
Wide Quantum Circuit Optimization with Topology
Aware Synthesis

Mathias Weiden
Department of Computer Science
University of California, Berkeley

Berkeley, USA

mtweiden@berkeley.edu

Justin Kalloor
Department of Computer Science
University of California, Berkeley

Berkeley, USA

jkalloor3@berkeley.edu

John Kubiatowicz
Department of Computer Science
University of California, Berkeley

Berkeley, USA

kubitron@cs.berkeley.edu

Ed Younis
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, USA

edyounis@lbl.gov

Costin Iancu
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, USA

cciancu@lbl.gov

Abstract—Unitary synthesis is an optimization technique that
can achieve optimal gate counts while mapping quantum circuits
to restrictive qubit topologies. Synthesis algorithms are limited in
scalability by their exponentially growing run times. Application
to wide circuits requires partitioning into smaller components. In
this work, we explore methods to reduce depth and multi-qubit
gate count of wide, mapped quantum circuits using synthesis. We
present TopAS, a topology aware synthesis tool that preconditions
quantum circuits before mapping. Partitioned subcircuits are op-
timized and fitted to sparse subtopologies to balance the opposing
demands of synthesis and mapping algorithms. Compared to state
of the art wide circuit synthesis algorithms, TopAS is able to
reduce depth on average by 35.2% and CNOT count by 11.5%
for mesh topologies. Compared to the optimization and mapping
algorithms of Qiskit and Tket, TopAS is able to reduce CNOT
counts by 30.3% and depth by 38.2% on average.

Index Terms—quantum computing, hardware aware software,
compilation, synthesis

I. INTRODUCTION

Modern quantum machines are subject to high levels of

environmental noise, are difficult to control, and consist of

only tens of qubits. Because long program run times increase

the likelihood that qubits will decohere and the implemen-

tations of quantum gates are imperfect, modern non-error-

corrected machines require compilers that minimize run time

and instruction count.

Operations that involve multiple qubits, such as the CNOT,

iSWAP, and CZ gates, are far more error prone and expensive

to implement compared to single qubit gates [6]. Optimization

techniques that aim to decrease the multi-qubit gate count of

quantum circuits are becoming increasingly used and studied

[12], [16], [23]. Unitary synthesis is one such technique that

simultaneously maps and reduces the gate count of circuits.

This work was supported by the DOE under contract DE-5AC02-
05CH11231 through the Office of Advanced Scientific Computing Research
(ASCR) Quantum Algorithms Team and Accelerated Research in Quantum
Computing programs, and by the NSF Challenge Institute for Quantum
Computation (CIQC) program under award OMA-2016245.

The runtime of unitary synthesis algorithms scales exponen-

tially with the number of qubits n. To handle more qubits, a

compiler must partition wide circuits into smaller subcircuits.

After synthesizing each subcircuit independently, subcircuits

in the original circuit are replaced with their optimized ver-

sions.

Other than sensitivity to environmental noise, machines

in the Noisy Intermediate Scale Quantum (NISQ) era are

defined by their limited sizes and connectivities (which qubits

are allowed to interact). This connectivity or physical qubit

topology is described using a graph. Each vertex in the graph

represents a hardware qubit, while each edge represents a

supported multi-qubit interaction. Quantum algorithms are

typically designed assuming that each qubit is able to interact

directly with all other qubits. In order for a quantum processor

to execute these densely connected algorithms, a compiler

must map the circuit by inserting SWAP gates to route all

interactions along edges in the physical topology. Examples

of realistic and popular superconducting qubit physical topolo-

gies are illustrated in Fig 1.

As quantum circuits become wider and physical topologies

remain sparse, the number of routing gates inserted by these

mapping algorithms grows quickly. It is therefore desirable

to approximate and transform wide quantum circuits using

unitary synthesis so that the total number of multi-qubit gates

and the depth of quantum circuits are reduced.

We present TopAS, a qubit topology aware synthesis compi-

lation flow that reduces the multi-qubit gate count and depth

of wide, mapped, quantum circuits. TopAS first partitions a

logical quantum circuit, synthesizes each partitioned subcircuit

independently, reassembles the optimized logical circuit, then

uses a mapping algorithm to ensure that all operations are legal

according to some specified qubit topology. When targeting

the mesh physical topology, TopAS is able to produce circuits

with an average of 30.1% fewer CNOT gates than Qiskit [4]

and t|ket〉 [18], and 11.5% fewer CNOT gates than other large

1

2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS)

978-1-6654-7536-5/22/$31.00 ©2022 IEEE
DOI 10.1109/QCS56647.2022.00006

20
22

 IE
EE

/A
CM

 T
hi

rd
 In

te
rn

at
io

na
l W

or
ks

ho
p

on
 Q

ua
nt

um
 C

om
pu

tin
g

So
ft

w
ar

e
(Q

CS
) |

 9
78

-1
-6

65
4-

75
36

-5
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
Q

CS
56

64
7.

20
22

.0
00

06

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

(a) Mesh (b) Linear

(c) Falcon

Fig. 1: Example Physical Qubit Topologies. The 2D mesh topology
is based off quantum machines provided by Google, while the falcon
topology follows IBM’s heavy hexagonal connectivity scheme.

scale synthesis techniques such as QGo [21]. TopAS improves

upon the QGo algorithm by optimizing before mapping and

by preconditioning circuit partitions so that the fully mapped

results are less deep and require fewer multi-qubit gates.

The remainder of this paper is structured as follows: Section

II discusses the general processes of unitary optimization,

quantum circuit partitioning, and compares tools that apply

synthesis before and after mapping. Section III presents the

design choices made for the TopAS tool. Section IV compares

the TopAS tool to other optimization and mapping techniques.

Finally, Section V provides commentary and discussion about

advancements that could further improve the performance of

wide quantum circuit synthesis tools.

II. BACKGROUND

A. Quantum Computing Basics

The fundamental unit of information in a quantum computer

is the qubit, which can be represented as a vector of the form

|ψ〉 = α

[
1
0

]
+ β

[
0
1

]

where α and β are complex numbers such that |α|2+ |β|2 = 1
and [1 0]T and [0 1]T are orthonormal basis vectors repre-

senting two distinct quantum states. The state of a quantum

system with n qubits lies in a 2n × 2n Hilbert space, and can

be evolved by use of 2n × 2n unitary operators [14].

The quantum circuit model represents this unitary as a series

of quantum gates [3]. Single qubit and multi-qubit gates act

on qubits which are drawn as horizontal wires (see Fig 3). The

number of wires (qubits) n is the circuit width and the critical

path length or depth of the circuit is T . For the scope of this

paper, a universal gate set of {U3, CNOT} is assumed. Note

that SWAP gates can trivially be decomposed into 3 CNOTs

as shown in Fig 2.

Fig. 2: How to implement a SWAP operation using a SWAP gate, 3
CNOTs, and 3 CNOTs and 4 Hadamards.

B. Quantum Circuit Synthesis

Given a target 2n × 2n unitary U and an error threshold

ε, a unitary synthesis algorithm builds a new circuit whose

unitary US satisfies the inequality ‖U − US‖ ≤ ε [23]. Most

recent synthesis tools base their distance metric off the Hilbert-

Schmidt inner product as it is computationally inexpensive [2],

[9], [11]:

‖U − US‖HS = Tr(U†US).

There are broadly two types of synthesis: top-down and

bottom-up. Top-down synthesis techniques are rule-based, and

aim to break down large unitaries into smaller ones. These

algorithms are quick, but the resultant circuit depth grows

exponentially, which limits their effectiveness. Bottom-up syn-

thesis starts with an empty circuit and gradually adds gate until

a solution is found. Techniques such as QSearch/LEAP use an

A* heuristic search to find an optimal depth approximation for

the overall unitary [19].

Synthesis algorithms such as QSearch also accept a coupling

graph as input so that the connectivity between qubits may be

specified. The coupling graph restricts the synthesis algorithm

by requiring that it only place multi-qubit gates along edges

in the graph. Doing so means that the resulting circuit is

fully mapped to the coupling graph. Previous work [19] has

demonstrated that for small circuits, synthesis algorithms are

able to map circuits to restrictive qubit topologies using fewer

gates than other compiler tools such as Qiskit [4] and t|ket〉
[18]. Thus when provided a coupling graph and a small

width circuit, synthesis is able to completely remove the need

for a mapping algorithm. Synthesis algorithms are ultimately

limited by the size of the solution search trees, and the size

of the unitary matrices for which the Hilbert-Schmidt distance

must be calculated.

C. Quantum Circuit Fidelity and Performance

The NISQ era is defined by multi-qubit gates that have a

high probability of introducing noise into the system as well

as quantum states that tend to decohere very quickly [8].

Producing quantum circuit implementations with both fewer

multi-qubit gates and lower depth is therefore desirable, and

serves as an indicator for the final state fidelity.

Synthesis adds an additional unitary error to each partition

of a circuit. For N partitions and a synthesis threshold

ε = 10−10 per partition, the total circuit approximation error

Nε is typically between 10−8 to 10−7 in Hilbert-Schmidt

2

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Example quantum circuit with 5 qubits. Each qubit is repre-
sented by a horizontal line, and the timing of the circuit is described
by the x-axis. The circuit has been partitioned into 3 subcircuits.

distance for our selection of benchmarks. This means although

synthesis introduces approximation errors into circuit imple-

mentations, the error threshold is sufficiently low that gate

and decoherence errors will dominate overall error. For this

reason, we present both CNOT gate counts and circuit depth

to evaluate circuit implementations (see Section IV).

D. Mapping Quantum Circuits

Quantum circuits are typically designed with the assumption

that the underlying hardware can support interactions between

any pair of qubits. However, due to physical restrictions,

modern quantum machines typically have very sparse inter-

physical qubit connectivity (illustrated in Fig 1).

In order to ensure that a quantum circuit can be run

on a quantum computer, a mapping algorithm is used to

transform the circuit so that it conforms to some restricted

qubit connectivity. The process of mapping quantum circuits

to physical topologies happens in two stages: placement/layout

and routing. During the placement phase, an assignment of

logical qubits in the quantum circuit to physical qubits in

the qubit topology is created. In the next phase, routing,

quantum SWAP operations are inserted to ensure that all multi-

qubit interactions specified in the quantum circuit take place

along edges in the physical topology [12], [16]. Throughout

both phases of circuit mapping, the goal is to minimize the

number of SWAP operations inserted into the final circuit.

SWAP implementations using the {CNOT, U3} gate set are

shown in Fig 2. As quantum circuits become wider and

more densely connected, the overhead in CNOT count due

to routing SWAP gates quickly rises. Minimizing the number

of SWAP operations is NP-Hard [17], so algorithms targeting

wide circuits use sub-optimal heuristic-based approaches.

E. Quantum Circuit Partitioning

Given a quantum circuit and a positive integer k (called the

partition width or block size), a partitioning algorithm divides

the circuit into subcircuits (also called blocks or partitions) of

width at most k. Valid partitions consist only of gates that act

on those specific qubits in the partition. An example circuit

with width 3 partitions is shown in Fig 3.

For the purposes of unitary synthesis, the goal of a parti-

tioning algorithm is to form as few partitions as possible, and

ensure that each of these partitions is as large as possible.

Our experiments show that these large partitions tend to see a

larger reduction in CNOTs as compared to smaller partitions.

This effect is illustrated in Fig 6.

F. Post-Mapping vs. Logical Circuit Synthesis

Previous tools to apply unitary synthesis optimization to

wide quantum circuits, such as QGo [21], follow a post-
mapping synthesis flow as illustrated in Fig 4a. After pre-

liminary circuit optimizations, the logical circuit is mapped

to a physical qubit topology. This mapped quantum circuit is

then partitioned into subcircuits, which are each independently

synthesized. The synthesized subcircuits are reassembled to

form the complete optimized and mapped circuit.

Although post-mapping synthesis schemes are able to re-

duce depth and multi-qubit gate count, there are several

pitfalls that limit their effectiveness. First, because mapped

circuits typically contain more gates than their unmapped

counterparts, partitioning algorithms tend to form far more

partitions on mapped circuits. As each of these partitions must

be individually synthesized, this approach is in practice more

time consuming than partitioning and synthesizing the logical,

unmapped, circuit. Second, the amount of optimization possi-

ble by synthesis is very sensitive to the quality of mapping,

these methods primarily reduce inefficiencies introduced by

mapping algorithms.

These points motivate the reasoning behind adopting a pre-

mapping, or logical circuit synthesis flow to precondition cir-

cuits before mapping. The process of logical circuit synthesis

for wide quantum circuits is illustrated in Fig 4b. After some

initial quick circuit optimizations, the logical circuit is parti-

tioned. Each partition is paired with a synthesis subtopology to

which the subcircuit is mapped. After synthesis, the circuit is

reconstructed from the optimized subcircuits and finally fully

mapped to the specified physical qubit topology.

G. Synthesis Subtopology Selection

Each partitioned subcircuit must be assigned a graph GS =
(V,ES) that specifies the connectivity between qubits in the

partition. The synthesis algorithm chooses multi-qubit gates

that correspond to edges in the set ES , mapping the subcircuit

to this synthesis subtopology GS . Since post-mapping tools

assume circuits are routed, the interactions between qubits in

a partition are guaranteed to fit the physical topology. We can

thus simply choose GS to be the subgraph induced by the

physical qubits in a partition.

Pre-mapping synthesis affords more choice here as the

partitioned circuit is not yet routed to obey the restrictions

of the physical hardware. A candidate synthesis subtopology

is a connected graph of order equal to the number of qubits in

some partition. Synthesis subtopologies must be connected to

ensure qubits may interact, even if they do so indirectly. As

synthesis algorithms are mostly limited to operating in the 3-5

qubit partition width ranges, the number of possible synthesis

subtopologies is relatively limited.

3

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

(a) Post-mapping synthesis optimization.

(b) Pre-mapping or logical circuit synthesis optimization.

Fig. 4: Program flow diagrams for wide circuit optimization tools
using unitary synthesis post- and pre-mapping.

Our experiments show that the choice of synthesis subtopol-

ogy can have drastic effects on the number of multi-qubit gates

in the optimized subcircuit, as well as on the performance of

the routing algorithm during the final mapping process. The

goal of the synthesis subtopology selection process is thus

to choose graphs so that the synthesis algorithm is able to

produce low gate count subcircuits and the mapping algorithm

is able to more efficiently place and route the subcircuit.

The structure of the subtopology GS also heavily impacts the

depth of synthesized subcircuits. Depth is heavily dependent

on the degrees of vertices in the subtopology GS . Subtopology

selection thus also must carefully consider the connectivity

within a partition to ensure that the depth of the optimized

circuits is minimized. Section III-C further details the choices

made for the subtopology selection algorithm for the TopAS

tool.

Fig. 5: A high level view of the TopAS implementation of pre-
mapping synthesis.

III. TOPOLOGY AWARE SYNTHESIS

We present TopAS, a qubit topology aware synthesis tool.

By partitioning and synthesizing the logical circuit, the number

of multi-qubit operations in a quantum circuit is reduced be-

fore mapping begins. The choice to synthesize logical quantum

circuits enables TopAS to produce mapped circuits with fewer

total CNOTs and lower depth than many other optimization

tools. TopAS selects synthesis subtopologies for partitioned

subcircuits that are sparse and easily embedded within the

underlying physical qubit topology to reduce the number of

operations needed for both computation and mapping.

The TopAS tool uses a scan partitioning strategy introduced

by the authors of QGo [21]. The synthesis algorithm used

is the QSearch/LEAP algorithm [19]. Working versions of

the partitioning and synthesis algorithms are provided by the

BQSKit tool [22]. A flowchart of the TopAS tool’s execution

is displayed in Fig 5.

4

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Partition frequency and mean normalized partition size after
optimization as a function of CNOT count. Normalized partition
size is calculated using the number of CNOTs in the synthesized
subcircuit divided by CNOTs in the original partition. A value less
than 1 indicates that synthesis reduces those partitions. The partitioner
predominately forms subcircuits with 6-11 CNOTs, but is also able
to form many subcircuits with 16-17 CNOTs.

A. Logical Quantum Circuit Partitioning

The partitioning algorithm views the input circuit as a two

dimensional grid, where qubits are represented by rows, and

time steps in the circuit are represented by columns. Each

element of the grid either contains a quantum operation or is

empty. The width of this grid is n, the number of qubits in the

circuit. The length is T , the depth or critical path length of

the circuit. The scan partitioner algorithm sequentially scans
through all as yet unpartitioned gates in a circuit, examines

each possible grouping of k or fewer qubits, and picks the

one that lends the largest partition. This scheme tends to form

few partitions, often with a high average number of multi-

qubit gates. As mentioned in Section II-E and illustrated in Fig

6, subcircuits with more multi-qubit gates tend to yield more

reduction by synthesis. The distribution of partitions produced

by the scan partitioning algorithm for a subset of benchmarks

is also shown in Fig 6.

Note that partitions consist only of subcircuits with in-

teracting qubits, so each partition has a connected logical

connectivity graph. Given a blocksize of k, in the worst case

the partitioner must consider O
(
n
k

)
candidate partitions.

B. Synthesizing Logical Quantum Circuits

TopAS follows a pre-mapping synthesis flow. As logical

circuits do not contain routing gates, they are never deeper

than their mapped counterparts. Shorter circuits often yield

fewer partitioned subcircuits, as they usually contain fewer

total gates to partition. Partitioning circuits before mapping

thus conserves the number of subcircuits produced by par-

titioning. Though subcircuits are independently synthesized,

in practice this often means less time is needed to optimize

circuits that are partitioned before mapping. Circuits with

Fig. 7: The number of SWAP operations within partitions synthesized
to different synthesis subtopologies for the mesh, falcon, and linear
physical topologies. Simpler subtopologies result in fewer SWAP, but
may produce circuits with more CNOTs.

fewer partitions also tend to have more accurate output cir-

cuits. Each partitioned circuit is synthesized independently,

so each synthesis procedure will produce a mapped circuit

whose unitary representation will be within some Hilbert-

Schmidt norm distance ε away from the target unitary. The

authors of [15] showed that the total error in a circuit that

consists of synthesized subcircuits is bounded by the sum of

each subcircuit’s distance. If a circuit is partitioned into N
subcircuits, because each partition is synthesized to within a

distance ε, the total distance of the partitioned and synthesized

circuit is bounded by Nε. Decreasing N , as is done in the

logical partitioning case, thus improves the accuracy of the

synthesized circuit. Results comparing the upper bound on

total circuit errors for several synthesized benchmarks are

shown in Table I.

C. Topology Aware Subtopology Selection

The main contribution of this work is a subtopology se-

lection strategy and compilation workflow built around it. It

allows for circuits to be preconditioned in such a way that

balances the opposing demands of synthesis and mapping. As

discussed in Section II-G, the goal of the subtopology selection

process is to assign a graph GS to each partitioned subcircuit.

The vertices in GS represent qubits in the subcircuit, while

edges describe the allowed interactions between qubits in the

output synthesized subcircuit.

Ideally, a quantum circuit is synthesized so that it uses

only edges present in the physical topology for multi-qubit

interactions. Before mapping, the placement and thus al-

lowed interactions between qubits is not known. However,

synthesizing densely connected subcircuits to sparse graph

structures can decrease the need for SWAP operations during

the mapping phase. Limiting the set of synthesis subtopologies

and carefully selecting sparse subtopologies for each subcircuit

allows us to balance the opposing demands of the routing and

synthesis algorithms, leading to fewer total CNOT gates.

5

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

Embedded Subgraphs a) Line b) Star c) Ring

Unembedded Subgraphs d) Kite e) Theta f) Complete

Fig. 8: Possible order 4 synthesis subtopologies. The graphs a, b, and
c are embedded within the mesh physical topology. Graphs d, e, and
f are not. Only a and b are embedded in the falcon topology, while
a is the only embedded subgraph of the linear topology.

Fig 7 shows the average number of internal SWAP gates

per CNOT for a variety of synthesis subtopologies targeting

three physical topologies. Internal SWAP gates are routing

operations that are inserted between the first and last gate of

a partition. If each subcircuit is synthesized to an embedded

subgraph of the physical topology and is executed atomically,

there is a solution to the mapping problem that requires zero

SWAP operations on the subcircuit’s qubits during its execu-

tion. However, because routing often disrupts the execution

of subcircuits, internal SWAP operations appear regardless of

synthesis subtopology choice. The number of internal SWAP

gates observed for a partition is normalized by the number of

CNOTs in the partition to allow for more effective compar-

isons between subcircuits. Sparser subtopologies often yield

more gates during optimization than denser subtopologies, but

they require fewer SWAP gates during mapping.

As described in Fig 5, TopAS restricts the set of graphs

from which to choose synthesis subtopologies to the set of

connected graphs that are embedded in the target physical

topology. For this evaluation, TopAS was used only with a

partition width of 4 qubits. The order 4 candidate subtopolo-

gies are illustrated in Fig 8.

QSearch, the synthesis algorithm at the core of the TopAS

optimization flow, aims to synthesize circuits using as few

multi-qubit gates as possible. Often times, circuit depth is

minimized as a consequence of this goal but is not the primary

metric of success. Subtopology selection is the only variable

that TopAS uses to reduce circuit depth directly. For certain

subtopologies choices, circuits produced tend to contain many

gates that must be executed sequentially. The most significant

contributor to this property is the possible graph matchings

present in a given subtopology. In topologies such as the star

(Fig 8b), any choice of a single edge is a maximum matching.

This means that for the star subtopology, no two CNOTs can

be executed in parallel. Other subtopologies like the line and

ring (Fig 8a and 8c) have larger maximum matchings, and

thus allow more parallelism within synthesized subcircuits.

Although they typically require more routing gates, subtopolo-

gies containing more edges tend to allow for lower depth

circuits.

The qubit interactions within a partitioned subcircuit can be

described using a weighted undirected graph GL = (V,EL).

For each multi-qubit interaction that occurs between qubits

k1, k2 ∈ [K] in the subcircuit, there is an edge (k1, k2, w) ∈
EL, where the weight w corresponds to the number of times

that interaction occurs. Synthesis algorithms such as QSearch

allow for the connectivity between qubits to be specified by an

unweighted undirected graph GS = (V,ES). For a maximum

partition size of k, V = [k] and ES ⊆ V × V .

Our experiments indicate that synthesis is best able to re-

duce the multi-qubit gate count of subcircuits when the logical

connectivities and synthesis subtopologies match. A kernel

function [7] is used to quantify the similarity between the

graphs. The scoring function K : GL×GS → [0, 1] examines

each edge in the synthesis subtopology GS and logical con-

nectivity GL. From the edges, two vectors vL, vP ∈ Rk(k−1)/2

are constructed. The vector vP is simply an indicator vector,

with a 1 at each element that corresponds to a present edge

in GS . Element i of vL contains the weight w associated with

edge i in GL. The normalized inner product

similarity(vP , vL) =
vTP vL∑
i

vL(i)

is then returned to quantify the similarity between the graphs.

For each partition, all k! permutations of qubit labels are

evaluated for each of the candidate synthesis subtopologies.

The permuted subtopology with the highest kernel function

score is considered the best candidate subtopology for the

purposes of producing the smallest output subcircuit. The

effectiveness of the similarity kernel function was evaluated

by synthesizing partitions of width 4 to all order 4 subgraphs

embedded within the mesh physical topology (Fig 8a, 8b,

and 8c). In this scenario, the similarity function was able to

identify the subtopology that would produce the synthesized

subcircuits with the fewest CNOT gates 89% of the time.

If multiple subtopologies have the same similarity score,

that with the fewest edges is preferred. In order favor sparse

subtopologies, each similarity is multiplied by a bias factor.

The biases that produced the best results for the mesh topology

were 1.0 (line), 1.0 (star), and 0.8 (ring).

When selecting subtopologies, TopAS also considers the

impact of subtopology choice for the immediately preceding

and succeeding partitions. Although partitions are synthesized

separately, they are not executed in isolation. If a partition

assumes a physical edge exists between two qubits, and the

partition immediately following also assumes this physical

edge exists, fewer total SWAPs may be needed between the

execution of these two partitions. The TopAS tool therefore

checks each subcircuit’s neighboring partitions for qubits that

are shared. If interactions from the neighboring partitions

occur between shared qubits, they are added as edges to the

current partition’s logical connectivity graph GL. Interactions

from neighboring partitions carry the same weight as inter-

actions within a partition, even if the qubits in the neighbor

partitions do not interact directly within the partition itself.

This policy was chosen as larger amounts of edge sharing

between partitions greatly reduced the final CNOT count of

6

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

optimized circuits. TopAS uses this neighbor aware version

of the logical connectivity graph in the computation of the

similarity function. An example of two sequentially executing

partitions with subtopologies that have been selected to reuse

an edge is shown in Fig 5.

D. Partition Replacement and Mapping

As indicated in Fig 6, it is sometimes the case that syn-

thesized subcircuits grow instead of reduce in size. When this

happens, TopAS considers replacing the synthesized subcircuit

with the original subcircuit. Always choosing the logical

subcircuit when it has fewer CNOTs can be problematic in

the final routing pass, as the original subcircuit may be more

difficult to route than the synthesized version. Thus, TopAS

considers differences in both the number of CNOTs and logical

connectivities of the two subcircuits. TopAS adopts a policy

of replacing the synthesized subcircuit with the original if it

shows more than 30% (an empirically determined threshold)

fewer CNOTs or has a more routable logical connectivity. The

routability of a subcircuit’s logical connectivity is determined

by the average number of of internal SWAP operations per

CNOT for a given physical topology (see Fig 7).

After subtopology selection and synthesis take place, TopAS

maps the synthesized quantum circuit to a physical topology.

For placement and routing, the SABRE Layout and SABRE

Swap [12] mapping algorithms are used.

IV. RESULTS

The performance of TopAS is compared to other optimiza-

tion and mapping tools by measuring the depth and total

CNOT operation counts of optimized and mapped circuits.

Here, we compare TopAS (as described in Section III) to

the Qiskit, t|ket〉, and QGo tools. In all cases, circuits are

optimized using t|ket〉’s full peephole optimization. After-

wards, either Qiskit or t|ket〉 are used to map the quantum

circuit to the specified physical topology. The QGo tool was

used to optimize either the Qiskit or t|ket〉 mapped circuits,

whichever contained fewer CNOT operations. The synthesis

tool used is the QSearch/LEAP algorithm [19]. The original

QGo algorithm was re-implemented using the partitioning and

synthesis algorithms provided by the BQSKit toolkit [22].

Performance was evaluated using a variety of wide quantum

circuit benchmarks. The SupermarQ benchmark suite [20]

proposed a volume metric to describe a benchmark suite’s

diversity. Our selection of benchmarks has a SupermarQ

volume of 7.46 × 10−6, meaning our benchmark selection is

sufficiently diverse compared to many others.

The qft and shor circuits were generated using Qiskit.
The add and mult circuits were generated with [10]. The

hubbard benchmark was generated with help from [13]. TFIM

circuits were generated using the ArQtic tool [1]. Benchmarks

are labeled so that the number following the benchmark

name indicates the number of qubits in the circuit. These

benchmarks were selected as they were found to be easily

generated for large widths, and represent a variety of wide

circuits that may soon be executable on quantum machines.

TABLE I: The upper bounds on total circuit synthesis error (sum
of Hilbert-Schmidt distances per partition) and average CNOTs per
partition for each benchmark. A synthesis threshold of ε = 10−10

was used for both QGo and TopAS.

Total CNOTs per
Mapping Topology Error Partition

QGo Falcon 1.38E-08 15.3
mult 16 QGo Mesh 1.51E-08 12.9

TopAS - 7.20E-09 15.4
QGo Falcon 1.17E-07 12.5

mult 32 QGo Mesh 1.15E-07 11.7
TopAS - 4.96E-08 15.1
QGo Falcon 5.83E-08 7.3

qft 64 QGo Mesh 5.18E-08 7.8
TopAS - 2.32E-08 8.1
QGo Falcon 8.09E-08 8.1

qft 100 QGo Mesh 8.72E-08 7.4
TopAS - 3.85E-08 8.0

QGo Falcon 9.09E-08 6.5
add 65 QGo Mesh 7.02E-08 7.3

TopAS 3.53E-08 7.0

QGo Falcon 1.26E-07 11.8
add 101 QGo Mesh 1.23E-07 9.4

TopAS - 6.18E-08 7.0

QGo Falcon 1.42E-07 7.61
tfim 40 QGo Mesh 1.57E-07 6.3

TopAS - 1.05E-07 8.1
QGo Falcon 5.17E-07 8.4

tfim 100 QGo Mesh 4.71E-07 7.7
TopAS - 2.70E-07 8.0

QGo Falcon 1.83E-07 8.0
hubbard 18 QGo Mesh 1.60E-07 6.5

TopAS 9.56E-08 3.7

QGo Falcon 3.86E-07 10.3
shor 26 QGo Mesh 3.32E-07 11.6

TopAS - 1.52E-07 13.9

Results for the QGo and TopAS tools were collected using

NERSC’s Perlmutter supercomputer.

Figs 9 and 10 show the relative CNOT gate count and depth

of circuits optimized and mapped to the mesh and falcon

physical topologies (illustrated in Fig 1). The CNOT gate

count and depth are normalized by the results obtained for cir-

cuits optimized then mapped using Qiskit’s SABRE mapping

algorithms. A synthesis threshold distance of ε = 1 × 10−10

and a partition width of k = 4 was used for both QGo and

TopAS.

On average, the TopAS tool is able to reduce CNOT

count compared to Qiskit and t|ket〉 by 35.9% and 24.3%

respectively when targeting a mesh physical topology. For

the falcon physical topology, TopAS outperforms Qiskit and

t|ket〉 by an average of 33.4% and 19.1% respectively. For

the tfim 100 circuit, TopAS outperforms Qiskit by 62.1%

and t|ket〉 by 53.1%. For the shor 26 benchmark, TopAS

outperforms Qiskit by 38.7% and t|ket〉 by 30.8%. Reductions

in circuit depth are even greater, averaging 38.6% and 37.6%

lower compared to Qiskit and t|ket〉 across all benchmarks.

In most cases, the TopAS tool is able to produce circuits

7

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Comparison of relative CNOT count (top) and depth (bottom) for circuits mapped to the Google style mesh physical topology. CNOT
count and depth is shown relative to optimized circuits mapped using Qiskit’s SABRE Swap algorithm. Lower depth corresponds directly to
better program runtimes on machines with parallel gate execution, lower depth and CNOT count correspond to improved execution probability
on noisy machines.

with fewer CNOTs and much lower depth than the QGo tool,

especially for the mesh physical topology. On average, TopAS

outperforms QGo by 11.5% in CNOT count and 34.3% in

depth when targeting the mesh physical topology. For the

falcon physical topology, TopAS only outperforms QGo by

an average of 0.8% in CNOT count, but maintains a 37.3%

average depth reduction.

QGo optimized circuits always reduce CNOT count com-

pared to unsynthesized input circuits, but sometimes lead to

deeper circuits. This is because when synthesizing pure SWAP

gates, the QSearch algorithm tends to find the more expensive

depth 5 implementation illustrated in Fig 2. TopAS is able to

avoid this pitfall by synthesizing partitions that do not contain

SWAP gates, thus resulting in much reduced circuit depths.

As discussed in Section III-B, working on the logical,

unmapped, quantum circuit also allows TopAS to form fewer

partitions compared to QGo. This results lower upper bounds

on the amount of synthesis error for each benchmark, as shown

in Table I. This table also lists the average number of CNOTs

per partition for all benchmarks. TopAS is able to outperform

QGo in CNOT count for all benchmarks when targeting the

mesh physical topology except for the hubbard 18 circuit

benchmark. The discrepancy in performance for this bench-

mark is primarily explained by the average size of partitions

formed. Table I shows that for this circuit, TopAS is only

able to form partitions with an average of 3.7 CNOT gates.

Fig 6 illustrates that typically, partitions with this number of

CNOTs tend not to reduce. Partitions formed by QGo tend

to include SWAP gates, which greatly increases the number

of CNOTs per partition (6.5 CNOT gates on average for

hubbard 18). Using a larger partition width, or a partitioning

algorithm that is able to produce larger partitions on average

would likely improve the performance of TopAS for the

hubbard benchmark. This point also partially explains the drop

in TopAS’ performance compared to QGo for benchmarks

targeting the falcon physical topology.

The scalability of the TopAS tool compared to Qiskit, t|ket〉,
and QGo is illustrated in Fig 11. Each tool was used to

optimize and map QFT and TFIM circuits with widths of 10-

100 qubits. Despite performing poorly in comparison at small

circuit widths, TopAS maintains an advantage compared to

other optimization tools as the circuit width increases. In the

case of certain circuits such as the TFIM circuits, TopAS’

advantage increases with circuit width.

V. DISCUSSION

TopAS is able to produce circuits with fewer multi-qubit

gates and lower depth by partitioning logical quantum circuits

8

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Comparison of relative CNOT count (top) and depth (bottom) for circuits mapped to the IBM style falcon physical topology. CNOT
count and depth is shown relative to optimized circuits mapped using Qiskit’s SABRE Swap algorithm. Lower depth corresponds directly to
better program runtimes on machines with parallel gate execution, lower depth and CNOT count correspond to improved execution probability
on noisy machines.

and matching subcircuits with sparse qubit subtopologies in

a way that balances the demands of synthesis and mapping

algorithms. In the case of the tfim 40 and tfim 100 bench-

marks, the logical connectivity graphs are simply linear path

graphs of order 40 and 100 respectively. These circuits have

mappings that do not require any SWAP operations, as they

are directly embeddable within the mesh physical topology.

However, heuristic mapping algorithms implemented in Qiskit
and t|ket〉 are unable to find these placements, likely due to

the large widths and depths of these circuits. By optimizing

before mapping, TopAS is able shorten circuits in such a way

that allows for these algorithms to find better placements. This

advantage in mapping performance is maintained in the falcon

topology case, where the TFIM circuits are no longer directly

embeddable in the physical topology.

Using synthesis to map partitions to restrictive subtopolo-

gies also improves the performance of the mapping algorithm.

Mapping to subtopologies that are easily embedded within the

physical topology means that fewer SWAPs are needed within

the execution time of partitions. This effect is illustrated in

Fig 7. The neighbor aware subtopology selection mechanism

illustrated in Fig 5 helps to maximize the reuse of edges

in the physical topology between the execution of partitions.

The combination of these design choices allows for TopAS to

outperform other optimization and mapping tools.

Section IV demonstrates how TopAS is able to reduce both

CNOT count and circuit depth significantly compared to other

tools. These metrics both play a major role in the likelihood

that a circuit will be executed correctly. The amount of error

due to synthesis (shown in Table I) is far lower than that

introduced by gate noise and decoherence. In total, optimizing

wide circuits with TopAS therefore greatly increases circuit

fidelity compared to other tools.

Because mapping is done after partitioning and synthesis

in the TopAS program flow, it is not limited to using a

single mapping algorithm. We observed that although TopAS

synthesizes partitions to subtopologies embedded within the

physical topology, it is often the case that the mapping

algorithm disrupts the execution of synthesized subcircuits.

When partitions are executed atomically, there is a solution

to the routing problem such that no SWAP gates are needed

during the partition’s execution. A mapping algorithm that is

aware of higher level structures than the primitive gate set

may therefore further improve the performance of TopAS.

Such a tool was put forth by the authors of [5], but it is

only able to consider Toffoli gates instead of arbitrary k qubit

unitary operations. A full partition aware mapping algorithm

is therefore likely necessary to reap the full benefits of this

9

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Number of CNOTs in QFT (top) and TFIM (bottom) circuits
mapped to the 2D mesh physical topology as a function of circuit
width.

strategy.

Although TopAS’ set of valid synthesis subtopologies only

includes graphs that are embedded within the physical topol-

ogy, it does not consider whether a set of subtopologies

can be packed into the physical topology simultaneously.

This fact explains the discrepancy in TopAS’ performance

between the mesh and the falcon physical topologies. For

example, although the star subtopology is embedded within

the falcon physical topology, far fewer star graphs can be

packed into the falcon topology than the mesh. A subtopology

selection process that accounts for the frequency with which

subgraphs appear in a physical topology would likely improve

the performance of TopAS.

The two primary factors that limit the scalability of TopAS

are the runtime of the partitioning algorithm used and the

runtime of the synthesis algorithm used. In the case where

qubits in the logical circuit interact with all other qubits, the

runtime of the scan partitioner is O
(
n
k

)
, where n is the circuit

width and k is the partition width. This poor scaling limited

the width of benchmark circuits tested to 100 qubits. Other

partitioning schemes capable of forming large partitions on

average are therefore needed to optimize larger quantum cir-

cuits with TopAS. Algorithms such as QFAST [23] effectively

increase the width of circuits that can be optimized, but in our

experience tend not to perform as well as QSearch/LEAP in

the range of 1-25 CNOT gates. Increasing the partition width

tends to increase the number of CNOTs per partition, which

may provide more opportunity for improvement. Increasing

the partition width also has the effect of adding more graphs

to the set of valid synthesis subtopologies. Supposing that the

optimization algorithm scales, this may further improve the

performance of TopAS by allowing for a greater amount of

mapping to be handled by synthesis.

As shown in Fig 11, the number of CNOTs in QFT circuits

optimized with the TopAS tool grows roughly linearly with

the number of qubits in the range shown. As the QFT is a

common component of more complex quantum algorithms,

the scaling of this circuit is of particular importance. With a

width of 100 qubits, the TopAS optimized QFT circuit contains

23.9% and 11.7% fewer CNOTs than the Qiskit and t|ket〉
optimized and mapped circuits. Notably, the rate of increase

in CNOTs per qubit in the QFT circuit seems to grow more

slowly for TopAS than for Qiskit and t|ket〉. Because QGo

only optimizes circuits that have already been mapped by these

tools, we expect that TopAS’ performance advantage over

QGo can improve at larger (100-1000 qubit) circuit widths.

This effect can clearly be seen in the TFIM circuit scaling

results.

Although out of the scope for the current paper, an obvious

next question would be to see what happens when TopAS

is combined with QGo. We have clearly shown that a single

application of TopAS’ logical circuit synthesis almost always

outperforms a single round of QGo optimization. When ap-

plying both TopAS and QGo to the hubbard 18 benchmark

mapped to the 2D mesh physical topology (a benchmark which

TopAS fails to reduce CNOT count more than QGo for the

mesh topology), CNOT count was reduced by approximately

5% compared to QGo alone. Thus, combining multiple lev-

els of optimization has the potential to further improve the

performance of quantum circuits.

VI. CONCLUSION

We have presented TopAS, a topology aware synthesis tool

that optimizes wide quantum circuits. By optimizing quantum

circuits using unitary synthesis before they are mapped, TopAS

preconditions circuits so that they are reduced by synthesis and

made easier to place and route. TopAS is able to reduce CNOT

count and circuit depth, and thus improves circuit performance,

compared to other state of the art synthesis based optimization

tools targeting wide circuit optimization and the optimization

frameworks provided by Qiskit and t|ket〉. Because CNOT

count and circuit depth are significantly reduced, the likelihood

that circuits optimized with TopAS execute successfully on

noisy, realistic, near term qubit topologies is greatly increased.

Further reduction is possible on TopAS optimized circuits by

applying successive rounds of post-mapping circuit optimiza-

tion.

REFERENCES

[1] L. Bassman, C. Powers, and W. A. De Jong, “Arqtic: A full-stack
software package for simulating materials on quantum computers,”
ACM Transactions on Quantum Computing, vol. 3, no. 3, jul 2022.
[Online]. Available: https://doi.org/10.1145/3511715

10

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

[2] M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu,
“Towards Optimal Topology Aware Quantum Circuit Synthesis,” in 2020
IEEE International Conference on Quantum Computing and Engineer-
ing (QCE). IEEE, 2020, pp. 223–234.

[3] D. E. Deutsch, “Quantum Computational Networks,” Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, vol.
425, no. 1868, pp. 73–90, 1989.

[4] Q. Developers, “Qiskit: An Open-source Framework for
Quantum Computing,” Jan. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.2562111

[5] C. Duckering, J. M. Baker, A. Litteken, and F. T. Chong, “Orchestrated
trios: compiling for efficient communication in quantum programs
with 3-qubit gates,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, apr 2021. [Online]. Available:
https://doi.org/10.1145%2F3445814.3446718

[6] J. Gambetta and S. Sheldon, “Cramming more power into a
quantum device,” IBM Research Blog, Mar. 2019. [Online]. Available:
https://www.ibm.com/blogs/research/2019/03/power-quantum-device/

[7] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” The Annals of Statistics, vol. 36, no. 3, pp. 1171 – 1220,
2008. [Online]. Available: https://doi.org/10.1214/009053607000000677

[8] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow,
and J. M. Gambetta, “Error mitigation extends the computational reach
of a noisy quantum processor,” Nature, vol. 567, no. 7749, 2019.

[9] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, and
P. J. Coles, “Quantum-Assisted Quantum Compiling,” Quantum, vol. 3,
p. 140, 2019.

[10] H. Khetawat, M. Hassan, A. Neri, A. Rodrigues, and T. Wong, “QArith-
metic.” [Online]. Available: https://github.com/hkhetawat/QArithmetic

[11] V. Kliuchnikov, A. Bocharov, and K. M. Svore, “Asymptotically Optimal
Topological Quantum Compiling,” Physical review letters, vol. 112,
no. 14, p. 140504, 2014.

[12] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1001–1014.

[13] J. R. McClean, N. C. Rubin, K. J. Sung, I. D. Kivlichan, X. Bonet-
Monroig, Y. Cao, C. Dai, E. S. Fried, C. Gidney, B. Gimby, P. Gokhale,
T. Häner, T. Hardikar, V. Havlı́ček, O. Higgott, C. Huang, J. Izaac,
Z. Jiang, X. Liu, S. McArdle, M. Neeley, T. O’Brien, B. O’Gorman,
I. Ozfidan, M. D. Radin, J. Romero, N. P. D. Sawaya, B. Senjean,
K. Setia, S. Sim, D. S. Steiger, M. Steudtner, Q. Sun, W. Sun,
D. Wang, F. Zhang, and R. Babbush, “OpenFermion: the electronic
structure package for quantum computers,” Quantum Science and
Technology, vol. 5, no. 3, p. 034014, jun 2020. [Online]. Available:
https://doi.org/10.1088/2058-9565/ab8ebc

[14] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[15] T. Patel, E. Younis, C. Iancu, W. de Jong, and D. Tiwari,
QUEST: Systematically Approximating Quantum Circuits for
Higher Output Fidelity. New York, NY, USA: Association
for Computing Machinery, 2022, p. 514–528. [Online]. Available:
https://doi.org/10.1145/3503222.3507739

[16] A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum
circuits for interaction distance in linear nearest neighbor architectures,”
in Proceedings of the 50th Annual Design Automation Conference
on - DAC ’13. ACM Press, 2013, p. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2463209.2488785

[17] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proceedings of the 2018 International Symposium
on Code Generation and Optimization, 2018, pp. 113–125.

[18] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t— ket¿: A retargetable compiler for nisq devices,” Quan-
tum Science and Technology, 2020.

[19] E. Smith, M. G. Davis, J. M. Larson, E. Younis, L. B. Oftelie,
W. Lavrijsen, and C. Iancu, “Leap: Scaling numerical optimization
based synthesis using an incremental approach,” ACM Transactions
on Quantum Computing, jun 2022, just Accepted. [Online]. Available:
https://doi.org/10.1145/3548693

[20] T. Tomesh, P. Gokhale, V. Omole, G. S. Ravi, K. N. Smith, J. Viszlai,
X.-C. Wu, N. Hardavellas, M. R. Martonosi, and F. T. Chong,
“Supermarq: A scalable quantum benchmark suite,” 2022. [Online].
Available: https://arxiv.org/abs/2202.11045

[21] X.-C. Wu, M. G. Davis, F. T. Chong, and C. Iancu, “Reoptimization
of quantum circuits via hierarchical synthesis,” in 2021 International
Conference on Rebooting Computing (ICRC), 2021, pp. 35–46.

[22] E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, and E. Smith,
“Berkeley quantum synthesis toolkit (bqskit) v1,” Lawrence Berkeley
National Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2021.
[Online]. Available: https://bqskit.lbl.gov

[23] E. Younis, K. Sen, K. Yelick, and C. Iancu, “QFAST: Quantum
synthesis using a hierarchical continuous circuit space,” 2021 IEEE
International Conference on Quantum Computing and Engineering
(QCE), 2020. [Online]. Available: http://arxiv.org/abs/2003.04462

11

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 22,2023 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.

