records retrieved

by process (a); (c) message sending process: send the sorted records to an external program and waiting for

responses. Since there are trillions of records, all three processes should be partitioned into several tasks according

to diferent record ID ranges to reduce the cost of faults. The inputs of the latter tasks depend on the results of

the previous tasks. We choose a pair of boundaries of this program and plot the system in a DAG, Figure 10a.

The number besides tasks is their estimated execution time: every task of the process (a) needs 2 seconds to run;

every task of the process (b) needs 1 second to execute; every task of the process (c) consumes 3 seconds. The

critical path is colored orange. We run the program 100 times and plot the results in Figure 10b.

We use CRIU [10], a library for process state management, to set and restore checkpoints. We build a separate

C++ program to generate faults, save, and restore from checkpoints. The number of checkpoints and the interval

between checkpoints is obtained from our proposed strategy, according to Section 5. The expected interval

between every two faults is consistent with [27]. The fault rate � = 0.001. Other parameters, i.e. �� , �, �, �, � are

the same as the simulation settings, and the deadline is also 3 times the fault-free critical path execution time.

The result in Figure 10b shows that if we do not set any checkpoints on the program, the average execution

time (i.e., 52.37s) is about four times longer than the expected 13.32s execution time if no faults occur. However,

if we set checkpoints based on the model described before, we can decrease the average execution time to 16.83s

because the checkpoints prevent the program from falling back to the initial state and repeatedly doing the same
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tasks. Thus, our model of setting checkpoints can reduce the average execution time in real-world programs if

faults happen.

7 DISCUSSION

Compulsory and optional checkpoints do not impact the critical path. On the one hand, inserting

compulsory checkpoints happens before extracting the critical path, which means we have considered the

impact of compulsory checkpoints. On the other hand, the proposed strategy determines how to place optional

checkpoints to achieve the minimum expected execution time on the critical path. However, the optional

checkpoints are inserted coordinately in all processes; so they globally increase the execution time and equally

afect all paths.

The proposed approach does not assume a deterministic number of faults. This work considers a

probabilistic fault model that we cannot foresee the number of faults in advance. Considering the probabilistic

fault model is more general because it encourages the proposed checkpointing strategy to be robust in a random

environment. While, in contrast, addressing deterministic fault models (i.e., k-fault tolerance scenario) only

guarantees performance in a limited number of faults. The k-fault model is not suitable in complex systems

especially when the fault rate is high because a k-fault tolerant system drains out tolerance very soon and needs

special treatment in such a high fault rate environment. The proposed strategy minimizes the total expected

execution time, thus, leading to a higher probability of meeting deadlines than other strategies. All other strategies

result in longer execution times and lower rates of meeting deadlines. The experimental results also show that

the proposed strategy promises the shortest average execution time. In addition, we consider an overall deadline

for all tasks instead of individual deadlines for diferent tasks.

The proposed strategy addresses transient faults. The proposed strategy addresses the transient fault under

a certain distribution, and the permanent fault is out of the scope of this paper. To address permanent faults,

the system must be designed with redundancy; thus, when permanent faults occur, it can migrate tasks from

faulty processes to intact ones and establish new dependencies with new messages. The proposed approach can

then be applied to ensure fault tolerance and minimize overall execution time. This migration of tasks can be

done manually or automatically, depending on the system’s coniguration and the nature of the fault. Once the

migration is complete, the proposed approach can be used to partition dependent processes into a DAG graph,

identify the critical path, and optimize the number and intervals of checkpoints to minimize the impact of faults

and ensure timely recovery.

8 CONCLUSION

The main contribution of the paper is the consideration of both logical consistency and timing correctness during

checkpoint placement in real-time systems. We irst partition processes with complex dependencies into a DAG,

during which we place some compulsory checkpoints to guarantee logical consistency and avoid much useful

work waste. Then we extract the longest critical path to analyze timing correctness. Finally, we build a model to

illustrate how to minimize each task’s execution time in the critical path to achieve minimum total execution

time. Four simulations and a case study show the necessity to consider both logical and timing correctness, and

our strategy performs the best among prior works and baselines.
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