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Probing site-resolved correlations in a spin 
system of ultracold molecules

Lysander Christakis1,2, Jason S. Rosenberg1,2, Ravin Raj1, Sungjae Chi1, Alan Morningstar1, 
David A. Huse1, Zoe Z. Yan1 & Waseem S. Bakr1 ✉

Synthetic quantum systems with interacting constituents play an important role  
in quantum information processing and in explaining fundamental phenomena  
in many-body physics. Following impressive advances in cooling and trapping 
techniques, ensembles of ultracold polar molecules have emerged as a promising 
platform that combines several advantageous properties1–11. These include a large  
set of internal states with long coherence times12–17 and long-range, anisotropic 
interactions. These features could enable the exploration of intriguing phases of 
correlated quantum matter, such as topological superfluids18, quantum spin liquids19, 
fractional Chern insulators20 and quantum magnets21,22. Probing correlations in these 
phases is crucial to understanding their properties, necessitating the development of 
new experimental techniques. Here we use quantum gas microscopy23 to measure the 
site-resolved dynamics of quantum correlations of polar 23Na87Rb molecules confined 
in a two-dimensional optical lattice. By using two rotational states of the molecules, 
we realize a spin-1/2 system with dipolar interactions between particles, producing a 
quantum spin-exchange model21,22,24,25. We study the evolution of correlations during 
the thermalization process of an out-of-equilibrium spin system for both spatially 
isotropic and anisotropic interactions. Furthermore, we examine the correlation 
dynamics of a spin-anisotropic Heisenberg model engineered from the native 
spin-exchange model by using periodic microwave pulses26–28. These experiments 
push the frontier of probing and controlling interacting systems of ultracold 
molecules, with prospects for exploring new regimes of quantum matter and 
characterizing entangled states that are useful for quantum computation29,30 and 
metrology31.

Ultracold dipolar particles trapped in optical arrays have emerged as a 
powerful and flexible platform to probe idealized models of quantum 
many-body physics with long-range interactions32,33. For example, 
studies that used polar molecules9–11, Rydberg atoms34 and magnetic  
atoms35 have explored a host of quantum phenomena including quan-
tum magnetism25,28,36, symmetry-protected topological phases37 and 
extended Hubbard models38. The platform of polar molecules in par-
ticular has several unique properties9–11. Ultracold polar molecules pos-
sess a tunable dipole moment in their electronic ground state, enabling 
strong, long-range interactions compatible with negligible population 
relaxation over experimental timescales. In addition, compared to 
atoms, molecules have rotational and vibrational degrees of freedom 
that can be harnessed to store information in a large local Hilbert space 
and to engineer a rich set of many-body Hamiltonians. However, this 
complex internal structure also presents its own experimental chal-
lenges in the preparation and detection of quantum-state-controlled 
ensembles of molecules.

Two complementary approaches have been developed to address 
these challenges. On the one hand, the assembly of heteronuclear mol-
ecules from evaporatively cooled atomic quantum gases1 has generated 

bulk ensembles with high phase space density, enabling the recent 
creation of degenerate molecular Fermi gases for which the collective 
properties can be characterized with absorption imaging techniques3,7. 
On the other hand, molecules have been prepared in optical tweezers39,  
realizing a bottom-up approach to controlling small numbers of 
molecules with single-molecule detection capabilities4,5. Here we 
demonstrate quantum gas microscopy of polar 23Na87Rb molecules 
in an optical lattice, combining features of both approaches: large 
numbers of molecules in their hyperfine, rovibrational and motional 
ground state, coupled with single-molecule detection. Quantum gas 
microscopy enables high-fidelity and simultaneous optical detection 
of ensembles of particles in a regime of low temperatures, high density 
and strong interactions. Pioneered with atomic gases, this technique 
has enabled unprecedented local observations of quantum phase tran-
sitions, spin and charge correlations in Hubbard systems and impu-
rity physics23. Recently, we have extended microscopy techniques to 
quantum gases of non-interacting excited-state molecules, observing 
bosonic bunching correlations in their density fluctuations40.

In this work, we apply our ability to measure microscopic correlations 
to study out-of-equilibrium spin systems realized with interacting 
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molecules. To that end, we prepare the molecules in their rovibrational 
ground state, which possesses a large body-frame electric dipole 
moment. We encode a spin-1/2 in the ground and first excited rotational 
states of the molecules. An effective spin interaction arises from the 
resonant exchange of rotational excitations between pairs of molecules, 
as was previously demonstrated with polar 40K87Rb molecules25,41. Here, 
with molecules pinned in a deep two-dimensional (2D) optical lattice, 
the system realizes the quantum XY spin-exchange Hamiltonian21,22,24
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where V J θ( ) = ⟨(1 − 3cos )/ ⟩2 3a a , J characterizes the strength of the 
spin-exchange interaction, S σ= /2i

X Y
i
X Y( ) ( )  are spin-1/2 operators for 

molecule i, ri is the position of molecule i in units of the lattice constant 
alat and θ is the angle between the quantization axis and the vector a. 
The quantum average ⟨·⟩ accounts for the finite size of the molecule 
centre-of-mass wavefunctions. XY Hamiltonians are some of the most 
extensively studied models for magnetism and excitation transport. 
However, like most quantum spin models, many open questions in 
computationally intractable regimes remain, such as the prediction 
of low-temperature phases in the presence of frustration or the 
long-time dynamics of disordered or driven systems. Polar molecules 
are poised to be a leading platform to simulate such spin models 
because of the large ratio of spin coherence times to the interaction 
timescale h/∣ J∣ that we demonstrate in this work, which compares 
favourably to other systems used for studying similar physics such as 
Rydberg atoms28. We observe the effects of the dipolar interactions by 
performing a series of quench dynamics experiments, in which we 

initialize the molecules in a product state and then evolve under the 
interaction Hamiltonian in equation (1), after which we measure the 
correlations between the molecules with single-site resolution. For a 
lattice with low filling, the correlations exhibit weakly damped oscil-
lations with a frequency that depends on the site displacement, directly 
reflecting the long-range and anisotropic character of the interactions.

Molecule preparation and detection
We start our experiments by preparing an array of ground-state NaRb 
molecules42 in a 2D optical lattice (Fig. 1a). The molecules are formed 
by loading degenerate Bose gases of Na and Rb into the lattice and 
using magnetoassociation followed by stimulated Raman adiabatic 
passage (STIRAP) to convert atom pairs into molecules in their rovi-
brational and hyperfine ground state43,44. The lattice is sufficiently deep 
such that tunnelling of molecules between lattice sites is negligible 
over the timescale of the experiments. The maximum achieved filling 
of ground-state molecules in the lattice is 15(1)%, taking into account 
the ground-state molecule detection efficiency of 92.0(3)% (Fig. 1c). 
To simulate an effective spin-1/2 system, we use microwaves near 
4.18 GHz to drive transitions between a hyperfine state in the ground 
manifold (N = 0) and a hyperfine state in the first excited rotational 
manifold (N = 1), labelled ∣↑⟩  and ↓⟩∣ , respectively. For imaging, we 
transfer molecules in ∣↑⟩ to the weakly bound Feshbach state, which 
we then dissociated. We detect the resulting Rb atoms with fluorescence 
imaging, allowing us to extract the position of each molecule in ∣↑⟩  
with single-site resolution40.

Rotational coherence
To benchmark the coherence of the two-level system encoded in the 
rotational states of the molecules, we perform a Ramsey interferom-
etry experiment. Starting with all of the molecules in ↑⟩∣ , we apply two 
π/2 pulses separated by a total free precession time T (Fig. 2a). A spin 
echo π pulse can be inserted in the middle of the precession time, which 
mitigates dephasing owing to quasi-static sources of single-particle 
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Fig. 1 | Molecular quantum gas microscope. a, Schematic of the molecular 
quantum gas microscope. A high numerical-aperture objective is used to 
resolve the positions of individual molecules confined to a 2D optical lattice.  
b, Representative fluorescence images of Feshbach molecules (top left) and 
ground-state molecules (bottom left) taken with the microscope and the 
positions recorded with a reconstruction algorithm (top right and bottom 
right, respectively). Scale bars, 5 μm. c, Average density profile of a cloud of 
Feshbach molecules (purple circles) and the corresponding profile of detected 
molecules after round-trip STIRAP (orange squares) versus radial distance 
from the centre of the molecular gas. Error bars represent standard error of the 
mean (s.e.m.). d, Schematic of the rotational states used in the experiment, 
neglecting the hyperfine structure. The degeneracy of the rotational states  
is lifted by coupling between nuclear and rotational degrees of freedom  
(not shown, Methods). Our pseudospin states are chosen to be N m, ⟩ = 0, 0⟩N∣ ∣  
and an excited rotational state with predominant 1, − 1⟩∣  character.
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Fig. 2 | Rotational state coherence. a, Microwave pulse sequence for the 
Ramsey coherence measurement including the spin echo π pulse. b, Ramsey 
fringe contrast versus total precession time, with (blue circles) and without 
(red squares) the spin echo pulse in the middle of the precession time, for  
a sample with a peak filling of 1.0(2)%. The blue line shows the predicted 
dynamics from exact diagonalization, and the red dashed line is an exponential 
decay fit for the Ramsey contrast data without a spin echo. Inset: representative 
Ramsey fringes from 10 ms and 300 ms precession times with a spin echo. Error 
bars represent s.e.m.
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decoherence but not dipolar interactions. The phase ϕ of the final π/2 
pulse is scanned and the number of molecules in ∣↑⟩ is recorded. For 
each precession time T, we fit the measured molecule number N↑ 
(Fig. 2b inset) to N A ϕ ϕ B= cos( + ) +↑ 0  to extract the contrast A/B. We 
dilute the sample to have a peak molecule filling of 1.0(2)% to reduce 
the influence of dipolar interactions between the molecules (additional 
data at higher densities are shown in Extended Data Fig. 3).

The results of this experiment are shown in Fig. 2. Without a spin 
echo pulse, the observed dephasing (1/e time of 56(2) ms) is faster 
than that predicted for an interacting XY spin system described by 
equation (1), most probably because of the residual differential light 
shifts (Methods). However, with the addition of a single spin echo π 
pulse, we observe that the decay of the experimental contrast is con-
sistent with the dynamics expected from equation (1) out to 400 ms. 
This indicates that the coherence time of the two-level system is much 
longer than the expected millisecond-scale nearest-neighbour inter-
action time, which is a favourable regime for experiments studying 
coherent many-body dynamics, such as spin-squeezing or preparing 
rotational superfluids31,45.

Correlation dynamics in an XY spin model
Having established that the molecules in the lattice can be modelled 
as a closed quantum spin system out to long times, we probe the growth 
of their correlations due to dipolar interactions after a quench. For 
these experiments, we set the peak molecule filling to 5.4(4)%, which 
is deliberately chosen to be lower than our maximum filling shown in 
Fig. 1 to slow down the thermalization timescale compared to the 
nearest-neighbour interaction timescale. Under these conditions, we 
expect to observe coherent oscillations in the dynamics of various 
observables. To set the quantization axis for the molecules, we apply 
an external magnetic field pointing perpendicular to the 2D lattice 

plane so that the dipolar interactions between the molecules are iso-
tropic. The quench is initiated with a global π/2 rotation to transfer 
the molecules from ∣↑⟩ to X+ ⟩ = ( ↓⟩ + ↑⟩ )/ 2∣ ∣ ∣ . The interacting mol-
ecules then evolve for a time T, with an odd number of spin echo pulses 
introduced to mitigate residual effective fields (Methods). Finally, we 
rotate the spins into the measurement basis with a final π/2 pulse, 
which is 180° out of phase with the initial pulse so that in the absence 
of any many-body interactions all of the molecules are transferred to 

↓⟩∣  and, therefore, appear dark to our detection scheme. Any mole-
cules in ↑⟩∣  are then detected and their positions in the lattice are 
recorded.

The results of this experiment, along with comparison to numerical 
simulations, can be seen in Fig. 3. Initially there are a negligible number 
of molecules in ↑⟩∣ , but by 18 ms approximately 30% of the molecules 
are in ∣↑⟩. However, this overall loss of magnetization during the evo-
lution of the system is not monotonic, as clear oscillations in the mol-
ecule number can be seen in Fig. 3a in good agreement with the 
theoretically expected frequency of ∣V(e)∣/2h = 241 Hz, where e = (1, 0), 
corresponding to the interaction energy between spins on neighbour-
ing sites. Although such oscillations have been previously observed25, 
our site-resolved measurements allow us to extract the lattice-averaged 
correlation function Na r r r a r r a∑C T N n n n n( , ) = ( / ) (⟨ ⟩ − ⟨ ⟩⟨ ⟩),s

↑
+

↑ ↑
+

↑  yielding 
a more detailed characterization of the dynamics of the system. Here, 
⟨·⟩ denotes averaging over the quantum state of the many-body spin 
system as well as classical realizations of the dilute lattice filling, and 
Ns is the number of sites in the region used to evaluate the correlator. 
The normalization factor is N ρ= (⟨ ⟩ )2

lat
−1, where ρ⟨ ⟩2

lat is the lattice 
average of the square of the filling fraction (Methods).

At short evolution times the molecules detected in ↑⟩∣  are predom-
inantly nearby pairs or few-spin clusters, as can be seen in a sample 
fluorescence image (Fig. 3a inset) and the corresponding correlation 
matrices in Fig. 3b. This is because isolated spins are transferred to the 
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Fig. 3 | Correlation dynamics in an XY spin model. a, Fraction of molecules in 
∣↑⟩ versus time. Insets show representative fluorescence images from 2 ms 
(left), 6 ms (middle) and 14 ms (right). b, Representative correlation matrices 
corresponding to the precession times for the inset images in a. All correlations 
are averaged along the lattice symmetry axes. c, Line plots showing the 
correlations versus precession time for the specific displacements shown in 
the inset lattice diagrams. Top: nearest-neighbour correlations. Middle: 

next-nearest-neighbour correlations. Bottom: next-next-nearest-neighbour 
correlations. Fifty images were collected for each precession time. The 
correlations were averaged along the lattice symmetry axes. All shaded bands 
are theory predictions of the dynamics from exact diagonalization of the 
dipolar XY model. The theoretical predictions for the correlations were scaled 
vertically to best fit the experimental data for the shown displacements 
simultaneously (Methods). Error bars represent s.e.m.
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undetected state ∣↓⟩, whereas interactions play an important role in 
the dynamics of pairs or clusters of nearby spins, so they can evolve 
into the detected state in a correlated way. For example, the quantum 
state of an isolated pair of molecules with displacement a at the end  
of a Ramsey sequence with evolution time T is V T ħsin( ( ) /4 ) ↑↑�−∣a

∣ai V T ħcos( ( ) /4 ) ↓↓�  up to a global phase factor. This two-molecule 
entangling-disentangling dynamic is responsible for an oscillatory 
behaviour of the correlations given by C T V T( , ) sin ( ( ) /4 )2a a ℏ∼  in the 
limit of vanishing lattice filling and for short evolution times. This lim-
iting case underlies the correlation oscillations in the data in Fig. 3c. It 
was observed that these oscillations damp slowly both in the data and 
in exact diagonalization calculations by using the dipolar XY model. 
Because the numerics are performed for a closed quantum system, we 
understand the damping to be due to corrections with the simple 
two-spin picture above. Although at short times pairs of nearby spins 
are the dominant contribution to the dynamics, at later times  
couplings to spins that are farther away play an increasingly important 
role.

Tunable spatial anisotropy
Another defining characteristic of the dipole–dipole interaction is its 
spatial anisotropy. By performing the same quench dynamics experi-
ment but with the magnetic field in the plane and tilted 9° with respect 
to the lattice axes, we can clearly see the effect of the anisotropic inter-
action potential in the dynamics46. The resulting correlations are shown 
in Fig. 4, alongside the full correlation matrices for the isotropic con-
figuration (discussed in the last section), to highlight the change from 

isotropic to anisotropic correlations. For example, in contrast to the 
correlations shown for the isotropic case, the correlations along the x 
axis grow faster than the correlations along the y axis (where x and y are 
the lattice axes), as expected because the interaction energy is a factor 
of approximately 2 stronger along this axis. In addition, the interac-
tion potential is zero for θ = 54.7°, which falls near the y  =  x diagonal, 
and, therefore, we expect correlations to be highly suppressed along 
that direction. We observe this in the experimental correlation data 
in Fig. 4h, in which it can be seen at 4 and 5 ms that the y  = −x diagonal 
has strong correlations but there are negligible correlations for the 
y  =  x diagonal. Our correlation data demonstrate the ability to easily 
tune the molecular interaction anisotropy with the direction of the 
magnetic field, which will be useful in future studies of frustrated spin  
systems.

Floquet engineering of an XXZ model
Although the XY model is the natural spin Hamiltonian implemented 
in our polar molecule system, one can go beyond the resonant 
spin-exchange term to realize more complex interactions, such as 
the XXZ or XYZ models, by using microwave Floquet engineering. The 
essence of this technique is to modulate the Hamiltonian in time at a 
rate faster than the interaction timescale, so that the time-averaged 
Hamiltonian is different from the original Hamiltonian26–28. Here we use 
rapid periodic π/2 rotations to realize an effective XXZ Hamiltonian. 
An additional π pulse in the centre of the cycle serves as a spin echo to 
cancel the dephasing due to any effective fields without affecting the 
many-body interactions. The total Floquet cycle can be seen in Fig. 5a. 
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Fig. 4 | Tunable spatial anisotropy of the dipolar interactions. a, Interaction 
potential (V/h), where h is Planck’s constant, between the molecules when  
the magnetic field B is perpendicular to the 2D lattice plane (Methods).  
b, Nearest-neighbour correlations along the vertical (yellow squares) and 
horizontal (purple circles) lattice axes for different evolution times for the 
isotropic configuration. c, Next-nearest-neighbour correlations along y = x 
(blue circles) and y = −x (red squares) for different evolution times for the 
isotropic configuration. d, Full correlation matrices obtained from 200 
experimental iterations for each evolution time (left) compared to theory 
predictions from exact diagonalization (right). e, Interaction potential 
between the molecules when the magnetic field is in the 2D lattice plane  
and oriented 9° from the lattice axes (Methods). f, Nearest-neighbour 

correlations along the vertical (yellow squares) and horizontal (purple circles) 
lattice axes for different evolution times for the anisotropic configuration.  
g, Next-nearest-neighbour correlations along y = x (blue circles) and y = −x  
(red squares) for different evolution times for the spatially anisotropic 
configuration. h, Full correlation matrices obtained from 50 experimental 
iterations for each evolution time (left) compared to theory predictions from 
exact diagonalization (right). All shaded bands are theory predictions from 
exact diagonalization of the dipolar XY model. Inset lattice diagrams show the 
specific site displacements used to calculate the correlations. The theoretical 
predictions for the correlations were scaled vertically to best fit the 
experimental data for the shown displacements simultaneously (Methods). 
Error bars represent s.e.m.
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The effect of each Floquet cycle is to evolve the molecules for an equal 
amount of time under HXY and HXZ, time averaging to

∑H V S S S S S S= ( − ) +
1
2

( + ) (2)XYY
i j

i j i
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which is equivalent to the XXZ model with a permutation of the axis 
labels.

One important feature of the Hamiltonian in equation (2) is that the 
magnetization along X is conserved, whereas that along Y and Z are 
not, owing to the U(1) symmetry corresponding to rotations about the 
X axis. Therefore, a key test of engineering the correct effective Ham-
iltonian is to verify this spin conservation. We prepare three distinct 
initial states, corresponding to all of the spins pointing along X, Y or Z, 
and then subject the spins to the same Floquet Hamiltonian by using 
the pulse sequence shown in Fig. 5a. The density of the molecules was 
8.1(8)%, and the quantization axis was perpendicular to the 2D lattice 
so that the interactions are isotropic in the plane. Finally, we measured 
the total number of spins that remained in the initial state for different 
evolution times.

The results of this experiment are shown in Fig. 5b. The magnetiza-
tion of molecules initially prepared in the X+ ⟩∣  state remains approx-
imately unchanged throughout the dynamics, whereas that of 
molecules prepared in the Y+ ⟩∣  and Z+ ⟩∣  states decays towards the 
unpolarized value of 1/2. In addition, the data is Y–Z symmetric, as 
expected from equation (2). Comparing the experimental data to exact 
diagonalization calculations by using an XYY model shows reasonable 
agreement, indicating that the time-averaged Hamiltonian is an appro-
priate descriptor of the observed dynamics.

Finally, we can measure the molecule correlations as a function of 
time to test whether the oscillation frequency changes for the Floquet 
dynamics compared to the original XY Hamiltonian. Starting with  
a peak molecule filling of 3.1(4)%, we prepare all of the spins in ↑⟩∣ , 
quenched the system to evolve under the Floquet Hamiltonian and 
then measure the correlations between the molecules after each  

Floquet cycle. By comparing the data in Fig. 5c to the XY experiment 
in Fig. 3c, we can see that the oscillation frequency for the nearest- 
neighbour correlations has been halved, as expected for the desired 
Floquet Hamiltonian. To conclude, we have demonstrated that micro-
wave Floquet engineering of polar molecule systems enables the study 
of spin-anisotropic Heisenberg models, further enriching the quantum 
simulation toolbox in this system.

Outlook
The experiments described above demonstrate the powerful capabili-
ties of ultracold molecules to study dynamics in the context of quan-
tum magnetism, and create new possibilities for studying quantum 
physics with ultracold molecules more broadly. The ability to detect 
correlations with single-site resolution could be used in other experi-
ments to distinguish different equilibrium phases of matter, such as 
rotational superfluids that should emerge by adiabatic preparation 
of the ground state of the XY Hamiltonian even at the current demon-
strated filling fractions45. The single-site resolution also enables optical 
manipulation of the underlying potential at the smallest relevant length 
scale, allowing the initialization of arbitrary configurations to study 
impurity physics or transport dynamics23,47. In addition, although so 
far we have demonstrated interactions between molecules that are 
frozen in the lattice, complex phases of matter are also expected to 
emerge upon allowing the molecules to tunnel throughout the lattice. 
The interplay between the dipolar interactions and the kinetic energy 
of the molecules is predicted to yield a rich phase diagram consist
ing of superfluid and supersolid phases, as well as fractional Mott  
insulators24,48,49. Our platform is particularly well-suited to study this 
physics owing to the strong dipolar interaction strength compared to 
magnetic atoms35, as well as the lack of collective decay mechanisms 
of the molecules compared to Rydberg-dressed atoms46. Finally, the 
capabilities demonstrated here to measure correlations between inter-
acting polar molecules may prove useful in the context of quantum 
computing29,30, for which they could be used to verify the creation of 
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Fig. 5 | Floquet engineering of an anisotropic Heisenberg model. a, Pulse 
sequence used for an individual Floquet cycle, which is repeated n times.  
Each microwave pulse separates an equal time segment τ/4, where τ = 1 ms,  
the π-pulse duration is 56.2 μs and the total Floquet cycle time TF = 1.1124 ms.  
b, Magnetization dynamics for three different initial states. Red circles: X+ ⟩∣  
initial state. Orange squares: Y+ ⟩∣  initial state. Yellow triangles: ∣ Z+ ⟩ initial state. 
The dashed line indicates the demagnetized value with N↑ = N0/2. c, Correlation 
dynamics for a ∣ Z+ ⟩ initial state. Top: nearest-neighbour correlations. Middle: 

next-nearest-neighbour correlations. Bottom: next-next-nearest-neighbour 
correlations. All shaded bands are theory predictions of the dynamics from 
exact diagonalization of the XYY Hamiltonian. Inset lattice diagrams show  
the specific site displacements used to calculate the correlations. The 
theoretical predictions for the correlations were scaled vertically to best fit  
the experimental data for the shown displacements simultaneously (Methods). 
Error bars represent s.e.m.
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Bell and Greenberger–Horne–Zeilinger states, as well as for quantum 
error correction.
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Methods

Molecule formation and imaging
The molecules are created by first loading a doubly degenerate mixture 
of Na and Rb atoms into a single plane of a three-dimensional (3D) 
optical lattice. The 2D lattice in the x–y plane has a 752 nm spacing and 
the vertical lattice has a 3.8 μm spacing. We then sweep the magnetic 
field across an interspecies Feshbach resonance at 347.6 G to form 
weakly bound molecules. Each lattice site that contains one Na and 
one Rb atom forms a weakly bound molecule43,44, whereas sites with 
more than one atom of each species are emptied by three-body loss 
processes. The remaining Na and Rb atoms that do not form molecules 
are removed with resonant light pulses. The 2D lattice depth for all of 
the experiments is 49ER with the exception of the coherence data for 
which the lattice depth is 34ER. Here E h ma= /8R

2
lat
2 , where m is the mol-

ecule mass and alat = 752 nm. At both depths, the tunnelling of the mol-
ecules in the lattice is negligible over the course of the experiment. 
Details of the optical potentials and Feshbach molecule creation pro-
cess can be found in ref. 40.

After forming the Feshbach molecules, we ramp the magnetic field 
to 335 G and transfer the molecules to the electronic and rovibrational 
ground state by using STIRAP. Following the procedure described in 
ref. 42, we use two external-cavity diode lasers (Toptica DL Pro) with 
wavelengths of 770 nm and 1248 nm, locked to a common high-finesse 
ultra-low expansion cavity (Stable Laser Systems) by using the the 
Pound–Drever–Hall technique. The cavity free-spectral range is 1.5 GHz 
and the finesse is 34,000 at 770 nm and 43,000 at 1,248 nm. We use a 
fibre electro-optic modulator for each laser (EOSpace) to tune the 
frequency of the laser relative to that of a fixed cavity mode, as well as 
to generate sidebands for the Pound–Drever–Hall lock. The laser 
linewidth is narrowed by active feedback of the diode current, whereas 
slow drifts in the frequency are compensated with a separate feedback 
loop stabilizing the laser piezo. Each laser uses a FALC 110 (Toptica) 
laser locking module for both feedback loops. The Rabi frequencies 
are 2π × 0.70(4) MHz and 2π × 0.9(1) MHz for the 1,248 nm and 770 nm 
transitions respectively, and we typically achieve 93.9(3)% STIRAP effi-
ciency. The molecules are prepared in the stretched hyperfine state 
∣ ∣m m, ⟩ = 3/2, 3/2⟩I I,Na ,Rb . To deliberately dilute the density of the mol-
ecules for some of the experiments presented in the paper, we reduce 
the one-way STIRAP efficiency by decreasing the optical power in the 
770 nm beam to reach the desired filling fraction.

To detect the molecules, we reverse the STIRAP process described 
above to convert molecules in ∣↑⟩ back to weakly bound Feshbach mol-
ecules. The Feshbach molecules are dissociated and we then image the 
corresponding Rb atoms by using fluorescence to tag the positions of 
the molecules in ↑⟩∣  within the lattice40. We do not detect the molecules 
in ∣↓⟩, so our current measurements do not distinguish between that 
state and an empty site, although this may be achieved in future work 
with bilayer techniques used for spin-resolved imaging in atomic  
microscopes50,51.

Rotational and hyperfine states
To simulate an effective spin-1/2 system, it is necessary to couple two 
states that are well separated in energy from other molecular states 
and that are as insensitive as possible to noise from variations in mag-
netic or optical fields. To achieve this condition, we use microwaves 
resonant with the transition between the ground and first excited rota-
tional state of the molecules. In general the molecule can be in a super-
position of states labelled N m m m, , , ⟩N I I,Na ,Rb∣ , where N is the rotational 
angular momentum of the molecule, mN is its projection onto the 
quantization axis set by the external magnetic field, and mI,Na(Rb) is the 
projection of the nuclear spin of the Na(Rb) atom. A representative 
microwave spectrum with several of the rotational and hyperfine tran-
sitions is shown in Extended Data Fig. 1, along with a representative 
Rabi oscillation between the specific pair of states used in this work.

One important source of single-particle decoherence is the differen
tial dynamic polarizability ∣ ∣α α αΔ = −↑⟩ ↓⟩  (refs. 13,16,52–55). This causes 
an unwanted shift of microwave transition frequencies across the trap 
because of the spatially varying intensity profile of the trapping light. 
To mitigate this, we choose two specific magnetic field configurations 
that produce near ‘magic’ trapping conditions, where ∣α αΔ / < 0.01↑⟩ . 
For the experiments with isotropic interactions, the magnetic field is 
60 G, whereas for anisotropic interactions the magnetic field is 4.1 G. 
Although a higher field would have been preferable for the latter case 
to increase the energy splittings to other states outside of the Hilbert 
space of the spin system, our coil geometry limits the maximum mag-
netic field that can be applied in the lattice plane. Our technique makes 
use of the fact that, at zero electric field and weak magnetic fields, mN 
is not a good quantum number for the molecular Hamiltonian owing 
to strong hyperfine couplings, especially the nuclear quadrupole 
moment coupling in N = 1. This coupling gives a specific N = 1 state an 
admixture of other hyperfine states, which can be leveraged to match 
the ↓⟩∣  polarizability to the ∣↑⟩ polarizability. The three main compo-
nents of ↓⟩∣  are

↓⟩ ≈ 0.688 1, − 1, 3/2, 3/2⟩ − 0.569 1, 0, 3/2, 1/2⟩
+ 0.448 1, 1, 3/2, − 1/2⟩

(3)
∣ ∣
∣

at 60 G, and

↓⟩ ≈ 0.715 1, − 1, 3/2, 3/2⟩ − 0.562 1, 0, 3/2, 1/2⟩
+ 0.413 1, 1, 3/2, − 1/2⟩

(4)
∣ ∣ ∣

∣

at 4.1 G, in which the admixtures are calculated by using molecular 
parameters from refs. 54,56. Calculated differential polarizabilities are 
shown in Extended Data Fig. 2. Over the spatial extent of the cloud, the 
microwave transition frequency varies by less than 20 Hz because of the 
inhomogeneous intensity profile. This is consistent with the observed 
coherence decay time in the absence of a spin echo pulse (Fig. 2).

Microwave control
After transferring the molecules to the rovibrational ground state, 
transitions to the first excited rotational state are induced using micro-
waves near 4.18 GHz. The microwaves are generated by mixing a local 
oscillator at 4.13 GHz provided by an analogue signal generator (Agi-
lent E8257C) with an intermediate frequency provided by an arbitrary 
waveform generator (Keysight 33600A). The intermediate frequency 
is 50.13747 MHz when the magnetic field is 60 G, and 50.08300 MHz 
when the magnetic field is 4.1 G. The mixed signal is then amplified 
(Mini-Circuits ZHL-5W-63-S+) before being sent to a home built helical 
antenna mounted underneath the vacuum chamber. We programme 
the Keysight arbitrary waveform generator to set the duration, ampli-
tude and phase necessary for each pulse within the experiments, and 
keep the Agilent signal generator at fixed frequency, amplitude and 
phase. The oven-controlled crystal oscillator inside the Agilent signal 
generator is used as a common 10 MHz clock for both instruments.

Pulse sequences
We use a microwave Rabi frequency of 9 kHz for all of the experiments 
with spatially isotropic interactions. This frequency is chosen to be 
large compared to the intermolecular interactions (<1 kHz) but small 
compared to the splitting between the different hyperfine states to 
avoid driving transitions outside of the effective two-level system. 
However, for the spatially anisotropic correlation measurement  
we decrease the Rabi frequency to 4 kHz to minimize Fourier broad-
ening from the microwave pulses, since the hyperfine states are 
more closely spaced at the lower magnetic field that we use for these  
experiments.

In the Ramsey spectroscopy experiments shown in Fig. 2, we observe 
a slow drift in the phase of the fringe in addition to a decay in the 



fringe amplitude. This phase drift is not expected from the desired 
Hamiltonian in equation (1), and can be caused by a combination of 
the interactions and the inhomogeneous light shifts, or an unknown 
time-varying field present in the lab. We observe that adding multiple 
π pulses does not affect the decay rate of the fringe amplitude, but it 
does remove the phase drift. Therefore, for all of the dynamics experi-
ments in Figs. 3 and 4, we use one π pulse for any data collected with 
less than 10 ms of evolution time, for which the phase shift is negligible. 
For data collected after 10 ms of evolution time, more than one π pulse 
is required to mitigate the phase shift, so we use three π pulses during 
the evolution time, deliberately keeping the number of π pulses odd. 
In addition, for each experiment we synchronize the start of the first 
microwave pulse with the alternating current line to ensure that every 
experiment is performed with the same background magnetic field  
conditions.

The pulse sequence for the Floquet engineering protocol is shown 
in Fig. 5a. For these experiments, we set the Floquet evolution time to 
τ = 1 ms and use a π-pulse duration of 56.2 μs so that each Floquet cycle 
is short compared to the nearest-neighbour interaction period of the 
original XY Hamiltonian 2h/∣V(e)∣ = 4.15 ms seen in Fig. 3, where e = (1, 0). 
In addition, for the experiments in which we measure the decay of  
the magnetization for the initial states ∣ Y+ ⟩ and ∣ Z+ ⟩ (Fig. 5b), an extra 
π pulse is added at the end of the evolution time to return the coor
dinate system of the Bloch sphere to its initial orientation before  
measurement.

Rotational coherence
In Fig. 2, we report a Ramsey spectroscopy measurement of the coher-
ence of our two-level system at the lowest achievable lattice filling 
of 1%. Here we include the results from additional Ramsey spectros-
copy experiments, which are performed at higher lattice fillings. This 
increases the influence of dipolar interactions in the system, allowing 
us to test the effect of these interactions on the coherence time. The 
experimental parameters are the same as that reported for Fig. 2, and 
a spin echo pulse is used to eliminate decoherence from quasi-static 
sources to focus primarily on the role of the dipolar interactions. We 
show the results for several lattice fillings in Extended Data Fig. 3, in 
which it is clear that the Ramsey contrast decays more quickly as the 
density of the molecules increases, and, therefore, the dipolar inter-
actions between the molecules is the limiting factor in the coherence 
time in this system once a spin echo pulse is added.

Calculation of spin-exchange coupling
Each term V(ri − rj) in equation (1) can be calculated numerically. With 
∣↑⟩ and ∣↓⟩ as the pseudospin-1/2 system, the spin-exchange interac-
tion experienced by two molecules with wavefunctions ψ1(ri) and ψ2(rj) 
on lattice sites ri, rj is given by

∫

V

J ψ ψ
θ

( − ) =

d d ( ) ( )
1 − 3cos ( − )

−

(5)

i j

i j i j
i j
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Here, d = 3.3 D is the permanent body-frame dipole moment57, ε0 is 
the vacuum permittivity, and ⟨1, − 1, 3/2, 3/2 ↓⟩  is the wavefunction 
overlap between the target ∣↓⟩  state in the N  =  1 manifold and the 
∣1, − 1, 3/2, 3/2⟩  state, leading to J/h = 610 Hz at 60 G and J/h = 659 Hz 
at 4.1 G. The dominant source of uncertainty in J/h is a difference of 
approximately 0.1 D between theoretical57 and experimental42 values 
of d, leading to corrections of approximately 6% in J/h for the isotropic 

and anisotropic cases. Uncertainties in alat lead to corrections of less 
than 3%. The molecules occupy the ground centre-of-mass state of 
their respective lattice sites, so their wavefunctions are approximated 
by the 3D harmonic oscillator ground state wavefunctions given by 
ψ(ri) = ψ(xi)ψ(yi)ψ(zi). The axial (z) and radial (x, y) trap frequencies are 
2 kHz and 9 kHz, respectively. The resulting calculations are shown in 
Extended Data Fig. 4 and in Fig. 4.

Numerical simulations
Theoretical data in the figures were generated by using exact numerical 
diagonalization of the XY and XXZ Hamiltonians for samples of N = 12 
spins randomly placed on a square lattice of size L × L with periodic 
boundaries. The spin-spin interactions for a given displacement are 
set as described in the previous section, such that the large r form of 
the Hamiltonians match onto equations (1) and (2) with ∣ J∣/h = 600 Hz. 
To accommodate long-range interactions and periodic boundaries, 
the interaction between two spins is set according to the shortest dis-
placement between the spins. Each data point shown for comparison 
to theory is generated from 2,500 samples. These samples are meant to  
model local patches of the much larger experimental lattice. Owing 
to the experimental run times being moderate in units of the interac-
tion time for typical spins, simulating a larger number of spins is not 
necessary. Integer L is chosen for a sample such that N/L2 is closest to 
a target density.

The density profile of molecules in the experimental lattice is 
non-uniform. To model this in the simulations, we let the density of 
our samples be a random variable. Lower (higher) density samples 
represent patches of the experimental lattice that are farther from 
(closer to) the centre. We assume a radial density profile for the experi-
ment of the form

ρ r ρ
r

r
( ) = 1 − , (7)max

max

2




















where ρmax is the peak filling at the centre of the lattice and rmax is the 
distance from the centre at which the density becomes negligible. None 
of our theoretical results actually depend on rmax, and the peak densi-
ties for each experiment are given in the main text. Sampling patches 
of N spins with density ρ from such a density profile corresponds to 
sampling a radial location according to the probability density 
p(r) ∝ rρ(r). The factor of r is because the amount of lattice at radius r 
is proportional to r, and the factor of ρ(r) is because a patch with a pre-
determined number of spins N covers an area proportional to 1/ρ(r). 
Now, instead of sampling the position of the patch in the lattice, we 
change the variables and sample the corresponding density of the 
patch. This yields a probability density p(ρ) ∝ ρ for ρ ρ≤ max.

Correlation functions are computed in a way that is similar to the 
analysis of experimental data: for the experimental data we first com-
pute the quantum-and-disorder-averaged values of r r an n↑

+
↑  and rn

↑, then 
form the position-dependent correlation function n n n n⟨ ⟩ − ⟨ ⟩⟨ ⟩↑

+
↑ ↑

+
↑

r r a r r a  
and average that over the lattice. The lattice average is performed last 
so as to try to delay mixing data from different densities until after 
the connected correlation function is formed. Similarly, for the simu-
lation data we first compute the connected correlation function inde-
pendently for groups of samples with the same density, and then we 
average that density-dependent correlation function, with the weight 
in the average given by the total lattice area of the samples at that 
density.

Correlation normalization
Both experimental and simulated correlation functions are scaled in 
the same way, namely by dividing the amplitude of the correlations by 
the lattice-averaged value of the squared density ρ⟨ ⟩2

lat. As discussed 
in the main text, for an isolated pair of molecules with displacement a 
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the probability of detecting the molecules in state ∣↑↑⟩ after a Ramsey 
sequence with evolution time T is V T ħsin ( ( ) /4 )2 a . When generalizing 
to larger systems of molecules, owing to the low filling fractions used 
in the Ramsey experiments we can approximate our system as consist-
ing of single molecules and isolated pairs. In addition, at the end of  
our Ramsey sequence, single molecules that do not experience  
many-body interactions are in ∣↓⟩ , so they do not contribute to the 
correlation function. Therefore, both r r an n⟨ ⟩↑

+
↑  and n⟨ ⟩↑

r  scale as the 
probability ρ2 of a molecule being in a pair. The lattice-averaged  
correlation function before the density normalization is then 

a aC ρ V T ħ ρ V T ħ= ⟨ ⟩ sin ( ( ) /4 ) − ⟨ ⟩ sin ( ( ) /4 )2
lat

2 2
lat

2 4 . For low fillings the 
second term can be neglected, so we normalize our correlations by 
multiplying it by ρ(⟨ ⟩ )2

lat

−1
.

For the numerical simulations with a density given by equation (7), 
ρ ρ⟨ ⟩ = /32

lat max
2 . The normalization factors for each experimental cor-

relation measurement are obtained by repeatedly imaging the initial 
density distribution, averaging the density over experimental realiza-
tions, and then numerically computing ρ⟨ ⟩2

lat. At the low fillings used 
for the correlation measurements, a large number of images are 
required for ρ⟨ ⟩2

lat to converge. We, therefore, bin the density distribu-
tion before evaluating ρ⟨ ⟩2

lat, which allows for convergence with fewer 
experimental repetitions.

A single-fit parameter is introduced to scale the amplitude of the 
numerically simulated correlations to the experimental data. The 
amplitude scale factors are obtained by fitting the experimental data 
for the displacements in the line plots simultaneously and are 0.59(2) 
for Fig. 3, 0.56(3) for Fig. 4b–d, 0.33(3) for Fig. 4f–h and 0.83(5) for 
Fig. 5. The deviation of the experimental correlation amplitudes from 
the numerical simulations may be due to several factors. The correla-
tion data were acquired over several hours for each set (greater than 
24 hours for certain sets). Because the normalization factors were 
typically determined by imaging the density distribution of the mol-
ecules at the beginning of each data set, slow downwards drifts in the 
molecule number during a data set could affect the amplitude of the 
correlations. For example, the lattice-averaged correlation before 
density normalization scales as ρ⟨ ⟩2

lat , so if the density during the 
correlation data set drifts downward by 30% from the initial density, 
then the correlation amplitude would drift downward by approximately 
50%. An additional source of deviation between the experimental and 
numerically simulated correlation amplitudes is the possibility of clus-
tering of molecules arising from the detailed spatial overlap of the 
atomic clouds before molecule formation. This would lead to a modi-
fied scaling of the correlation amplitude with density, which would not 
be captured by the numerical simulations. In the future, the influence 
of density drifts and molecule clustering could be largely eliminated 
by implementing spin-resolved imaging. This would enable the 
post-selection of isolated pairs of molecules in each experimental 
realization, simplifying the study of the dynamics of the molecular 
spin system.

Floquet dynamics protocol
In Fig. 5 we report measurements of the dynamics of an effective 
spin-anisotropic Heisenberg model engineered by using Floquet 
driving. However, in general there are several ways that the effective 
Floquet Hamiltonian can deviate from the desired target Hamiltonian 
over the evolution time of the experiment. Possible errors include 
the Floquet period not being sufficiently small compared to the fast-
est coupling timescale in the original Hamiltonian, or if the Bloch 
sphere rotations are too slow or have improper timing. To check this, 
we include additional numerical simulations comparing the target 
XXZ Hamiltonian to different Floquet driving protocols. Extended 
Data Fig. 5a,b compares the simulated dynamics of the XXZ Hamilto-
nian to a Floquet drive protocol with the same cycle duration as the 
experiment from Fig. 5 (Floquet period TF = 1.1124 ms) but a much 
faster π-pulse duration of 5.8 μs. The simulated dynamics of the 

magnetization and correlation oscillation show excellent agreement, 
indicating that over the timescale of the experiment, the Floquet period 
is sufficiently short to yield a good approximation to the target XXZ  
Hamiltonian.

Next, in Extended Data Fig. 5c,d we compare the dynamics of the 
target XXZ Hamiltonian to a Floquet drive with the same cycle length 
but a more realistic pulse duration of 58 μs. Here, we see slight devia-
tions between the target XXZ Hamiltonian and the Floquet drive in the 
nearest-neighbour correlation oscillations, which are also present in 
the experimental data from Fig. 5c. These simulations indicate that the 
finite pulse duration is more likely to be the cause for this discrepancy 
than the Floquet cycle being insufficiently fast. Therefore, in future 
work, it would be valuable to perform the same Floquet experiment 
with varying microwave Rabi frequencies to test its effect on the Flo-
quet Hamiltonian.

The experimental data from Fig. 5 also shows a slight oscillation in 
the magnetization of the ∣ X+ ⟩ state, which should be a conserved quan-
tity in the target Hamiltonian in equation (2). Another possible source 
of error for the experiment that could potentially explain this effect is 
imperfect π-pulse timing, leading to inadvertent mixing of the spin 
components and deviations from the target Hamiltonian. We test this 
for each data set by repeatedly driving transitions between ↑⟩∣  and 

↓⟩∣  and measuring the number of molecules in ∣↑⟩  after N π pulses. 
For example, we show in Extended Data Fig. 6 the results of this meas-
urement at 60 G with square microwave pulses of duration 58.3 μs 
separated by an interval time τ = 100 μs. These results indicate that for 
the maximum number of 25 π pulses used in the Floquet experiments 
from Fig. 5, the pulse timing error was negligible, and, therefore, can-
not explain any slight deviations from the target Hamiltonian. Future 
experiments will be required to more fully characterize the precise 
manner in which the Floquet drive breaks down as an approximation 
to the target Hamiltonian. For example, by probing the Floquet dynam-
ics to much longer times and varying the duration of the pulses as well 
as the total Floquet period, it should be possible to observe a more 
dramatic breakdown of the approximation to the target Hamiltonian 
to pinpoint the limitations to this technique.

Data availability
Source data can be found in the Harvard Dataverse58. All other support-
ing data are available from the corresponding author upon reasonable 
request.

Code availability
The code used in this manuscript is available from the corresponding 
author upon reasonable request.
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Extended Data Fig. 1 | Microwave spectroscopy. a, Molecular rotational and 
hyperfine spectrum measured at 60 G. Green, blue and orange lines are the 
theoretical predictions using molecular parameters in refs. 54,56 for microwave 
transitions from ↑⟩∣  to selected hyperfine states in the N = 1 manifold using π, 

σ−, and σ+ polarization, respectively. The transition on the far right, indicated by 
the black arrow, is the ↑⟩∣  to ∣↓⟩ transition. b, Sample Rabi oscillation between 

↑⟩∣  and ∣↓⟩. The extracted Rabi frequency from this measurement is 
2π × 9.529(4) kHz. Error bars are s.e.m.
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Extended Data Fig. 2 | Differential polarizabilities between ↑⟩∣  and ↓⟩∣  
versus trapping light intensity. a, In the isotropic configuration, B = 60 G, and 
the angle between the light’s electric field and the quantization axis is 0°. The 
intensity varies by ~4% over the cloud, denoted by the grey shading. b, In the 
anisotropic configuration, B = 4.1 G, and the angle is 90°.
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Extended Data Fig. 3 | Ramsey fringe contrast as a function of time at 
varying lattice filling. Fringe contrast shown for 1.0(2)% (blue circles), 3.3(2)% 
(green squares), and 8.4(3)% (orange diamonds) peak lattice fillings. Dashed 
lines represent exponential fits with 1/e times of 83(4) ms, 25(4) ms, and 
11(2) ms respectively. Error bars are s.e.m.
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Extended Data Fig. 4 | Spin-exchange coupling. The values of V(a)/h calculated for the isotropic (a) and anisotropic (b) cases for different separations in x and y.
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Extended Data Fig. 5 | Numerical simulation comparison between XYY and 
Floquet dynamics. a, Comparing magnetization dynamics for different initial 
states between the exact XYY model (shaded bands) and a Floquet drive with a 
5.8 μs π-pulse time (points). Red: ∣ X+ ⟩ initial state. Orange: Y+ ⟩∣  initial state. 
The dashed line indicates the demagnetized value with N↑ = N0/2. b, Correlation 
dynamics compared between the exact XYY model (shaded bands) and a 
Floquet drive with a 5.8 μs π-pulse time (points). Top: nearest-neighbor 
correlations. Middle: next-nearest neighbor correlations. Bottom: 

next-next-nearest neighbor correlations. c, Comparing magnetization 
dynamics for different initial states between the exact XYY model (shaded 
bands) and a Floquet drive with a 58 μs π-pulse time (points). Red: X+ ⟩∣  initial 
state. Orange: Y+ ⟩∣  initial state. The dashed line indicates the demagnetized 
value with N↑ = N0/2. d, Correlation dynamics compared between the exact XYY 
model (shaded bands) and a Floquet drive with a 58 μs π-pulse time (points). 
Top: nearest-neighbor correlations. Middle: next-nearest neighbor 
correlations. Bottom: next-next-nearest neighbor correlations.
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Extended Data Fig. 6 | π-pulse fidelity. a, Microwave pulse sequence to 
measure the error in the π-pulse time. An even number of π-pulses interspersed 
with hold times τ are used to rotate the spins from ↑⟩∣  to ∣↓⟩ and back.  
b, Fraction of molecules remaining in ↑⟩∣  versus number of π-pulses N. The 
dashed line marks N↑/N0 = 1 indicating perfect π-pulses. Error bars are s.e.m.
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