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Abstract—Unitary synthesis is an optimization technique that
can achieve optimal gate counts while mapping quantum circuits
to restrictive qubit topologies. Synthesis algorithms are limited in
scalability by their exponentially growing run times. Application
to wide circuits requires partitioning into smaller components. In
this work, we explore methods to reduce depth and multi-qubit
gate count of wide, mapped quantum circuits using synthesis. We
present TopAS, a topology aware synthesis tool that preconditions
quantum circuits before mapping. Partitioned subcircuits are op-
timized and fitted to sparse subtopologies to balance the opposing
demands of synthesis and mapping algorithms. Compared to state
of the art wide circuit synthesis algorithms, TopAS is able to
reduce depth on average by 35.2% and CNOT count by 11.5%
for mesh topologies. Compared to the optimization and mapping
algorithms of Qiskit and Tket, TopAS is able to reduce CNOT
counts by 30.3% and depth by 38.2% on average.

Index Terms—quantum computing, hardware aware software,
compilation, synthesis

[. INTRODUCTION

Modern quantum machines are subject to high levels of
environmental noise, are difficult to control, and consist of
only tens of qubits. Because long program run times increase
the likelihood that qubits will decohere and the implemen-
tations of quantum gates are imperfect, modern non-error-
corrected machines require compilers that minimize run time
and instruction count.

Operations that involve multiple qubits, such as the CNOT,
iSWAP, and CZ gates, are far more error prone and expensive
to implement compared to single qubit gates [6]. Optimization
techniques that aim to decrease the multi-qubit gate count of
quantum circuits are becoming increasingly used and studied
[12], [16], [23]. Unitary synthesis is one such technique that
simultaneously maps and reduces the gate count of circuits.
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The runtime of unitary synthesis algorithms scales exponen-
tially with the number of qubits n. To handle more qubits, a
compiler must partition wide circuits into smaller subcircuits.
After synthesizing each subcircuit independently, subcircuits
in the original circuit are replaced with their optimized ver-
sions.

Other than sensitivity to environmental noise, machines
in the Noisy Intermediate Scale Quantum (NISQ) era are
defined by their limited sizes and connectivities (which qubits
are allowed to interact). This connectivity or physical qubit
topology is described using a graph. Each vertex in the graph
represents a hardware qubit, while each edge represents a
supported multi-qubit interaction. Quantum algorithms are
typically designed assuming that each qubit is able to interact
directly with all other qubits. In order for a quantum processor
to execute these densely connected algorithms, a compiler
must map the circuit by inserting SWAP gates to route all
interactions along edges in the physical topology. Examples
of realistic and popular superconducting qubit physical topolo-
gies are illustrated in Fig 1.

As quantum circuits become wider and physical topologies
remain sparse, the number of routing gates inserted by these
mapping algorithms grows quickly. It is therefore desirable
to approximate and transform wide quantum circuits using
unitary synthesis so that the total number of multi-qubit gates
and the depth of quantum circuits are reduced.

We present TopAS, a qubit topology aware synthesis compi-
lation flow that reduces the multi-qubit gate count and depth
of wide, mapped, quantum circuits. TopAS first partitions a
logical quantum circuit, synthesizes each partitioned subcircuit
independently, reassembles the optimized logical circuit, then
uses a mapping algorithm to ensure that all operations are legal
according to some specified qubit topology. When targeting
the mesh physical topology, TopAS is able to produce circuits
with an average of 30.1% fewer CNOT gates than Qiskit [4]
and t|ket) [18], and 11.5% fewer CNOT gates than other large
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Fig. 1: Example Physical Qubit Topologies. The 2D mesh topology
is based off quantum machines provided by Google, while the falcon
topology follows IBM’s heavy hexagonal connectivity scheme.

scale synthesis techniques such as QGo [21]. TopAS improves
upon the QGo algorithm by optimizing before mapping and
by preconditioning circuit partitions so that the fully mapped
results are less deep and require fewer multi-qubit gates.

The remainder of this paper is structured as follows: Section
IT discusses the general processes of unitary optimization,
quantum circuit partitioning, and compares tools that apply
synthesis before and after mapping. Section III presents the
design choices made for the TopAS tool. Section IV compares
the TopAS tool to other optimization and mapping techniques.
Finally, Section V provides commentary and discussion about
advancements that could further improve the performance of
wide quantum circuit synthesis tools.

II. BACKGROUND

A. Quantum Computing Basics

The fundamental unit of information in a quantum computer
is the qubit, which can be represented as a vector of the form

ool

where o and /3 are complex numbers such that |a|?+|5]? = 1
and [1 0] and [0 1]T are orthonormal basis vectors repre-
senting two distinct quantum states. The state of a quantum
system with n qubits lies in a 2™ x 2™ Hilbert space, and can
be evolved by use of 2" x 2™ unitary operators [14].

The quantum circuit model represents this unitary as a series
of quantum gates [3]. Single qubit and multi-qubit gates act
on qubits which are drawn as horizontal wires (see Fig 3). The
number of wires (qubits) n is the circuit width and the critical
path length or depth of the circuit is 7". For the scope of this
paper, a universal gate set of {U3, CNOT} is assumed. Note
that SWAP gates can trivially be decomposed into 3 CNOTs
as shown in Fig 2.

2

D
3V
D D
L U
B |
(H—H]

—O-{HHO{HHD—

Fig. 2: How to implement a SWAP operation using a SWAP gate, 3
CNOTs, and 3 CNOTs and 4 Hadamards.

B. Quantum Circuit Synthesis

Given a target 2" x 2™ unitary U and an error threshold
€, a unitary synthesis algorithm builds a new circuit whose
unitary Uy satisfies the inequality |U — Ug|| < € [23]. Most
recent synthesis tools base their distance metric off the Hilbert-
Schmidt inner product as it is computationally inexpensive [2],
(91, [11]:

|U — Us|lus = Tr(U'Us).

There are broadly two types of synthesis: top-down and
bottom-up. Top-down synthesis techniques are rule-based, and
aim to break down large unitaries into smaller ones. These
algorithms are quick, but the resultant circuit depth grows
exponentially, which limits their effectiveness. Bottom-up syn-
thesis starts with an empty circuit and gradually adds gate until
a solution is found. Techniques such as QSearch/LEAP use an
A* heuristic search to find an optimal depth approximation for
the overall unitary [19].

Synthesis algorithms such as QSearch also accept a coupling
graph as input so that the connectivity between qubits may be
specified. The coupling graph restricts the synthesis algorithm
by requiring that it only place multi-qubit gates along edges
in the graph. Doing so means that the resulting circuit is
fully mapped to the coupling graph. Previous work [19] has
demonstrated that for small circuits, synthesis algorithms are
able to map circuits to restrictive qubit topologies using fewer
gates than other compiler tools such as Qiskit [4] and t|ket)
[18]. Thus when provided a coupling graph and a small
width circuit, synthesis is able to completely remove the need
for a mapping algorithm. Synthesis algorithms are ultimately
limited by the size of the solution search trees, and the size
of the unitary matrices for which the Hilbert-Schmidt distance
must be calculated.

C. Quantum Circuit Fidelity and Performance

The NISQ era is defined by multi-qubit gates that have a
high probability of introducing noise into the system as well
as quantum states that tend to decohere very quickly [8].
Producing quantum circuit implementations with both fewer
multi-qubit gates and lower depth is therefore desirable, and
serves as an indicator for the final state fidelity.

Synthesis adds an additional unitary error to each partition
of a circuit. For N partitions and a synthesis threshold
€ = 10710 per partition, the total circuit approximation error
Ne is typically between 1078 to 10~7 in Hilbert-Schmidt
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Fig. 3: Example quantum circuit with 5 qubits. Each qubit is repre-
sented by a horizontal line, and the timing of the circuit is described
by the x-axis. The circuit has been partitioned into 3 subcircuits.

distance for our selection of benchmarks. This means although
synthesis introduces approximation errors into circuit imple-
mentations, the error threshold is sufficiently low that gate
and decoherence errors will dominate overall error. For this
reason, we present both CNOT gate counts and circuit depth
to evaluate circuit implementations (see Section IV).

D. Mapping Quantum Circuits

Quantum circuits are typically designed with the assumption
that the underlying hardware can support interactions between
any pair of qubits. However, due to physical restrictions,
modern quantum machines typically have very sparse inter-
physical qubit connectivity (illustrated in Fig 1).

In order to ensure that a quantum circuit can be run
on a quantum computer, a mapping algorithm is used to
transform the circuit so that it conforms to some restricted
qubit connectivity. The process of mapping quantum circuits
to physical topologies happens in two stages: placement/layout
and routing. During the placement phase, an assignment of
logical qubits in the quantum circuit to physical qubits in
the qubit topology is created. In the next phase, routing,
quantum SWAP operations are inserted to ensure that all multi-
qubit interactions specified in the quantum circuit take place
along edges in the physical topology [12], [16]. Throughout
both phases of circuit mapping, the goal is to minimize the
number of SWAP operations inserted into the final circuit.
SWAP implementations using the {CNOT, U3} gate set are
shown in Fig 2. As quantum circuits become wider and
more densely connected, the overhead in CNOT count due
to routing SWAP gates quickly rises. Minimizing the number
of SWAP operations is NP-Hard [17], so algorithms targeting
wide circuits use sub-optimal heuristic-based approaches.

E. Quantum Circuit Partitioning

Given a quantum circuit and a positive integer k (called the
partition width or block size), a partitioning algorithm divides
the circuit into subcircuits (also called blocks or partitions) of
width at most k. Valid partitions consist only of gates that act
on those specific qubits in the partition. An example circuit
with width 3 partitions is shown in Fig 3.

For the purposes of unitary synthesis, the goal of a parti-
tioning algorithm is to form as few partitions as possible, and

3

ensure that each of these partitions is as large as possible.
Our experiments show that these large partitions tend to see a
larger reduction in CNOTs as compared to smaller partitions.
This effect is illustrated in Fig 6.

FE. Post-Mapping vs. Logical Circuit Synthesis

Previous tools to apply unitary synthesis optimization to
wide quantum circuits, such as QGo [21], follow a post-
mapping synthesis flow as illustrated in Fig 4a. After pre-
liminary circuit optimizations, the logical circuit is mapped
to a physical qubit topology. This mapped quantum circuit is
then partitioned into subcircuits, which are each independently
synthesized. The synthesized subcircuits are reassembled to
form the complete optimized and mapped circuit.

Although post-mapping synthesis schemes are able to re-
duce depth and multi-qubit gate count, there are several
pitfalls that limit their effectiveness. First, because mapped
circuits typically contain more gates than their unmapped
counterparts, partitioning algorithms tend to form far more
partitions on mapped circuits. As each of these partitions must
be individually synthesized, this approach is in practice more
time consuming than partitioning and synthesizing the logical,
unmapped, circuit. Second, the amount of optimization possi-
ble by synthesis is very sensitive to the quality of mapping,
these methods primarily reduce inefficiencies introduced by
mapping algorithms.

These points motivate the reasoning behind adopting a pre-
mapping, or logical circuit synthesis flow to precondition cir-
cuits before mapping. The process of logical circuit synthesis
for wide quantum circuits is illustrated in Fig 4b. After some
initial quick circuit optimizations, the logical circuit is parti-
tioned. Each partition is paired with a synthesis subtopology to
which the subcircuit is mapped. After synthesis, the circuit is
reconstructed from the optimized subcircuits and finally fully
mapped to the specified physical qubit topology.

G. Synthesis Subtopology Selection

Each partitioned subcircuit must be assigned a graph Gg =
(V, Eg) that specifies the connectivity between qubits in the
partition. The synthesis algorithm chooses multi-qubit gates
that correspond to edges in the set F'g, mapping the subcircuit
to this synthesis subtopology Gg. Since post-mapping tools
assume circuits are routed, the interactions between qubits in
a partition are guaranteed to fit the physical topology. We can
thus simply choose Gg to be the subgraph induced by the
physical qubits in a partition.

Pre-mapping synthesis affords more choice here as the
partitioned circuit is not yet routed to obey the restrictions
of the physical hardware. A candidate synthesis subtopology
is a connected graph of order equal to the number of qubits in
some partition. Synthesis subtopologies must be connected to
ensure qubits may interact, even if they do so indirectly. As
synthesis algorithms are mostly limited to operating in the 3-5
qubit partition width ranges, the number of possible synthesis
subtopologies is relatively limited.
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Fig. 4: Program flow diagrams for wide circuit optimization tools
using unitary synthesis post- and pre-mapping.

Our experiments show that the choice of synthesis subtopol-
ogy can have drastic effects on the number of multi-qubit gates
in the optimized subcircuit, as well as on the performance of
the routing algorithm during the final mapping process. The
goal of the synthesis subtopology selection process is thus
to choose graphs so that the synthesis algorithm is able to
produce low gate count subcircuits and the mapping algorithm
is able to more efficiently place and route the subcircuit.
The structure of the subtopology G g also heavily impacts the
depth of synthesized subcircuits. Depth is heavily dependent
on the degrees of vertices in the subtopology Gs. Subtopology
selection thus also must carefully consider the connectivity
within a partition to ensure that the depth of the optimized
circuits is minimized. Section III-C further details the choices
made for the subtopology selection algorithm for the TopAS
tool.
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Fig. 5: A high level view of the TopAS implementation of pre-
mapping synthesis.

4) The connectivity of
neighboring partitions is
considered in order to
encourage edge reuse
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III. TOPOLOGY AWARE SYNTHESIS

We present TopAS, a qubit topology aware synthesis tool.
By partitioning and synthesizing the logical circuit, the number
of multi-qubit operations in a quantum circuit is reduced be-
fore mapping begins. The choice to synthesize logical quantum
circuits enables TopAS to produce mapped circuits with fewer
total CNOTs and lower depth than many other optimization
tools. TopAS selects synthesis subtopologies for partitioned
subcircuits that are sparse and easily embedded within the
underlying physical qubit topology to reduce the number of
operations needed for both computation and mapping.

The TopAS tool uses a scan partitioning strategy introduced
by the authors of QGo [21]. The synthesis algorithm used
is the QSearch/LEAP algorithm [19]. Working versions of
the partitioning and synthesis algorithms are provided by the
BQSKit tool [22]. A flowchart of the TopAS tool’s execution
is displayed in Fig 5.
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Fig. 6: Partition frequency and mean normalized partition size after
optimization as a function of CNOT count. Normalized partition
size is calculated using the number of CNOTs in the synthesized
subcircuit divided by CNOTSs in the original partition. A value less
than 1 indicates that synthesis reduces those partitions. The partitioner
predominately forms subcircuits with 6-11 CNOTs, but is also able
to form many subcircuits with 16-17 CNOTs.

A. Logical Quantum Circuit Partitioning

The partitioning algorithm views the input circuit as a two
dimensional grid, where qubits are represented by rows, and
time steps in the circuit are represented by columns. Each
element of the grid either contains a quantum operation or is
empty. The width of this grid is n, the number of qubits in the
circuit. The length is 7', the depth or critical path length of
the circuit. The scan partitioner algorithm sequentially scans
through all as yet unpartitioned gates in a circuit, examines
each possible grouping of k or fewer qubits, and picks the
one that lends the largest partition. This scheme tends to form
few partitions, often with a high average number of multi-
qubit gates. As mentioned in Section II-E and illustrated in Fig
6, subcircuits with more multi-qubit gates tend to yield more
reduction by synthesis. The distribution of partitions produced
by the scan partitioning algorithm for a subset of benchmarks
is also shown in Fig 6.

Note that partitions consist only of subcircuits with in-
teracting qubits, so each partition has a connected logical
connectivity graph. Given a blocksize of k, in the worst case
the partitioner must consider O(Z) candidate partitions.

B. Synthesizing Logical Quantum Circuits

TopAS follows a pre-mapping synthesis flow. As logical
circuits do not contain routing gates, they are never deeper
than their mapped counterparts. Shorter circuits often yield
fewer partitioned subcircuits, as they usually contain fewer
total gates to partition. Partitioning circuits before mapping
thus conserves the number of subcircuits produced by par-
titioning. Though subcircuits are independently synthesized,
in practice this often means less time is needed to optimize
circuits that are partitioned before mapping. Circuits with
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Fig. 7: The number of SWAP operations within partitions synthesized
to different synthesis subtopologies for the mesh, falcon, and linear
physical topologies. Simpler subtopologies result in fewer SWAP, but
may produce circuits with more CNOTs.

fewer partitions also tend to have more accurate output cir-
cuits. Each partitioned circuit is synthesized independently,
so each synthesis procedure will produce a mapped circuit
whose unitary representation will be within some Hilbert-
Schmidt norm distance € away from the target unitary. The
authors of [15] showed that the total error in a circuit that
consists of synthesized subcircuits is bounded by the sum of
each subcircuit’s distance. If a circuit is partitioned into [N
subcircuits, because each partition is synthesized to within a
distance e, the total distance of the partitioned and synthesized
circuit is bounded by Ne. Decreasing N, as is done in the
logical partitioning case, thus improves the accuracy of the
synthesized circuit. Results comparing the upper bound on
total circuit errors for several synthesized benchmarks are
shown in Table I.

C. Topology Aware Subtopology Selection

The main contribution of this work is a subtopology se-
lection strategy and compilation workflow built around it. It
allows for circuits to be preconditioned in such a way that
balances the opposing demands of synthesis and mapping. As
discussed in Section II-G, the goal of the subtopology selection
process is to assign a graph Gg to each partitioned subcircuit.
The vertices in Gg represent qubits in the subcircuit, while
edges describe the allowed interactions between qubits in the
output synthesized subcircuit.

Ideally, a quantum circuit is synthesized so that it uses
only edges present in the physical topology for multi-qubit
interactions. Before mapping, the placement and thus al-
lowed interactions between qubits is not known. However,
synthesizing densely connected subcircuits to sparse graph
structures can decrease the need for SWAP operations during
the mapping phase. Limiting the set of synthesis subtopologies
and carefully selecting sparse subtopologies for each subcircuit
allows us to balance the opposing demands of the routing and
synthesis algorithms, leading to fewer total CNOT gates.
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Fig. 8: Possible order 4 synthesis subtopologies. The graphs a, b, and
¢ are embedded within the mesh physical topology. Graphs d, e, and
f are not. Only a and b are embedded in the falcon topology, while
a is the only embedded subgraph of the linear topology.

Fig 7 shows the average number of internal SWAP gates
per CNOT for a variety of synthesis subtopologies targeting
three physical topologies. Internal SWAP gates are routing
operations that are inserted between the first and last gate of
a partition. If each subcircuit is synthesized to an embedded
subgraph of the physical topology and is executed atomically,
there is a solution to the mapping problem that requires zero
SWAP operations on the subcircuit’s qubits during its execu-
tion. However, because routing often disrupts the execution
of subcircuits, internal SWAP operations appear regardless of
synthesis subtopology choice. The number of internal SWAP
gates observed for a partition is normalized by the number of
CNOTs in the partition to allow for more effective compar-
isons between subcircuits. Sparser subtopologies often yield
more gates during optimization than denser subtopologies, but
they require fewer SWAP gates during mapping.

As described in Fig 5, TopAS restricts the set of graphs
from which to choose synthesis subtopologies to the set of
connected graphs that are embedded in the target physical
topology. For this evaluation, TopAS was used only with a
partition width of 4 qubits. The order 4 candidate subtopolo-
gies are illustrated in Fig 8.

QSearch, the synthesis algorithm at the core of the TopAS
optimization flow, aims to synthesize circuits using as few
multi-qubit gates as possible. Often times, circuit depth is
minimized as a consequence of this goal but is not the primary
metric of success. Subtopology selection is the only variable
that TopAS uses to reduce circuit depth directly. For certain
subtopologies choices, circuits produced tend to contain many
gates that must be executed sequentially. The most significant
contributor to this property is the possible graph matchings
present in a given subtopology. In topologies such as the star
(Fig 8b), any choice of a single edge is a maximum matching.
This means that for the star subtopology, no two CNOTs can
be executed in parallel. Other subtopologies like the line and
ring (Fig 8a and 8c) have larger maximum matchings, and
thus allow more parallelism within synthesized subcircuits.
Although they typically require more routing gates, subtopolo-
gies containing more edges tend to allow for lower depth
circuits.

The qubit interactions within a partitioned subcircuit can be
described using a weighted undirected graph G, = (V, Ep).

6

For each multi-qubit interaction that occurs between qubits
k1, ko € [K] in the subcircuit, there is an edge (ki, k2, w) €
E1, where the weight w corresponds to the number of times
that interaction occurs. Synthesis algorithms such as QSearch
allow for the connectivity between qubits to be specified by an
unweighted undirected graph G = (V, Eg). For a maximum
partition size of k, V = [k] and Es CV x V.

Our experiments indicate that synthesis is best able to re-
duce the multi-qubit gate count of subcircuits when the logical
connectivities and synthesis subtopologies match. A kernel
function [7] is used to quantify the similarity between the
graphs. The scoring function K : G, x Gg — [0, 1] examines
each edge in the synthesis subtopology G5 and logical con-
nectivity G,. From the edges, two vectors v, vp € RF(F—1)/2
are constructed. The vector vp is simply an indicator vector,
with a 1 at each element that corresponds to a present edge
in Gg. Element i of vy, contains the weight w associated with
edge ¢ in G1,. The normalized inner product
U;UL

similarity (vp, vr,) S or ()
is then returned to quantify the similarity between the graphs.
For each partition, all k! permutations of qubit labels are
evaluated for each of the candidate synthesis subtopologies.
The permuted subtopology with the highest kernel function
score is considered the best candidate subtopology for the
purposes of producing the smallest output subcircuit. The
effectiveness of the similarity kernel function was evaluated
by synthesizing partitions of width 4 to all order 4 subgraphs
embedded within the mesh physical topology (Fig 8a, 8b,
and 8c). In this scenario, the similarity function was able to
identify the subtopology that would produce the synthesized
subcircuits with the fewest CNOT gates 89% of the time.

If multiple subtopologies have the same similarity score,
that with the fewest edges is preferred. In order favor sparse
subtopologies, each similarity is multiplied by a bias factor.
The biases that produced the best results for the mesh topology
were 1.0 (line), 1.0 (star), and 0.8 (ring).

When selecting subtopologies, TopAS also considers the
impact of subtopology choice for the immediately preceding
and succeeding partitions. Although partitions are synthesized
separately, they are not executed in isolation. If a partition
assumes a physical edge exists between two qubits, and the
partition immediately following also assumes this physical
edge exists, fewer total SWAPs may be needed between the
execution of these two partitions. The TopAS tool therefore
checks each subcircuit’s neighboring partitions for qubits that
are shared. If interactions from the neighboring partitions
occur between shared qubits, they are added as edges to the
current partition’s logical connectivity graph G . Interactions
from neighboring partitions carry the same weight as inter-
actions within a partition, even if the qubits in the neighbor
partitions do not interact directly within the partition itself.
This policy was chosen as larger amounts of edge sharing
between partitions greatly reduced the final CNOT count of
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optimized circuits. TopAS uses this neighbor aware version
of the logical connectivity graph in the computation of the
similarity function. An example of two sequentially executing
partitions with subtopologies that have been selected to reuse
an edge is shown in Fig 5.

D. Partition Replacement and Mapping

As indicated in Fig 6, it is sometimes the case that syn-
thesized subcircuits grow instead of reduce in size. When this
happens, TopAS considers replacing the synthesized subcircuit
with the original subcircuit. Always choosing the logical
subcircuit when it has fewer CNOTs can be problematic in
the final routing pass, as the original subcircuit may be more
difficult to route than the synthesized version. Thus, TopAS
considers differences in both the number of CNOTs and logical
connectivities of the two subcircuits. TopAS adopts a policy
of replacing the synthesized subcircuit with the original if it
shows more than 30% (an empirically determined threshold)
fewer CNOTSs or has a more routable logical connectivity. The
routability of a subcircuit’s logical connectivity is determined
by the average number of of internal SWAP operations per
CNOT for a given physical topology (see Fig 7).

After subtopology selection and synthesis take place, TopAS
maps the synthesized quantum circuit to a physical topology.
For placement and routing, the SABRE Layout and SABRE
Swap [12] mapping algorithms are used.

IV. RESULTS

The performance of TopAS is compared to other optimiza-
tion and mapping tools by measuring the depth and total
CNOT operation counts of optimized and mapped circuits.
Here, we compare TopAS (as described in Section III) to
the Qiskit, t|ket), and QGo tools. In all cases, circuits are
optimized using ¢|ket)’s full peephole optimization. After-
wards, either Qiskit or t|ket) are used to map the quantum
circuit to the specified physical topology. The QGo tool was
used to optimize either the Qiskit or t|ket) mapped circuits,
whichever contained fewer CNOT operations. The synthesis
tool used is the QSearch/LEAP algorithm [19]. The original
QGo algorithm was re-implemented using the partitioning and
synthesis algorithms provided by the BQSKir toolkit [22].

Performance was evaluated using a variety of wide quantum
circuit benchmarks. The SupermarQ benchmark suite [20]
proposed a volume metric to describe a benchmark suite’s
diversity. Our selection of benchmarks has a SupermarQ
volume of 7.46 x 1076, meaning our benchmark selection is
sufficiently diverse compared to many others.

The ¢qft and shor circuits were generated using Qiskit.
The add and mult circuits were generated with [10]. The
hubbard benchmark was generated with help from [13]. TFIM
circuits were generated using the ArQtic tool [1]. Benchmarks
are labeled so that the number following the benchmark
name indicates the number of qubits in the circuit. These
benchmarks were selected as they were found to be easily
generated for large widths, and represent a variety of wide
circuits that may soon be executable on quantum machines.
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TABLE I: The upper bounds on total circuit synthesis error (sum
of Hilbert-Schmidt distances per partition) and average CNOTSs per
partition for each benchmark. A synthesis threshold of ¢ = 1071°
was used for both QGo and TopAS.

Total CNOTs per
Mapping | Topology Error Partition

QGo Falcon 1.38E-08 15.3
mult 16 QGo Mesh 1.51E-08 12.9
TopAS - 7.20E-09 154
QGo Falcon 1.17E-07 12.5
mult_32 QGo Mesh 1.15E-07 11.7
TopAS - 4.96E-08 15.1
QGo Falcon 5.83E-08 73
qft_64 QGo Mesh 5.18E-08 7.8
TopAS - 2.32E-08 8.1
QGo Falcon 8.09E-08 8.1
qft_100 QGo Mesh 8.72E-08 7.4
TopAS - 3.85E-08 8.0
QGo Falcon 9.09E-08 6.5
add_65 QGo Mesh 7.02E-08 7.3
TopAS 3.53E-08 7.0
QGo Falcon 1.26E-07 11.8
add_101 QGo Mesh 1.23E-07 9.4
TopAS - 6.18E-08 7.0
QGo Falcon 1.42E-07 7.61
tfim_40 QGo Mesh 1.57E-07 6.3
TopAS - 1.05E-07 8.1
QGo Falcon 5.17E-07 8.4
tfim_100 QGo Mesh 4.71E-07 7.7
TopAS - 2.70E-07 8.0
QGo Falcon 1.83E-07 8.0
hubbard_18 QGo Mesh 1.60E-07 6.5
TopAS 9.56E-08 37
QGo Falcon 3.86E-07 10.3
shor_26 QGo Mesh 3.32E-07 11.6
TopAS - 1.52E-07 13.9

Results for the QGo and TopAS tools were collected using
NERSC'’s Perlmutter supercomputer.

Figs 9 and 10 show the relative CNOT gate count and depth
of circuits optimized and mapped to the mesh and falcon
physical topologies (illustrated in Fig 1). The CNOT gate
count and depth are normalized by the results obtained for cir-
cuits optimized then mapped using Qiskit’s SABRE mapping
algorithms. A synthesis threshold distance of ¢ = 1 x 10710
and a partition width of k = 4 was used for both QGo and
TopAS.

On average, the TopAS tool is able to reduce CNOT
count compared to Qiskir and t|ket) by 35.9% and 24.3%
respectively when targeting a mesh physical topology. For
the falcon physical topology, TopAS outperforms Qiskit and
t|ket) by an average of 33.4% and 19.1% respectively. For
the #fim_I00 circuit, TopAS outperforms Qiskit by 62.1%
and t|ket) by 53.1%. For the shor_26 benchmark, TopAS
outperforms Qiskit by 38.7% and t|ket) by 30.8%. Reductions
in circuit depth are even greater, averaging 38.6% and 37.6%
lower compared to Qiskit and t|ket) across all benchmarks.

In most cases, the TopAS tool is able to produce circuits
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Fig. 9: Comparison of relative CNOT count (top) and depth (bottom) for circuits mapped to the Google style mesh physical topology. CNOT
count and depth is shown relative to optimized circuits mapped using Qiskit’s SABRE Swap algorithm. Lower depth corresponds directly to
better program runtimes on machines with parallel gate execution, lower depth and CNOT count correspond to improved execution probability

on noisy machines.

with fewer CNOTs and much lower depth than the QGo tool,
especially for the mesh physical topology. On average, TopAS
outperforms QGo by 11.5% in CNOT count and 34.3% in
depth when targeting the mesh physical topology. For the
falcon physical topology, TopAS only outperforms QGo by
an average of 0.8% in CNOT count, but maintains a 37.3%
average depth reduction.

QGo optimized circuits always reduce CNOT count com-
pared to unsynthesized input circuits, but sometimes lead to
deeper circuits. This is because when synthesizing pure SWAP
gates, the QSearch algorithm tends to find the more expensive
depth 5 implementation illustrated in Fig 2. TopAS is able to
avoid this pitfall by synthesizing partitions that do not contain
SWAP gates, thus resulting in much reduced circuit depths.

As discussed in Section III-B, working on the logical,
unmapped, quantum circuit also allows TopAS to form fewer
partitions compared to QGo. This results lower upper bounds
on the amount of synthesis error for each benchmark, as shown
in Table I. This table also lists the average number of CNOTs
per partition for all benchmarks. TopAS is able to outperform
QGo in CNOT count for all benchmarks when targeting the
mesh physical topology except for the hubbard_I8 circuit
benchmark. The discrepancy in performance for this bench-
mark is primarily explained by the average size of partitions
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formed. Table I shows that for this circuit, TopAS is only
able to form partitions with an average of 3.7 CNOT gates.
Fig 6 illustrates that typically, partitions with this number of
CNOTs tend not to reduce. Partitions formed by QGo tend
to include SWAP gates, which greatly increases the number
of CNOTs per partition (6.5 CNOT gates on average for
hubbard_18). Using a larger partition width, or a partitioning
algorithm that is able to produce larger partitions on average
would likely improve the performance of TopAS for the
hubbard benchmark. This point also partially explains the drop
in TopAS’ performance compared to QGo for benchmarks
targeting the falcon physical topology.

The scalability of the TopAS tool compared to Qiskit, t|ket),
and QGo is illustrated in Fig 11. Each tool was used to
optimize and map QFT and TFIM circuits with widths of 10-
100 qubits. Despite performing poorly in comparison at small
circuit widths, TopAS maintains an advantage compared to
other optimization tools as the circuit width increases. In the
case of certain circuits such as the TFIM circuits, TopAS’
advantage increases with circuit width.

V. DISCUSSION

TopAS is able to produce circuits with fewer multi-qubit
gates and lower depth by partitioning logical quantum circuits
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Fig. 10: Comparison of relative CNOT count (top) and depth (bottom) for circuits mapped to the IBM style falcon physical topology. CNOT
count and depth is shown relative to optimized circuits mapped using Qiskit’s SABRE Swap algorithm. Lower depth corresponds directly to
better program runtimes on machines with parallel gate execution, lower depth and CNOT count correspond to improved execution probability

on noisy machines.

and matching subcircuits with sparse qubit subtopologies in
a way that balances the demands of synthesis and mapping
algorithms. In the case of the tfim_40 and tfim_100 bench-
marks, the logical connectivity graphs are simply linear path
graphs of order 40 and 100 respectively. These circuits have
mappings that do not require any SWAP operations, as they
are directly embeddable within the mesh physical topology.
However, heuristic mapping algorithms implemented in Qiskit
and t|ket) are unable to find these placements, likely due to
the large widths and depths of these circuits. By optimizing
before mapping, TopAS is able shorten circuits in such a way
that allows for these algorithms to find better placements. This
advantage in mapping performance is maintained in the falcon
topology case, where the TFIM circuits are no longer directly
embeddable in the physical topology.

Using synthesis to map partitions to restrictive subtopolo-
gies also improves the performance of the mapping algorithm.
Mapping to subtopologies that are easily embedded within the
physical topology means that fewer SWAPs are needed within
the execution time of partitions. This effect is illustrated in
Fig 7. The neighbor aware subtopology selection mechanism
illustrated in Fig 5 helps to maximize the reuse of edges
in the physical topology between the execution of partitions.
The combination of these design choices allows for TopAS to
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outperform other optimization and mapping tools.

Section IV demonstrates how TopAS is able to reduce both
CNOT count and circuit depth significantly compared to other
tools. These metrics both play a major role in the likelihood
that a circuit will be executed correctly. The amount of error
due to synthesis (shown in Table I) is far lower than that
introduced by gate noise and decoherence. In total, optimizing
wide circuits with TopAS therefore greatly increases circuit
fidelity compared to other tools.

Because mapping is done after partitioning and synthesis
in the TopAS program flow, it is not limited to using a
single mapping algorithm. We observed that although TopAS
synthesizes partitions to subtopologies embedded within the
physical topology, it is often the case that the mapping
algorithm disrupts the execution of synthesized subcircuits.
When partitions are executed atomically, there is a solution
to the routing problem such that no SWAP gates are needed
during the partition’s execution. A mapping algorithm that is
aware of higher level structures than the primitive gate set
may therefore further improve the performance of TopAS.
Such a tool was put forth by the authors of [5], but it is
only able to consider Toffoli gates instead of arbitrary & qubit
unitary operations. A full partition aware mapping algorithm
is therefore likely necessary to reap the full benefits of this
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mapped to the 2D mesh physical topology as a function of circuit
width.

strategy.

Although TopAS’ set of valid synthesis subtopologies only
includes graphs that are embedded within the physical topol-
ogy, it does not consider whether a set of subtopologies
can be packed into the physical topology simultaneously.
This fact explains the discrepancy in TopAS’ performance
between the mesh and the falcon physical topologies. For
example, although the star subtopology is embedded within
the falcon physical topology, far fewer star graphs can be
packed into the falcon topology than the mesh. A subtopology
selection process that accounts for the frequency with which
subgraphs appear in a physical topology would likely improve
the performance of TopAS.

The two primary factors that limit the scalability of TopAS
are the runtime of the partitioning algorithm used and the
runtime of the synthesis algorithm used. In the case where
qubits in the logical circuit interact with all other qubits, the
runtime of the scan partitioner is 0(2), where n is the circuit
width and £k is the partition width. This poor scaling limited
the width of benchmark circuits tested to 100 qubits. Other
partitioning schemes capable of forming large partitions on
average are therefore needed to optimize larger quantum cir-
cuits with TopAS. Algorithms such as QFAST [23] effectively
increase the width of circuits that can be optimized, but in our
experience tend not to perform as well as QSearch/LEAP in
the range of 1-25 CNOT gates. Increasing the partition width
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tends to increase the number of CNOTs per partition, which
may provide more opportunity for improvement. Increasing
the partition width also has the effect of adding more graphs
to the set of valid synthesis subtopologies. Supposing that the
optimization algorithm scales, this may further improve the
performance of TopAS by allowing for a greater amount of
mapping to be handled by synthesis.

As shown in Fig 11, the number of CNOTs in QFT circuits
optimized with the TopAS tool grows roughly linearly with
the number of qubits in the range shown. As the QFT is a
common component of more complex quantum algorithms,
the scaling of this circuit is of particular importance. With a
width of 100 qubits, the TopAS optimized QFT circuit contains
23.9% and 11.7% fewer CNOTs than the Qiskit and t|ket)
optimized and mapped circuits. Notably, the rate of increase
in CNOTs per qubit in the QFT circuit seems to grow more
slowly for TopAS than for Qiskit and t|ket). Because QGo
only optimizes circuits that have already been mapped by these
tools, we expect that TopAS’ performance advantage over
QGo can improve at larger (100-1000 qubit) circuit widths.
This effect can clearly be seen in the TFIM circuit scaling
results.

Although out of the scope for the current paper, an obvious
next question would be to see what happens when TopAS
is combined with QGo. We have clearly shown that a single
application of TopAS’ logical circuit synthesis almost always
outperforms a single round of QGo optimization. When ap-
plying both TopAS and QGo to the hubbard_18 benchmark
mapped to the 2D mesh physical topology (a benchmark which
TopAS fails to reduce CNOT count more than QGo for the
mesh topology), CNOT count was reduced by approximately
5% compared to QGo alone. Thus, combining multiple lev-
els of optimization has the potential to further improve the
performance of quantum circuits.

VI. CONCLUSION

We have presented TopAS, a topology aware synthesis tool
that optimizes wide quantum circuits. By optimizing quantum
circuits using unitary synthesis before they are mapped, TopAS
preconditions circuits so that they are reduced by synthesis and
made easier to place and route. TopAS is able to reduce CNOT
count and circuit depth, and thus improves circuit performance,
compared to other state of the art synthesis based optimization
tools targeting wide circuit optimization and the optimization
frameworks provided by Qiskit and t|ket). Because CNOT
count and circuit depth are significantly reduced, the likelihood
that circuits optimized with TopAS execute successfully on
noisy, realistic, near term qubit topologies is greatly increased.
Further reduction is possible on TopAS optimized circuits by
applying successive rounds of post-mapping circuit optimiza-
tion.
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