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Synthetic quantum systems with interacting constituents play animportantrole

in quantum information processing and in explaining fundamental phenomena
inmany-body physics. Following impressive advances in cooling and trapping
techniques, ensembles of ultracold polar molecules have emerged as a promising
platform that combines several advantageous properties'™. These include alarge

set of internal states with long coherence times' and long-range, anisotropic
interactions. These features could enable the exploration of intriguing phases of
correlated quantum matter, such as topological superfluids'®, quantum spin liquids®,
fractional Chern insulators?® and quantum magnets?-*, Probing correlations in these
phasesis crucial to understanding their properties, necessitating the development of
new experimental techniques. Here we use quantum gas microscopy? to measure the
site-resolved dynamics of quantum correlations of polar 2Na®Rb molecules confined
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inatwo-dimensional optical lattice. By using two rotational states of the molecules,
we realize a spin-1/2 system with dipolar interactions between particles, producinga
quantum spin-exchange model*??**%, We study the evolution of correlations during
the thermalization process of an out-of-equilibrium spin system for both spatially
isotropic and anisotropic interactions. Furthermore, we examine the correlation
dynamics of a spin-anisotropic Heisenberg model engineered from the native
spin-exchange model by using periodic microwave pulses® 2, These experiments
push the frontier of probing and controlling interacting systems of ultracold
molecules, with prospects for exploring new regimes of quantum matter and

characterizing entangled states that are useful for quantum computation

metrology>.

29,30 an d

Ultracold dipolar particles trapped in optical arrays have emerged asa
powerful and flexible platformto probe idealized models of quantum
many-body physics with long-range interactions®*, For example,
studies that used polar molecules’ ™, Rydberg atoms** and magnetic
atoms® have explored a host of quantum phenomenaincluding quan-
tum magnetism>2%3¢, symmetry-protected topological phases* and
extended Hubbard models®. The platform of polar molecules in par-
ticular has several unique properties® ™. Ultracold polar molecules pos-
sessatunable dipole momentintheirelectronic ground state, enabling
strong, long-range interactions compatible with negligible population
relaxation over experimental timescales. In addition, compared to
atoms, molecules have rotational and vibrational degrees of freedom
that canbe harnessed to store informationin alarge local Hilbert space
and to engineer arich set of many-body Hamiltonians. However, this
complex internal structure also presents its own experimental chal-
lenges in the preparation and detection of quantum-state-controlled
ensembles of molecules.

Two complementary approaches have been developed to address
these challenges. Onthe one hand, the assembly of heteronuclear mol-
ecules from evaporatively cooled atomic quantum gases' has generated

bulk ensembles with high phase space density, enabling the recent
creation of degenerate molecular Fermi gases for which the collective
properties can be characterized with absorptionimaging techniques®”.
Ontheotherhand, molecules have been prepared in optical tweezers®,
realizing a bottom-up approach to controlling small numbers of
molecules with single-molecule detection capabilities**. Here we
demonstrate quantum gas microscopy of polar ?Na¥Rb molecules
in an optical lattice, combining features of both approaches: large
numbers of molecules in their hyperfine, rovibrational and motional
ground state, coupled with single-molecule detection. Quantum gas
microscopy enables high-fidelity and simultaneous optical detection
ofensembles of particles in aregime of low temperatures, high density
and strong interactions. Pioneered with atomic gases, this technique
has enabled unprecedented local observations of quantum phase tran-
sitions, spin and charge correlations in Hubbard systems and impu-
rity physics®. Recently, we have extended microscopy techniques to
quantum gases of non-interacting excited-state molecules, observing
bosonic bunching correlations in their density fluctuations*.

Inthis work, we apply our ability to measure microscopic correlations
to study out-of-equilibrium spin systems realized with interacting
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Fig.1|Molecular quantum gas microscope. a, Schematic of the molecular
quantum gas microscope. A high numerical-aperture objective is used to
resolve the positions of individual molecules confined to a2D optical lattice.
b, Representative fluorescence images of Feshbach molecules (top left) and
ground-state molecules (bottom left) taken with the microscope and the
positionsrecorded withareconstruction algorithm (top right and bottom
right, respectively).Scalebars, 5 um. ¢, Average density profile of a cloud of
Feshbach molecules (purple circles) and the corresponding profile of detected
molecules after round-trip STIRAP (orange squares) versus radial distance
fromthe centre of the molecular gas. Error barsrepresent standard error of the
mean (s.e.m.).d, Schematic of the rotational states used in the experiment,
neglecting the hyperfine structure. The degeneracy of the rotational states
islifted by coupling between nuclear and rotational degrees of freedom
(notshown, Methods). Our pseudospin statesare chosentobe [N, my) = |0, 0)
and an excited rotational state with predominant |1, — 1) character.

molecules. Tothatend, we prepare the molecules in their rovibrational
ground state, which possesses a large body-frame electric dipole
moment. We encode a spin-1/2 in the ground and first excited rotational
states of the molecules. An effective spin interaction arises from the
resonant exchange of rotational excitations between pairs of molecules,
aswas previously demonstrated with polar *°K¥Rb molecules®*!, Here,
with molecules pinnedin adeep two-dimensional (2D) optical lattice,
the system realizes the quantum XY spin-exchange Hamiltonian®*>?*

Hyy=Y V(-1 (SST+5!Sh) )

i>j

whereV(a) =J<1- 3c0529)/|a|3>,j characterizes the strength of the
spin-exchange interaction, S¥" = 6X)/2 are spin-1/2 operators for
moleculei, r;is the position of molecule /in units of the lattice constant
a,.and Bis the angle between the quantization axis and the vector a.
The quantum average (-) accounts for the finite size of the molecule
centre-of-mass wavefunctions. XY Hamiltonians are some of the most
extensively studied models for magnetism and excitation transport.
However, like most quantum spin models, many open questions in
computationally intractable regimes remain, such as the prediction
of low-temperature phases in the presence of frustration or the
long-time dynamics of disordered or driven systems. Polar molecules
are poised to be a leading platform to simulate such spin models
because of the large ratio of spin coherence times to the interaction
timescale A/|/| that we demonstrate in this work, which compares
favourably to other systems used for studying similar physics such as
Rydbergatoms?. We observe the effects of the dipolar interactions by
performing a series of quench dynamics experiments, in which we

a /2 T /2

H /2 Y /2 m

Vs Y

X
b o o

1.0F e <R =

e 10 0, o "o

08F *\ \/ B
% ¢\A\¢k % 0 180 270 360 %% s0 180 270 360
“g 06 °\\°\;\"\/v\/‘ﬂ Phase (°) Phase (°)

‘a M \/\/\/\"\,_/\

© 04r Q\\-.1 o%

0.2t el °

O 1 1

0 50 100 150 200 250 300 350 400
Time T (ms)

Fig.2|Rotational state coherence. a, Microwave pulse sequence for the
Ramsey coherence measurementincluding the spinecho mpulse. b, Ramsey
fringe contrast versus total precession time, with (blue circles) and without
(red squares) the spin echo pulsein the middle of the precession time, for
asamplewitha peakfilling 0of1.0(2)%. The blue line shows the predicted
dynamics fromexact diagonalization, and the red dashed line is an exponential
decay fit for the Ramsey contrast data without aspin echo. Inset: representative
Ramsey fringes from10 msand 300 ms precession times with aspinecho. Error
barsrepresents.e.m.

initialize the molecules in a product state and then evolve under the
interaction Hamiltonian in equation (1), after which we measure the
correlations between the molecules with single-site resolution. For a
lattice with low filling, the correlations exhibit weakly damped oscil-
lations withafrequency thatdepends on the site displacement, directly
reflecting the long-range and anisotropic character of the interactions.

Molecule preparation and detection

Wesstart our experiments by preparing an array of ground-state NaRb
molecules* in a 2D optical lattice (Fig. 1a). The molecules are formed
by loading degenerate Bose gases of Na and Rb into the lattice and
using magnetoassociation followed by stimulated Raman adiabatic
passage (STIRAP) to convert atom pairs into molecules in their rovi-
brationaland hyperfine ground state****. The lattice is sufficiently deep
such that tunnelling of molecules between lattice sites is negligible
over the timescale of the experiments. The maximum achievedfilling
of ground-state molecules in the lattice is 15(1)%, taking into account
the ground-state molecule detection efficiency of 92.0(3)% (Fig. 1c).
To simulate an effective spin-1/2 system, we use microwaves near
4.18 GHz to drive transitions between a hyperfine state in the ground
manifold (N = 0) and a hyperfine state in the first excited rotational
manifold (NV=1), labelled |*) and |V ), respectively. For imaging, we
transfer molecules in |*) to the weakly bound Feshbach state, which
wethendissociated. We detect the resulting Rb atoms with fluorescence
imaging, allowing us to extract the position of each molecule in | 1)
with single-site resolution,

Rotational coherence

To benchmark the coherence of the two-level system encoded in the
rotational states of the molecules, we perform a Ramsey interferom-
etry experiment. Starting with all of the moleculesin | 1), we apply two
/2 pulses separated by a total free precession time T (Fig. 2a). A spin
echompulse canbeinsertedinthe middle of the precessiontime, which
mitigates dephasing owing to quasi-static sources of single-particle
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Fig.3|CorrelationdynamicsinanXYspinmodel. a, Fraction of moleculesin
|*) versus time. Insets show representative fluorescence images from2 ms
(left), 6 ms (middle) and 14 ms (right). b, Representative correlation matrices
corresponding to the precession times for the insetimagesina. All correlations
areaveraged along the lattice symmetry axes. ¢, Line plots showing the
correlations versus precession time for the specific displacements shownin
theinsetlattice diagrams. Top: nearest-neighbour correlations. Middle:

decoherencebutnotdipolarinteractions. The phase ¢ of the final /2
pulse is scanned and the number of moleculesin |1) is recorded. For
each precession time T, we fit the measured molecule number N,
(Fig. 2b inset) to N, = Acos(¢ + ¢,) + B to extract the contrast A/B. We
dilute the sample to have a peak molecule filling of 1.0(2)% to reduce
theinfluence of dipolar interactions between the molecules (additional
data at higher densities are shown in Extended Data Fig. 3).

The results of this experiment are shown in Fig. 2. Without a spin
echo pulse, the observed dephasing (1/e time of 56(2) ms) is faster
than that predicted for an interacting XY spin system described by
equation (1), most probably because of the residual differential light
shifts (Methods). However, with the addition of a single spin echo 1t
pulse, we observe that the decay of the experimental contrast is con-
sistent with the dynamics expected from equation (1) out to 400 ms.
Thisindicates that the coherence time of the two-level systemis much
longer than the expected millisecond-scale nearest-neighbour inter-
action time, which is a favourable regime for experiments studying
coherent many-body dynamics, such as spin-squeezing or preparing
rotational superfluids®*,

Correlation dynamicsinan XY spinmodel

Having established that the molecules in the lattice can be modelled
asaclosed quantumspinsystemout tolong times, we probe the growth
of their correlations due to dipolar interactions after a quench. For
these experiments, we set the peak molecule filling to 5.4(4)%, which
is deliberately chosen to be lower than our maximum filling shownin
Fig. 1to slow down the thermalization timescale compared to the
nearest-neighbourinteraction timescale. Under these conditions, we
expect to observe coherent oscillations in the dynamics of various
observables. To set the quantization axis for the molecules, we apply
an external magnetic field pointing perpendicular to the 2D lattice
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next-nearest-neighbour correlations. Bottom: next-next-nearest-neighbour
correlations. Fifty images were collected for each precession time. The
correlations were averaged along the lattice symmetry axes. Allshaded bands
aretheory predictions of the dynamics from exact diagonalization of the
dipolar XYmodel. The theoretical predictions for the correlations were scaled
vertically to best fit the experimental data for the shown displacements
simultaneously (Methods). Error barsrepresents.e.m.

plane so that the dipolar interactions between the molecules are iso-
tropic. The quench is initiated with a global 1t/2 rotation to transfer
the molecules from |1) to [+X) = (|¥) + [*))/~/2. The interacting mol-
eculesthenevolveforatime T, with an odd number of spin echo pulses
introduced to mitigate residual effective fields (Methods). Finally, we
rotate the spins into the measurement basis with a final /2 pulse,
which is 180° out of phase with the initial pulse so that in the absence
of any many-body interactions all of the molecules are transferred to
|¥) and, therefore, appear dark to our detection scheme. Any mole-
culesin |t) are then detected and their positions in the lattice are
recorded.

Theresults of this experiment, along with comparison to numerical
simulations, canbe seenin Fig. 3. Initially there are anegligible number
of moleculesin |1), but by 18 ms approximately 30% of the molecules
arein |1). However, this overall loss of magnetization during the evo-
lution of the system is not monotonic, as clear oscillations in the mol-
ecule number can be seen in Fig. 3a in good agreement with the
theoretically expected frequency of |[V(e)|/2h =241 Hz, wheree = (1, 0),
correspondingto theinteraction energy between spins on neighbour-
ing sites. Although such oscillations have been previously observed®,
our site-resolved measurements allow us to extract the lattice-averaged
correlationfunction C(a, T) = (N/Ny) Y., (<ngng..,) = {npXny, »)), yielding
amoredetailed characterization of the dynamics of the system. Here,
(- denotes averaging over the quantum state of the many-body spin
system as well as classical realizations of the dilute lattice filling, and
N, is the number of sites in the region used to evaluate the correlator.
The normalization factor is A'= ((p2>|at)'1, where (p?) IS the lattice
average of the square of the filling fraction (Methods).

Atshortevolutiontimes the molecules detectedin | 1) are predom-
inantly nearby pairs or few-spin clusters, as can be seen in a sample
fluorescence image (Fig. 3ainset) and the corresponding correlation
matricesin Fig.3b. Thisisbecauseisolated spins are transferred to the
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Fig.4|Tunablespatial anisotropy of the dipolarinteractions. a, Interaction
potential (V/h), where his Planck’s constant, between the molecules when
the magnetic field Bis perpendicular to the 2D lattice plane (Methods).

b, Nearest-neighbour correlations along the vertical (yellow squares) and
horizontal (purplecircles) lattice axes for different evolution times for the
isotropic configuration. ¢, Next-nearest-neighbour correlations alongy =x
(bluecircles) and y =-x (red squares) for different evolution times for the
isotropic configuration.d, Full correlation matrices obtained from200
experimental iterations for each evolution time (left) compared to theory
predictions from exact diagonalization (right). e, Interaction potential
betweenthe molecules when the magneticfieldisinthe 2D lattice plane
and oriented 9° from the lattice axes (Methods). f, Nearest-neighbour

undetected state |V), whereas interactions play an important role in
the dynamics of pairs or clusters of nearby spins, so they can evolve
into the detected stateina correlated way. For example, the quantum
state of anisolated pair of molecules with displacement a at the end
of a Ramsey sequence with evolution time Tissin(V(a)T /4h)| ™) -
icos(V(a)T /4h)|V V) up to a global phase factor. This two-molecule
entangling-disentangling dynamic is responsible for an oscillatory
behaviour of the correlations givenby C(a, T) ~ sin®(V(a) T /4h)inthe
limit of vanishing lattice filling and for short evolution times. This lim-
iting case underlies the correlation oscillationsin the datain Fig. 3c. It
was observed that these oscillations damp slowly bothiin the dataand
in exact diagonalization calculations by using the dipolar XY model.
Because the numerics are performed for a closed quantum system, we
understand the damping to be due to corrections with the simple
two-spin picture above. Although at short times pairs of nearby spins
are the dominant contribution to the dynamics, at later times
couplings tospins thatare farther away play anincreasingly important
role.

Tunable spatial anisotropy

Another defining characteristic of the dipole-dipole interactionisits
spatial anisotropy. By performing the same quench dynamics experi-
mentbut with the magneticfield inthe plane and tilted 9° with respect
tothelattice axes, we canclearly see the effect of the anisotropicinter-
action potential in the dynamics*®. The resulting correlations are shown
in Fig. 4, alongside the full correlation matrices for the isotropic con-
figuration (discussed in the last section), to highlight the change from
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correlations along the vertical (yellow squares) and horizontal (purple circles)
lattice axes for different evolution times for the anisotropic configuration.

g, Next-nearest-neighbour correlations along y =x (bluecircles) andy = -x
(red squares) for different evolution times for the spatially anisotropic
configuration. h, Full correlation matrices obtained from 50 experimental
iterations for each evolution time (left) compared to theory predictions from
exact diagonalization (right). Allshaded bands are theory predictions from
exact diagonalization of the dipolar XY model. Inset lattice diagrams show the
specificsite displacements used to calculate the correlations. The theoretical
predictions for the correlations were scaled vertically to best fit the
experimental data for the shown displacements simultaneously (Methods).
Errorbarsrepresents.e.m.

isotropic to anisotropic correlations. For example, in contrast to the
correlations shown for the isotropic case, the correlations along the x
axis grow faster than the correlations along the y axis (where xand y are
thelattice axes), asexpected because theinteraction energyisafactor
of approximately 2 stronger along this axis. In addition, the interac-
tion potential is zero for 8 = 54.7°, which falls near the y = x diagonal,
and, therefore, we expect correlations to be highly suppressed along
that direction. We observe this in the experimental correlation data
inFig.4h,inwhichit canbe seenat4 and 5 msthat they =-xdiagonal
has strong correlations but there are negligible correlations for the
y = xdiagonal. Our correlation data demonstrate the ability to easily
tune the molecular interaction anisotropy with the direction of the
magnetic field, which will be useful in future studies of frustrated spin
systems.

Floquet engineering of an XXZmodel

Although the XY model is the natural spin Hamiltonian implemented
in our polar molecule system, one can go beyond the resonant
spin-exchange term to realize more complex interactions, such as
the XXZor XYZmodels, by using microwave Floquet engineering. The
essence of this technique is to modulate the Hamiltonianin time at a
rate faster than the interaction timescale, so that the time-averaged
Hamiltonian s different from the original Hamiltonian*2%, Here we use
rapid periodic 1t/2 rotations to realize an effective XXZHamiltonian.
Anadditional tpulse in the centre of the cycle serves asaspinechoto
cancel the dephasing due to any effective fields without affecting the
many-body interactions. The total Floquet cycle can be seenin Fig. 5a.
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Thedashedlineindicates the demagnetized value with N, = Ny/2. ¢, Correlation
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The effect of each Floquet cycleis to evolve the molecules for an equal
amount of time under H,, and H,, time averaging to

1
Hyy =3 V-1 S1S]+ 3515 +5759)| @

i>j

which is equivalent to the XXZmodel with a permutation of the axis
labels.

Oneimportantfeature of the Hamiltonianin equation (2) isthat the
magnetization along X is conserved, whereas that along Yand Zare
not, owing to the U(1) symmetry corresponding to rotations about the
Xaxis. Therefore, akey test of engineering the correct effective Ham-
iltonian is to verify this spin conservation. We prepare three distinct
initial states, corresponding to all of the spins pointing along X, Yor Z,
and then subject the spins to the same Floquet Hamiltonian by using
the pulse sequence shownin Fig. 5a. The density of the molecules was
8.1(8)%, and the quantization axis was perpendicular to the 2D lattice
sothattheinteractions areisotropicinthe plane.Finally, we measured
the total number of spins that remained in the initial state for different
evolution times.

The results of this experiment are shown in Fig. 5b. The magnetiza-
tion of molecules initially prepared in the |+X) state remains approx-
imately unchanged throughout the dynamics, whereas that of
molecules preparedinthe |+Y) and |+Z) states decays towards the
unpolarized value of 1/2. In addition, the data is Y-Z symmetric, as
expected from equation (2). Comparing the experimental data to exact
diagonalization calculations by using an XYY model shows reasonable
agreement, indicating that the time-averaged Hamiltonianis an appro-
priate descriptor of the observed dynamics.

Finally, we can measure the molecule correlations as a function of
time to test whether the oscillation frequency changes for the Floquet
dynamics compared to the original XY Hamiltonian. Starting with
a peak molecule filling of 3.1(4)%, we prepare all of the spinsin |1),
quenched the system to evolve under the Floquet Hamiltonian and
then measure the correlations between the molecules after each
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Floquet cycle. By comparing the data in Fig. 5Sc to the XY experiment
in Fig. 3¢, we can see that the oscillation frequency for the nearest-
neighbour correlations has been halved, as expected for the desired
Floquet Hamiltonian. To conclude, we have demonstrated that micro-
wave Floquet engineering of polar molecule systems enables the study
of spin-anisotropic Heisenberg models, further enriching the quantum
simulation toolbox in this system.

Outlook

The experiments described above demonstrate the powerful capabili-
ties of ultracold molecules to study dynamics in the context of quan-
tum magnetism, and create new possibilities for studying quantum
physics with ultracold molecules more broadly. The ability to detect
correlations with single-site resolution could be used in other experi-
ments to distinguish different equilibrium phases of matter, such as
rotational superfluids that should emerge by adiabatic preparation
of the ground state of the XY Hamiltonian even at the current demon-
strated filling fractions®. The single-site resolution also enables optical
manipulation of the underlying potential at the smallest relevant length
scale, allowing the initialization of arbitrary configurations to study
impurity physics or transport dynamics**. In addition, although so
far we have demonstrated interactions between molecules that are
frozen in the lattice, complex phases of matter are also expected to
emerge uponallowing the molecules to tunnel throughout the lattice.
Theinterplay between the dipolarinteractions and the kineticenergy
of the molecules is predicted to yield a rich phase diagram consist-
ing of superfluid and supersolid phases, as well as fractional Mott
insulators**%%°, Our platform is particularly well-suited to study this
physics owing to the strong dipolar interaction strength compared to
magnetic atoms®, as well as the lack of collective decay mechanisms
of the molecules compared to Rydberg-dressed atoms*. Finally, the
capabilities demonstrated here to measure correlations between inter-
acting polar molecules may prove useful in the context of quantum
computing®®°, for which they could be used to verify the creation of



Belland Greenberger-Horne-Zeilinger states, as well as for quantum
error correction.
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Methods

Molecule formation and imaging

Themoleculesare created by first loading a doubly degenerate mixture
of Na and Rb atoms into a single plane of a three-dimensional (3D)
opticallattice. The 2D lattice in the x-y plane has a 752 nm spacing and
the vertical lattice has a 3.8 um spacing. We then sweep the magnetic
field across an interspecies Feshbach resonance at 347.6 G to form
weakly bound molecules. Each lattice site that contains one Na and
one Rb atom forms a weakly bound molecule****, whereas sites with
more than one atom of each species are emptied by three-body loss
processes. The remaining Naand Rb atoms that do not form molecules
are removed with resonant light pulses. The 2D lattice depth for all of
the experiments is 49E; with the exception of the coherence data for
which the lattice depthis 34F,. Here Fy = h>/8ma?,, where mis the mol-
ecule mass and a,,,=752 nm. Atboth depths, the tunnelling of the mol-
eculesin the lattice is negligible over the course of the experiment.
Details of the optical potentials and Feshbach molecule creation pro-
cess canbe found in ref. *°.

After forming the Feshbach molecules, we ramp the magnetic field
to 335 Gand transfer the molecules to the electronic and rovibrational
ground state by using STIRAP. Following the procedure described in
ref. *, we use two external-cavity diode lasers (Toptica DL Pro) with
wavelengths of 770 nmand 1248 nm, locked to acommon high-finesse
ultra-low expansion cavity (Stable Laser Systems) by using the the
Pound-Drever-Halltechnique. The cavity free-spectral range is 1.5 GHz
and the finesse is 34,000 at 770 nm and 43,000 at 1,248 nm. We use a
fibre electro-optic modulator for each laser (EOSpace) to tune the
frequency of the laser relative to that of a fixed cavity mode, as well as
to generate sidebands for the Pound-Drever—Hall lock. The laser
linewidthis narrowed by active feedback of the diode current, whereas
slow driftsinthe frequency are compensated with aseparate feedback
loop stabilizing the laser piezo. Each laser uses a FALC 110 (Toptica)
laser locking module for both feedback loops. The Rabi frequencies
are2m x 0.70(4) MHz and 21t x 0.9(1) MHz for the 1,248 nmand 770 nm
transitions respectively, and we typically achieve 93.9(3)% STIRAP effi-
ciency. The molecules are prepared in the stretched hyperfine state
|my Na» My Ry = 13/2, 3/2). To deliberately dilute the density of the mol-
ecules for some of the experiments presented in the paper, we reduce
the one-way STIRAP efficiency by decreasing the optical power in the
770 nmbeam to reach the desired filling fraction.

To detect the molecules, we reverse the STIRAP process described
abovetoconvertmoleculesin | ) back to weakly bound Feshbach mol-
ecules. The Feshbach molecules are dissociated and we thenimage the
corresponding Rb atoms by using fluorescence to tag the positions of
themoleculesin | 1) within the lattice*. We do not detect the molecules
in [¥), so our current measurements do not distinguish between that
state and an empty site, although this may be achieved in future work
with bilayer techniques used for spin-resolved imaging in atomic
microscopes®®,

Rotational and hyperfine states

To simulate an effective spin-1/2 system, it is necessary to couple two
states that are well separated in energy from other molecular states
and thatare asinsensitive as possible to noise from variations in mag-
netic or optical fields. To achieve this condition, we use microwaves
resonant with the transition between the ground and first excited rota-
tional state of the molecules. Ingeneral the molecule canbeinasuper-
position of stateslabelled |N, my, m, \,, m; g, where Nistherotational
angular momentum of the molecule, m, is its projection onto the
quantization axis set by the external magnetic field, and m, y, gy, is the
projection of the nuclear spin of the Na(Rb) atom. A representative
microwave spectrum with several of the rotational and hyperfine tran-
sitions is shown in Extended Data Fig. 1, along with a representative
Rabi oscillation between the specific pair of states used in this work.

Oneimportant source of single-particle decoherence is the differen-
tial dynamic polarizability Aa=a/,, - a,, (refs.”'¢*"%). This causes
anunwanted shift of microwave transition frequencies across the trap
because of the spatially varying intensity profile of the trapping light.
To mitigate this, we choose two specific magnetic field configurations
that produce near ‘magic’ trapping conditions, where Aa/a 4, < 0.01.
For the experiments with isotropic interactions, the magnetic field is
60 G, whereas for anisotropic interactions the magnetic field is 4.1 G.
Although a higher field would have been preferable for the latter case
toincrease the energy splittings to other states outside of the Hilbert
space of the spin system, our coil geometry limits the maximum mag-
neticfield that canbe appliedinthelattice plane. Our technique makes
use of the fact that, at zero electric field and weak magnetic fields, m,
is not a good quantum number for the molecular Hamiltonian owing
to strong hyperfine couplings, especially the nuclear quadrupole
moment coupling in N=1. This coupling gives a specific N=1state an
admixture of other hyperfine states, which canbe leveraged to match
the |V) polarizability to the | 1) polarizability. The three main compo-
nents of | V) are

[V)= 0.688|1,-1,3/2,3/2)-0.5691,0, 3/2,1/2) 3)
+0.448|1,1,3/2,-1/2)

at 60 G,and

[¥)=0.715]1,-1,3/2,3/2)-0.562|1,0,3/2,1/2) 4

+0.413|1,1,3/2,-1/2) “)
at4.1G, in which the admixtures are calculated by using molecular
parameters from refs. >, Calculated differential polarizabilities are
showninExtended DataFig. 2. Over the spatial extent of the cloud, the
microwave transition frequency varies by less than20 Hz because of the
inhomogeneous intensity profile. This is consistent with the observed
coherence decay time in the absence of a spin echo pulse (Fig. 2).

Microwave control

After transferring the molecules to the rovibrational ground state,
transitions to the first excited rotational state are induced using micro-
waves near 4.18 GHz. The microwaves are generated by mixing alocal
oscillator at 4.13 GHz provided by an analogue signal generator (Agi-
lent E8257C) withanintermediate frequency provided by anarbitrary
waveform generator (Keysight 33600A). The intermediate frequency
is 50.13747 MHz when the magnetic field is 60 G, and 50.08300 MHz
when the magnetic field is 4.1 G. The mixed signal is then amplified
(Mini-Circuits ZHL-5W-63-S+) before being sent to a home built helical
antenna mounted underneath the vacuum chamber. We programme
theKeysight arbitrary waveform generator to set the duration, ampli-
tude and phase necessary for each pulse within the experiments, and
keep the Agilent signal generator at fixed frequency, amplitude and
phase. The oven-controlled crystal oscillator inside the Agilent signal
generator is used asacommon 10 MHz clock for both instruments.

Pulse sequences
We use amicrowave Rabi frequency of 9 kHz for all of the experiments
with spatially isotropic interactions. This frequency is chosen to be
large compared to the intermolecular interactions (<1 kHz) but small
compared to the splitting between the different hyperfine states to
avoid driving transitions outside of the effective two-level system.
However, for the spatially anisotropic correlation measurement
we decrease the Rabi frequency to 4 kHz to minimize Fourier broad-
ening from the microwave pulses, since the hyperfine states are
more closely spaced at the lower magnetic field that we use for these
experiments.

Inthe Ramsey spectroscopy experiments shownin Fig.2, we observe
a slow drift in the phase of the fringe in addition to a decay in the



fringe amplitude. This phase drift is not expected from the desired
Hamiltonian in equation (1), and can be caused by a combination of
the interactions and the inhomogeneous light shifts, or an unknown
time-varying field presentinthe lab. We observe that adding multiple
1 pulses does not affect the decay rate of the fringe amplitude, but it
does remove the phase drift. Therefore, for all of the dynamics experi-
ments in Figs. 3 and 4, we use one 1t pulse for any data collected with
less than10 ms of evolution time, for which the phase shift is negligible.
For data collected after 10 ms of evolution time, more than one 1t pulse
isrequired to mitigate the phase shift, so we use three m pulses during
the evolution time, deliberately keeping the number of 1t pulses odd.
In addition, for each experiment we synchronize the start of the first
microwave pulse with the alternating currentline to ensure that every
experiment is performed with the same background magnetic field
conditions.

The pulse sequence for the Floquet engineering protocol is shown
in Fig. 5a. For these experiments, we set the Floquet evolution time to
t=1msanduseam-pulse duration of 56.2 pssothateach Floquet cycle
is short compared to the nearest-neighbour interaction period of the
original XYHamiltonian 2h/|V(e)|=4.15 msseenin Fig.3,wheree = (1, 0).
In addition, for the experiments in which we measure the decay of
the magnetization for theinitial states |+Y) and |+Z) (Fig.5b), an extra
1 pulse is added at the end of the evolution time to return the coor-
dinate system of the Bloch sphere to its initial orientation before
measurement.

Rotational coherence

InFig. 2, wereportaRamsey spectroscopy measurement of the coher-
ence of our two-level system at the lowest achievable lattice filling
of 1%. Here we include the results from additional Ramsey spectros-
copy experiments, which are performed at higher lattice fillings. This
increases the influence of dipolar interactionsin the system, allowing
us to test the effect of these interactions on the coherence time. The
experimental parameters are the same as that reported for Fig. 2, and
aspin echo pulse is used to eliminate decoherence from quasi-static
sources to focus primarily on the role of the dipolar interactions. We
show the results for several lattice fillings in Extended Data Fig. 3, in
whichitis clear that the Ramsey contrast decays more quickly as the
density of the molecules increases, and, therefore, the dipolar inter-
actions between the molecules is the limiting factor in the coherence
time in this system once a spin echo pulse is added.

Calculation of spin-exchange coupling

Eachterm V(r;-r)) in equation (1) canbe calculated numerically. With
|*) and [V) as the pseudospin-1/2 system, the spin-exchange interac-
tion experienced by two molecules with wavefunctions ¢;(r;) and ¢,(r))
onlatticesitesr, r;is given by

Vig-r) =

3
Ll 1

1-3c0s26(r; -, S
J drdr, lwl(n>|2|¢2(rj)|2[wj )

where

- f 1 &
J=1, 1,3/2,3/2|¢>|[ yrr (©)

Here, d =3.3 D is the permanent body-frame dipole moment”, g, is
the vacuum permittivity, and (1, -1, 3/2,3/2|V) is the wavefunction
overlap between the target |V) state inthe N = 1 manifold and the
11,-1,3/2,3/2) state, leading to J/h = 610 Hz at 60 G and J/h = 659 Hz
at4.1G. The dominant source of uncertainty inJ/h is a difference of
approximately 0.1 D between theoretical®” and experimental* values
ofd, leading to corrections of approximately 6% in J/h for the isotropic

and anisotropic cases. Uncertainties in a,, lead to corrections of less
than 3%. The molecules occupy the ground centre-of-mass state of
their respective lattice sites, so their wavefunctions are approximated
by the 3D harmonic oscillator ground state wavefunctions given by
Y(r) = p(x)yY(y)yY(z). The axial (z) and radial (x, y) trap frequencies are
2 kHzand 9 kHz, respectively. The resulting calculations are shownin
Extended DataFig. 4 and in Fig. 4.

Numerical simulations

Theoretical datain the figures were generated by using exact numerical
diagonalization of the XY and XXZ Hamiltonians for samples of N =12
spins randomly placed on a square lattice of size L x L with periodic
boundaries. The spin-spin interactions for a given displacement are
set as described in the previous section, such that the large r form of
the Hamiltonians match onto equations (1) and (2) with |J|/h = 600 Hz.
To accommodate long-range interactions and periodic boundaries,
theinteraction between two spinsis set according to the shortest dis-
placement between the spins. Each data point shown for comparison
totheoryisgenerated from2,500 samples. These samples are meant to
model local patches of the much larger experimental lattice. Owing
to the experimental run times being moderate in units of the interac-
tion time for typical spins, simulating a larger number of spins is not
necessary. Integer L is chosen for a sample such that N/L?is closest to
atarget density.

The density profile of molecules in the experimental lattice is
non-uniform. To model this in the simulations, we let the density of
our samples be arandom variable. Lower (higher) density samples
represent patches of the experimental lattice that are farther from
(closerto) the centre. We assume aradial density profile for the experi-
ment of the form

2
PN =P 1~ [7} . @

where g is the peak filling at the centre of the lattice and r,,,,, is the
distance from the centre at which the density becomes negligible. None
of our theoretical results actually depend onr,,,,,, and the peak densi-
ties for each experiment are given in the main text. Sampling patches
of Nspins with density p from such a density profile corresponds to
sampling a radial location according to the probability density
p(r) =< rp(r). The factor of ris because the amount of lattice at radius r
isproportional tor,and the factor of p(r) is because a patch with a pre-
determined number of spins N covers an area proportional to 1/p(r).
Now, instead of sampling the position of the patch in the lattice, we
change the variables and sample the corresponding density of the
patch. This yields a probability density p(p) < pforp<p_ .

Correlation functions are computed in a way that is similar to the
analysis of experimental data: for the experimental data we first com-
pute the quantum-and-disorder-averaged values of ny ni}, ;and n;, then
formthe position-dependent correlation function(ny ny, ;) — <ng Xny, >
and average that over the lattice. The lattice average is performed last
so as to try to delay mixing data from different densities until after
the connected correlation functionis formed. Similarly, for the simu-
lation datawe first compute the connected correlation functioninde-
pendently for groups of samples with the same density, and then we
average that density-dependent correlation function, with the weight
in the average given by the total lattice area of the samples at that
density.

Correlation normalization

Both experimental and simulated correlation functions are scaled in
the same way, namely by dividing the amplitude of the correlations by
the lattice-averaged value of the squared density (p?) o As discussed
inthe maintext, for anisolated pair of molecules with displacement a
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the probability of detecting the molecules in state | ™ 1) after aRamsey
sequence with evolution time Tissin*(V(a) T /4h). When generalizing
to larger systems of molecules, owing to the low filling fractions used
inthe Ramsey experiments we can approximate our system as consist-
ing of single molecules and isolated pairs. In addition, at the end of
our Ramsey sequence, single molecules that do not experience
many-body interactions are in |¥), so they do not contribute to the
correlation function. Therefore, both{n;n},,> and (n;) scale as the
probability p? of a molecule being in a pair. The lattice-averaged
correlation function before tzhe density normalization is then
C=(p? ,sin*(V(a)T/4h) - (p*), sin*(V(a)T/4h). For low fillings the
second term can be neglected, so we normalize our correlations by
multiplying it by (¢p2),_) -

For the numerical simulations with a density given by equation (7),
p?,.=p%../3. Thenormalization factors for each experimental cor-
relation measurement are obtained by repeatedly imaging the initial
density distribution, averaging the density over experimental realiza-
tions, and then numerically computing {p?) .o At the low fillings used
for the correlation measurements, a large number of images are
required for {p?) 1o t0 converge. We, therefore, bin the density distribu-
tionbefore evaluating (p2),_, whichallows for convergence with fewer
experimental repetitions.

A single-fit parameter is introduced to scale the amplitude of the
numerically simulated correlations to the experimental data. The
amplitude scale factors are obtained by fitting the experimental data
for the displacementsin the line plots simultaneously and are 0.59(2)
for Fig. 3, 0.56(3) for Fig. 4b-d, 0.33(3) for Fig. 4f-h and 0.83(5) for
Fig.5. The deviation of the experimental correlation amplitudes from
the numerical simulations may be due to several factors. The correla-
tion data were acquired over several hours for each set (greater than
24 hours for certain sets). Because the normalization factors were
typically determined by imaging the density distribution of the mol-
ecules at the beginning of each data set, slow downwards drifts in the
molecule number during a data set could affect the amplitude of the
correlations. For example, the lattice-averaged correlation before
density normalization scales as (p2>|at, so if the density during the
correlation data set drifts downward by 30% from the initial density,
thenthe correlation amplitude would drift downward by approximately
50%.Anadditional source of deviation between the experimental and
numerically simulated correlation amplitudesis the possibility of clus-
tering of molecules arising from the detailed spatial overlap of the
atomic clouds before molecule formation. This would lead to amodi-
fied scaling of the correlation amplitude with density, whichwould not
be captured by the numerical simulations. In the future, the influence
of density drifts and molecule clustering could be largely eliminated
by implementing spin-resolved imaging. This would enable the
post-selection of isolated pairs of molecules in each experimental
realization, simplifying the study of the dynamics of the molecular
spinsystem.

lat”

Floquet dynamics protocol

In Fig. 5 we report measurements of the dynamics of an effective
spin-anisotropic Heisenberg model engineered by using Floquet
driving. However, in general there are several ways that the effective
Floquet Hamiltonian can deviate from the desired target Hamiltonian
over the evolution time of the experiment. Possible errors include
the Floquet period not being sufficiently small compared to the fast-
est coupling timescale in the original Hamiltonian, or if the Bloch
sphere rotations are too slow or have improper timing. To check this,
we include additional numerical simulations comparing the target
XXZHamiltonian to different Floquet driving protocols. Extended
Data Fig. 5a,b compares the simulated dynamics of the XXZ Hamilto-
nian to a Floquet drive protocol with the same cycle duration as the
experiment from Fig. 5 (Floquet period T;=1.1124 ms) but a much
faster m-pulse duration of 5.8 ps. The simulated dynamics of the

magnetization and correlation oscillation show excellent agreement,
indicating that over the timescale of the experiment, the Floquet period
is sufficiently short to yield a good approximation to the target XXZ
Hamiltonian.

Next, in Extended Data Fig. 5¢c,d we compare the dynamics of the
target XXZHamiltonian to a Floquet drive with the same cycle length
but amore realistic pulse duration of 58 pis. Here, we see slight devia-
tionsbetween the target XXZHamiltonianand the Floquet driveinthe
nearest-neighbour correlation oscillations, which are also present in
the experimental data from Fig. 5c. These simulationsindicate that the
finite pulse durationis morelikely to be the cause for this discrepancy
than the Floquet cycle being insufficiently fast. Therefore, in future
work, it would be valuable to perform the same Floquet experiment
with varying microwave Rabi frequencies to test its effect on the Flo-
quet Hamiltonian.

The experimental data from Fig. 5 also shows a slight oscillation in
the magnetization of the |+X) state, which should be a conserved quan-
tityinthe target Hamiltonianin equation (2). Another possible source
of error for the experiment that could potentially explain this effectis
imperfect t-pulse timing, leading to inadvertent mixing of the spin
components and deviations from the target Hamiltonian. We test this
for each data set by repeatedly driving transitions between |1) and
[¥) and measuring the number of molecules in | ) after Nt pulses.
For example, we show in Extended Data Fig. 6 the results of this meas-
urement at 60 G with square microwave pulses of duration 58.3 ps
separated by aninterval time =100 ps. These resultsindicate that for
the maximum number of 25 Tt pulses used in the Floquet experiments
from Fig. 5, the pulse timing error was negligible, and, therefore, can-
not explain any slight deviations from the target Hamiltonian. Future
experiments will be required to more fully characterize the precise
manner in which the Floquet drive breaks down as an approximation
tothe target Hamiltonian. For example, by probing the Floquet dynam-
icstomuchlonger times and varying the duration of the pulses as well
as the total Floquet period, it should be possible to observe amore
dramatic breakdown of the approximation to the target Hamiltonian
to pinpoint the limitations to this technique.

Data availability

Source data canbe foundin the Harvard Dataverse®. All other support-
ing dataareavailable fromthe corresponding author uponreasonable
request.

Code availability

The code used in this manuscript is available from the corresponding
author upon reasonable request.
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Extended DataFig.1|Microwave spectroscopy. a, Molecular rotational and o ,and o' polarization, respectively. The transition on the far right, indicated by
hyperfinespectrummeasured at 60 G. Green, blue and orange lines are the theblackarrow, isthe |t) to [V) transition. b, Sample Rabi oscillation between
theoretical predictions using molecular parameters in refs. **° for microwave |*) and V). The extracted Rabifrequency from this measurementis

transitions from |1) toselected hyperfine statesinthe N=1manifold using m, 2mx9.529(4) kHz. Error barsares.e.m.
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Extended DataFig.2|Differential polarizabilitiesbetween|t)and|V)
versus trappinglightintensity. a, In the isotropic configuration, B=60 G, and
theanglebetweenthelight’selectric field and the quantization axisis 0°. The
intensity varies by ~4% over the cloud, denoted by the grey shading. b, Inthe
anisotropic configuration, B=4.1G, and the angleis 90°.
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Extended DataFig. 3 |Ramsey fringe contrast as a function of time at
varying latticefilling. Fringe contrast shown for1.0(2)% (blue circles), 3.3(2)%
(greensquares), and 8.4(3)% (orange diamonds) peak lattice fillings. Dashed
linesrepresent exponential fits with 1/etimes of 83(4) ms, 25(4) ms, and

11(2) msrespectively. Error barsares.e.m.
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Extended DataFig.4|Spin-exchange coupling. The values of V(a)/h calculated for the isotropic (a) and anisotropic (b) cases for different separationsinxandy.
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Extended DataFig. 5| Numerical simulation comparisonbetween XYY and
Floquet dynamics. a, Comparing magnetization dynamics for differentinitial
statesbetween the exact XYY model (shaded bands) and aFloquet drive with a
5.8 us m-pulse time (points). Red: |+X) initial state. Orange: |+Y) initial state.
Thedashedlineindicates the demagnetized value with N, = Ny/2.b, Correlation
dynamics compared between the exact XYY model (shaded bands) and a
Floquetdrive with a5.8 us m-pulse time (points). Top: nearest-neighbor
correlations. Middle: next-nearest neighbor correlations. Bottom:
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dynamics for different initial states between the exact XYY model (shaded
bands) and aFloquet drive with a 58 us m-pulse time (points). Red: |+X) initial
state.Orange: |+Y) initial state. The dashed lineindicates the demagnetized
valuewith N, =N,/2.d, Correlation dynamics compared between the exact XYY
model (shaded bands) and aFloquet drive with a 58 us m-pulse time (points).
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correlations. Bottom: next-next-nearest neighbor correlations.
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Extended DataFig. 6 | m-pulsefidelity. a, Microwave pulse sequence to
measuretheerrorinthe m-pulse time. An even number of m-pulses interspersed
with hold times rareused torotate the spins from |*) to |[V) and back.

b, Fraction of molecules remainingin |1) versus number of m-pulses N. The
dashed linemarks N,/N, =1indicating perfect m-pulses. Error barsares.e.m.
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