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ARTICLE INFO ABSTRACT

Article history: The first low-energy Coulomb-excitation measurement of the radioactive, semi-magic, two proton-
Received 14 September 2022 hole nucleus 2%6Hg, was performed at CERN's recently-commissioned HIE-ISOLDE facility. Two y rays
Received in revised form 19 December 2022 depopulating low-lying states in 29°Hg were observed. From the data, a reduced transition strength
Accepted 4 January 2023 B(E2;2{ — 07) = 4.4(6) W.u. was determined, the first such value for an N = 126 nucleus south of
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208 e . . . .
Editor: B. Blank Pb, which is found to be slightly lower than that predicted by shell-model calculations. In addition,

a collective octupole state was identified at an excitation energy of 2705 keV, for which a reduced
B(E3) transition probability of 30f}g W.u. was extracted. These results are crucial for understanding

both quadrupole and octupole collectivity in the vicinity of the heaviest doubly-magic nucleus 2%8Pb, and
for benchmarking a number of theoretical approaches in this key region. This is of particular importance
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given the paucity of data on transition strengths in this region, which could be used, in principle, to test
calculations relevant to the astrophysical r-process.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Many-body quantum systems exhibit shell structures, a concept
first introduced in order to explain the properties of electrons in an
atom [1]. Later, the shell model was successfully used for diverse
systems from atomic nuclei [2], to metallic clusters [3]. In nu-
clei, the doubly-magic species, with magic numbers of protons and
neutrons, act as cornerstones of the nuclide chart. Recently, studies
of nuclei with extreme neutron-to-proton ratios have shown that
the traditional magic numbers can erode, and in the case of light
nuclei, even new ones may appear [4]. In heavier systems, such as
those around '32Sn [5] and 208Pb, shell evolution is under intense
scrutiny, motivated also by their role in the nucleosynthesis of ele-
ments heavier than iron in the astrophysical rapid neutron-capture
(r)-process [6].

The 298Pb;56 nuclide is the heaviest-known doubly-magic nu-
cleus. Nuclei in its vicinity are special in two ways: (i) they exhibit
strong octupole collectivity (as illustrated by the first excited state
of 2%8pb at 2.615 MeV with spin-parity 37), and (ii) the infor-
mation on its neutron-rich neighbourhood is rather scarce, due
to the limited mechanisms by which these nuclei can be pop-
ulated. Experimental information on neutron-rich N~126 nuclei
is of paramount importance not only for within nuclear-structure
physics, but also for implications within astrophysics. Data on tran-
sition strengths is scarce, although in principle, these could provide
stringent constraints for a variety of theoretical calculations, in-
cluding those predicting the properties of nuclei on the r-process
path.

Neutron-rich nuclei around 2%Pb are under intense scrutiny,
with pioneering experiments performed to address their ground-
state properties [7-9], as well their excited states [10,11]. Mass and
charge radii measurements indicate the magicity of N = 126 for
the mercury (Z = 80) isotopes [7,9]. However, no B(E2; 2T — 07)
transition strengths have been extracted for any of the N =126
nuclei below 298Pb. This quantity, connected to the wave func-
tions of the involved states, often provides the first hint of the
erosion of magicity by exhibiting enhanced collectivity. In this Let-
ter, we present results of the first dedicated low-energy Coulomb-
excitation experiment of any semi-magic nucleus ‘south of 298Pb,
providing insight into both quadrupole and octupole collectivity in
this mass region.

To date, 2°6Hg;,6 has been populated in a broad range of exper-
iments [8-10,12-23]. However, so far only yrast states have been
observed [24], including the 5~ and 107" isomers, without any hint
of the expected low-energy collective 3~ level.

A radioactive beam of 2°°Hg was produced at the HIE-ISOLDE
facility at CERN using a molten lead target bombarded with 1.4
GeV protons, with an intensity of ~ 0.6 pA. The produced mercury
isotopes were laser ionised (VADLIS mode) [23], mass separated
using the General Purpose Separator (GPS), and charge bred in
an electron-beam ion source (REX-EBIS) [25]. 2°6Hg#6* ions were
post-accelerated using the newly-upgraded HIE-ISOLDE linear ac-
celerator [26,27], to an energy of 4.195 MeV/u, with a beam repe-
tition rate of 300 ms (3.33 Hz). The typical 2°6Hg beam intensity
was ~ 7.8 x 10° pps.

The accelerated beam impinged on a 2 mg/cm? thick target,
made either of Mo or '94Pd. These well-characterized targets
were chosen as Cline’s safe distance criterion [37] is fulfilled for
the available beam energy, ensuring a purely electromagnetic in-
teraction between the collision partners. Following Coulomb exci-
tation, y rays depopulating states in both the projectile and target
nuclei were detected by the 23 HPGe detectors comprising the
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Fig. 1. Energy spectrum of the particles detected in the DSSSD as a function of the
laboratory scattering angle. The regions of the 2°6Hg projectile and recoiling *Mo
target nuclei are marked. The effect of the '3°Xe beam contaminant was removed
(for further details, see Ref. [30]).
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Fig. 2. Background-subtracted y -ray spectrum measured in coincidence with recoil-
ing %Mo target-like particles registered in the DSSSD, Doppler corrected for 2%°Hg,
The effect of the '39Xe contaminant was subtracted. The inset shows a zoomed-in
portion of the spectrum.

Miniball array [28], in coincidence with recoiling particles detected
in an annular Double-Sided Silicon Strip Detector (DSSSD). Both
sides of the DSSSD array consisted of 4 quadrants, with the front
of each divided into 16 annular rings (‘strips’), and the back into
a further 24 sectors, coupled into 12 pairs when read out [28,29].
This covered a scattering angle range from 20 to 59° in the labo-
ratory reference frame.

During the experiment, the stable 139Xe?°* nucleus was iden-
tified as a beam contaminant with an intensity of ~ 3 x 10° pps.
Therefore, additional runs were performed without the presence of
206Hg in the beam, thus allowing the effect of the 139Xe contami-
nant on the main 2°°Hg data to be accounted for, as described in
Ref. [30]. A separate Coulomb-excitation analysis of 13°Xe was pre-
sented in a dedicated publication [31], where details such as data
sorting, and time conditions applied during the current 2°6Hg anal-
ysis, were provided in detail. The beam composition was checked
using an ionisation chamber, and no other contaminant was found.
The reaction-kinematics plot obtained for the Mo target mea-
surement using the DSSSD detector, after the removal of the 130Xe
beam contaminant, is shown in Fig. 1. The y-ray spectrum col-
lected in coincidence with “Mo target nuclei, Doppler corrected
for the velocity of 206Hg (and cleaned of the 139Xe contaminant),
is shown in Fig. 2.

The previously-known 2 — 07 transition at 1068 keV in 2°Hg
is clearly identified in the collected y-ray spectrum [24]. Further-
more, a low-intensity peak at 1637(2) keV is observed. The struc-
tures at around 200 and 850 keV correspond to Doppler-broadened
target excitations: the 2{ — 0 871 keV transition in %Mo [32],
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Fig. 3. Coincidence y-ray spectrum gated on the 1068 keV transition of 2°6Hg. The
y ray visible at ~ 1.6 MeV has three counts, in line with expectations for a coinci-
dent transition. The counts below 1 MeV are mainly from cross-coincidences with
the %Mo target.

and the 3/2] — 5/2] 204 keV transition in Mo [33]. The %Mo
component of the predominantly Mo target was determined to
be 5(1)%. This agrees with the values obtained from previous ex-
periments using the same target: 4.4(11)% [34] and 5(2)% [35].
The 1068 keV transition in 2%6Hg is in prompt coincidence with
the newly-identified 1637 keV y-ray transition (see Fig. 3). This
defines a new excited state at an excitation energy of 2705(2) keV.
No y ray was observed at 2705 keV.

In order to determine the electromagnetic properties of 2°6Hg,
data analysis was performed using the least-squares search codes
GOSIA [36] and GOSIA2 [37]. Since the lifetime of the 21+ state is
unknown, an iterative procedure with alternating use of the codes
GOSIA and GOSIA2 was employed to determine reduced matrix
elements in 2%°Hg, with normalization to target excitation. This
method is discussed in detail in Refs. [34,38]. Due to the proximity
of the 2 state in both 1%4Pd and the '3°Xe contaminant, normal-
ization to the %Mo target was used. The first step of data analysis
focused solely on the correlation between the B(E2;27 — 07)
and spectroscopic quadrupole moment of the 2] state in 2%Hg.
Statistics in the ZT — OT transition were subdivided into 7 an-
gular ranges, and the total spectrum was introduced as an eighth
data set. The B(E2; 2] — 07) value for the 2%Hg beam could then
be extracted from the two-dimensional x?2 surface map, calculated
using the GOSIA2 program together with a specially-developed
%2 surface code [39], by performing a minimization with respect
to the (27 [|E2[|07) and (2] | E2[2]) matrix elements. The value of
the <2T||E2||OT) matrix element was later used as a normalization
parameter in the second step of data analysis performed using the
standard GOSIA code. Here, a second excitation was introduced
at a level energy of 2705 keV, together with the corresponding
1637 keV transition depopulating the newly observed state. In this
step, data from the 2 — 07 transition, collected during runs with
the 194Pd-only target, were used. The results of this stage were
taken further in step 3 with the use of the GOSIA2 code, dur-
ing which the first step is essentially repeated, this time with the
inclusion of the extra state, as well as the 1637 keV transition, col-
lected for the total spectrum using the 94Mo target. Further steps
of the analysis involved repetition of the second and third steps,
re-running this iterative procedure until the solution stabilized.

The biggest challenge of the current study was related to the
unknown low-spin level scheme of 2%Hg, The analysis was there-
fore performed assuming different possible scenarios, with various
spin-parity assignments of the newly-established 2705 keV state.
The use of inverse kinematics with particle detection at forward
laboratory angles does not favour a population of states in a mul-
tiple Coulomb-excitation process. Instead, one or two-step exci-
tations should be considered. Furthermore, theory indicates that
excited states can be populated with notable yields only via E2
and E3 interactions [40]. Several different spin assignments were
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Table 1

Comparison of the relevant experimental energies and elec-
tromagnetic properties with theoretical values based on the
shell model (SM) and time-dependent Hartree-Fock (TDHF)
calculations in 2°6Hg. For details see the text.

Observable Exp. SM TDHF
E@2}) (keV) 1068 1068 -
B(E2; 2] — 0]) (W) 4.4(6) 542 -
EG3)) (keV) 2705(2) 2657 2990
B(E3) (W.u.) 30t19 28 26
Qs(27) (eb) 0.0(6) 041 -
B(E2; 10" — 81) (W)  0.84(7)% 087 -
Qs(57) (eb) 0.74(15> 057 -

2 Determined using the isomeric lifetime of Tq,, = 107(6)
ns (weighted average value from [16,18,21]), total branching
ratio 0.76(2) from [16] and ICC =5.5(3) [66].

b value from the [51] compilation, based on the measure-
ment of [14].

considered for the 2705 keV level (see details in [41]). The 27T as-
sumption returns B(E2;25 — 27) = 717y W.u, the 0T results

in B(E2;0§ — 27) =3460"387 W.u, and the 4t assumption re-

turns B(E2; 4] — 27) = 34" W.u. These values are all too large
for a nucleus with only two valence particles. The only realis-
tic solution is that the 2705 keV state is populated directly via
an E3 interaction. This results in experimental transition strength
values of B(E2;2{ — 0F)=4.4(6) W.u. and B(E3; (3]) — 07) =
30112 W.u,, and a spectroscopic quadrupole moment of Q5(2T) =
0.0(6) eb.

In order to gain a quantitative understanding of the low-spin
structure of 2%6Hg, shell-model calculations have been performed.
Due to the role of octupole collectivity in the vicinity of 298Pb,
a large model space covering two full shells for both protons
(Z =50 — 126) and neutrons (N =82 — 184) [42], had to be con-
sidered. Such a selection results in 24 orbitals in total, with eight
Aj = Al=3 pairs across the Z =82 and N = 126 gaps. The cross-
shell two-body matrix elements (TBMEs) are based on the M3Y
interaction [43], and neutron-proton, particle-particle and hole-
hole TBMEs using the Kuo-Herling interaction [44] as modified in
Ref. [45]. Relative to the closed-shell configuration of 2%8Pb, the
configurations were truncated to two-hole (2h) 7 ~2 (t = 0), or
one-particle three-hole (1p — 3h) #'7x—3 and vz —2v~1 (t =1).
The mixing between the t =0 and t =1 states was not taken into
account. With such a truncation, the single-particle and single-hole
energies are given by experimental separation energies for A =207
and A = 209 relative to 298Pb, as shown in Figure 1 of [45]. This
parametrization describes well the known level schemes of the
N =126 296Hg, 205Ay, 204pt, and 2°3Ir nuclei [17,18,46,47].

In order to describe the B(E2;2 — 0]) transition strength,
a standard effective proton charge of e, = 1.5e was employed,
similarly as in [17,18]. The experimental B(E2; 10" — 8¥) tran-
sition strength from the 10" isomer, as well as the measured
quadrupole moment of the 5~ isomeric state [14,51], is repro-
duced (see Table 1). Since both the yrast 87 and 107" states are
of pure Jrhl’lz/2 character, the agreement of B(E2; 10" — 87) is
essential, and justifies the used effective charge. The theoretical
spectroscopic quadrupole moment of QS(ZT) =0.41 eb is also in
agreement with the experimental 0.0(6) eb value. However, the
measured B(E2;2] — 07) = 4.4(6) W.u. is slightly lower than its
theoretical counterpart at 5.42 W.u. (Note that a different, recent,
shell-model calculation, leads to the same conclusion [48].)

The B(E2) value obtained for the 2°6Hg nucleus fits well into
the systematics of the mercury and lead isotopes presented in
Fig. 4. The B(E2) values decrease along the mercury isotopic chain
towards the N = 126 shell closure as collectivity decreases. The
lowest B(E2) strength is, therefore, observed in the semi-magic
208Hg nucleus. Here, the measured B(E2;2] — 07) value is larger
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Fig. 4. Systematics of the B(E2; 2" — 0%) and collective B(E3;3~ — 0%) reduced
transition strengths for the Hg and Pb isotopes around N = 126 [49-54]. The dis-
played theoretical values are from present shell model calculations and those of
Yoshinaga et al. [48]. Note that for visibility reasons, some data points are slightly
shifted around the integer N values, and error bars are not indicated when they are
smaller than the symbols.

than those observed in 2°6Pbyy4 and 2'9Pbyyg nuclei with two va-
lence neutrons around the 208Pb core, reflecting the proton charac-
ter of the 2% excitation. In 2°6Hg, the dominant configurations for
the ground and Zfr states are 7'(51’/22 and nsl’/lzd; /12, respectively.
However, there are sizable (> 10%) other contributions predicted
in both cases (113’/22 in the 0%, and d;/zz and sl’/lzds’/l2 in the 27).
The slightly-higher theoretical B(E2) value could be related to an
imperfect description of the mixing between these states. Further-
more (as shown in Fig. 4), the shell model predicts slightly higher
B(E2) values than the experimental ones also for 204Hg and 202Hg,
whilst for 204206ph nuclei, there is good agreement (the standard
e, =0.85e and e; = 1.5e effective charges were used [18,48]). This
also suggests that proton wave functions are not well reproduced
in the mercury isotopes. Note that the B(E2;2* — 07) value in
the two-proton-particle nucleus 21°Po is under scrutiny as the two
performed measurements are in disagreement [55,65], and both
experimental values are much lower than expected from the se-
niority scheme and shell model calculations [55]. The more-recent
value is still a factor of 2 lower than the shell-model predic-
tion. This discrepancy was tentatively connected to the neglecting
of 208pb particle-hole excitations in the shell model, which enter
most sensitively in the 2T states [67]. However, our calculations
for 206Hg suggest that the inclusion of such proton and neutron
excitations actually increases the B(E2) value, thus increasing the
discrepancy.

The energy of the (37) state predicted using SM calculations for
206Hg js 2657 keV, slightly lower than the newly-found experimen-
tal value of 2705 keV. The tendency of underestimating the energy
of the 37 levels is an intrinsic feature of this type of calculation, as
noted for 208Pb [56,57] and all other single-particle/hole nuclei in
its vicinity [56-58]. The origin of such a discrepancy is related to
the truncation of multiple core excitations, qualitatively explained
in [58]. The excitation energy of the octupole phonon state is sim-
ilar to those observed in lighter mercury and lead isotopes with
N <126 [60]. The B(E3; (3]) — OT) =28 W.u. transition strength
in the 2%6Hg isotope was calculated using the effective charges of
er = 1.35e and e, = 0.35e. These effective charges reproduce the
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experimental B(E3; 3~ — 0%) =36 W.u. [50] for the doubly-magic
208pp, The lower theoretical B(E3; (37) — 0T) value in the 2%6Hg
nucleus compared to 208Pb, as well as the generally-lower values
in the mercury isotopes compared to the lead chain (see Fig. 4),
could be attributed to a significant contribution of the nsl’/lz - f112
excitation to the octupole phonon [59]. Whilst the single-particle
structure of the 3~ state is similar in both the mercury and lead
isotopic chains, the lack of 751/, protons in the ground state of the
mercury isotopes reduces the overlap between these two levels.

Octupole collectivity in 2%6Hg, as well as in the neighbouring
208pp and 204Hg nuclei, was also addressed via Time-Dependent
Hartree-Fock (TDHF) theory. Density functional calculations have
been performed using static and time-dependent calculations for
the ground and octupole states respectively. The SkX interaction
was used [61] with a volume delta interaction (see [62] for details).
The time-dependent state was initialised with an octupole boost of
the form exp(ikr3Y3g) acting on the spherical ground state, and the
resulting time-dependent octupole response analyzed with stan-
dard linear response theory [63], to give strength functions from
which the energy centroids and B(E3) transition strengths are ex-
tracted. This procedure was previously applied to giant dipole res-
onances [63,64], but never for a surface vibration. The calculated
3~ energies are in agreement with experimental values for 206Hg
(Eexp = 2705 keV, Eqpgr = 2990 keV), as well as for the neigh-
bouring 2%4Hg (Eexp = 2675 keV, Erpur = 3059 keV), and 2%8Pb
(Eexp = 2615 keV, Expur = 2602 keV). In 206Hg and 296Pb, the the-
oretical 3~ energies are overestimated, which is attributed to the
mixing with non-collective 3~ states, something not accounted for
in TDHF. The B(E3) transition strengths (shown on Fig. 4) are in
good agreement with both experimental and shell-model values.
The experimental results obtained in the present work are com-
pared with theoretical ones, obtained from both shell model and
TDHF calculations, in Table 1.

In summary, the radioactive two-proton hole nucleus 2%6Hg
was Coulomb excited at safe energies at HIE-ISOLDE, yielding a
B(E2; 2%t — 0%) value for a neutron-rich N = 126 nucleus for the
first time. The B(E2;2] — 07) transition strength is lower than
those in the lighter Hg isotopes. It is reasonably well described by
shell-model calculations considering only valence protons below
Z = 82, supporting the closed neutron-shell character of 2%6Hg.
The small discrepancy with theory is attributed to the imperfect
description of mixing with other states within the valence space,
and does not imply proton-hole excitations. Information on the
wave function of an individual state provided by the experiment
constitutes a stringent test of nuclear theories, and could be used
to restrain models employed to predict the nuclear properties of
the r-process path N = 126 nuclei. Furthermore, the collective (37)
state was identified close in energy, and with similar collective
properties, to those found in the doubly-magic 2%8Pb. The present
results open up the prospect of studying the evolution of both
quadrupole and octupole collectivity in the N > 126, Z < 82 re-
gion, and a means of benchmarking theoretical calculations in this
important region.
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