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One of the most common types of models that helps us to understand neuron
behavior is based on the Hodgkin—Huxley ion channel formulation (HH model).
A major challenge with inferring parameters in HH models is non-uniqueness:
many different sets of ion channel parameter values produce similar outputs
for the same input stimulus. Such phenomena result in an objective function
that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness
of local optimality poses challenges for parameter estimation with many
algorithmic optimization techniques. HH models additionally have severe
non-linearities resulting in further challenges for inferring parameters in an
algorithmic fashion. To address these challenges with a tractable method in
high-dimensional parameter spaces, we propose using a particular Markov
chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring
parameters in a Bayesian framework. The Bayesian approach is designed to
be suitable for multimodal solutions to inverse problems. We introduce and
demonstrate the method using a three-channel HH model. We then focus
on the inference of nine parameters in an eight-channel HH model, which
we analyze in detail. We explore how the MCMC algorithm can uncover
complex relationships between inferred parameters using five injected current
levels. The MCMC method provides as a result a nine-dimensional posterior
distribution, which we analyze visually with solution maps or landscapes of
the possible parameter sets. The visualized solution maps show new complex
structures of the multimodal posteriors, and they allow for selection of locally
and globally optimal value sets, and they visually expose parameter sensitivities
and regions of higher model robustness. We envision these solution maps
as enabling experimentalists to improve the design of future experiments,
increase scientific productivity and improve on model structure and ideation
when the MCMC algorithm is applied to experimental data.

KEYWORDS

computational neuroscience, parameter estimation, model fitting, Hodgkin—Huxley,
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1. Introduction

Systematic parameter exploration is an unmet need
for model building in neuroscience. Complete specification
of models in neuroscience or systems physiology requires
identification of several parameters. For single neurons, these
typically include geometric and electrical properties of the cell
body, dendrites, and axons. Even with the sophistication of
modern experimental techniques, however, measuring all the
necessary parameters is almost always impossible. Additionally,
many single-neuron properties exhibit remarkable context-
dependent variability, even within the same animal. For
example, changes in the neuromodulatory environment alter
the spiking dynamics of spinal motoneurons (Heckman et al.,
2009) and thalamocortical neurons (Pape and McCormick,
1989) by influencing their ionic conductances. Thus, any single
measurement at one time instance would be insufficient to
inform all single-neuron/network properties because it cannot
account for the wide spectrum of behaviors observed in vivo.

To complicate matters further, redundancy in biological
systems leads to similar activity profiles that can be produced
by many different neurons or neuronal networks with dissimilar
properties (Swensen and Bean, 2005; Schulz et al, 2007;
Roffman et al., 2012). For example, lateral pyloric neurons
in the crab stomatogastric ganglion exhibit as much as two-
to four-fold interanimal variability in three different ion
channel densities and their corresponding mRNA levels (Schulz
et al, 2006). Therefore, even averaging a parameter from
multiple experimental preparations may fail to generate the
desired behavior in the computational models constructed
from them (Golowasch et al, 2002). Systematic exploration
of the parameter space is obligatory to fit a neuron model
to experimental data. Additionally, this systematic exploration
may reveal deeper insights and motivate future experiments
by unraveling undiscovered parameter combinations that might
reproduce the same experimentally observed behavior.

Fitting experimental data to neuron models has been a
major challenge for neuroscientists. In fact, the parameters of
the first biologically realistic quantitative description of the
neuronal membrane were hand fitted by Hodgkin and Huxley
(1952). This approach has remained popular; for example, the
peak conductances of ion channels in a model of an elemental
leech heartbeat oscillator were hand tuned by Nadim et al.
(1995). Likewise, both the single compartment and network
parameters of a small group of neurons used to model the
crustacean pyloric network were hand tuned by Soto-Trevino
et al. (2005) to reproduce a variety of experimentally observed
behaviors. However, the ever-increasing dimensionality and
complexity of neuron model (Hodgkin and Huxley’s description
contained only three membrane currents), accompanied by the
concomitant increase in computational resources, have made
hand tuning of parameters a near infeasible task. Besides,
hand tuning of parameters also introduces potentially undesired
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experimenter bias, because different parameters are assigned
preconceived roles during the tuning process (Van Geit et al.,
2008). Nevertheless, manual exploration of parameter sets
may be unavoidable because the initial range of values of
different parameters over which the automated search is to be
performed must be determined by the experimenter based on
physiological constraints.

1.1. Computational inference for neural
models

The body of research on parameter estimation for models of
neural dynamics for single cells or circuits spans across various
scientific communities, approaches, and neuron models. A gap
exists, however, between researchers with rich physiological
knowledge, on the one hand, and researchers working on new
solution algorithms for inference, on the other hand. This gap
presents opportunities to create a bridge between physiologists,
engineers, computational scientists, and mathematicians by
exploring existing and developing new inference techniques for
neuron dynamics of single cells and circuits.

1.1.1. Multiple realizability: The dilemma of
many truths

Single-neuron activities that are amenable to easy
measurement (e.g., spike trains, voltage traces, local field
potentials) can often be identical for different parameter
combinations. Just as this situation renders experimental
determination of parameter values infeasible, it also poses
an incredible challenge to systematically infer a model from
experimental data. For example, Prinz et al. (2004) found
indistinguishable network activity from widely disparate
deterministic models. Similarly, Amarasingham et al. (2015)
reported statistically indistinguishable spike train outputs
for different statistical processes that model the firing rate of
networks. Hartoyo et al. (2019) stressed that, for models of
dynamical systems, very different parameter combinations
can generate similar predictions/outputs. Additionally, the
authors showed that sensitivities of predicted parameters
can exhibit wide variability, leading to the conclusion that
modeling in neuroscience is confronted by the major challenge
of identifiability of model parameters. The demonstrative model
used in our present work shows a bursting neuron producing
similar neural activities from multiple sets of conductance
densities (Alonso and Marder, 2019).

1.1.2. Approaches for estimating parameters
Computational approaches for estimating parameters of

neuron models based on ordinary differential equations (ODEs)

include (brute-force) grid search (Prinz et al., 2003) as well
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as more advanced techniques using heuristics or trial-and-
error approaches, which may consist of intricate sequences of
regression steps (Achard and De Schutter, 2006; Van Geit et al.,
2007, 2008; Buhry et al, 2011). The latter include simulated
annealing, differential evolution, and genetic algorithms. These
approaches can have the disadvantage of slowly converging to an
optimal set of parameters and thus becoming computationally
expensive. Using gradient-based optimization to accelerate
convergence (Doi et al., 2002; Toth et al., 2011; Meliza et al,,
2014), on the other hand, can suffer from the non-convexity and
the strong non-linearities in the objective manifold and require
good initial guesses in order not to stagnate in local minima
(thereby resulting in suboptimal parameter sets). Another
shortcoming of recovering only a single set of parameters (also
called point estimates) is the lack of knowledge about the
uncertainties or error bounds for the inferred parameters. These
can be obtained with a subsequent sensitivity analysis and, as
a consequence, require employing additional algorithms and
computational resources.

Recently the use of machine learning techniques based
on artificial neural networks (ANNs) became popular.
For instance, in the context of the FitzHugh-Nagumo
model (Rudi et al., 2021), an ANN was constructed and
optimized to generate an inverse map that is able to predict
model parameters from observational data. Bittner et al.
(2021) developed generative models from deep learning.
Retrieving associated uncertainties for inferred parameters
has been performed by Gongalves et al. (2020), using
normalizing flows with Gaussian mixtures in order to generate
approximations of posterior distributions for Hodgkin—
Huxley-based inverse problems. However, machine learning
techniques require generating large sets of data for training
the artificial neural networks, where each training sample
entails the numerical solution of the ODE system of the
neuron model.

Theoretical neuroscientists have been developing and
utilizing statistical methods for inference and uncertainty
quantification (Van Geit et al, 2007; Vavoulis et al., 2012)
and have been relying on Bayesian inference frameworks
(Ahmadian et al., 2011; Doruk and Abosharb, 2019) in order to
estimate parameters and quantify uncertainties of the recovered
parameters. The uncertainties in recovered parameters with
Bayesian inference frameworks are represented by posterior
density functions, which describe a “landscape” of more likely
parameters (“peaks in the landscape”) and less likely parameters
(“valleys in the landscape”; see Section methods for details).
Bayesian likelihoods or their approximations are constructed,
which in turn enables direct maps to posterior densities without
numerical solutions of neuron models to evaluate objective (or
loss) functions. Chen (2013) provides an overview of Bayesian
methods for neural spike train analysis. René et al. (2020) and
Schmutz et al. (2020) have utilized Markov chain Monte Carlo
for inference from spike train data of population models.
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1.2. Using Markov chain Monte Carlo
(MCMC) algorithms for inference

MCMC algorithms play a critical role in our approach
for parameter estimation. For a brief introduction and
background information about MCMC algorithms, we refer to
the Section methods.

1.2.1. Benefits and limitations of using MCMC
for parameter searches

One of the main benefits of using MCMC is the detailed
picture or “landscape” of the posterior density that it can
provide. By analyzing the posterior, the uncertainty in the
inferred parameters can be quantified, and the dependencies
between different parameters in the model can be identified.
Another benefit is that MCMC does not require derivatives of
neuron models or the loss function (measuring misfit of the
data and model output). This is an important property in the
case of the complex model and non-differentiable loss function
used by Alonso and Marder (2019), which our present work
utilizes. We propose to utilize a specific MCMC method called
parallel tempering MCMC. It has the key advantage of efficiently
exposing multimodality in the posterior (see Section methods
for more details), which other MCMC methods can potentially
leave undiscovered.

As with many other computational methods for parameter
estimation, the efficiency scaling with the number of parameters
(dimensionality) is a potential limitation with MCMC-based
methods. Generally speaking, as the number of parameters
increase, the dimensionality of the search space increases, and
more iterations of MCMC may be required, leading to a longer
total computation time. In the inference that we are targeting
in this work, the number of inferred parameters remains at
amounts where these limitations do not occur for parallel
tempering MCMC. We note here that parallel tempering MCMC
is able to find the multimodal posterior successfully where many
other Bayesian inference methods, including Approximate
Bayesian Computing with Sequential Monte Carlo, could not.
Future work will determine the dimensionality limits of this
computational method.

1.2.2. Applications of MCMC in the context of
biological modeling

In fields related to neuroscience, MCMC-based methods
have been a popular choice for solving inverse problems in a
Bayesian framework, where one is interested in uncertainties
in addition to optimal solutions (Smith, 2013). In the context
of dynamic systems in biology, MCMC techniques have been
successfully employed, as described in review articles by
Ballnus et al. (2017) and Valderrama-Bahamo (2019). Moreover,
tempering MCMC methods have been shown to recover
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the multimodality of solutions in systems biology (Caranica
et al., 2018; Gupta et al, 2020). However, in the context of
neural dynamics with complex Hodgkin-Huxley models, such
as in Alonso and Marder (2019), on which we built this
work, tempering MCMC methods have not been attempted to
our knowledge.

1.3. Contributions of this work

In this study, we address the issue of multiple realizability
of specific models in neuroscience. In particular, we present the
computational inference for one three-channel and one eight-
channel HH neuron model with a parallel tempering MCMC
algorithm as the method for inference. We successfully estimate
the parameters in these models, describe the multimodality in
the parameter space, and quantify the parameters’ uncertainties.
Additionally, we present visualizations of the high-dimensional
inference solutions taking the form of posterior densities.

We discuss how these multimodal posteriors (solution
maps) are produced by this method for large parameter
dimensions. While the posteriors are inherently tied to both the
chosen neuron model and chosen loss function, we believe, this
method could allow an experimentalist the ability to explore
different desired features and models.

As an alternative to manually adjusting the metric measuring
fitness between data and model outputs, we present inference
setups that use different stimulus currents to further constrain
the algorithmically recovered parameters obtained with MCMC.

2. Methods

We design the parameter estimation problem in a Bayesian
framework: (i) parameter values of the neuron model are
treated as (multivariate) probability distributions rather than
the solution being a single optimal parameter set; and (ii)
the posterior distributions of parameter values can exhibit
dependencies between each other, rather than assuming each
parameter to be independent from others. Note that the Bayesian
framework does not assume that a single independent optimum
can be reached. The density of the posterior distribution is
proportional to the product of a likelihood and a prior term.
The likelihood is given implicitly in the form of a loss function
between observational data and model output, hence requiring
the numerical solution of the model for each new set of
parameters. Whereas the prior is a known density function
(e.g., a Gaussian with known mean and covariance) and is
provided from knowledge about the parameters of the model.
As a solution algorithm we utilize an extension of MCMC,
the parallel tempering MCMC method, which is critical for
recovering distributions of parameter sets that are Subsequently,

Frontiers in Systems Neuroscience

04

10.3389/fnsys.2022.999531

we introduce the HH-based neuron models that we consider for
computational inference.

2.1. Inference of parameters in a
three-channel Hodgkin-Huxley neuron
model

We introduce the algorithmic approach of our choice for
solving an inverse problem involving a neural model. We utilize
the parallel tempering MCMC method, which is described in
detail below. To illustrate the type of solutions that parallel
tempering MCMC can deliver, we first consider a three-channel
(Na, K, and leak channels) Hodgkin-Huxley model, which is
a classic and well-known conductance-based model (Hodgkin
and Huxley, 1952; Mainen et al., 1995). While this model
is less complex than the eight-channel model we focus on
subsequently, this simpler model nevertheless exhibits the key
difficulties and challenges of parameter estimation in neural
dynamics. The mean squared error (MSE) between voltage
traces from the model and simulated observational data serves
as the loss function to measure the fit between model outputs
and data for this example. To set up the inverse problem,
we simulate the voltage trace for a given set of sodium and
potassium conductances, denoted as the “true” parameter set,
which is g, = 200 pS/;un2 for sodium and gx = 50 pS/,um2
for potassium. This simulated voltage trace generated by the HH
model serves as the data for our inverse problem; and the sodium
and potassium conductances are the parameters that we aim to
infer. The numerical results of the inference are presented in
Section results.

2.2. Inference of parameters in an
eight-channel Hodgkin—Huxley neuron
model

The model that this work focuses on is the bursting neuron
model from Alonso and Marder (2019). The model is a system of
ODEs describing the time evolution of the membrane potential
voltage coupled with kinetic equations for the eight voltage-
gated conductances; for more details, see Equations (5-7) of
Alonso and Marder (2019). We choose to analyze specifically
this model because of its recently documented challenges with
regards to parameter estimation, multiple candidate solutions,
and complex dependencies of parameters on one another. We
select the parameter values for the ground truth to be from
“Model A” of Alonso and Marder (2019) for consistency. The
definitions, units, and values used to generate ground truth
voltage traces of the nine parameters that we seek to infer are
in Table 1.
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TABLE 1 Definition, values, and unit of the parameters that we seek to infer. Details for these definitions can be found in Alonso and Marder (2019)

and Liu et al. (1998).

Parameter Definition Ground truth value Unit
oNa Max Conductance for: Fast transient Nat current 1076.392 nS
gcar Max Conductance for: Fast transient Ca** current 6.4056 nS
8Cas Max Conductance for: Slow Ca®>* current 10.048 nS
gA Max Conductance for: Fast transient K* current 8.0384 nS
8KCa Max Conductance for: Ca>* dependent K™ current 17.584 nS
gKkd Max Conductance for: Delayed rectifier K current 124.0928 nS
gH Max Conductance for: Hyperpolarization-activated inward cation current 0.11304 us
g Max Conductance for: Leak current 0.17584 us
Tea Time constant of Ca?t concentration process 653.5 ms

The voltage traces of the AM model are obtained
numerically with the BDF and LSODA solvers for ODEs from
the SciPy library (Petzold, 1983; Virtanen et al., 2020). BDF
and LSODA were used because of their overall convergence
performance compared with other ODE solvers for stiff
biological ODE models; for instance, LSODA has been analyzed
for biological systems in Stadter et al. (2021). The voltage trace
generated by the ground truth parameters is shown in Figure 7
in orange color. The output models of this work are available in
ModelDB with accession number 267583.

2.3. Loss function for measuring fit
between data and model outputs

The main loss function used in the present study involving
the AM model is the loss of Equation (4) of Alonso and Marder
(2019), namely,

E@g) = aEr + BEgc + VEyiq + 0Esw + NEqg>

where we use the following coefficients: @ = 1,000, 8 = 1,000,
andy = § = n = 0. Ey is the mismatch of the inter-
burst frequency (frequency between bursts), E ;. is the mismatch
of the inter-burst duty cycle (the ratio of the time bursting
vs. not bursting per cycle), Esy and E,,;;; handle slow-wave
mismatches, and Ej,, is the lag between the upward crossings
and downward crossings.

We purposefully eliminate several components of the loss
(i.e., y = 8 = n = 0) to avoid manual penalization between
certain terms in the general form of the loss function. Our
study uses the same loss function with fixed coefficient values
throughout all numerical experiments, because our focus is to
compare inference results and it avoids possible bias. As such,
our approach differs from the objectives of Alonso and Marder
(2019), where the coefficients in the loss are adjusted depending
on the inference setup. Here we focus on the two components
of the loss function that we observed to be dominant, associated
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with a, the burst frequency mismatch Ey, and with g, the duty
cycle mismatch E;.. The intra-burst frequency mismatch and
duty cycle mismatch components are visible in Figure 7. Our
objective is to test the multimodality of the inverse problem with
parallel tempering MCMC methods.

2.4. Loss function for individual and
aggregate constraint

We use the loss function (detailed in Section loss function for
measuring fit between data and model outputs) to solve inverse
problems, where one particular injected current is present; these
studies are referred to as the individual current constraint.
The individual current constraint (or “individual constraint”
in short) is when the loss function value for a single current
injection value (i.e., one 0f 0.0, 0.1 nA, ...) is used for measuring
the fit between data and model outputs.

In addition, we carry out numerical experiments with
multiple injected currents, referred to as the aggregate current
constraint. The aggregate current constraint (or “aggregate
constraint” in short) is when the maximal loss function value
for the entire set of injected currents (i.e., {0.0, 0.1, 0.2, 0.3,
0.4} nA) is used for the misfit between data and model outputs.
The aggregate current constraint is motivated by its similarity
to fitting against a frequency-current (F-I) curve (Hultborn and
Pierrot-Deseilligny, 1979).

2.5. Introduction and background to
MCMC

In this work we choose the Bayesian formulation (also called
Bayesian framework), which is based on Bayes’ theorem:

_ Py | 6)P(O)

PO |y) = Po) ey
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where 6 denotes the parameters of the ODE model and y is the
data. 0 and y can be scalars or, more commonly, vectors. On the
left-hand side of (1), P(f | y) is the unknown posterior (i.e.,
conditional probability for the model parameters 6 given the
data y). On the right-hand side of (1), P(y | ) is the known
but often intractable likelihood (i.e., conditional probability for
the data y given the model parameters 6). The likelihood term
is responsible for measuring the fit between data and model
outputs. Hence the loss function, which we detailed above, is
evaluated each time the likelihood is computed. The likelihood
being intractable means that it requires the solution of a model
and cannot be accessed (or sampled from) directly. Further on
the right-hand side, P(6) is the known and typically tractable
prior (i.e., probability of the model parameters 6). The term P(y)
is called evidence (i.e., total probability of the data y); and since
it is constant with respect to 6, it simply scales the posterior by a
constant and can, in practice, remain unknown.

To provide an intuition, one goal of an MCMC algorithm,
such as the Metropolis—-Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970), is to find the most likely model
parameters, 0, that will produce the largest posterior (the
highest probability of the model parameters to reproduce the
data) through sampling. Another goal is to quantify parameter
uncertainties. To this end, the algorithm visits smaller locations
in the posterior (i.e., lower probabilities of the model parameters
to reproduce the data). However, these visits to lower-probability
locations of the posterior happen adaptively and automatically
at smaller frequencies. The concept of MCMC visiting locations
of high probability at greater frequencies and locations of
lower probability at smaller frequencies is a key property of
the algorithm.

In detail, at each iteration of MCMC, the algorithm first
proposes a new value for (one or multiple) parameters, 6oposal>
by randomly choosing from a proposal distribution (e.g., a
normal distribution centered at the value of the previous
iteration Oprevious) (Figure 1). The likelihood P(y | Qproposal)
and prior P(6oposal) are evaluated at the proposed value and
multiplied to obtain a new value of the posterior. In the second
MCMC iteration, the algorithm includes the proposed 6proposal
in a sequence of visited points or discards it, where the aim is to
more frequently keep points of higher probability. To determine
whether 60

proposa
Oprevious, the algorithm takes the ratio of the proposed posterior

1 is accepted or rejected relative to the previous

to the current posterior. If the ratio is greater than one, 6j,5posal
must have a higher probability, and therefore this new parameter
is saved because it is producing a better outcome. If the ratio is
below one, then the algorithm applies a randomized rejection
criterion such that some 6},5051 1s stored at lower frequencies.
Subsequently, this cycle repeats, where 6p;p05a1 becomes the
new Oprevious, if acceptance was successful. Note that in this
algorithm, dividing the new value by the previous value of the
posterior, P(y) cancels out, thus showing that constant scaling
factors are irrelevant for MCMC.
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The Metropolis-Hastings algorithm constructs a sequence,
also called a chain, of parameters (also called samples) that it
visits during the iterations (Figure 1). This method is suitable
for unimodal posterior distributions. However, it is not designed
to capture multimodal posteriors (i.e., posterior with multiple
peaks). Therefore, extensions of MCMC have been developed to
deal with multimodal distributions. Early work by Marinari and
Parisi (1992); Geyer and Thompson (1995) employed simulated
tempering, which is akin to simulated annealing algorithms
from the field of optimization. More recently, parallel tempering
MCMC (Lacki and Miasojedow, 2016; Vousden et al., 2016) was
proposed. This builds on ideas from simulated tempering and,
additionally, uses multiple chains of single-chain methods, such
as Metropolis-Hastings, in parallel. The key idea of tempering,
which enables MCMC to discover multimodalities in posteriors,
is that the posterior is taken to a power with an exponent,
y, between zero and one: 0 < y < 1. Hence we obtain
PY(0 | y). This has the effect that smaller locations in the
posterior are elevated and can be visited more frequently by
Metropolis-Hastings.

2.6. MCMC method for estimating
parameters in AM model

This section provided details about our implementation for
estimating parameters and their uncertainties in AM models.
Our AM model and MCMC methods constitute the following
components:

e Neuron model component: Computes voltage traces for the
AM model and a given set of candidate parameters

e Likelihood component: Computes the Bayesian likelihood
using the loss function based on the voltage trace obtained
by neuron model component

e Prior component: Evaluates the prior based on the
candidate set of parameters

e Estimator component: Proposes candidate parameters at
random (the proposal sampler)

The sampler used was the adaptive parallel tempering sampler
(Miasojedow et al., 2013) within the PyPESTO library (Stapor
et al, 2018). Parallel tempering runs independent Markov
chains at various temperatures and performs swaps between
the chains. Each individual chain runs adaptive Metropolis—
Hastings MCMC.

The loss functions for individual and aggregate constraints
are evaluated for each candidate parameter in the MCMC
algorithm within the likelihood term. The prior term is
defined as a uniform distribution (i.e., unbiased prior) within
predetermined boundaries, which were chosen sufficiently wide
to permit physiologically relevant model parameters.
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FIGURE 1

Two diagrams depicting the flow of the two algorithms used in this work. (Top) The Metropolis—Hastings MCMC algorithm begins with a "1.
Propose” step, where the algorithm selects an initial set of parameters to be used in the “2. Neuron model” step. The model is then solved using
the parameters and its output compared to recorded data to produce the “3. Likelihood". This likelihood is then multiplied with the prior to
generate the probability value used in the “4. accept sample?” step to accept or reject the sample. This cycle is repeated until the number of
preset iterations is reached. (Bottom) The Parallel Tempering MCMC algorithm used for the 9 parameter AM model. This algorithm utilizes an
additional "5. Swap samples with another chain” step to increase mixing between multiple chains and to encourage the chains to sample in
more remote areas of the parameter space, hence, detect multimodality.

2.7. Numerical experiment setup

To investigate the robustness of parallel tempering MCMC
on the inverse problem governed by the AM model, we use
model A from Alonso and Marder (2019), which is defined by
the parameters that are listed in Section inference of parameters
in an eight-channel Hodgkin-Huxley neuron model, as ground
truth data. We use this model to generate five voltage traces each
using different injected currents: 0.0, 0.1, 0.2, 0.3, and 0.4 nA.

Frontiers in Systems Neuroscience

07

Noise to simulate physical measurement noise was not added to
the voltage trace of the ground truth, for several reasons. To have
a numerical experiment setup similar to Alonso and Marder
(2019), we also did not alter the ground truth trace data.

The conductances for the ion channels and the time constant
for the calcium channel are the nine parameters that we target
for inference. Each inference with individual current constraint
consisting of running the MCMC algorithm for a predetermined
number of iterations/samples. Additionally, for the inference
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with aggregate current constraint, a single run of MCMC was
performed. Each MCMC run used 24 to 32 parallel chains
and 10,000 to 14,000 samples per chain. Geweke’s convergence
diagnostic was used to determine the burn-in of each chain
(Stapor et al., 2018). The burn-in is an initial phase of MCMC
where the gathered samples do not satisfy certain statistical
properties to be considered adequate samples of the posterior. In
certain cases, despite parallel tempering, there are MCMC chains
that can remain static through the parameter space. Results from
chains that did not move sufficiently (ratio of standard deviation
to mean) were filtered out in postprocessing.

2.8. Software improvements for
accelerating parallel tempering MCMC

We reduced the computational time of the MCMC inference
by carrying out various improvements of the source code.
Increasing the number of Markov chains benefits the detection
and exploration of multimodal posteriors; however, it also
increases the computation time. To shorten the computation
time, we parallelized the MCMC algorithm to run on each
CPU core concurrently using multiprocessing packages (Conda-
Forge Community, 2015). This approach significantly decreased
computation time because of the parallel nature of the chains.
The total runtime for each MCMC run was between 24 and
48 h. We utilized three different machine architectures: (1)
the Broadwell nodes (36-core, 128 GB RAM) on the parallel
cluster Bebop at Argonne National Laboratory, (2) a workstation
equipped with a dual 16-core Intel Xeon 4216 CPU (total of
32 cores and 64 threads) with 128 GB of RAM, and (3) a
workstation with a 32-core (64-thread) AMD Ryzen 3970x CPU
with 128 GB of RAM.

3. Results

The results of our study show that our design of the
inverse problem combined with parallel tempering MCMC for
solving the inverse problem is able to successfully overcome the
inference challenges. The algorithm can recover large numbers
of parameter sets where data and model output are consistent.
Parallel tempering MCMC returns posterior distributions of
parameter sets, called the posterior in short, and we visualize
the multidimensional posterior by showing solution maps in
one and two dimensions where the non-visible dimensions have
been integrated out (i.e., showing a marginal distribution). With
these solution maps physiologists can investigate the results
from MCMC in order to decide which parameters warrant
more investigation from a physiological perspective. This is
a main advantage of solution maps compared with solution
points (i.e, a single set of “optimal” parameters) obtained
from optimization algorithms. Additionally, the robustness of

Frontiers in Systems Neuroscience

08

10.3389/fnsys.2022.999531

parameters can be assessed, because solution maps indicate by
how much parameters can be perturbed while still delivering
model outputs that are consistent with data.

3.1. Inference proof of concept with the
three-channel Hodgkin—Huxley model

As a proof of concept, we consider the inverse problem
where the goal is to recover the sodium and potassium
conductances in an HH model. To demonstrate the challenges
of the problem, we visualize the loss function that would
have to be minimized to find the optimum in Figure 2A,
where the colors indicate the (positive) loss value. The true
parameter set is located in a “valley” in the loss “landscape,”
whereas the loss is large for parameters that produce large
discrepancies between model output and data such as shown
in graph S1 corresponding to point SI in Figure 2A. However,
multiple sets of parameters exist that are local minima in
this landscape, and these multiple local minima pose major
challenges because optimization algorithms may present one
of them as the “optimal” solution. These local minima will
not give a sufficiently good fit of model outputs vs. data, as is
illustrated in graph S2 of Figure 2 that corresponds to point S2
in the landscape (Figure 2A). Such local minima are known to
be problematic for numerical optimization algorithms (Nocedal
and Wright, 2006).

Additionally, we aim to quantify the uncertainty with
respect to the parameters associated with sodium and potassium
conductances, and we would like to understand the sensitivities
of the model with respect to these parameters. In Figure 2, the
graphs S3 and S4 illustrate how different parameters produce
voltage traces similar to the data, while at the same time this
uncertainty in the parameters is visible in the landscape as a
valley (dark blue color in Figure 2A, which corresponds to low
values of the loss function).

The numerical solution of the Bayesian inverse problem with
parallel tempering MCMC successfully provides a probability
density spanned by the two-dimensional parameter space. The
density is large, where the loss function in Figure 2A has its
major valley. We show the progress of the MCMC algorithm
in Figure 2B as the number of collected samples increases from
2,000 to 8,000. As the sample count (i.e., iteration count of
MCMC) grows, the algorithm generates a longer tail along the
valley, showing a clearer picture of the parameter uncertainties.
The true parameter values are clearly visible in the high-density
region as a dark blue area around 200 and 50 pS/um? for sodium
and potassium conductances, respectively. Furthermore, the tail
to the upper right of the true parameter set shows the trade-off
between sodium and potassium, when model outputs keep being
consistent with data even though the values of the parameters
deviate from the truth.
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FIGURE 2

Loss function corresponding to the inverse problem with a three-channel HH model and how MCMC is able to successfully recover multiple
optimal parameter sets and quantify uncertainties and parameter trade-offs. (A) Loss function landscape (colors) over the parameters, sodium
(gna) and (gk) potassium conductances. The “true” parameter set represents a global minimizer of the loss; the valley of the loss along points S3
and S4 (in dark blue color of loss) translates to parameter uncertainties (or trade-offs). Graphs S1-5S4 depict voltage traces at corresponding
points in (A). (B) Densities of MCMC samples, where the dark purple color of highest density overlaps with the true parameter set. As the number
of MCMC samples increases, the the method recovers the valley of the loss landscape A and hence quantifies uncertainties in the parameters.

These results serve as a proof of concept that the parallel
tempering MCMC algorithm can successfully tackle multimodal
losses. Next we transition to a more complex model for neural
dynamics, which is the focus and the main result of the

present work.

3.2. Inference with the complex
eight-channel Alonso—Marder (AM)
model

3.2.1. AM model—Posterior distribution

The AM model has nine uncertain parameters that we want
to infer; therefore, the posterior is a distribution in a nine-
dimensional space. To visualize the nine-dimensional space, we
consider one or two parameters at a time, where the remaining
parameter dimensions are marginalized (i.e., summed up). The
plots in Figure 3 show the solution maps that visualize the
posterior. The denser regions within Figure 3 are parameter
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value sets that return lower loss function values; therefore they
represent better fits between data and model outputs.

Along the diagonal of Figure 3 are the histograms for the
(ID marginal) distribution for each parameter. For the 2D
marginals in the lower triangle of Figure 3, the points have the
opacity set to darker where their density is higher. This setup
allows for easier visualization of trends within the posterior
distribution with regard to parameter values. Note that the
denser points for a particular parameter (gny, for example) are
not necessarily in the denser regions for another parameter
(gkg> for example), if one considers different plots. Such links
between two parameters can be established only when gng, gxy
are plotted along the two axes of the same 2D marginal. In other
words, a solution set containing parameter values selected from
the densest distributions of each parameter will not necessarily
yield a good solution.

3.2.2. AM model—Individual constraint
We ran MCMC sampling on the AM model using
individualized currents (0.0-0.4 nA at increments of 0.1
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FIGURE 3

Final solution map of the posterior for the 9 parameters of the AM model for the individual constraint of the 0.0 nA injected current. The
diagonal plots show the 1D marginals of each parameter, where the x-axis is the search range of the parameter, and the y-axis is the normalized
distribution. The remaining plots are the 2D marginals of pairs of parameters, where x- and y-axes are the range of the pairs of parameters. Each
point within each plot is a sample found by the MCMC algorithm. The colors indicate the associated loss value of this sample, where the purple
color indicates a lower loss value and the yellow color indicates a higher loss value. Density of points will contribute to the darkness of an area.
The more pronounced a color signifies that more points are overlaid on top of each other. For example, in the top left 2D marginal [gcar, gnal
the dark purple area around [gcar. gnal ~ [9, 1200] is an accumulation of many overlaid points. This density can also be traced back to the 1D
marginals to the top and the left side. The ground truth values are plotted as a purple asterisk for comparison to low loss modes of the
parameter spaces.

nA). This dataset is called the “Individual Constraint.” MCMC sampling produced solution maps of the posteriors
We also ran the MCMC search as a single aggregated for each of the individual currents (see Figure 3 for current
search with all currents at once, which is discussed in 0.0 nA and the Supplementary Figures for all other currents).
a subsequent section. Below we present results from the Within each of the maps one can search for the parameter set
individual constraints. (i.e., a sample of MCMC) with the lowest loss value. Table 2
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TABLE 2 Parameter sets for the lowest loss values calculated by the MCMC algorithm.

Injected current (nA) gNa £CaT gCas gA
Uniform priors [800, 2000] [1, 10] [1,15] [1, 200]
0.0 1484.10 9.54 11.07 78.73
0.1 1543.74 9.90 14.27 73.17
0.2 1768.69 6.64 13.52 118.36
0.3 1461.32 6.63 10.14 86.07
0.4 1973.44 4.06 9.93 168.56
Aggregate 1335.84 9.18 14.97 102.72
Ground truth 1076.39 6.41 10.05 8.04

8KCa 8Kd 8H 8L Tca Loss
[1, 20] [1,200] [0.01,0.5] [0.01, 0.5] [100, 900] -
18.13 144.03 0.027 0.119 767.54 0.0008
19.74 171.16 0.067 0.149 768.77 0.0002
18.01 68.42 0.096 0.075 739.20 0.0348
10.41 62.39 0.425 0.193 452.63 0.0013
1.24 29.14 0.221 0.183 206.94 0.0047
18.84 142.91 0.363 0.163 802.44 8.8109
17.58 124.09 0.113 0.176 653.50 -

The range of the parameter priors is also provided in the first row. The units for the conductances are in pS/pum?.

presents the results of such a search and one can consider
the values listed in this table to be the optimal parameters,
as recovered by MCMC. However, in addition to producing
parameter sets with low loss values, the MCMC algorithm is able
to recover the posterior distribution for all 9 parameters of the
model within the search range for each injected current (0.0 to
0.4 nA, 0.1 nA increments).

We summarized these findings in an arrangement of plots
in Figure 3 for 0.0 nA injected current and for currents 0.1-0.4
nA in the Supplementary material. The rows and columns
of subplots are each associated with one of the parameters
(gNas> gcaT> €CaS» 8A» 8KCa» 8Kd» §H> &1, and 1cg)." The
interpretations of each of the plotted marginal types are
explained in the following:

3.2.2.1. 1D marginals

The diagonal portion of the subplot matrix shows the one-
dimensional (1D) marginals (distribution histograms) of the
solutions for each of the individual parameters. The x-axis
represents the range of values, and the y-axis represents the
probability of that value producing a good fit between data
and model outputs. These distributions provide both the
likeliest solutions (i.e., the peaks) as well as their uncertainty
(distribution around the peaks). For example, the top left 1D
marginal of the sodium conductance gn, has 4 peaks, and
the width of these peaks allows to assess the uncertainty (or
sensitivity) of the sodium conductance gny.

3.2.2.2. 2D marginals

The remaining subplots are the two-dimensional (2D)
marginals of the posterior distributions. Each row and column
represent a parameter 6 of the model, and each of the
points within the subfigure is a solution found by the MCMC
algorithm. To show the probability distribution within the
solution space, we set the alpha value (the transparency of the
1).

A highly probable region has many more points and therefore

color) of each solution to @ = 1073 (where opaque is «

1 Figure 3 resembles a triangular matrix, where the upper right triangle

is omitted because it is symmetric to the lower left triangle
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will appear more opaque. The color of each point represents the
loss value ranging from blue to yellow (low to high, respectively).
These plots show the dependence of each parameter on another.
Some of these dependencies are linear (for example, [row, col]:
[gkd> §Nal)> and some are non-linear (for example, [row, col]:
[gkd> gcat])- Some of the linear dependencies are vertical and
horizontal, signifying that one parameter is independent from
the other (for example, vertical [gq, gcar], [gH, gNa] and
horizontal [tcy, gcas))-

3.2.3. AM model—Aggregate constraint

To test the versatility of the MCMC algorithm at solving the
inverse problem for HH-type equations, we combined all the
input currents into a single analysis called “aggregate constraint”
(more details given in Section methods).

The posterior resulting from the aggregate constraint
analysis is visualized as a solution map in Figure 4. The same
analysis as for the individual constrained can be performed to
determine the peaks and variations of individual parameters
using the 1D marginals and the dependence of two parameters
using the 2D marginals. Compared with the individual
constraint, the loss values are higher; hence the yellow colors
dominate in these maps. The aggregate constraint solution
map encompasses a subset of the individual constraint solution
maps. To illustrate this in Figure 5, we show the intersection
(multiplication of the posterior) of the kernel density estimates
(KDEs) of the solution maps from the aggregate constraint
and the two individual constraints 0.0 and 0.2 nA, as an
example. Figure 5 first depicts the intersection between the
individual constraints 0.0 and 0.2 nA, and compares it to the
aggregate constraint via an additional intersection (elementwise
multiplication) to extract their commonalities. The distinctive
features (in dark blue/purple color) found in the individual
constraints are found in the intersection (bottom) even though
they were not prominent in the aggregate constraint results.
In the next section we formalize the commonalities between
solution maps, which we hinted at with intersections, using a
metric called the Wasserstein distance.
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Solution maps of the posterior for the 9 parameters of the AM model for the aggregate constraint. The diagonal plots show the 1D marginals of
each parameter. The x-axis is the search range of the parameter, and the y-axis is the normalized distribution. The remaining plots are the 2D
marginals of pairs of parameters. The x- and y-axes are the range of the pairs of parameters. Each point within each plot is a sample found by
the MCMC algorithm. The colors indicate the associated loss value of this sample, where purple color indicates a lower loss value and yellow
color indicates a higher loss value. The density of the points will contribute to the darkness of an area. More pronounced color signifies that
more points are overlaid on top of each other. This density can also be traced back to the 1D marginals to the top and the left side. The ground
truth values are plotted as a purple asterisk for comparison to low loss modes of the parameter spaces.

—
1=

n\’mﬂl |

20 0 105 210 O 0.25 0.50 0 0.15 0.30 60 500

‘ﬂlllo

3.2.4. AM model—Distances between posterior
distributions

To demonstrate the differences between the posterior
distributions of the AM model between an individual constraint
and the aggregate constraint, we computed the approximate
Wasserstein distance for each individual injected current’s
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posterior distribution against the aggregate constraint’s posterior
distribution. We carried this out for the posteriors with respect
to all nine parameters as well as individual parameters (via
marginals as depicted along the diagonals of Figures 3, 4).
The approximate Wasserstein distance provides a quantitative
metric of the total cost required to transform one probability
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FIGURE 5

Two-dimensional (gns and gkq) kernel density estimates (KDEs) of the solution maps of different cases, for visualization of the relationship
between the aggregate constraint and the individual constraints. The arrows indicate the flow of the operation. The KDEs of the 0.0 and 0.2 nA
individual constraints are on the left. The KDE of the aggregate constraint is shown on the right. The intersection is the elementwise
multiplication of two or more KDEs. The final intersection between 0.0, 0.2 nA, and aggregate constraint shows the contribution of the 0.0 and
0.2 nA individual constraints to the aggregate constraint. The colormap scales have been adjusted so that values are visible.

distribution to another probability distribution (Givens and
Shortt, 1984). The results are displayed in Table 3, with the
rightmost column showing the Wasserstein distance of the
entire posterior distribution (all nine parameters used) for a
specific injected current. Overall, the posterior distribution of
no injected current (0.0 nA) yields the closest (by Wasserstein
distance) posterior distribution to the aggregate constraint,
followed by 0.2 nA, then 0.1 and 0.3 nA.

The parameter’s posterior distributions that are the most
different between an individual constraint and the aggregate
constraint are the distributions for the parameter gy and
to a lesser extent for gc,r1, ga, gr. This observation for
the Wasserstein distances is consistent with the 1D marginal
solution maps of the posterior when comparing the aggregate
constraint in Figure 4 with Figure 3 and the additional solution
maps of the posterior for other individual currents in the
Supplementary material.

4. Discussion

Alonso and Marder (2019) presented a complex and realistic
neurological model and proposed visualization techniques in
order to help understand how different parameter sets can
have similar model outputs. As did, Van Geit et al. (2007),
Druckmann et al. (2007), and Prinz et al. (2003), they identified
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the challenge to find multiple parameter sets that are optimal
in the sense that they generate good fits between data and
model outputs. Consequently, this raised the need to develop
algorithmic approaches in order to find these multiple sets.

In the present work, we design the inverse problem in a
Bayesian framework, where multiple optimal parameter sets are
part of a single multimodal posterior distribution. Furthermore,
we utilize parallel tempering MCMC in order to recover the
multiple modes in the posterior and visualize them in the
solution maps. As a result, we have filled an important need in
the field of neuroscience.

4.1. Interpreting solution maps and
choosing parameter sets

The solution space that the MCMC algorithm provides (the
solution maps) can be overwhelming especially when one is
familiar with the classical gradient/optimization approach to an
inverse problem (i.e., a single solution). Instead, our Bayesian
framework provides continuous ranges of solutions from which
one can select individual parameter value sets. We present two
viewpoints as methods to interpret these results, the single-
solution viewpoint, and the multimodal viewpoint.
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TABLE 3 Normalized (using the chosen bounds of each parameter) Wasserstein distances for each posterior of individually injected currents against

the aggregated constraint’s posterior.

. 1D Wasserstein distance (WD) 9D WD
Injected current (nA)
&Na 8caT  8Cas gA 8KCa 8Kd 8H 8L Tca All parameters

0.0 0.0372 0.0909 0.0194 0.0231 0.0266 0.0306 0.1173 0.0359 0.0150 0.5264

0.1 0.0382 0.0762 0.0319 0.0788 0.0567 0.0437 0.1195 0.0396 0.0327 0.5319

0.2 0.0355 0.1139 0.0245 0.0926 0.0722 0.0302 0.1197 0.0525 0.0435 0.5690

03 0.0497 0.0582 0.0275 0.0975 0.0293 0.0267 0.0886 0.1076 0.0223 0.5335

0.4 0.0298 0.0816 0.0283 0.0934 0.0193 0.0594 0.0708 0.1074 0.0414 0.5375
aggregate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The distances are organized according to the dimensionality of the Wasserstein distance used: Wasserstein distances for single parameters posteriors use the one-dimensional (1D) distance

while “all parameters” use the nine-dimensional (9D) distance. The 9D distance includes the entire nine-dimensional posterior as a group rather than the one-to-one comparisons of the

1D distance. The final row shows the Wasserstein distances for the aggregate current constraint. All these values are zero as it is the Wasserstein distance to oneself.

TABLE 4 Number of solutions given the injected current as a function
of percentage difference from the best solution.

Injected current (nA) 0.5% 1.0%
0.0 889 1,595
0.1 916 1,618
02 21 118
03 120 233
0.4 149 265

For instance, for a 0.0 nA injected current, 889 solutions are 0.5% away from the best 0.0
nA solution. MCMC is able to find these multiple acceptable solutions. Figure 6 visualizes
an example set of voltage traces generated from these solution parameter sets.

4.1.1. Single-solution viewpoint

As detailed in the Section results, one parameter set amongst
all the posterior samples produces the lowest loss value (see
Table 2). At the simplest interpretation, one could choose this
parameter set as the solution to use. However, the Section results
demonstrates that there are many parameter sets that provide
low loss values which are close to the lowest value. For instance,
we found, for the injected current of 0.0 nA, a total of 889
parameters are within 0.5% of the best parameter set and a total
of 1,595 parameter samples are within 1% of the lowest loss (see
Table 4). Of course, the precise numbers are dependent upon the
number of MCMC iterations, but it shows that vast amounts of
parameters are able to reproduce a given observational data as
it is scored by the loss function. It is important to note that the
loss function plays a crucial role here in measuring the fitness
between data and model outputs (for more details, see Section
impact of loss function on recovered parameters).

Even though the loss values are small for the parameters in
Table 4, the voltage traces produced by these sets are slightly
different. To illustrate these differences, we plot in Figure 6
the first five voltage traces in the order of the loss value from
best to (slightly) worse with respect to the ground truth shown
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Injected Current 0.0 nA

Ground Truth

Loss Value

Best 8.138e™

9.412e*
13.050e™

20 mv|

15.441e*

Y

Worse 18.286e™*

FIGURE 6

First 5 solutions for the injected current of 0 nA. These solutions
are ranked from “best” to “worse” (A—E) according to their loss.
Even a nearly-identical loss can produce a qualitatively different
voltage trace, as shown by traces (D,E). The values for the
parameters sets for each of the voltage traces can be found in
Table 5.

(shown in orange color). The change in loss value is smaller
than 10~2 and nearly identical for the last two traces (d)
and (e). However, these traces visually appear to be somewhat
different, thus illustrating that different parameter sets may yield
similar loss values while producing potentially different traces
when inspected by eye. It highlights the crucial role of the loss
function, and it shows that it is important for physiologist to
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TABLE 5 Parameters for the first 5 solutions for the injected current 0.0 nA. The voltage traces for each of these parameters sets are shown in

Figure 6.

Figure 6 trace  Injected current (nA) gNa gcarT
a 0.0 1484995  9.543
b 0.0 1554.694  8.060
c 0.0 1578.022  9.642
d 0.0 1587.899  9.786
e 0.0 1526351 9.988

8CaS

11.072
13.169
11.247
11.207
11.957

gA 8KCa 8Kd 8H 8L Tca Loss
78.728 18.135 144.027 0.027 0.119 767.541 8.138¢~*
60.339 19.039 165.425 0.192 0.187 728.020 9.412¢~*
43.430 17.730 175.763 0.341 0.214 726.248 13.050e 4
39.391 18.545 178.563 0.104 0.180 723.591 15.441e™*
63.573 16.147 158.435 0.446 0.214 747.016 18.286¢ 4

One can also locate these solutions in some of purple bands found in Figure 3 (i.e., [gna» Tca] = [1485, 767] for Trace a).

inspect the solution maps, visualizing the posterior, to further
investigate or constrain parameter ranges.

4.1.2. Multimodal viewpoint

Because of the preceding observations, it is beneficial to look
for multiple modes or parameter value regions (rather than a
single point) in the posterior: this is illustrated in the 1D and 2D
marginals described in the Section results. In the 1D marginals,
one can assess important parameter values within a range by
the different peaks observed within the distribution as well as
its sensitivity by the width/spread under peaks. Furthermore,
the limitation of parameter bounds defined by the prior can
be determined, if distributions appear to abruptly stop at the
boundaries. For instance, in the 1D marginal for parameter
gkCq found in Figure 3, it appears that the limits of the range
for grxca values may have been too small as the distribution
begins a descent at the upper bound. Such insight can lead the
modeler to reconsider or investigate the range of the parameters.
The 2D marginals help to determine which parameters are
correlated (i.e., trade-off between each other). Taken together,
one can begin to look at solution areas that previously were
left unexplored, perhaps opening new avenues for investigation.
This possibility allows for investigators to be able to examine a
selection of parameter value set solutions found, rather than just
utilizing the parameter value set of the lowest loss solution.

We now recall the ground truth values of the parameters
that we used in the numerical experiments (see Section methods)
and compare them to the plots of the posteriors in Figures 3, 4.
We note that the parameter values used to generate the ground
truth do not always correspond to the areas under the peaks in
the marginals of the plotted solution maps of the posterior. For
instance, the parameter values of gng, g, and g7, used for the
ground truth do not correspond to areas of high density in the
solution maps. We believe one possible reason for this is that
some of the ground truth parameter values give rise to models
that are less robust compared with the parameter values where
peaks in the posterior are higher and/or wider as recovered
by MCMC. Since the presented algorithm provides parameter
sensitivities and the solution maps of the posterior enable to
interpret these sensitivities, an evaluation of the robustness of
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estimated parameters is possible. This can lead to potentially
important insights toward understanding neuron models.

4.2. Impact of loss function on recovered
parameters

The impact of the choice of loss function becomes apparent
in Figure 7, which shows the ground truth voltage trace
generated from the AM model with the ground truth set of
parameters (orange color). This trace serves as the data in
our inverse problem. To measure the fit between data and
model outputs, we consider a particular loss function that is
derived from the loss function employed by Alonso and Marder
(2019). Comparing the orange (ground truth) and the blue
trace graphs, we observe discrepancies between the traces that
may appear as inadequate fits from a physiological perspective.
These discrepancies are caused by the loss function, which
defines a distance metric between traces. In essence, a possible
limitation of the chosen loss function is that it quantifies
disparate voltage traces as too similar by giving it a low loss value.
This demonstrates the difficulty of finding appropriate losses for
inverse modeling in neuroscience and is one main reason for
manual and heuristic approaches for solving inverse problems
governed by neural dynamics models.

To address this issue, Alonso and Marder (2019) invested
efforts to refine the loss to specific inference setups that are
targeted. This approach can be prone to human bias and is labor
intensive. An alternative approach is taken in the present work,
because we aim to automate the inference as much as possible.
The idea is to augment the measure for fitting data and model
outputs with additional information. In this work, we proposed
to augment the loss function with additional voltage traces that
are generated at different input currents. This approach results
in the inverse problem setup with aggregated current constraint,
and we observe traces from solution sets using this constraint
are better than the individual constraint for some currents (gray
trace at 0.2 nA). An alternative approach to the aggregate current
constraint would be to design new loss functions (for individual
currents), which is direction for future work.
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and 8.8109 for the aggregate constraint.

Individual Constraint = =—

Each row of this figure shows the voltage traces for the ground truth (top orange), for the best solution sets given the individual constraints
(middle blue) and the best solution set given the aggregate constraint (bottom gray). Each column shows the traces for different injected
currents. Loss values for these parameter solution sets are 0.0008 for the 0.0 nA individual constraint, 0.0348 for the 0.2 nA individual constraint,

0.2 nA

2s
Aggregate Constraint e

4.3. Physiological meaning and future
opportunities

Extracting physiological information from the solution
maps is the ultimate goal of this exercise. For instance, one
can rank the importance of a parameter by looking at the 2D
marginals. Looking at the bottom row of Figure 3, we observe
that ¢, is highly correlated with gg; while gc,7 and gcgs are
more independent of ¢, for the injection current constraint 0.0
nA. Therefore, the analysis shows that the calcium component of
the afterhyperpolarization (AHP) needed to replicate the ground
truth spiking traces is dominated by the time constant 7¢,;.2

Alonso and Marder (2019) showed that multiple parameter
estimations exist for solving one neuronal dynamics model. Our
framework complements this finding by providing one possible
method for which a larger sets of parameters can be found that
reproduce desired model behavior. We believe that the observed
multimodal posterior is the norm rather than the exception
in the field of neuroscience. As models increase in complexity
(and therefore increase in parameters), the likelihood of a
multimodal solution will increase. For instance, although studies
of variability of neuronal behavior have concentrated on the
role of ion channel density (e.g., Marder and Goaillard, 2006),
changes in the voltage dependence of channels resulting from
changes in phosphorylation (Park et al., 2006) or the binding
of accessory proteins (Bosch et al., 2015) are likely to be
equally important. The advantage of Bayesian inference together

2 Note thatto be able to reach such a conclusion with (more traditional)
optimization techniques that deliver point estimates, a sensitivity analysis

would be required in addition to finding an optimum.
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with MCMC is that these additional variables can be taken
into account.

The current MCMC sampling setup operates within
the bounds based on our prior assumptions from general
knowledge, literature review, or colleagues. Another viewpoint
of our results is that our MCMC-based Bayesian framework
provides the ability to “test” these prior assumptions using the
experimental data and system model by looking at the shape
of the posterior, as mentioned above. Peaks at the boundaries
of the ranges are likely to indicate too narrow a range of
sampled parameter values (see parameters g4 and gxc, in
Figure 3). This could lead experimentalists to look beyond their
prior assumptions.

Finally, this method has the potential to help beyond
ion channel parameter inference as was done here with
the AM model. As observed in the literature, it remains a
fundamental challenge to find viable sets of parameters for
compartmental models, for instance, see Hay et al. (2013) for
pyramid cell models and Zang et al. (2018) for Purkinje cell
models. An even greater challenge is the description of the
parameters spaces, which was noted to be important (Hay
et al,, 2013). The present work shows a potential pathway to
addressing these challenges for such complex compartmental
models. It should be noted as well that simulators, such
as NEURON (Carnevale and Hines, 2006), can be used
to generate the traces to feed into the loss function and
parallel tempering MCMC. Overcoming these challenges in
the future would bridge an important gap that is currently
present in neuroscience: the gap between the inference with
model-generated ground truth data and the inference with
experimentally observed (Van Geit et al., 2007) data of complex
(compartmental) models.
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