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One of the most common types of models that helps us to understand neuron

behavior is based on theHodgkin–Huxley ion channel formulation (HHmodel).

A major challenge with inferring parameters in HH models is non-uniqueness:

many different sets of ion channel parameter values produce similar outputs

for the same input stimulus. Such phenomena result in an objective function

that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness

of local optimality poses challenges for parameter estimation with many

algorithmic optimization techniques. HH models additionally have severe

non-linearities resulting in further challenges for inferring parameters in an

algorithmic fashion. To address these challenges with a tractable method in

high-dimensional parameter spaces, we propose using a particular Markov

chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring

parameters in a Bayesian framework. The Bayesian approach is designed to

be suitable for multimodal solutions to inverse problems. We introduce and

demonstrate the method using a three-channel HH model. We then focus

on the inference of nine parameters in an eight-channel HH model, which

we analyze in detail. We explore how the MCMC algorithm can uncover

complex relationships between inferred parameters using five injected current

levels. The MCMC method provides as a result a nine-dimensional posterior

distribution, which we analyze visually with solution maps or landscapes of

the possible parameter sets. The visualized solution maps show new complex

structures of the multimodal posteriors, and they allow for selection of locally

and globally optimal value sets, and they visually expose parameter sensitivities

and regions of higher model robustness. We envision these solution maps

as enabling experimentalists to improve the design of future experiments,

increase scientific productivity and improve on model structure and ideation

when the MCMC algorithm is applied to experimental data.

KEYWORDS

computational neuroscience, parameter estimation, model fitting, Hodgkin–Huxley,
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1. Introduction

Systematic parameter exploration is an unmet need

for model building in neuroscience. Complete specification

of models in neuroscience or systems physiology requires

identification of several parameters. For single neurons, these

typically include geometric and electrical properties of the cell

body, dendrites, and axons. Even with the sophistication of

modern experimental techniques, however, measuring all the

necessary parameters is almost always impossible. Additionally,

many single-neuron properties exhibit remarkable context-

dependent variability, even within the same animal. For

example, changes in the neuromodulatory environment alter

the spiking dynamics of spinal motoneurons (Heckman et al.,

2009) and thalamocortical neurons (Pape and McCormick,

1989) by influencing their ionic conductances. Thus, any single

measurement at one time instance would be insufficient to

inform all single-neuron/network properties because it cannot

account for the wide spectrum of behaviors observed in vivo.

To complicate matters further, redundancy in biological

systems leads to similar activity profiles that can be produced

by many different neurons or neuronal networks with dissimilar

properties (Swensen and Bean, 2005; Schulz et al., 2007;

Roffman et al., 2012). For example, lateral pyloric neurons

in the crab stomatogastric ganglion exhibit as much as two-

to four-fold interanimal variability in three different ion

channel densities and their corresponding mRNA levels (Schulz

et al., 2006). Therefore, even averaging a parameter from

multiple experimental preparations may fail to generate the

desired behavior in the computational models constructed

from them (Golowasch et al., 2002). Systematic exploration

of the parameter space is obligatory to fit a neuron model

to experimental data. Additionally, this systematic exploration

may reveal deeper insights and motivate future experiments

by unraveling undiscovered parameter combinations that might

reproduce the same experimentally observed behavior.

Fitting experimental data to neuron models has been a

major challenge for neuroscientists. In fact, the parameters of

the first biologically realistic quantitative description of the

neuronal membrane were hand fitted by Hodgkin and Huxley

(1952). This approach has remained popular; for example, the

peak conductances of ion channels in a model of an elemental

leech heartbeat oscillator were hand tuned by Nadim et al.

(1995). Likewise, both the single compartment and network

parameters of a small group of neurons used to model the

crustacean pyloric network were hand tuned by Soto-Trevino

et al. (2005) to reproduce a variety of experimentally observed

behaviors. However, the ever-increasing dimensionality and

complexity of neuron model (Hodgkin and Huxley’s description

contained only three membrane currents), accompanied by the

concomitant increase in computational resources, have made

hand tuning of parameters a near infeasible task. Besides,

hand tuning of parameters also introduces potentially undesired

experimenter bias, because different parameters are assigned

preconceived roles during the tuning process (Van Geit et al.,

2008). Nevertheless, manual exploration of parameter sets

may be unavoidable because the initial range of values of

different parameters over which the automated search is to be

performed must be determined by the experimenter based on

physiological constraints.

1.1. Computational inference for neural
models

The body of research on parameter estimation for models of

neural dynamics for single cells or circuits spans across various

scientific communities, approaches, and neuron models. A gap

exists, however, between researchers with rich physiological

knowledge, on the one hand, and researchers working on new

solution algorithms for inference, on the other hand. This gap

presents opportunities to create a bridge between physiologists,

engineers, computational scientists, and mathematicians by

exploring existing and developing new inference techniques for

neuron dynamics of single cells and circuits.

1.1.1. Multiple realizability: The dilemma of
many truths

Single-neuron activities that are amenable to easy

measurement (e.g., spike trains, voltage traces, local field

potentials) can often be identical for different parameter

combinations. Just as this situation renders experimental

determination of parameter values infeasible, it also poses

an incredible challenge to systematically infer a model from

experimental data. For example, Prinz et al. (2004) found

indistinguishable network activity from widely disparate

deterministic models. Similarly, Amarasingham et al. (2015)

reported statistically indistinguishable spike train outputs

for different statistical processes that model the firing rate of

networks. Hartoyo et al. (2019) stressed that, for models of

dynamical systems, very different parameter combinations

can generate similar predictions/outputs. Additionally, the

authors showed that sensitivities of predicted parameters

can exhibit wide variability, leading to the conclusion that

modeling in neuroscience is confronted by the major challenge

of identifiability of model parameters. The demonstrative model

used in our present work shows a bursting neuron producing

similar neural activities from multiple sets of conductance

densities (Alonso and Marder, 2019).

1.1.2. Approaches for estimating parameters

Computational approaches for estimating parameters of

neuron models based on ordinary differential equations (ODEs)

include (brute-force) grid search (Prinz et al., 2003) as well
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as more advanced techniques using heuristics or trial-and-

error approaches, which may consist of intricate sequences of

regression steps (Achard and De Schutter, 2006; Van Geit et al.,

2007, 2008; Buhry et al., 2011). The latter include simulated

annealing, differential evolution, and genetic algorithms. These

approaches can have the disadvantage of slowly converging to an

optimal set of parameters and thus becoming computationally

expensive. Using gradient-based optimization to accelerate

convergence (Doi et al., 2002; Toth et al., 2011; Meliza et al.,

2014), on the other hand, can suffer from the non-convexity and

the strong non-linearities in the objective manifold and require

good initial guesses in order not to stagnate in local minima

(thereby resulting in suboptimal parameter sets). Another

shortcoming of recovering only a single set of parameters (also

called point estimates) is the lack of knowledge about the

uncertainties or error bounds for the inferred parameters. These

can be obtained with a subsequent sensitivity analysis and, as

a consequence, require employing additional algorithms and

computational resources.

Recently the use of machine learning techniques based

on artificial neural networks (ANNs) became popular.

For instance, in the context of the FitzHugh–Nagumo

model (Rudi et al., 2021), an ANN was constructed and

optimized to generate an inverse map that is able to predict

model parameters from observational data. Bittner et al.

(2021) developed generative models from deep learning.

Retrieving associated uncertainties for inferred parameters

has been performed by Gonçalves et al. (2020), using

normalizing flows with Gaussian mixtures in order to generate

approximations of posterior distributions for Hodgkin–

Huxley-based inverse problems. However, machine learning

techniques require generating large sets of data for training

the artificial neural networks, where each training sample

entails the numerical solution of the ODE system of the

neuron model.

Theoretical neuroscientists have been developing and

utilizing statistical methods for inference and uncertainty

quantification (Van Geit et al., 2007; Vavoulis et al., 2012)

and have been relying on Bayesian inference frameworks

(Ahmadian et al., 2011; Doruk and Abosharb, 2019) in order to

estimate parameters and quantify uncertainties of the recovered

parameters. The uncertainties in recovered parameters with

Bayesian inference frameworks are represented by posterior

density functions, which describe a “landscape” of more likely

parameters (“peaks in the landscape”) and less likely parameters

(“valleys in the landscape”; see Section methods for details).

Bayesian likelihoods or their approximations are constructed,

which in turn enables direct maps to posterior densities without

numerical solutions of neuron models to evaluate objective (or

loss) functions. Chen (2013) provides an overview of Bayesian

methods for neural spike train analysis. René et al. (2020) and

Schmutz et al. (2020) have utilized Markov chain Monte Carlo

for inference from spike train data of population models.

1.2. Using Markov chain Monte Carlo
(MCMC) algorithms for inference

MCMC algorithms play a critical role in our approach

for parameter estimation. For a brief introduction and

background information about MCMC algorithms, we refer to

the Section methods.

1.2.1. Benefits and limitations of using MCMC
for parameter searches

One of the main benefits of using MCMC is the detailed

picture or “landscape” of the posterior density that it can

provide. By analyzing the posterior, the uncertainty in the

inferred parameters can be quantified, and the dependencies

between different parameters in the model can be identified.

Another benefit is that MCMC does not require derivatives of

neuron models or the loss function (measuring misfit of the

data and model output). This is an important property in the

case of the complex model and non-differentiable loss function

used by Alonso and Marder (2019), which our present work

utilizes. We propose to utilize a specific MCMC method called

parallel temperingMCMC. It has the key advantage of efficiently

exposing multimodality in the posterior (see Section methods

for more details), which other MCMC methods can potentially

leave undiscovered.

As with many other computational methods for parameter

estimation, the efficiency scaling with the number of parameters

(dimensionality) is a potential limitation with MCMC-based

methods. Generally speaking, as the number of parameters

increase, the dimensionality of the search space increases, and

more iterations of MCMC may be required, leading to a longer

total computation time. In the inference that we are targeting

in this work, the number of inferred parameters remains at

amounts where these limitations do not occur for parallel

temperingMCMC.We note here that parallel temperingMCMC

is able to find the multimodal posterior successfully where many

other Bayesian inference methods, including Approximate

Bayesian Computing with Sequential Monte Carlo, could not.

Future work will determine the dimensionality limits of this

computational method.

1.2.2. Applications of MCMC in the context of
biological modeling

In fields related to neuroscience, MCMC-based methods

have been a popular choice for solving inverse problems in a

Bayesian framework, where one is interested in uncertainties

in addition to optimal solutions (Smith, 2013). In the context

of dynamic systems in biology, MCMC techniques have been

successfully employed, as described in review articles by

Ballnus et al. (2017) and Valderrama-Bahamo (2019). Moreover,

tempering MCMC methods have been shown to recover
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the multimodality of solutions in systems biology (Caranica

et al., 2018; Gupta et al., 2020). However, in the context of

neural dynamics with complex Hodgkin–Huxley models, such

as in Alonso and Marder (2019), on which we built this

work, tempering MCMC methods have not been attempted to

our knowledge.

1.3. Contributions of this work

In this study, we address the issue of multiple realizability

of specific models in neuroscience. In particular, we present the

computational inference for one three-channel and one eight-

channel HH neuron model with a parallel tempering MCMC

algorithm as the method for inference. We successfully estimate

the parameters in these models, describe the multimodality in

the parameter space, and quantify the parameters’ uncertainties.

Additionally, we present visualizations of the high-dimensional

inference solutions taking the form of posterior densities.

We discuss how these multimodal posteriors (solution

maps) are produced by this method for large parameter

dimensions. While the posteriors are inherently tied to both the

chosen neuron model and chosen loss function, we believe, this

method could allow an experimentalist the ability to explore

different desired features and models.

As an alternative tomanually adjusting themetricmeasuring

fitness between data and model outputs, we present inference

setups that use different stimulus currents to further constrain

the algorithmically recovered parameters obtained withMCMC.

2. Methods

We design the parameter estimation problem in a Bayesian

framework: (i) parameter values of the neuron model are

treated as (multivariate) probability distributions rather than

the solution being a single optimal parameter set; and (ii)

the posterior distributions of parameter values can exhibit

dependencies between each other, rather than assuming each

parameter to be independent from others. Note that the Bayesian

framework does not assume that a single independent optimum

can be reached. The density of the posterior distribution is

proportional to the product of a likelihood and a prior term.

The likelihood is given implicitly in the form of a loss function

between observational data and model output, hence requiring

the numerical solution of the model for each new set of

parameters. Whereas the prior is a known density function

(e.g., a Gaussian with known mean and covariance) and is

provided from knowledge about the parameters of the model.

As a solution algorithm we utilize an extension of MCMC,

the parallel tempering MCMC method, which is critical for

recovering distributions of parameter sets that are Subsequently,

we introduce the HH-based neuron models that we consider for

computational inference.

2.1. Inference of parameters in a
three-channel Hodgkin-Huxley neuron
model

We introduce the algorithmic approach of our choice for

solving an inverse problem involving a neural model. We utilize

the parallel tempering MCMC method, which is described in

detail below. To illustrate the type of solutions that parallel

tempering MCMC can deliver, we first consider a three-channel

(Na, K, and leak channels) Hodgkin-Huxley model, which is

a classic and well-known conductance-based model (Hodgkin

and Huxley, 1952; Mainen et al., 1995). While this model

is less complex than the eight-channel model we focus on

subsequently, this simpler model nevertheless exhibits the key

difficulties and challenges of parameter estimation in neural

dynamics. The mean squared error (MSE) between voltage

traces from the model and simulated observational data serves

as the loss function to measure the fit between model outputs

and data for this example. To set up the inverse problem,

we simulate the voltage trace for a given set of sodium and

potassium conductances, denoted as the “true” parameter set,

which is gNa = 200 pS/µm2 for sodium and gK = 50 pS/µm2

for potassium. This simulated voltage trace generated by the HH

model serves as the data for our inverse problem; and the sodium

and potassium conductances are the parameters that we aim to

infer. The numerical results of the inference are presented in

Section results.

2.2. Inference of parameters in an
eight-channel Hodgkin–Huxley neuron
model

The model that this work focuses on is the bursting neuron

model fromAlonso andMarder (2019). Themodel is a system of

ODEs describing the time evolution of the membrane potential

voltage coupled with kinetic equations for the eight voltage-

gated conductances; for more details, see Equations (5–7) of

Alonso and Marder (2019). We choose to analyze specifically

this model because of its recently documented challenges with

regards to parameter estimation, multiple candidate solutions,

and complex dependencies of parameters on one another. We

select the parameter values for the ground truth to be from

“Model A” of Alonso and Marder (2019) for consistency. The

definitions, units, and values used to generate ground truth

voltage traces of the nine parameters that we seek to infer are

in Table 1.
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TABLE 1 Definition, values, and unit of the parameters that we seek to infer. Details for these definitions can be found in Alonso and Marder (2019)

and Liu et al. (1998).

Parameter Definition Ground truth value Unit

gNa Max Conductance for: Fast transient Na+ current 1076.392 µS

gCaT Max Conductance for: Fast transient Ca2+ current 6.4056 µS

gCaS Max Conductance for: Slow Ca2+ current 10.048 µS

gA Max Conductance for: Fast transient K+ current 8.0384 µS

gKCa Max Conductance for: Ca2+ dependent K+ current 17.584 µS

gKd Max Conductance for: Delayed rectifier K+ current 124.0928 µS

gH Max Conductance for: Hyperpolarization-activated inward cation current 0.11304 µS

gL Max Conductance for: Leak current 0.17584 µS

τca Time constant of Ca2+ concentration process 653.5 ms

The voltage traces of the AM model are obtained

numerically with the BDF and LSODA solvers for ODEs from

the SciPy library (Petzold, 1983; Virtanen et al., 2020). BDF

and LSODA were used because of their overall convergence

performance compared with other ODE solvers for stiff

biological ODE models; for instance, LSODA has been analyzed

for biological systems in Städter et al. (2021). The voltage trace

generated by the ground truth parameters is shown in Figure 7

in orange color. The output models of this work are available in

ModelDB with accession number 267583.

2.3. Loss function for measuring fit
between data and model outputs

The main loss function used in the present study involving

the AM model is the loss of Equation (4) of Alonso and Marder

(2019), namely,

E(g) = αEf + βEdc + γEmid + δEsw + ηElag ,

where we use the following coefficients: α = 1, 000, β = 1, 000,

and γ = δ = η = 0. Ef is the mismatch of the inter-

burst frequency (frequency between bursts), Edc is the mismatch

of the inter-burst duty cycle (the ratio of the time bursting

vs. not bursting per cycle), Esw and Emid handle slow-wave

mismatches, and Elag is the lag between the upward crossings

and downward crossings.

We purposefully eliminate several components of the loss

(i.e., γ = δ = η = 0) to avoid manual penalization between

certain terms in the general form of the loss function. Our

study uses the same loss function with fixed coefficient values

throughout all numerical experiments, because our focus is to

compare inference results and it avoids possible bias. As such,

our approach differs from the objectives of Alonso and Marder

(2019), where the coefficients in the loss are adjusted depending

on the inference setup. Here we focus on the two components

of the loss function that we observed to be dominant, associated

with α, the burst frequency mismatch Ef , and with β , the duty

cycle mismatch Edc. The intra-burst frequency mismatch and

duty cycle mismatch components are visible in Figure 7. Our

objective is to test the multimodality of the inverse problem with

parallel tempering MCMCmethods.

2.4. Loss function for individual and
aggregate constraint

Weuse the loss function (detailed in Section loss function for

measuring fit between data and model outputs) to solve inverse

problems, where one particular injected current is present; these

studies are referred to as the individual current constraint.

The individual current constraint (or “individual constraint”

in short) is when the loss function value for a single current

injection value (i.e., one of 0.0, 0.1 nA, . . . ) is used for measuring

the fit between data and model outputs.

In addition, we carry out numerical experiments with

multiple injected currents, referred to as the aggregate current

constraint. The aggregate current constraint (or “aggregate

constraint” in short) is when the maximal loss function value

for the entire set of injected currents (i.e., {0.0, 0.1, 0.2, 0.3,

0.4} nA) is used for the misfit between data and model outputs.

The aggregate current constraint is motivated by its similarity

to fitting against a frequency-current (F-I) curve (Hultborn and

Pierrot-Deseilligny, 1979).

2.5. Introduction and background to
MCMC

In this work we choose the Bayesian formulation (also called

Bayesian framework), which is based on Bayes’ theorem:

P(θ | y) =
P(y | θ)P(θ)

P(y)
, (1)
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where θ denotes the parameters of the ODE model and y is the

data. θ and y can be scalars or, more commonly, vectors. On the

left-hand side of (1), P(θ | y) is the unknown posterior (i.e.,

conditional probability for the model parameters θ given the

data y). On the right-hand side of (1), P(y | θ) is the known

but often intractable likelihood (i.e., conditional probability for

the data y given the model parameters θ). The likelihood term

is responsible for measuring the fit between data and model

outputs. Hence the loss function, which we detailed above, is

evaluated each time the likelihood is computed. The likelihood

being intractable means that it requires the solution of a model

and cannot be accessed (or sampled from) directly. Further on

the right-hand side, P(θ) is the known and typically tractable

prior (i.e., probability of the model parameters θ). The term P(y)

is called evidence (i.e., total probability of the data y); and since

it is constant with respect to θ , it simply scales the posterior by a

constant and can, in practice, remain unknown.

To provide an intuition, one goal of an MCMC algorithm,

such as the Metropolis–Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970), is to find the most likely model

parameters, θ , that will produce the largest posterior (the

highest probability of the model parameters to reproduce the

data) through sampling. Another goal is to quantify parameter

uncertainties. To this end, the algorithm visits smaller locations

in the posterior (i.e., lower probabilities of the model parameters

to reproduce the data). However, these visits to lower-probability

locations of the posterior happen adaptively and automatically

at smaller frequencies. The concept of MCMC visiting locations

of high probability at greater frequencies and locations of

lower probability at smaller frequencies is a key property of

the algorithm.

In detail, at each iteration of MCMC, the algorithm first

proposes a new value for (one or multiple) parameters, θproposal,

by randomly choosing from a proposal distribution (e.g., a

normal distribution centered at the value of the previous

iteration θprevious) (Figure 1). The likelihood P(y | θproposal)

and prior P(θproposal) are evaluated at the proposed value and

multiplied to obtain a new value of the posterior. In the second

MCMC iteration, the algorithm includes the proposed θproposal

in a sequence of visited points or discards it, where the aim is to

more frequently keep points of higher probability. To determine

whether θproposal is accepted or rejected relative to the previous

θprevious, the algorithm takes the ratio of the proposed posterior

to the current posterior. If the ratio is greater than one, θproposal
must have a higher probability, and therefore this new parameter

is saved because it is producing a better outcome. If the ratio is

below one, then the algorithm applies a randomized rejection

criterion such that some θproposal is stored at lower frequencies.

Subsequently, this cycle repeats, where θproposal becomes the

new θprevious, if acceptance was successful. Note that in this

algorithm, dividing the new value by the previous value of the

posterior, P(y) cancels out, thus showing that constant scaling

factors are irrelevant for MCMC.

The Metropolis–Hastings algorithm constructs a sequence,

also called a chain, of parameters (also called samples) that it

visits during the iterations (Figure 1). This method is suitable

for unimodal posterior distributions. However, it is not designed

to capture multimodal posteriors (i.e., posterior with multiple

peaks). Therefore, extensions of MCMC have been developed to

deal with multimodal distributions. Early work by Marinari and

Parisi (1992); Geyer and Thompson (1995) employed simulated

tempering, which is akin to simulated annealing algorithms

from the field of optimization. More recently, parallel tempering

MCMC (Łacki and Miasojedow, 2016; Vousden et al., 2016) was

proposed. This builds on ideas from simulated tempering and,

additionally, uses multiple chains of single-chain methods, such

as Metropolis–Hastings, in parallel. The key idea of tempering,

which enables MCMC to discover multimodalities in posteriors,

is that the posterior is taken to a power with an exponent,

γ , between zero and one: 0 < γ < 1. Hence we obtain

Pγ (θ | y). This has the effect that smaller locations in the

posterior are elevated and can be visited more frequently by

Metropolis–Hastings.

2.6. MCMC method for estimating
parameters in AM model

This section provided details about our implementation for

estimating parameters and their uncertainties in AM models.

Our AM model and MCMC methods constitute the following

components:

• Neuronmodel component: Computes voltage traces for the

AMmodel and a given set of candidate parameters

• Likelihood component: Computes the Bayesian likelihood

using the loss function based on the voltage trace obtained

by neuron model component

• Prior component: Evaluates the prior based on the

candidate set of parameters

• Estimator component: Proposes candidate parameters at

random (the proposal sampler)

The sampler used was the adaptive parallel tempering sampler

(Miasojedow et al., 2013) within the PyPESTO library (Stapor

et al., 2018). Parallel tempering runs independent Markov

chains at various temperatures and performs swaps between

the chains. Each individual chain runs adaptive Metropolis–

Hastings MCMC.

The loss functions for individual and aggregate constraints

are evaluated for each candidate parameter in the MCMC

algorithm within the likelihood term. The prior term is

defined as a uniform distribution (i.e., unbiased prior) within

predetermined boundaries, which were chosen sufficiently wide

to permit physiologically relevant model parameters.
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FIGURE 1

Two diagrams depicting the flow of the two algorithms used in this work. (Top) The Metropolis–Hastings MCMC algorithm begins with a “1.

Propose” step, where the algorithm selects an initial set of parameters to be used in the “2. Neuron model” step. The model is then solved using

the parameters and its output compared to recorded data to produce the “3. Likelihood”. This likelihood is then multiplied with the prior to

generate the probability value used in the “4. accept sample?” step to accept or reject the sample. This cycle is repeated until the number of

preset iterations is reached. (Bottom) The Parallel Tempering MCMC algorithm used for the 9 parameter AM model. This algorithm utilizes an

additional “5. Swap samples with another chain” step to increase mixing between multiple chains and to encourage the chains to sample in

more remote areas of the parameter space, hence, detect multimodality.

2.7. Numerical experiment setup

To investigate the robustness of parallel tempering MCMC

on the inverse problem governed by the AM model, we use

model A from Alonso and Marder (2019), which is defined by

the parameters that are listed in Section inference of parameters

in an eight-channel Hodgkin–Huxley neuron model, as ground

truth data. We use this model to generate five voltage traces each

using different injected currents: 0.0, 0.1, 0.2, 0.3, and 0.4 nA.

Noise to simulate physical measurement noise was not added to

the voltage trace of the ground truth, for several reasons. To have

a numerical experiment setup similar to Alonso and Marder

(2019), we also did not alter the ground truth trace data.

The conductances for the ion channels and the time constant

for the calcium channel are the nine parameters that we target

for inference. Each inference with individual current constraint

consisting of running theMCMC algorithm for a predetermined

number of iterations/samples. Additionally, for the inference
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with aggregate current constraint, a single run of MCMC was

performed. Each MCMC run used 24 to 32 parallel chains

and 10,000 to 14,000 samples per chain. Geweke’s convergence

diagnostic was used to determine the burn-in of each chain

(Stapor et al., 2018). The burn-in is an initial phase of MCMC

where the gathered samples do not satisfy certain statistical

properties to be considered adequate samples of the posterior. In

certain cases, despite parallel tempering, there areMCMC chains

that can remain static through the parameter space. Results from

chains that did not move sufficiently (ratio of standard deviation

to mean) were filtered out in postprocessing.

2.8. Software improvements for
accelerating parallel tempering MCMC

We reduced the computational time of theMCMC inference

by carrying out various improvements of the source code.

Increasing the number of Markov chains benefits the detection

and exploration of multimodal posteriors; however, it also

increases the computation time. To shorten the computation

time, we parallelized the MCMC algorithm to run on each

CPU core concurrently using multiprocessing packages (Conda-

Forge Community, 2015). This approach significantly decreased

computation time because of the parallel nature of the chains.

The total runtime for each MCMC run was between 24 and

48 h. We utilized three different machine architectures: (1)

the Broadwell nodes (36-core, 128 GB RAM) on the parallel

cluster Bebop at Argonne National Laboratory, (2) a workstation

equipped with a dual 16-core Intel Xeon 4216 CPU (total of

32 cores and 64 threads) with 128 GB of RAM, and (3) a

workstation with a 32-core (64-thread) AMD Ryzen 3970x CPU

with 128 GB of RAM.

3. Results

The results of our study show that our design of the

inverse problem combined with parallel tempering MCMC for

solving the inverse problem is able to successfully overcome the

inference challenges. The algorithm can recover large numbers

of parameter sets where data and model output are consistent.

Parallel tempering MCMC returns posterior distributions of

parameter sets, called the posterior in short, and we visualize

the multidimensional posterior by showing solution maps in

one and two dimensions where the non-visible dimensions have

been integrated out (i.e., showing a marginal distribution). With

these solution maps physiologists can investigate the results

from MCMC in order to decide which parameters warrant

more investigation from a physiological perspective. This is

a main advantage of solution maps compared with solution

points (i.e., a single set of “optimal” parameters) obtained

from optimization algorithms. Additionally, the robustness of

parameters can be assessed, because solution maps indicate by

how much parameters can be perturbed while still delivering

model outputs that are consistent with data.

3.1. Inference proof of concept with the
three-channel Hodgkin–Huxley model

As a proof of concept, we consider the inverse problem

where the goal is to recover the sodium and potassium

conductances in an HH model. To demonstrate the challenges

of the problem, we visualize the loss function that would

have to be minimized to find the optimum in Figure 2A,

where the colors indicate the (positive) loss value. The true

parameter set is located in a “valley” in the loss “landscape,”

whereas the loss is large for parameters that produce large

discrepancies between model output and data such as shown

in graph S1 corresponding to point S1 in Figure 2A. However,

multiple sets of parameters exist that are local minima in

this landscape, and these multiple local minima pose major

challenges because optimization algorithms may present one

of them as the “optimal” solution. These local minima will

not give a sufficiently good fit of model outputs vs. data, as is

illustrated in graph S2 of Figure 2 that corresponds to point S2

in the landscape (Figure 2A). Such local minima are known to

be problematic for numerical optimization algorithms (Nocedal

and Wright, 2006).

Additionally, we aim to quantify the uncertainty with

respect to the parameters associated with sodium and potassium

conductances, and we would like to understand the sensitivities

of the model with respect to these parameters. In Figure 2, the

graphs S3 and S4 illustrate how different parameters produce

voltage traces similar to the data, while at the same time this

uncertainty in the parameters is visible in the landscape as a

valley (dark blue color in Figure 2A, which corresponds to low

values of the loss function).

The numerical solution of the Bayesian inverse problemwith

parallel tempering MCMC successfully provides a probability

density spanned by the two-dimensional parameter space. The

density is large, where the loss function in Figure 2A has its

major valley. We show the progress of the MCMC algorithm

in Figure 2B as the number of collected samples increases from

2,000 to 8,000. As the sample count (i.e., iteration count of

MCMC) grows, the algorithm generates a longer tail along the

valley, showing a clearer picture of the parameter uncertainties.

The true parameter values are clearly visible in the high-density

region as a dark blue area around 200 and 50 pS/µm2 for sodium

and potassium conductances, respectively. Furthermore, the tail

to the upper right of the true parameter set shows the trade-off

between sodium and potassium, whenmodel outputs keep being

consistent with data even though the values of the parameters

deviate from the truth.
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FIGURE 2

Loss function corresponding to the inverse problem with a three-channel HH model and how MCMC is able to successfully recover multiple

optimal parameter sets and quantify uncertainties and parameter trade-offs. (A) Loss function landscape (colors) over the parameters, sodium

(gNa) and (gK ) potassium conductances. The “true” parameter set represents a global minimizer of the loss; the valley of the loss along points S3

and S4 (in dark blue color of loss) translates to parameter uncertainties (or trade-offs). Graphs S1–S4 depict voltage traces at corresponding

points in (A). (B) Densities of MCMC samples, where the dark purple color of highest density overlaps with the true parameter set. As the number

of MCMC samples increases, the the method recovers the valley of the loss landscape A and hence quantifies uncertainties in the parameters.

These results serve as a proof of concept that the parallel

tempering MCMC algorithm can successfully tackle multimodal

losses. Next we transition to a more complex model for neural

dynamics, which is the focus and the main result of the

present work.

3.2. Inference with the complex
eight-channel Alonso–Marder (AM)
model

3.2.1. AM model—Posterior distribution

The AM model has nine uncertain parameters that we want

to infer; therefore, the posterior is a distribution in a nine-

dimensional space. To visualize the nine-dimensional space, we

consider one or two parameters at a time, where the remaining

parameter dimensions are marginalized (i.e., summed up). The

plots in Figure 3 show the solution maps that visualize the

posterior. The denser regions within Figure 3 are parameter

value sets that return lower loss function values; therefore they

represent better fits between data and model outputs.

Along the diagonal of Figure 3 are the histograms for the

(1D marginal) distribution for each parameter. For the 2D

marginals in the lower triangle of Figure 3, the points have the

opacity set to darker where their density is higher. This setup

allows for easier visualization of trends within the posterior

distribution with regard to parameter values. Note that the

denser points for a particular parameter (gNa, for example) are

not necessarily in the denser regions for another parameter

(gKd, for example), if one considers different plots. Such links

between two parameters can be established only when gNa, gKd
are plotted along the two axes of the same 2D marginal. In other

words, a solution set containing parameter values selected from

the densest distributions of each parameter will not necessarily

yield a good solution.

3.2.2. AM model—Individual constraint

We ran MCMC sampling on the AM model using

individualized currents (0.0–0.4 nA at increments of 0.1
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FIGURE 3

Final solution map of the posterior for the 9 parameters of the AM model for the individual constraint of the 0.0 nA injected current. The

diagonal plots show the 1D marginals of each parameter, where the x-axis is the search range of the parameter, and the y-axis is the normalized

distribution. The remaining plots are the 2D marginals of pairs of parameters, where x- and y-axes are the range of the pairs of parameters. Each

point within each plot is a sample found by the MCMC algorithm. The colors indicate the associated loss value of this sample, where the purple

color indicates a lower loss value and the yellow color indicates a higher loss value. Density of points will contribute to the darkness of an area.

The more pronounced a color signifies that more points are overlaid on top of each other. For example, in the top left 2D marginal [gCaT ,gNa]

the dark purple area around [gCaT ,gNa] ∼ [9, 1200] is an accumulation of many overlaid points. This density can also be traced back to the 1D

marginals to the top and the left side. The ground truth values are plotted as a purple asterisk for comparison to low loss modes of the

parameter spaces.

nA). This dataset is called the “Individual Constraint.”

We also ran the MCMC search as a single aggregated

search with all currents at once, which is discussed in

a subsequent section. Below we present results from the

individual constraints.

MCMC sampling produced solution maps of the posteriors

for each of the individual currents (see Figure 3 for current

0.0 nA and the Supplementary Figures for all other currents).

Within each of the maps one can search for the parameter set

(i.e., a sample of MCMC) with the lowest loss value. Table 2
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TABLE 2 Parameter sets for the lowest loss values calculated by the MCMC algorithm.

Injected current (nA) gNa gCaT gCaS gA gKCa gKd gH gL τca Loss

Uniform priors [800, 2000] [1, 10] [1, 15] [1, 200] [1, 20] [1, 200] [0.01, 0.5] [0.01, 0.5] [100, 900] –

0.0 1484.10 9.54 11.07 78.73 18.13 144.03 0.027 0.119 767.54 0.0008

0.1 1543.74 9.90 14.27 73.17 19.74 171.16 0.067 0.149 768.77 0.0002

0.2 1768.69 6.64 13.52 118.36 18.01 68.42 0.096 0.075 739.20 0.0348

0.3 1461.32 6.63 10.14 86.07 10.41 62.39 0.425 0.193 452.63 0.0013

0.4 1973.44 4.06 9.93 168.56 1.24 29.14 0.221 0.183 206.94 0.0047

Aggregate 1335.84 9.18 14.97 102.72 18.84 142.91 0.363 0.163 802.44 8.8109

Ground truth 1076.39 6.41 10.05 8.04 17.58 124.09 0.113 0.176 653.50 –

The range of the parameter priors is also provided in the first row. The units for the conductances are in pS/µm2 .

presents the results of such a search and one can consider

the values listed in this table to be the optimal parameters,

as recovered by MCMC. However, in addition to producing

parameter sets with low loss values, the MCMC algorithm is able

to recover the posterior distribution for all 9 parameters of the

model within the search range for each injected current (0.0 to

0.4 nA, 0.1 nA increments).

We summarized these findings in an arrangement of plots

in Figure 3 for 0.0 nA injected current and for currents 0.1–0.4

nA in the Supplementary material. The rows and columns

of subplots are each associated with one of the parameters

(gNa, gCaT , gCaS, gA, gKCa, gKd, gH , gL, and τCa).
1 The

interpretations of each of the plotted marginal types are

explained in the following:

3.2.2.1. 1D marginals

The diagonal portion of the subplot matrix shows the one-

dimensional (1D) marginals (distribution histograms) of the

solutions for each of the individual parameters. The x-axis

represents the range of values, and the y-axis represents the

probability of that value producing a good fit between data

and model outputs. These distributions provide both the

likeliest solutions (i.e., the peaks) as well as their uncertainty

(distribution around the peaks). For example, the top left 1D

marginal of the sodium conductance gNa has 4 peaks, and

the width of these peaks allows to assess the uncertainty (or

sensitivity) of the sodium conductance gNa.

3.2.2.2. 2D marginals

The remaining subplots are the two-dimensional (2D)

marginals of the posterior distributions. Each row and column

represent a parameter θ of the model, and each of the

points within the subfigure is a solution found by the MCMC

algorithm. To show the probability distribution within the

solution space, we set the alpha value (the transparency of the

color) of each solution to α = 10−3 (where opaque is α = 1).

A highly probable region has many more points and therefore

1 Figure 3 resembles a triangular matrix, where the upper right triangle

is omitted because it is symmetric to the lower left triangle.

will appear more opaque. The color of each point represents the

loss value ranging from blue to yellow (low to high, respectively).

These plots show the dependence of each parameter on another.

Some of these dependencies are linear (for example, [row, col]:

[gKd, gNa]), and some are non-linear (for example, [row, col]:

[gKd, gCaT]). Some of the linear dependencies are vertical and

horizontal, signifying that one parameter is independent from

the other (for example, vertical [gH , gCaT], [gH , gNa] and

horizontal [τCa, gCas]).

3.2.3. AM model—Aggregate constraint

To test the versatility of the MCMC algorithm at solving the

inverse problem for HH-type equations, we combined all the

input currents into a single analysis called “aggregate constraint”

(more details given in Section methods).

The posterior resulting from the aggregate constraint

analysis is visualized as a solution map in Figure 4. The same

analysis as for the individual constrained can be performed to

determine the peaks and variations of individual parameters

using the 1D marginals and the dependence of two parameters

using the 2D marginals. Compared with the individual

constraint, the loss values are higher; hence the yellow colors

dominate in these maps. The aggregate constraint solution

map encompasses a subset of the individual constraint solution

maps. To illustrate this in Figure 5, we show the intersection

(multiplication of the posterior) of the kernel density estimates

(KDEs) of the solution maps from the aggregate constraint

and the two individual constraints 0.0 and 0.2 nA, as an

example. Figure 5 first depicts the intersection between the

individual constraints 0.0 and 0.2 nA, and compares it to the

aggregate constraint via an additional intersection (elementwise

multiplication) to extract their commonalities. The distinctive

features (in dark blue/purple color) found in the individual

constraints are found in the intersection (bottom) even though

they were not prominent in the aggregate constraint results.

In the next section we formalize the commonalities between

solution maps, which we hinted at with intersections, using a

metric called the Wasserstein distance.
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FIGURE 4

Solution maps of the posterior for the 9 parameters of the AM model for the aggregate constraint. The diagonal plots show the 1D marginals of

each parameter. The x-axis is the search range of the parameter, and the y-axis is the normalized distribution. The remaining plots are the 2D

marginals of pairs of parameters. The x- and y-axes are the range of the pairs of parameters. Each point within each plot is a sample found by

the MCMC algorithm. The colors indicate the associated loss value of this sample, where purple color indicates a lower loss value and yellow

color indicates a higher loss value. The density of the points will contribute to the darkness of an area. More pronounced color signifies that

more points are overlaid on top of each other. This density can also be traced back to the 1D marginals to the top and the left side. The ground

truth values are plotted as a purple asterisk for comparison to low loss modes of the parameter spaces.

3.2.4. AM model—Distances between posterior
distributions

To demonstrate the differences between the posterior

distributions of the AMmodel between an individual constraint

and the aggregate constraint, we computed the approximate

Wasserstein distance for each individual injected current’s

posterior distribution against the aggregate constraint’s posterior

distribution. We carried this out for the posteriors with respect

to all nine parameters as well as individual parameters (via

marginals as depicted along the diagonals of Figures 3, 4).

The approximate Wasserstein distance provides a quantitative

metric of the total cost required to transform one probability
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FIGURE 5

Two-dimensional (gNa and gKd) kernel density estimates (KDEs) of the solution maps of different cases, for visualization of the relationship

between the aggregate constraint and the individual constraints. The arrows indicate the flow of the operation. The KDEs of the 0.0 and 0.2 nA

individual constraints are on the left. The KDE of the aggregate constraint is shown on the right. The intersection is the elementwise

multiplication of two or more KDEs. The final intersection between 0.0, 0.2 nA, and aggregate constraint shows the contribution of the 0.0 and

0.2 nA individual constraints to the aggregate constraint. The colormap scales have been adjusted so that values are visible.

distribution to another probability distribution (Givens and

Shortt, 1984). The results are displayed in Table 3, with the

rightmost column showing the Wasserstein distance of the

entire posterior distribution (all nine parameters used) for a

specific injected current. Overall, the posterior distribution of

no injected current (0.0 nA) yields the closest (by Wasserstein

distance) posterior distribution to the aggregate constraint,

followed by 0.2 nA, then 0.1 and 0.3 nA.

The parameter’s posterior distributions that are the most

different between an individual constraint and the aggregate

constraint are the distributions for the parameter gH and

to a lesser extent for gCaT , gA, gL. This observation for

the Wasserstein distances is consistent with the 1D marginal

solution maps of the posterior when comparing the aggregate

constraint in Figure 4 with Figure 3 and the additional solution

maps of the posterior for other individual currents in the

Supplementary material.

4. Discussion

Alonso andMarder (2019) presented a complex and realistic

neurological model and proposed visualization techniques in

order to help understand how different parameter sets can

have similar model outputs. As did, Van Geit et al. (2007),

Druckmann et al. (2007), and Prinz et al. (2003), they identified

the challenge to find multiple parameter sets that are optimal

in the sense that they generate good fits between data and

model outputs. Consequently, this raised the need to develop

algorithmic approaches in order to find these multiple sets.

In the present work, we design the inverse problem in a

Bayesian framework, where multiple optimal parameter sets are

part of a single multimodal posterior distribution. Furthermore,

we utilize parallel tempering MCMC in order to recover the

multiple modes in the posterior and visualize them in the

solution maps. As a result, we have filled an important need in

the field of neuroscience.

4.1. Interpreting solution maps and
choosing parameter sets

The solution space that the MCMC algorithm provides (the

solution maps) can be overwhelming especially when one is

familiar with the classical gradient/optimization approach to an

inverse problem (i.e., a single solution). Instead, our Bayesian

framework provides continuous ranges of solutions from which

one can select individual parameter value sets. We present two

viewpoints as methods to interpret these results, the single-

solution viewpoint, and themultimodal viewpoint.
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TABLE 3 Normalized (using the chosen bounds of each parameter) Wasserstein distances for each posterior of individually injected currents against

the aggregated constraint’s posterior.

Injected current (nA)
1DWasserstein distance (WD) 9DWD

gNa gCaT gCaS gA gKCa gKd gH gL τca All parameters

0.0 0.0372 0.0909 0.0194 0.0231 0.0266 0.0306 0.1173 0.0359 0.0150 0.5264

0.1 0.0382 0.0762 0.0319 0.0788 0.0567 0.0437 0.1195 0.0396 0.0327 0.5319

0.2 0.0355 0.1139 0.0245 0.0926 0.0722 0.0302 0.1197 0.0525 0.0435 0.5690

0.3 0.0497 0.0582 0.0275 0.0975 0.0293 0.0267 0.0886 0.1076 0.0223 0.5335

0.4 0.0298 0.0816 0.0283 0.0934 0.0193 0.0594 0.0708 0.1074 0.0414 0.5375

aggregate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The distances are organized according to the dimensionality of theWasserstein distance used:Wasserstein distances for single parameters posteriors use the one-dimensional (1D) distance

while “all parameters” use the nine-dimensional (9D) distance. The 9D distance includes the entire nine-dimensional posterior as a group rather than the one-to-one comparisons of the

1D distance. The final row shows the Wasserstein distances for the aggregate current constraint. All these values are zero as it is the Wasserstein distance to oneself.

TABLE 4 Number of solutions given the injected current as a function

of percentage difference from the best solution.

Injected current (nA) 0.5% 1.0%

0.0 889 1,595

0.1 916 1,618

0.2 21 118

0.3 120 233

0.4 149 265

For instance, for a 0.0 nA injected current, 889 solutions are 0.5% away from the best 0.0

nA solution. MCMC is able to find these multiple acceptable solutions. Figure 6 visualizes

an example set of voltage traces generated from these solution parameter sets.

4.1.1. Single-solution viewpoint

As detailed in the Section results, one parameter set amongst

all the posterior samples produces the lowest loss value (see

Table 2). At the simplest interpretation, one could choose this

parameter set as the solution to use. However, the Section results

demonstrates that there are many parameter sets that provide

low loss values which are close to the lowest value. For instance,

we found, for the injected current of 0.0 nA, a total of 889

parameters are within 0.5% of the best parameter set and a total

of 1,595 parameter samples are within 1% of the lowest loss (see

Table 4). Of course, the precise numbers are dependent upon the

number of MCMC iterations, but it shows that vast amounts of

parameters are able to reproduce a given observational data as

it is scored by the loss function. It is important to note that the

loss function plays a crucial role here in measuring the fitness

between data and model outputs (for more details, see Section

impact of loss function on recovered parameters).

Even though the loss values are small for the parameters in

Table 4, the voltage traces produced by these sets are slightly

different. To illustrate these differences, we plot in Figure 6

the first five voltage traces in the order of the loss value from

best to (slightly) worse with respect to the ground truth shown

FIGURE 6

First 5 solutions for the injected current of 0 nA. These solutions

are ranked from “best” to “worse” (A–E) according to their loss.

Even a nearly-identical loss can produce a qualitatively different

voltage trace, as shown by traces (D,E). The values for the

parameters sets for each of the voltage traces can be found in

Table 5.

(shown in orange color). The change in loss value is smaller

than 10−2 and nearly identical for the last two traces (d)

and (e). However, these traces visually appear to be somewhat

different, thus illustrating that different parameter sets may yield

similar loss values while producing potentially different traces

when inspected by eye. It highlights the crucial role of the loss

function, and it shows that it is important for physiologist to
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TABLE 5 Parameters for the first 5 solutions for the injected current 0.0 nA. The voltage traces for each of these parameters sets are shown in

Figure 6.

Figure 6 trace Injected current (nA) gNa gCaT gCaS gA gKCa gKd gH gL τca Loss

a 0.0 1484.995 9.543 11.072 78.728 18.135 144.027 0.027 0.119 767.541 8.138e−4

b 0.0 1554.694 8.060 13.169 60.339 19.039 165.425 0.192 0.187 728.020 9.412e−4

c 0.0 1578.022 9.642 11.247 43.430 17.730 175.763 0.341 0.214 726.248 13.050e−4

d 0.0 1587.899 9.786 11.207 39.391 18.545 178.563 0.104 0.180 723.591 15.441e−4

e 0.0 1526.351 9.988 11.957 63.573 16.147 158.435 0.446 0.214 747.016 18.286e−4

One can also locate these solutions in some of purple bands found in Figure 3 (i.e., [gNa , τCa] = [1485, 767] for Trace a).

inspect the solution maps, visualizing the posterior, to further

investigate or constrain parameter ranges.

4.1.2. Multimodal viewpoint

Because of the preceding observations, it is beneficial to look

for multiple modes or parameter value regions (rather than a

single point) in the posterior: this is illustrated in the 1D and 2D

marginals described in the Section results. In the 1D marginals,

one can assess important parameter values within a range by

the different peaks observed within the distribution as well as

its sensitivity by the width/spread under peaks. Furthermore,

the limitation of parameter bounds defined by the prior can

be determined, if distributions appear to abruptly stop at the

boundaries. For instance, in the 1D marginal for parameter

gKCa found in Figure 3, it appears that the limits of the range

for gKCa values may have been too small as the distribution

begins a descent at the upper bound. Such insight can lead the

modeler to reconsider or investigate the range of the parameters.

The 2D marginals help to determine which parameters are

correlated (i.e., trade-off between each other). Taken together,

one can begin to look at solution areas that previously were

left unexplored, perhaps opening new avenues for investigation.

This possibility allows for investigators to be able to examine a

selection of parameter value set solutions found, rather than just

utilizing the parameter value set of the lowest loss solution.

We now recall the ground truth values of the parameters

that we used in the numerical experiments (see Sectionmethods)

and compare them to the plots of the posteriors in Figures 3, 4.

We note that the parameter values used to generate the ground

truth do not always correspond to the areas under the peaks in

the marginals of the plotted solution maps of the posterior. For

instance, the parameter values of gNa, gH , and gL used for the

ground truth do not correspond to areas of high density in the

solution maps. We believe one possible reason for this is that

some of the ground truth parameter values give rise to models

that are less robust compared with the parameter values where

peaks in the posterior are higher and/or wider as recovered

by MCMC. Since the presented algorithm provides parameter

sensitivities and the solution maps of the posterior enable to

interpret these sensitivities, an evaluation of the robustness of

estimated parameters is possible. This can lead to potentially

important insights toward understanding neuron models.

4.2. Impact of loss function on recovered
parameters

The impact of the choice of loss function becomes apparent

in Figure 7, which shows the ground truth voltage trace

generated from the AM model with the ground truth set of

parameters (orange color). This trace serves as the data in

our inverse problem. To measure the fit between data and

model outputs, we consider a particular loss function that is

derived from the loss function employed by Alonso and Marder

(2019). Comparing the orange (ground truth) and the blue

trace graphs, we observe discrepancies between the traces that

may appear as inadequate fits from a physiological perspective.

These discrepancies are caused by the loss function, which

defines a distance metric between traces. In essence, a possible

limitation of the chosen loss function is that it quantifies

disparate voltage traces as too similar by giving it a low loss value.

This demonstrates the difficulty of finding appropriate losses for

inverse modeling in neuroscience and is one main reason for

manual and heuristic approaches for solving inverse problems

governed by neural dynamics models.

To address this issue, Alonso and Marder (2019) invested

efforts to refine the loss to specific inference setups that are

targeted. This approach can be prone to human bias and is labor

intensive. An alternative approach is taken in the present work,

because we aim to automate the inference as much as possible.

The idea is to augment the measure for fitting data and model

outputs with additional information. In this work, we proposed

to augment the loss function with additional voltage traces that

are generated at different input currents. This approach results

in the inverse problem setup with aggregated current constraint,

and we observe traces from solution sets using this constraint

are better than the individual constraint for some currents (gray

trace at 0.2 nA). An alternative approach to the aggregate current

constraint would be to design new loss functions (for individual

currents), which is direction for future work.
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FIGURE 7

Each row of this figure shows the voltage traces for the ground truth (top orange), for the best solution sets given the individual constraints

(middle blue) and the best solution set given the aggregate constraint (bottom gray). Each column shows the traces for different injected

currents. Loss values for these parameter solution sets are 0.0008 for the 0.0 nA individual constraint, 0.0348 for the 0.2 nA individual constraint,

and 8.8109 for the aggregate constraint.

4.3. Physiological meaning and future
opportunities

Extracting physiological information from the solution

maps is the ultimate goal of this exercise. For instance, one

can rank the importance of a parameter by looking at the 2D

marginals. Looking at the bottom row of Figure 3, we observe

that τCa is highly correlated with gKd while gCaT and gCaS are

more independent of τCa for the injection current constraint 0.0

nA. Therefore, the analysis shows that the calcium component of

the afterhyperpolarization (AHP) needed to replicate the ground

truth spiking traces is dominated by the time constant τCa.
2

Alonso and Marder (2019) showed that multiple parameter

estimations exist for solving one neuronal dynamics model. Our

framework complements this finding by providing one possible

method for which a larger sets of parameters can be found that

reproduce desired model behavior. We believe that the observed

multimodal posterior is the norm rather than the exception

in the field of neuroscience. As models increase in complexity

(and therefore increase in parameters), the likelihood of a

multimodal solution will increase. For instance, although studies

of variability of neuronal behavior have concentrated on the

role of ion channel density (e.g., Marder and Goaillard, 2006),

changes in the voltage dependence of channels resulting from

changes in phosphorylation (Park et al., 2006) or the binding

of accessory proteins (Bosch et al., 2015) are likely to be

equally important. The advantage of Bayesian inference together

2 Note that to be able to reach such a conclusionwith (more traditional)

optimization techniques that deliver point estimates, a sensitivity analysis

would be required in addition to finding an optimum.

with MCMC is that these additional variables can be taken

into account.

The current MCMC sampling setup operates within

the bounds based on our prior assumptions from general

knowledge, literature review, or colleagues. Another viewpoint

of our results is that our MCMC-based Bayesian framework

provides the ability to “test” these prior assumptions using the

experimental data and system model by looking at the shape

of the posterior, as mentioned above. Peaks at the boundaries

of the ranges are likely to indicate too narrow a range of

sampled parameter values (see parameters gA and gKCa in

Figure 3). This could lead experimentalists to look beyond their

prior assumptions.

Finally, this method has the potential to help beyond

ion channel parameter inference as was done here with

the AM model. As observed in the literature, it remains a

fundamental challenge to find viable sets of parameters for

compartmental models, for instance, see Hay et al. (2013) for

pyramid cell models and Zang et al. (2018) for Purkinje cell

models. An even greater challenge is the description of the

parameters spaces, which was noted to be important (Hay

et al., 2013). The present work shows a potential pathway to

addressing these challenges for such complex compartmental

models. It should be noted as well that simulators, such

as NEURON (Carnevale and Hines, 2006), can be used

to generate the traces to feed into the loss function and

parallel tempering MCMC. Overcoming these challenges in

the future would bridge an important gap that is currently

present in neuroscience: the gap between the inference with

model-generated ground truth data and the inference with

experimentally observed (Van Geit et al., 2007) data of complex

(compartmental) models.
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