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Abstract

The determination of transport coefficients plays a central role in characterizing hot and dense nuclear 

matter. Currently, there are significant discrepancies between various calculations of the electric conductiv-

ity of hot hadronic matter. In the present work we calculate the electric conductivity of hot pion matter by 

extracting it from the electromagnetic spectral function, via its zero energy limit at vanishing 3-momentum, 

within the Vector Dominance Model (VDM). Since within the VDM the photon couples to the hadronic 

currents primarily through the ρ meson, we use hadronic many-body theory to calculate the ρ-meson’s 

self-energy in hot pion matter, by dressing its pion cloud with thermal π -ρ and π -σ loops including vertex 

corrections to maintain gauge invariance. In particular, we analyze the low-energy transport peak of the 

spectral function, extract its behavior with temperature and compare to (the results of) existing approaches 

in the literature.

Published by Elsevier B.V.

Keywords: Conductivity; Hadronic matter; Pion gas

1. Introduction

A central goal of high-energy nuclear physics is to study and characterize hot and dense 

nuclear matter which can be created in heavy-ion collisions (HICs) over a large range of center-

of-mass energies. A common way to characterize the long-wavelength properties of the medium 

are transport coefficients, which can be used to describe the transport of conserved charges 

through the fireball in nuclear collisions. One such coefficient is the electric conductivity, σel, 
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which will be the focus of this paper. In particular, we will take advantage of the close relation 

of σel to the thermal dilepton emission rate [1], as both quantities are directly proportional to 

the electromagnetic spectral function of the strongly interacting medium. On the one hand, this 

allows to establish connections between the processes that are widely implemented to describe 

low-mass dilepton and photon radiation observed in experiments at the SPS, RHIC, HADES 

and the LHC [2–4]. On the other hand, renewed interest in the conductivity has recently been 

triggered by future plans to access the pertinent transport peak more directly in experiment 

through very low-mass and low-momentum dileptons, as being envisaged at the Schwer-Ionen 

Synchrotron (SIS), the Relativistuc Heavy-Ion Collider (RHIC) and the Large Hadron Collider 

(LHC) [5–7]. Thus far, available calculations of the electric conductivity of hot hadronic matter 

have utilized various formalisms and yielded results that vary considerably, by up to an order of 

magnitude or even more [8–18]. In addition, some of the calculations appear to produce a con-

ductivity that is below a conjectured quantum lower bound proposed in Ref. [9]. In this work, we 

seek to address the above questions by performing a hadronic quantum many-body calculation 

of the conductivity, albeit constrained to a system of hot pion matter.

The dilepton emission rate is proportional to the imaginary part of the electromagnetic 

(EM) current-current correlation function, i.e., the EM spectral function, ρEM. At the same 

time, the electric conductivity can be obtained from ρEM as its low-energy limit at zero 3-

momentum [19–21]. Within the vector dominance model (VDM) the EM correlator is propor-

tional to the light vector meson propagators, DV , most notably the ρ-meson’s (V =ρ). In the 

vacuum and in a hadronic description, the latter is related to the ρ’s self-energy (�ρππ ), which 

is governed by 2-pion decays. In the medium, the dressing of the ρ’s pion cloud in a nuclear 

medium has been widely studied [22–26], and found to give a key contribution to the low-mass 

dilepton enhancement observed in experiment. The effects of thermal ππ scattering, generally 

believed to be less important, have not been studied as widely [27,28]. However, at relatively 

small temperatures and vanishing baryon chemical potential baryon-antibaryon excitations are 

suppressed and the effects of the lighter pions dominate. Since at very low dilepton masses one 

expects large contributions from the hadronic phase in nuclear collisions, and since at RHIC and 

the LHC the baryon-chemical potential is small (although contributions from thermally excited 

baryon-antibaryons are not negligible), a reliable calculation of the conductivity of hot hadronic 

matter is likely to require the inclusion of thermal pions. Toward this end we here calculate ρEM

at zero 3-momentum for hot pion matter and analyze the emerging conductivity, thereby serv-

ing as a first step in adding thermal ππ scattering to the baryonic effects calculated in previous 

works [26].

When dressing the pion cloud of the ρ-meson with medium excitations, i.e., pion self-

energies, it is important to preserve EM gauge invariance, which requires the introduction of 

appropriate vertex corrections [24,26,29]. The construction of these vertex corrections can be 

guided by Ward identities, which ensure that the resulting ρ-meson self-energy, and thus the 

EM correlation function, is 4-dimensionally transverse, which is a necessary condition for gauge 

invariance. These vertex corrections were constructed, e.g., in Refs. [24,26,29] for the case of 

nuclear matter and in Refs. [28,30] for hot pion matter. The introduction of vertex corrections 

becomes even more challenging in the context of the conductivity, as to render it finite, a dressing 

of all in medium propagators with a finite width is required. In the present work, ρEM and the 

electric conductivity will be calculated in hot pion matter both with and without vertex correc-

tions.

This paper is organized as follows: in Sec. 2 we introduce our microscopic model for the ρ-

propagator and self-energy, first in the vacuum with constraints from scattering data, followed by 
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the general form at finite temperature and a calculation of the conductivity for on-shell thermal 

pions that allows to recover the kinetic-theory result. In Sec. 3 we calculate the pion self-energy 

in a thermal pion gas, based on S- and P -wave scattering through sigma and rho resonances, 

again constrained by vacuum scattering data. Section 4 is dedicated to the construction of vertex 

corrections required to maintain gauge invariance at finite temperature. In Sec. 5 we discuss our 

numerical results for the in-medium EM spectral function, with focus on the low-energy transport 

peak and pertinent conductivity of hot pion matter, with and without vertex corrections, and put 

our results into the context of existing literature. In Sec. 6 we discuss two further applications, 

namely a calculation of the charge susceptibility and a test of a current-conservation sum rule. 

Finally, we summarize and discuss future work in Sec. 7.

2. Hadronic model for the rho meson

In this section we discuss the connection between thermal dilepton rates and the conductivity 

via the EM spectral function and compute the latter within VDM (Sec. 2.1) based on a hadronic 

model for the ρ propagator. We calculate the ρ self-energy in vacuum (Sec. 2.2) and at finite 

temperature (Sec. 2.3), followed by a preliminary on-shell calculation of the conductivity to 

make contact with kinetic theory (Sec. 2.4).

2.1. EM spectral function in the vector dominance model

The thermal dilepton emission rate can be expressed through the EM spectral function as [19,

20]:

dRl+l−
d4q

= α2
EM

2π3M2
f B(q0, T )ρEM(M,q,T ,μB) , (1)

where f B denotes the Bose-Einstein distribution, M2 = q2
0 − �q 2 is the dilepton’s invariant 

mass, and αEM = e2

4π
the fine-structure constant. The spectral function, in turn, is defined via 

the imaginary part of the EM current-current correlation in the strong-interaction medium, 

ρEM = −2 Im�EM, with a polarization average implied as �EM ≡ gμν�
μν
EM/3. The electric 

conductivity can be obtained from the spatial components of the spectral function at zero 3-

momentum in the low-energy limit [21],

σel(T ) = (−e2/6) lim
q0→0

[ρii
EM(q0, �q = 0, T )/q0 . (2)

Note that at finite T , the retarded spectral function goes linearly to zero with energy, and thus the 

division by q0 leads to a finite result provided the imaginary part is non-vanishing for small q0.

For invariant masses below approximately 1 GeV, the EM correlator is well described by the 

VDM, represented by the so-called field-current identity between the vector meson fields, V μ

and the hadronic EM current:

j
μ
EM =

m2
ρ

gρ

ρμ + m2
ω

gω

ωμ +
m2

φ

gφ

φμ , (3)

where the gV denote pertinent hadronic couplings. Since gω ≃ 3gρ , the primary contribution 

arises from the ρ meson leading to [31]:

Im�
μν
EM ≈

m4
ρ

g2
ρ

ImDμν
ρ . (4)
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Fig. 1. Vacuum pion loops contributing to the ρ self-energy to leading order in the coupling constant (left panel: ππ -loop, 

right panel: tadpole loop).

The task of computing the EM spectral function is thus converted into calculating the ρ spectral 

function which is given in terms of its self-energy, �
μν
ρ . In vacuum, the latter is generated by 

the ρ’s 2-pion cloud, including its 2-pion decay with a branching ratio of near 100%. At finite 

temperature, the pions are subject to rescattering off thermal-medium particles, which we will 

approximate by a pion gas. We will discuss those two cases in the following sections.

2.2. Rho meson in vacuum

When gauging the free pion Lagrangian with a ρ meson using minimal substitution, and 

adding the ρ-meson mass and field-strength terms, one obtains the following effective La-

grangian for the π -ρ system:

Lπ +Lρ = 1

2
∂μ

�φ · ∂μ �φ − 1

2
m2

π
�φ · �φ − 1

4
ρμνρ

μν + 1

2
(m(0)

ρ )2ρμρμ, (5)

Lπρ = 1

2
igρρμ(T3

�φ · ∂μ �φ + ∂μ �φ · T3
�φ) − 1

2
g2

ρρμρμT3
�φ · T3

�φ. (6)

Here, ρμν = ∂μρν −∂νρμ, T3 = −iǫ3ab , and mπ = 140 MeV is the pion mass. To leading order in 

the gauge coupling constant, gρ , the vacuum ρ propagator, with a “bare mass m
(0)
ρ , receives two 

contributions, diagrammatically depicted in Fig. 1. The first one, the ππ -loop, gives rise to the 

vacuum ρ → ππ decay, while the purely real “tadpole” diagram produces a constant shift in the 

ρ mass. However, the tadpole is essential to ensure a 4-dimensionally transverse ρ self-energy, 

qμ�
μν
ρ = 0 [29].

From the Lagrangian, the free pion propagator, Dπ , ρππ vertex, Ŵ
(3)
μ(ab)

, and ρρππ vertex, 

Ŵ
(4)
μν(ab , follow as:

Dπ (k) = 1

k2 − m2
π + iǫ

, (7)

Ŵ
(3)
μabc = gρǫcab(2k + q)μ, (8)

Ŵ
(4)
μν abcd = ig2

ρ(2δabδcd − δacδbd − δadδbc)gμν , (9)

where Greek (Roman) indices are used to denote Lorentz (isospin) space. Fig. 2 displays the 

propagators and vertices diagrammatically. The ρ self-energy energy diagrams can be evaluated 

as

�μν
ρ (q) = −i

2

∫

d4k

(2π)4
Dπ (k)Dπ (q + k)Ŵ

(3)
μ3ab(k, q)Ŵ

(3)
μ3ba(q + k,−q)

− 1

2

∫

d4k

(2π)4
Dπ (k)Ŵ

(4)
μν aa33(k, q) . (10)
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Fig. 2. From left to right: π -propagator, ρ-propagator, ρππ vertex, and ππρρ vertex.

A symmetry factor of 1
2

has been added to both terms to remove double counting of pion states, 

since the different pions are distinguishable in particle space (different charge states), but not in 

isospin space.

To regularize the loop integrals for �
μν
ρ we employ the Pauli-Villars scheme as a means to 

maintain gauge invariance [29,32]. In this scheme, ρ self-energies are calculated by subtracting 

“heavy-pion” propagators from the physical ones in the unregularized self-energy, yielding

�′μν
ρ (q) = �μν

ρ (q,mπ ) − 2�μν
ρ (q,

√

m2
π + �2

0) + �μν
ρ (q,

√

m2
π + 2�2

0) . (11)

We adopt the values of gρ = 5.9, m
(0)
ρ = 853 MeV, and �0 = 1 GeV, which have been previously

fitted to the P -wave ππ phase shifts and pion electromagnetic form factor [26].

Finally, �
′μν
ρ can be resummed into the vacuum ρ propagator yielding [29]:

Dμν
ρ (k) = Dρ(k)(−gμν + kμkν

k2
) + kμkν

(m
(0)
ρ )2k2

, (12)

Dρ(k) = 1

k2 − (m0
ρ)2 − �′

ρ(k)
, (13)

�′μν
ρ (k) = (−gμν + kμkν

k2
)�′

ρ(k) . (14)

In the following, we drop the prime notation from the regularized ρ self-energy.

2.3. General form of ρ self-energy at finite temperature

We calculate �
μν
ρ at finite temperature within the imaginary-time formalism, using the meth-

ods outlined in Refs. [33,34]; one obtains

�μν
ρ (q) = g2

ρ

∫

d3k

(2π)3

∞
∫

−∞

dvdv′

π2

(2k + q)μ(2k + q)ν

q0 + v − v′ + iǫ
Im[Dπ (v, �k)]

× Im[Dπ (v′, �k + �q)](f (v) − f (v′)) + ITad , (15)

where

ITad =
g2

ρgμν

4π4

∫

d3k

∞
∫

−∞
dvIm[Dπ (v, �k)]f (v) . (16)

The first term is complex, while the second is purely real. The imaginary part of �
μν
ρ can be 

slightly simplified as
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Im�μν
ρ (q) = g2

ρ

∫

d3k

(2π)3

q0
∫

0

dv

−π
Im[Dπ (v, �k)]Im[Dπ (q0 − v, �q + �k)]

× (2k + q)μ(2k + q)ν(1 + f (v) + f (q0 − v))

+ 2g2
ρ

∫

d3k

(2π)3

∞
∫

0

dv

−π
Im[Dπ (v, �k)]Im[Dπ (q0 + v, �q + �k)]

× (2k + q)μ(2k + q)ν(f (v) − f (q0 + v)) , (17)

where we have separated the self-energy into two “cuts”. The first integral corresponds to the 

unitarity cut, which represents the vacuum ρ → ππ decay and its Bose enhancement, while the 

second integral is referred to as Landau cut which represents ρπ scattering through an inter-

mediate pion state. The energy dependent part of the real part of �
μν
ρ can be calculated from a 

dispersion relation, while the constant shift from the tadpole diagram can be calculated directly 

as

Re�μν
ρ (q) = −1

π
p.v.

∞
∫

0

dv2 1

q2
0 − v2

Im�μν
ρ (v, �q) + ITad , (18)

where p.v. indicates the principal value of the integral.

At finite temperature the breaking of Lorentz invariance splits the ρ propagator at finite 

3-momentum into transverse and longitudinal modes that can be expressed in terms of projection 

operators P
μν
T and P

μν
L as [35]

Dμν
ρ (q, T ) = P

μν
T

M2 − (m0
ρ)2 − �T

ρ (q, T )
+ P

μν
L

M2 − (m0
ρ)2 − �L

ρ (q, T )
+ qμqν

(m0
ρ)2M2

, (19)

where M2 = q2
0 − �q 2 is the ρ meson’s invariant mass. The projection operators are defined by

P
μν
T = 0, for μ = 0 or ν = 0,

P
μν
T = δμν − qμqν

�q2
, for μ,ν ∈ {1,2,3}, (20)

P
μν
L = qμqν

M2
− gμν − P

μν
T . (21)

The transverse and longitudinal components of the rho self-energy, �T
ρ and �L

ρ , follow as

�μν
ρ (q, T ) = P

μν
T �T

ρ (q, T ) + P
μν
L �L

ρ (q, T ). (22)

For �q = 0, �T (q0, T ) = �L(q0, T ), allowing one to write the conductivity in terms of only the 

transverse projection of the rho self-energy:

σel = e2

g2
ρ

lim
q0→0

Im
[ −(m0

ρ)4

q2
0 − (m0

ρ)2 − �T
ρ (q0, �q = 0)

]

. (23)

2.4. On-shell pion approximation

For very small energies ImDρ is approximately proportional to Im�T
ρ , which is dominated by 

the Landau cut below q0 ≈ 2mπ . Therefore the conductivity can be approximated as

6
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σel ≈ −2e2

3

∫

d3k

(2π)3

∞
∫

0

dv

−π
[ImDπ (v, �k)]2 × 4|�k|2e v

T

T (−1 + e
v
T )2

, (24)

where we have taken the limit q0 → 0 analytically. We see that one must introduce a finite pion 

width into Dπ in order to obtain a finite conductivity. This implies that we have to include at 

least two thermal-pion insertions in order to obtain a result beyond the ideal-gas limit. One can 

approximate the conductivity using a small, but finite, pion width, Ŵπ . In this approximation the 

pion propagator becomes

Dπ (k) = 1

2ωk

∑

±

±1

k0 ∓ ωk + i Ŵπ

2

, (25)

with ωk =
√

k2 + m2
π . In the small-width limit [ImD(k)]2 is approximately

[ImD(k)]2 ≈ π

4ω2
k

1

Ŵπ

δ(k0 − ωk) . (26)

One can use Eqs. (24) and (26) to show that

σel = 2e2

3T

∫

d3�k
(2π)3

v2
k

Ŵπ

f (ωk)(1 + f (ωk)) , (27)

where vk = |�k|/ωk is the pion’s velocity. This result agrees with similar calculations where the 

conductivity is expressed in terms of the pion width [10,17,36].

3. Thermal ππ scattering

In this section we calculate the pion self-energy due to thermal S- and P -wave ππ scattering. 

The self-energy can be resummed into a thermal pion propagator yielding

Dπ (k0, �k) = 1

k2 − m2
π + �π (k, T )

. (28)

We first obtain the self-energy expression from the Matsubara formalism in terms of the ππ

scattering amplitude (Sec. 3.1), discuss the implementation of phenomenological vertex form 

factors (Sec. 3.2) and constraints from vacuum ππ phase shifts and cross sections (Sec. 3.3), and 

finally present our numerical results for the pion optical potentials in a hot pion gas (Sec. 3.4).

3.1. Pion self-energy

Assuming the dominance of s-channel resonances we are able to describe S- and P -wave 

ππ interactions up to center-of-mass (CM) energies of about 1 GeV [37], which is sufficient for 

the typical temperatures under consideration. Such scatterings can be fairly well approximated 

through σ(500) and ρ(770) resonances, whose pertinent diagrams are illustrated in Fig. 3. We 

use the vertices and propagators established in Sec. 2.2 to construct the pion self-energy for 

ππ scattering through a ρ resonance, while we follow the approach outlined in Refs. [34,37]

to calculate scattering through an effective σ(500) resonance. The in-medium pion self-energies 

(R = σ, ρ) are then obtained as

7



J. Atchison and R. Rapp Nuclear Physics A 1037 (2023) 122704

Fig. 3. The pion self-energy resulting from resonant scattering of a pion with a thermal pion through intermediate ρ (left) 

and σ (right) mesons.

�R
π (k) = g2

R

∫

d3p

(2π)3

∞
∫

−∞

dwdw′

π2

[

Im[Dπ (w, �p)]Im[DR(w′, �k + �p)]

× NRππ [p,k,w′]FFR(q2
CM)(f (w) − f (w′))

k0 + w − w′ + iǫ

]

p0=w
(29)

with the vertex functions

Nρππ [p,k,w′] = −(k − p)2 + (k2 − p2)2

w′2 − ( �p + �k)2
(30)

and

Nσππ [p,k,w′] = w′2 − (�k + �p)2 − m2
π

2
. (31)

The vacuum ρ propagator, D
μν
ρ , is taken from Eq. (12) and Dσ is the vacuum σ(500) propagator,

Dσ (E) = 1

E2 − m2
σ − �σ (E)

, (32)

where mσ is the bare sigma mass and �σ its vacuum self-energy,

�σ (E) = 3g2
σ

∫

d|�k|�k2

(2π)2

(E2 − m2
π )FFσ (k)2

ωk(E2 − 4ω2
k + iǫ)

. (33)

Although we dress the intermediate ρ(770) and σ(500) propagators in �π with their vacuum 

self-energies, the pion propagators within �π are not dressed. These propagators will not in-

duce an infinite conductivity, because they correspond to thermal pions, while only intermediate 

particle states transmit charge through the medium.

3.2. Form factor

Phenomenological form factors FFR at each vertex are a standard tool to simulate the finite-

size effects of hadrons while also regularizing vacuum loop integrals. For the purpose of the ππ

scattering amplitude we do not employ the Pauli-Villars scheme (which is not necessary) but 

resort to a simpler form given by

FFρ(qCM) =
�2

ρ + m2
ρ

�2
ρ + 4(m2

π + q2
CM(p, k))

(34)

FFσ (qCM) = �2
σ

�2
σ + 4(m2

π + q2
CM(p, k))

(35)

q2
CM(p, k) = ((p + k)2 − k2 − p2)2 − 4k2p2

4(p + k)2
, (36)

8
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Fig. 4. Fits to the isoscalar S- (upper panel) and isovector P -wave (lower panel) ππ scattering phase shift via σ and ρ

resonance scattering, respectively, compared to experimental data [38].

where qCM is pion momentum in the CM system of the collision. In the following section we 

constrain the parameters of the ππ amplitudes through vacuum scattering data.

3.3. Comparisons to vacuum data

For comparisons to vacuum scattering data the pion energies, k0 and p0, are taken to be on-

shell, while the CM energy, ECM = √
s, is taken as an external variable. The CM momentum is 

then given by

qCM(s) =
√

s

4
− m2

π . (37)

From the vacuum resonance self-energies, the ππ scattering phase shift in the pertinent reso-

nance channel (R = ρ, σ ) can be obtained as

tan δR(ECM) = − Im�R(ECM)

Re�R(ECM)
. (38)

We utilize these data to fit our parameters resulting to describe the S- and P -wave ππ scattering 

phase shifts [38]. The fits are shown in Fig. 4 based on the values: gσ = 8.86, mσ = 0.934 GeV, 

�ρ = 1.85 GeV, and �σ = 0.745 GeV. The fit quality is rather good up to CM energies of 1 GeV 

which is sufficient for our application to a thermal pion gas for temperatures of up to 180 MeV. 

Finally, we calculate the resulting elastic ππ cross section by utilizing the optical theorem to 

express it through the imaginary part of the forward scattering amplitude Mππ ,

9
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Fig. 5. Comparison of our ππ cross section (blue) to experimental data (black dots) [39] and two previous works with 

applications to the electric conductivity: Breit-Wigner ansatz for the ρ-resonance cross section (red) [8], K-matrix for-

malism (green) [16]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 

article.)

σππ (s) = − (1
√

s(s − 4m2
π )

Im[Mππ (s)] , (39)

where the amplitude for a given spin-isospin channel can be related to the resonance propagator 

as

M00
ππ (s) = g2

σ

2
(s − m2

π )Dσ (s)FFσ (q2
CM) (40)

M11
ππ (s) = g2

ρ(s − 4m2
π )Dρ(s)FFρ(q2

CM). (41)

In Fig. 5 we compare our cross section to experimental data [39], and to several other works 

where it was also used as an input to calculating the electric conductivity [8,16]. The ρ resonance 

peak in our cross section turns out to be somewhat narrower than experimental data, a feature 

that is apparently shared by other calculations and possibly related to the absence of non-resonant 

“background” terms.

3.4. Optical potentials

To obtain the in-medium pion self energy we first compute the imaginary part directly from 

Eq. (29) and subsequently the real part from a subtracted dispersion relation,

Re�π (k) =
∞

∫

−∞

dw

−π

( Im�π (w, �k)

k0 − w
− Im�π (w, �k)

−w

)

. (42)

The subtraction ensures that Re�π is zero for zero energy. This is motivated by the pion being a 

Goldstone boson, to approximately implement chiral constraints on the low-energy behavior of 

the amplitudes [27,37]. A convenient and more intuitive way to represent the pion self-energy, 

whose dimension is quadratic in energy, is to define corresponding “optical potentials”, which 

formally can be thought of as resulting from the leading-order corrections to the pion’s dispersion 

relation. Their on-shell values take the form

Uπ (�k) = �π (ωk, �k)/2ωk , (43)

10
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Fig. 6. Imaginary (upper panel) and real part (lower panel) of the on-shell pion optical potential in hot pion matter, plotted 

as a function of 3-momentum for T = 150 MeV. Contributions from the rho (blue) and sigma (red) resonances are shown 

in addition to the total (purple).

representing the real and imaginary parts of the in-medium contributions to the on-shell pion 

self-energy (also note that −2ImUπ amounts to the Breit-Wigner width, Ŵπ (or full-width-half-

maximum), around the on-shell pole in the spectral function) We graph the real and imaginary 

parts of the optical potential in Fig. 6; they generate a pion mass shifts of up to ±10 MeV, and 

pion widths of up to 30 MeV. This is in rather good agreement with the results of Refs. [27,40]

for the σ and ρ channels. However, for momenta of up to ∼ 1 GeV the imaginary part of our 

total pion self-energy is a few MeV smaller than that obtained in the previous work, because the 

latter also contains non-resonant S-wave and D-wave contributions. As these contributions lead 

to additional complications with preserving gauge invariance, while their quantitative impact is 

only at the 10% level, we neglect them for now.

4. Gauge invariance in medium

In this section we scrutinize the issue of gauge invariance, that is violated when introducing 

in-medium pion self-energies and therefore needs to be restored by accounting for pertinent ver-

tex corrections. Toward this end, we first introduce in Sec. 4.1 the Ward identities between 2-, 3-

and 4-point functions in our model that provide a sufficient criterion for a gauge invariant set of 

diagrams. In Sec. 4.2 we lay out the general strategy of how the pertinent vertex functions can 
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be constructed. In Sec. 4.3 we address the complications associated with having to dress inter-

mediate propagators inside the vertex corrections which is dictated by rendering the conductivity 

finite, while in Sec. 4.4 we elaborate on how to approximately maintain gauge invariance in the 

presence of form factors that figure in the vertex corrections. Finally, in Sec. 4.5 we summarize 

our expression for the transverse ρ self-energy in compact form at vanishing 3-momentum that 

will be used for the calculation of the conductivity.

4.1. Ward identities

In the VDM the ρ meson couples to a conserved current, and thus must be four-dimensionally 

transverse, qμ�
μν
ρ = 0. Transversality is ensured if the ρππ and ρρππ vertices satisfy the Ward-

Takahashi identities between the 2-point and 3-point functions, as well as the 3-point and 4-point 

functions in the model, i.e.,

qμŴ
(3)
μab3 = gρǫ3ab(D

−1
π (k + q) − D−1

π (k)) , (44)

qμŴ
(4)
μν ab33 = igρ(ǫ3caŴ

(3)
ν bc3(k,−q) − ǫ3bcŴ

(3)
ν ca3(k + q,−q)) . (45)

The Ward-Takahashi identities are straightforwardly satisfied in vacuum, but are upset by the 

introduction of a thermal pion self-energy in Dπ . This can be remedied by considering thermal 

corrections to the ρππ and ρρππ vertices [28,32]. Following these references, the in-medium 

vertices can be written as

Ŵ
(3)
μab3 = gρǫ3ab(2k + q)μ + Ŵ

′ (3)
μab3 , (46)

Ŵ
(4)
μν ab33 = 2ig2

ρ(δab − δ3aδ3b)gμν + Ŵ
′ (4)
μν ab33 , (47)

where Ŵ
′ (3)
μab3 and Ŵ

′ (4)
μν ab3 are vertex corrections to the ρππ and ρρππ vertices. The Ward iden-

tities will hold if the vertex corrections satisfy

qμŴ
′ (3)
μab3 = gρǫ3ab(�π (k) − �π (k + q)), (48)

qμŴ
′ (4)
μν ab33 = igρ(ǫ3caŴ

′ (3)
ν bc3(k,−q) − ǫ3bcŴ

′ (3)
ν ca3(k + q,−q)), (49)

In the following, we will use these as our guiding principle.

4.2. Vertex corrections

The corrections to the ρππ vertex sufficient to satisfy the Ward identities can be generated by 

coupling a ρ meson (or photon) to all possible charged-particle lines in �π . Similarly, one can 

couple two ρ mesons to �π in all possible configurations to obtain corrections to the ρρππ ver-

tex [32]. We then analytically determine which vertex corrections are necessary to maintain the 

Ward identities when Dπ is dressed with only thermal ππ scattering. Figs. 7 through 9 show the 

vertex corrections resulting from dressing Dπ with �
(ρ)
π and �

(σ )
π . We show only the minimum 

diagrams necessary to maintain gauge invariance. Consequently, there are fewer corrections for 

the σ resonance interactions, because the σ meson is neutral and the σππ vertex is a Lorentz 

scalar. Furthermore, the vertex corrections require the ρρρ, ρρρρ, and σππ vertices. Terms in-

cluding the ρρρ or ρρρρ vertex contain multiple ρ propagators, and are therefore suppressed by 

1/m2
ρ . Thus we drop all corrections containing these vertices and do not write them here.
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Fig. 7. Corrections to the ρππ vertex due to �
(ρ)
π .

Fig. 8. Corrections to the ρρππ vertex due to �
(ρ)
π .

Fig. 9. Left panel: Correction to the ρππ vertex due to �
(σ )
π . Right panels: Corrections to the ρρππ vertex due to �

(σ )
π .

In order to calculate vertex corrections involving a σ meson we introduce an effective σππ

vertex that corresponds to our calculation of the vacuum self-energy of the σ meson through ππ

loops in Sec. 3.1,

Ŵ
(3)
σ ab = iδabgσ

√

s − m2
π , (50)

which reproduces our results for �σ and �
(σ )
π . The expression for Ŵ

(3)
σ ab can then be used to 

calculate vertex corrections involving the σππ vertex. We calculate all diagrams resulting from 

replacing a vacuum vertex with a corresponding vertex correction. For the four-point vertex 

corrections, we also include diagrams resulting from interchanging ρ-meson or pion propagators 

when they produce unique vertex corrections.

4.3. Dressing intermediate particles

The vertex corrections contain intermediate ρ, σ , and pion propagators. As we have seen 

for the Landau cut of �
μν
ρ , if these propagators are not dressed, the conductivity will diverge. 

Therefore, we dress the ρ and σ propagators with their vacuum self-energies and treat the 

intermediate-pion propagators self-consistently, i.e.,

Dπ (k) = 1

k2 − m2
π − �π (k)

. (51)
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However, thermal pions within vertex corrections and the pion self-energy are not dressed. The 

widths in the pion and ρ propagators cause another layer of violation of gauge invariance. 

However, the violation due to dressing Dρ only occurs in vertex corrections containing mul-

tiple ρ propagators, which are suppressed by powers of 1/mρ . The violation due to dressing 

intermediate-pion propagators within vertex corrections can be corrected by dressing the ρππ

vertices that couple to an external ρ with three point-vertex corrections and dressing thermal-

pion propagators, creating a self-consistency equation. These effects are expected to be small, 

due to the small pion width, thus we will not calculate these corrections in this work.

4.4. Vertex correction form factors

In Ref. [32] the in-medium dressing of the pions with nucleons and �(1232)’s was imple-

mented in a non-relativistic approximation, so that the corresponding form factors depended 

only on the pion’s three-momentum (the lab frame momentum). The form factors were gener-

ated by attaching heavy pions to the external pions in �π and the vertex corrections. These form 

factors violated the Ward identities, however, this violation was corrected by including further 

vertex corrections, derived by coupling ρ mesons directly to heavy-pion propagators [32]. The 

additional vertex corrections could be expressed in terms of the pion self-energy and the original 

corrections to the ρππ vertex. Two complications arise when applying the regularization pro-

cedure from Ref. [32] with the form factors introduced in Sec. 3.2. First, different form factors 

were introduced for the S- and P -wave contributions to the self-energy, and second, the CM 

momentum was used to as the variable.

In order to extend the approach of Ref. [32] to multiple form factors we note that �
(ρ)
π and its 

vertex corrections, Ŵ
′ (3)ρ
μab3 and Ŵ

′ (4)ρ
μν ab33, independently satisfy Eqs. (48) and (49), such that

qμŴ
′ (3)ρ
μab3 = gρǫ3ab(�

(ρ)
π (k) − �(ρ)

π (k + q)) (52)

qμŴ
′ (4)ρ
μν ab33 = igρ(ǫ3caŴ

′ (3)ρ
ν bc3 (k,−q) − ǫ3bcŴ

′ (3)ρ
ν ca3(k + q,−q)) . (53)

Similarly, �
(σ )
π and its vertex corrections, Ŵ

′ (3)σ
μab3 and Ŵ

′ (4)σ
μν ab33, satisfy

qμŴ
′ (3)σ
μab3 = gρǫ3ab(�

(σ )
π (k) − �(σ )

π (k + q)) (54)

qμŴ
′ (4)σ
μν ab33 = igρ(ǫ3caŴ

′ (3)σ
ν bc3 (k,−q) − ǫ3bcŴ

′ (3)σ
ν ca3 (k + q,−q)) . (55)

One realizes that the σ and ρ resonances form subgroups that independently satisfy the Ward 

identities. Thus, the regularization procedure from Ref. [32] can be applied separately to S- and 

P -wave scattering. The total regularized vertex corrections are then given by the sum of the 

corrections for each resonance.

Next we address the use of the CM momentum in the form factor. For ππ scattering we cannot 

apply the non-relativistic approximations which mandated to employ a form factor depending 

on the CM momentum, qCM. Furthermore, the dependence on qCM, rather than �k, prevents the 

introduction of spurious total-momentum dependencies. While the use of qCM renders the pion 

self-energy more robust, it is not clear how to satisfy the Ward identities in this framework. 

However, the violation of the Ward identities is proportional to the difference in the q2
CM of 

the two pions in the ρ self-energy ππ loop over �2
R . Since we are chiefly interested in σel, 

which involves the zero-momentum low-energy limit of the EM spectral function, the violation 

is parametrically suppressed, because �2
R is on the order of several hundred MeV, while qCM is 
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on the order of a few tens of MeV. This low energy suppression is expected because the form 

factors are constructed to suppress high-momentum behavior, while minimally affecting the low-

momentum regime. Furthermore, to leading order the violation is proportional to q2
0 (where q0 is 

the ρ-meson’s energy), while �ρ is on the order of 1 GeV for the ρ resonance. Thus, the violation 

due to the form factors in �π(ρ) should still be appreciably suppressed around the rho mass. 

Although �σ = 0.745 GeV) is of the same order as mρ , the effects of ππ -resonant scattering 

through a σ resonance on the EM spectral function are suppressed for large q0. Therefore, the 

violation of gauge invariance due to using qCM in the form factor is expected to be small even 

for q0 around the rho mass.

Additionally, in order to further analyze the effect of the violation on our results, and provide 

an approximate correction for the violation, we follow the approach of Ref. [32] and generate 

additional vertex corrections involving heavy-pion propagators. However, at the vertices where 

a heavy-pion propagator couples to a thermal loop we replace the lab frame momentum, �k, with 

the center of mass momentum, qCM. In Sec. 5 we will assess the effect of the additional vertex 

corrections on the EM spectral function, in order to quantify the effect this violation of gauge 

invariance has on our results.

The total vertex corrections to the ρππ vertex, including terms where the ρ meson couples to 

a heavy-pion propagator, can then be written in terms of the original vertex corrections plus terms 

involving the pion self-energy. Similarly, the total corrections to the ρρππ vertex can be written 

in terms of the original corrections plus terms involving the pion self-energy or the original vertex 

corrections to the ρππ vertex. The regularized corrections to the ρππ and ρρππ vertices are 

written out in Appendix A.

4.5. ρ self-energy at finite temperature

Here we write the transverse projection of �
μν
ρ for arbitrary ρππ and ρρππ vertices, 

Ŵ
(3)
μab3(k, q) and Ŵ

(4)
μν ab33(k, q), at �q = 0:

�T
ρ (q) = 4πT

3

∑

n(even)

∫

d|�k|�k2

(2π)3
Dπ (k)

[

Dπ (q + k)
(

gρǫ3ab(2|�k|) + Ŵ
′ (3)
3ab3(k, q)

)

×
(

gρǫ3ba(2|�k|) + Ŵ
′ (3)
3ba3(k + q,−q)

)

−
(3g2

ρ

π
+ iŴ

′ (4)
ii aa33(k, q)

)

]

k0=iωn

, (56)

where we have performed the angular integrations analytically, and ωn are discrete Matsubara 

frequencies. The vertex corrections are complex and introduce nontrivial energy dependence into 

the vertices, and thus must be written with a spectral representation, before Matsubara sums are 

performed. In appendix B we establish the relevant spectral representations and carry out the 

summations in eq. (56).

5. Electromagnetic spectral function in pion matter

We are now in position to discuss our numerical results, starting with the in-medium ρ

self-energy in Sec. 5.1, followed by the EM spectral function in Sec. 5.2 and the temperature 

dependence of the electric conductivity in Sec. 5.3.
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Fig. 10. Imaginary (upper panel) and real part (lower panel) of the transverse projection of the ρ self-energy in vacuum 

(blue line) and at T =150 MeV with (purple) and without vertex corrections (red). The results include both ρ and σ

resonances in the ππ scattering amplitude.

5.1. Rho self-energy

Let us first illustrate the role of the vertex corrections. In Fig. 10 we display the imaginary 

and real parts of the transverse projection of the ρ self-energy at �q = 0, with and without vertex 

corrections, at a temperature of T =150 MeV. Compared to the vacuum result, the use of in-

medium pion propagators enhances the imaginary part considerably, most notably below the 

two-pion threshold where the vacuum result vanishes. At the same time the magnitude of the real 

part reduces, except below threshold, where the vacuum result is small and attractive while the 

in-medium one has turned significantly repulsive. The inclusion of vertex corrections increases 

the imaginary part, which is expected as they create additional inelastic channels, again most 

notably in the sub-threshold region, while the real part also shows a slight increase. Next, we 

turn to the temperature dependence of the ρ self-energy, illustrated in Fig. 11 (which includes 

vertex corrections). As we have seen before, the medium effects on Re�T
ρ are repulsive, causing 

the rho mass to increase. The increase of Im�T
ρ with temperature is again most pronounced in 

the low-energy regime, while the increase at higher energies produces a broadening of the ρ

resonance peak. In particular, the Landau cut of the ρ self-energy, corresponding to π + ρ → π
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Fig. 11. Imaginary (upper panel) and real (lower panel) part of the transverse projection of the ρ self-energy at �q = 0 in 

vacuum (blue), and for various temperatures (T =100 MeV: purple, T =150 MeV: brown, and T =180 MeV: red), including 

vertex corrections. Results include the ρ and σ resonances in the ππ scattering amplitude.

scattering, generates a marked bump at very low energy, which, as we will see more clearly in 

the next section, corresponds to a broadening of the transport peak in ρEM.

5.2. EM spectral function

In this section we will discuss our results for the EM spectral function, averaged over trans-

verse polarization and divided by energy with a normalization that yields the value of the electric 

conductivity at the intercept at zero energy, e2ρii
EM/6q0, recall Eq. (2). In particular, the division 

by energy will clearly exhibit the transport peak near vanishing energy.

We start by analyzing the different contributions from thermal ππ scattering, first focusing 

on the case without vertex corrections at a fixed temperature of T =150 MeV, cf. Fig. 12. Maybe 

somewhat surprisingly, at high energies, where the unitarity cut dominates, the rescattering con-

tributions encoded in the pion self-energy have rather little impact on the medium effects on 

the ρ-meson resonance peak; its thermal broadening is almost entirely driven by the Bose en-

hancement of the intermediate pions in the pion gas; it also features a thermal mass shift that is 

probably a bit too large since our π -ρ Lagrangian is not chirally symmetric (and therefore miss-
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Fig. 12. Electromagnetic spectral function, scaled such that the zero-energy intercept corresponds to σel , plotted as a 

function of energy at �q = 0 (upper and lower panels differ by the selected energy range). Results are shown excluding 

vertex corrections for only P -wave scattering (red lines), only S-wave scattering (brown lines), and allowing P - and 

S-wave scattering (purple lines), and compared to the vacuum curve (blue line).

ing, e.g., an attractive contribution from ρ+π → a1 scattering; the simultaneous implementation 

of chiral symmetry and gauge invariance is beyond the scope of this work). In the low-energy 

region we now clearly see the development of the transport peak, essentially generated by the 

Landau cut. The pion width generated by scattering off thermal pions plays a key role, with the 

ρ resonance providing the dominant contribution: when only including the ρ contribution, the 

transport peak is much broader and the conductivity is about a factor 2 smaller compared to the 

case with only the σ contribution.

Turning to the temperature dependence, but still without vertex corrections, the ρ resonance 

peak shows the expected broadening increasing with temperature, cf. Fig. 13. At low energies, 

the conductivity decreases significantly from T =100 MeV to 150 MeV, but is almost unchanged 

between 150 and 180 MeV. This shows that a minimum can develop in the conductivity, caused 

by a misalignment of thermal pion energies with that of the resonant particles towards higher 

temperatures; in other words, if the thermal energies of the charge carriers are beyond those 

needed for resonance excitations, charge can be transported more freely again.

Finally, Fig. 14 displays the EM spectral function when vertex corrections are included, for 

various temperatures. The vertex corrections result in a broadening of the ρ peak that increases 

with temperature. This is expected because the corrections increase the ρ’s interaction with the 
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Fig. 13. Electromagnetic spectral function, scaled such that the zero-energy intercept corresponds to σel , plotted as a 

function of energy at �q = 0 (upper and lower panels differ by the selected energy range). Results excluding vertex 

corrections are plotted for vacuum (blue line), at T =100 MeV (purple lines), T =150 MeV (brown lines), and T =180 

MeV (red lines).

medium. Furthermore, we see an increase of the transport peak due to the vertex corrections. 

This is somewhat counter-intuitive, because the transport peak is proportional to the electric 

conductivity. Therefore, it appears that increasing the medium interaction by including vertex 

corrections has resulted in a more conductive medium. In order to understand this phenomenon, 

we note that the ρ meson does not transmit electric charge through the medium. Charge is trans-

mitted by the charged pion states, and any increase in Im�π will reduce the conductivity. On 

the other hand, the ρ self-energy determines how the external photon couples to the medium. 

Therefore, the various ρ self-energy diagrams represent different channels through which elec-

tric charge can travel, i.e., the vertex corrections introduce additional channels, increasing the 

electric conductivity.

5.3. Electric conductivity over temperature

Let us first summarize in Fig. 15 our pion gas results for the conductivity, divided by tem-

perature, for various scenarios as a function of temperature. When only including P -wave (ρ-

resonance) scattering for the pion self-energies the temperature dependence is most pronounced, 

indicating that with increasing temperature the typical thermal pion energies provide markedly 

increasing overlap for resonance formation, thus reducing the conductivity; vertex corrections 

have little impact on this result. On the other, the temperature dependence is much less pro-

nounced when only the much broader σ resonance is included. The pertinent conductivity is 

actually smaller than for ρ resonance reactions only, since the relative low thermal energies at 

19



J. Atchison and R. Rapp Nuclear Physics A 1037 (2023) 122704

Fig. 14. Electromagnetic spectral function, scaled such that the zero-energy intercept corresponds to σel , plotted as a 

function of energy at �q = 0 (upper and lower panels differ by the selected energy range). We plot results including vertex 

corrections for T =100 MeV (purple lines), T =150 MeV (brown lines), and T =180 MeV (red lines). The vacuum line is 

also plotted in blue.

small temperatures are dominated by S-wave interactions; however, around T � 110 MeV, the ρ

resonance interactions take over and dominate at still higher T . Interestingly, the vertex correc-

tions have a larger effect in the σ channels, caused primarily by Ŵ
(3)Cσ
μab3 (expressions are given 

in Appendix A). When both resonances are included, the effect of this correction is greatly re-

duced, because the dominant ρ self-energy diagram from Ŵ
(3)Cσ
μab3 is inversely proportional to the 

pion width squared, and the ρ resonance significantly increases the pion width. At the same 

time, other ρ self-energy diagrams are only suppressed by the inverse pion width. In particular, 

the largest corrections to the ρ self-energy, when both resonances are included, turn out to arise 

from Ŵ
(3)Eρ
μν ab33 and Ŵ

(3)Eσ
μν ab33 (see Appendix A for the explicit expressions), accounting for about 

70% of the vertex corrections’ contribution to the ρ self-energy. Overall, with both resonances 

included, the vertex corrections increase the conductivity by approximately 10% throughout.

Next, we examine the impact of the additional vertex corrections induced by the form factors. 

The conductivity with and without these corrections is plotted in Fig. 16, along with the con-

ductivity without any vertex corrections. Form factors are still included in all results, in order to 

ensure convergence of the calculation. One can see that the form factor correction terms provide 

only a small increase in the total conductivity, of approximately 2.5%.

Finally, we compare our results for the hot pion matter conductivity to results from the litera-

ture in Fig. 17. Our conductivity is significantly larger than the results from kinetic theory using 

Breit-Wigner cross sections [8], chiral perturbation theory [10], and a relaxation time approxima-
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Fig. 15. Pion gas conductivity over temperature for different ππ scattering resonances, with and without vertex correc-

tions. Results including only the σ resonance are plotted in red (vertex corrections excluded) and green (vertex corrections 

included). Results including only the ρ resonance are plotted in blue (vertex corrections excluded) and orange (vertex 

corrections included). Results including both resonances are plotted in purple (vertex corrections excluded) and brown 

(vertex corrections included).

Fig. 16. Pion gas conductivity over temperature without vertex corrections (blue), with vertex corrections (red), and 

including all vertex corrections except those induced by the form factor (green). The results include ππ scattering 

through rho and sigma resonances.

tion [18], but it is smaller than the K-matrix results of Ref. [16]. However, our calculation agrees 

well with the real-time field theory results of Ref. [17]. In Refs. [8,10,16,17] expressions for the 

conductivity are provided in terms of either the pion width or the relaxation time (sometimes 

equated to the collisions time), which are similar to our Eq. (27); however, the inputs for the 

pion width vary considerably. For example, in Ref. [18], the momentum averaged charged-pion 

relaxation time at T =150 MeV (using vacuum ρ and σ channel cross sections) amounts to ca. 2 

fm/c (3 fm/c for neutral pions), which translates into a reaction rate of ∼100 MeV, substantially 
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Fig. 17. Our results for the electric conductivity over temperature (blue line) compared to previous calculations in pion 

matter and lQCD results: brown line: kinetic-theory using Breit-Wigner cross sections [8], green line: K-matrix ap-

proach [16], orange line: chiral perturbation theory [10], red line: real-time thermal field theory [17], magenta line: 

relaxation time approximation with Chapman-Enskog technique [18], black, purple and cyan dots: lattice QCD for Nf =2 

light flavors [13,14] and for Nf =2+1 [12], respectively. The black dashed line indicates a proposed lower bound from 

Ref. [9] using a holographic calculation for a supersymmetric Yang-Millls plasma.

larger than our optical potential of Ŵ = −2ImUπ ≃ 20 − 30 MeV. Fig. 17 also indicates that the 

pion gas results are significantly larger than lQCD calculations, with most lQCD results falling 

below a proposed lower bound from a calculation for a strongly coupled supersymmetric Yang-

Mills plasma using AdS/CFT duality [9] (which, however, depends on the number of degrees of 

freedom in the calculation and therefore may not be appropriate to be compared to pion matter; 

we will return to this issue Sec. 6.1 below). Furthermore, in Ref. [12] it is cautioned that the 

extraction of the conductivity at low temperature from lQCD computations of Euclidean vector-

current correlators faces difficulties in extracting narrow transport peaks created by hadronic 

interactions.

Our results support a pion matter conductivity significantly higher than the lower bound pro-

posed in Ref. [9]. Furthermore, our calculations indicate that the effects of the vertex corrections 

are rather small (at the ∼ 10% level), whereas the conductivity is dominated by the Landau cut 

of the ρ self-energy, which is related to the pion’s collisional width. As demonstrated in Eq. (27), 

consistent with kinetic theory, the conductivity is essentially inversely proportional to the pion’s 

width. Therefore, the conductivity is sensitive to pionic interactions and a robust calculation of 

the pion’s width is required in order to reliably extract the conductivity.

6. Applications of the electromagnetic spectral function

In this section we further analyze the EM spectral function by utilizing it to calculate the 

charge susceptibility which facilitates a more quantitative context for comparisons to conjectured 

quantum lower bound, and testing our calculation’s with a current conservation sum rule.
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Fig. 18. Electric conductivity divided by e2 times the charge susceptibility, normalized such that the lower bound is one. 

The susceptibility is calculated without vertex corrections, but results are shown for the conductivity with (red line) and 

without (blue line) vertex corrections and compared to the lower bound calculated in Ref. [9] (black dashed line).

6.1. Charge susceptibility

When comparing σel/T to proposed quantum lower bounds (and lQCD calculations), some 

care is in order as this quantity, albeit dimensionless, depends on the number of degrees of free-

dom in the theory, which is quite different for a pion gas. To mitigate this difference, it has been 

proposed [9] to rather divide the conductivity by the charge susceptibility. To leading order in e2

the susceptibility is related to the EM Debye mass squared [41–44]. Within the VDM one can 

express the Debye mass in terms of the temporal component of the ρ propagator [45],

� = m2
D = − lim

�q→0

[

(m0
ρ)4/g2

ρD00
ρ (q0 = 0, �q) − (m0

ρ)4/g2
ρD00

ρ vac(0,0)
]

. (57)

We recall that the conductivity corresponds to the time-like limit of Im�
μν
EM, while the suscep-

tibility is determined by the space-like limit of Re�
μν
EM. Though our formalism can be extended 

to finite �q , we have not calculated vertex corrections at finite �q yet, as this presents significant 

numerical challenges while only producing a ∼10% effect. Therefore, we here extract � using 

from ρ self-energy in �00
EM with dressed pion propagators neglecting vertex corrections.

In Fig. 18 we plot our result for (2πT σel)/(e
2�) and compare it to the proposed lower bound 

of 1 from Ref. [9]. We see that our pion-gas values are approximately a factor of five larger 

than this lower bound. Furthermore, our results display a minimum between 120 and 140 MeV. 

Therefore, we see that even when the number of degrees of freedom is accounted for, our result 

is well above the proposed lower bound.

6.2. Current conservation sum rule

As a further test of the internal consistency of our calculation, we insert our EM spectral 

function into a sum rule derived based on charge conservation in Ref. [46],
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Table 1

Violation of the sum rule proposed in ref. [46] for various temperatures.

Calc 100 MeV 120 MeV 150 MeV 180 MeV

No VC .32% .34% .36% .57%

VC .92% .67% .33% .24%

VC No FF Corr. .38% .39% .32% .35%

∞
∫

0

dw
1

w
Im�(w,T ) =

∞
∫

0

dw
1

w
Im�vac(w) . (58)

In order to quantify the violation of the sum rule, we calculate the percent change of the left-hand 

side of Eq. (58) relative to the vacuum value. The violations with and without vertex correction 

are collected in Table 1. Before including vertex corrections the violation is on average less 

than 0.5%. When vertex corrections are included the violation increases for T =100 MeV and 

120 MeV, but is reduced for T =150 MeV and 180 MeV. Furthermore, adding the corrections 

induced by the form factors tends to increase the violation. While this increase provides further 

motivation to investigate a form factor that improves on gauge invariance, it is reassuring that the 

violation is consistently less than 1%. In order to gain precision at this level we would likely also 

have to refine the numerical computations and calculate further iterations of the self-consistency 

equation induced by the pion self-energy.

7. Summary and future work

We have calculated the electric conductivity of hot pion matter employing a quantum-field 

theoretic approach that is rooted in successful descriptions of thermal-dilepton spectra in heavy-

ion collisions [1,47]. Based on the VDM, the EM spectral function is related to the imaginary 

part of the light vector-meson propagators (most notably the ρ), and interactions with the ther-

mal medium have been evaluated through the ρ self-energy. In pion matter the latter exhibits a 

transport peak through its Landau cut which corresponds to the scattering of a low-energy ρ (or 

photon) with thermal pions from the heat bath. The width of the transport peak (and with it a fi-

nite conductivity) is generated through thermal ππ scattering producing finite collisional widths 

for both in- and outgoing pions. We have included S- and P -wave scatterings through σ and ρ

resonances, respectively, to obtain in-medium pion self-energies and resummed those through 

the pion propagators within the ρ self-energy. We then remedied violations of gauge invariance 

induced by this dressing with suitably constructed corrections to the ρππ and ρρππ vertices 

guided by Ward-Takahashi identities. The effect of the vertex corrections on the conductivity 

turns out to be rather moderate, resulting in an approximately 10% increase due to additional 

charge-conduction channels provided by the modified vertices. Both S- and P -wave ππ scat-

tering contribute to the conductivity, with the latter (former) being the leading contribution at 

temperatures above (below) ∼100 MeV.

Our results suggest a conductivity significantly larger than found in previous calculations 

using kinetic theory, chiral perturbation theory, a Chapman-Enskog type relaxation time approx-

imation, or a K-matrix formalism [8,10,16,18]. Our values agree with the real-time field theory 

calculation in Ref. [17]. However, the variation in the conductivity does not appear to be due 

to the choice of formalism, as the different formalisms produce similar expressions for the con-

ductivity in terms of the pion width. Rather, the most important differences appear to originate 
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from the model for the in-medium self-energy. Furthermore, our conductivity is well above the 

quantum lower bound proposed in Ref. [9]. This can be better quantified when normalizing the 

σel values by the pertinent charge susceptibilities, as to remove the dependency on the number of 

degrees of freedom in the different systems. In that normalization our result is about a factor of 

∼5 above the lower bound.

We intend to extend our formalism to study the strong-coupling limit by increasing gρ , as our 

calculations, rooted in quantum mechanics, may be expected to respect a pertinent lower bound. 

In this limit, the higher-order corrections may not be as heavily suppressed, therefore they will 

require further scrutiny. Another extension concerns the inclusion of additional hadronic species 

in the confined medium. This will require a more complete calculation of the in medium ρ self-

energy, for which existing results can be utilized [1]. In particular, we will include baryonic 

effects on the self-energy, which will be crucial when comparing our calculation to results from 

HICs. The effect of nucleons at finite density and temperature can be included by combining 

this work’s pion self-energy with that of Ref. [26] while accounting for additional vertex cor-

rections to the ρ self-energy. Furthermore, we will include direct couplings of the ρ to mesons 

and baryons in the surrounding hot hadronic medium which are usually dominated by resonance 

excitations. Both the probing of the strong-coupling limit and the more complete hadronic mat-

ter calculation will likely bring the conductivity closer to the lower bound. Furthermore, in a 

more strongly coupled medium an increase in the conductivity due to the vertex corrections 

may also occur and provide a significant contribution. This may be one of the mechanisms that 

may contribute to a saturation value within a quantum-mechanical framework with conserving 

approximations, and thus enable to probe quantum lower bounds in a controlled way. Finally, ex-

perimental efforts to measure very-low mass dileptons are underway by HADES at GSI, STAR at 

BNL, and ALICE-3 for LHC run-5 down to a few tens of MeV [5–7]. Our calculations suggest 

that these measurements should be able to access the mass region where the transport peak is 

prevalent, and thus may provide a measurement of the conductivity. However, more quantitative 

predictions of thermal-emission spectra from heavy-ion collisions in the very-low-mass region 

require a more complete hadronic matter calculation, as indicated above.
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Appendix A. Vertex correction formulation

In this appendix we elaborate on our calculation of the vertex corrections. We give the ex-

plicit expressions for the vertex corrections in Sec. A.1, implement form factors in Sec. A.2, and 

discuss the elimination of double-counting issues from the ρ self-energy in Sec. A.3.

A.1. Vertex correction integrals

The corrections to the ρππ vertex due to the ρ resonance are given by

Ŵ
(3)Aρ
μab3 (k, q) = ǫ3ab

3g3
ρ

2
T

∑

n(even)

∫

d3p

(2π)3

[

Dπ (p)Dνλ
ρ (k + p)gμλ(k − p)ν

× FFρ[p,k]FFρ[q + p,−q + k]
]

p0=iwn

, (A.1)

Ŵ
(3)Bρ
μab3 (k, q) = ǫ3ab

3g3
ρ

2
T

∑

n(even)

∫

d3p

(2π)3

[

Dπ (p)Dνλ
ρ (q + k + p)gμλ(q + k − p)ν

×FFρ[p,q + k]FFρ[q + p,k]
]

p0=iwn

, (A.2)

Ŵ
(3)Cρ
μab3 (k, q) = ǫ3ab

g3
ρ

2
T

∑

n(even)

∫

d3p

(2π)3

[

Dπ (p)Dπ (q + p)Dνλ
ρ (q + k + p)(2p + q)μ

×(−p + k + q)λ(k − p − q)νFFρ[p,q + k]FFρ[q + p,k]
]

p0=iwn

.

(A.3)

The corrections to the ρππ vertex due to the σ resonance are given by

Ŵ
(3)Cσ
μab3 (k, q) = ǫ3ab

gρg2
σ

2
T

∑

n(even)

∫

d3p

(2π)3

[

Dπ (p)Dπ (q + p)Dσ (q + k + p)

× ((q + k + p)2 − m2
π )(2p + q)μFFρ[p,q + k]FFρ[q + p,k]

]

p0=iwn

.

(A.4)

The corrections to the ρρππ vertex due to the ρ resonance are given by

Ŵ
(4)Aρ
μν ab33(k, q) = (5δab − 3δ3aδ3b)

ig4
ρ

2
T

∑

n(even)

[∫

d3p

(2π)3
Dπ (p)Dμν

ρ (q + k + p)

×FFρ[q + p,k]2

]

p0=iwn

+ (k → −k), (A.5)

Ŵ
(4)B1ρ
μν ab33(k, q) = −2δab

ig4
ρ

2
T

∑

n(even)

[∫

d3p

(2π)3
Dπ (p)Dπ (p + q)Dρνβ(k + p)

×(2p + q)μ(p − k)βFFρ[p,k]2

]

p0=iwn

+ (k → −k)), (A.6)
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Ŵ
(4)B2ρ
μν ab33(k, q) = Ŵ

(4)B1ρ
νμab (k, q), (A.7)

Ŵ
(4)Eρ
μν ab33(k, q) = (δab + δ3aδ3b)

ig4
ρ

2
T

∑

n(even)

[∫

d3p

(2π)3
Dπ (p)2Dπ (p + q)Dρ(k + p)αβ

×(2p + q)μ(p − k)α(p − k)β(2p + q)νFFρ[p,k]2

]

p0=iwn

+ (k → −k), (A.8)

Ŵ
(4)Gρ
μν ab33(k, q) = −2(δ3aδ3b + δab)

ig4
ρ

2
T

∑

n(even)

[∫

d3p

(2π)3
Dπ (p)2Dαβ

ρ

×(k + p)(k − p)α(k − p)βgμνFFρ[p,k]2

]

p0=iwn

. (A.9)

Finally the corrections to the ρρππ vertex due to the σ resonance are given by

Ŵ
(4)Eσ
μν ab33(k, q) = (δab − δ3aδ3b)

ig2
ρg2

σ

2
T

∑

n(even)

[∫

d3p

(2π)3
Dπ (p)2Dπ (p + q)Dσ (k + p)

×((k + p)2 − m2
π )(2p + q)μ(2p + q)νFFσ [p,k]2

]

p0=iwn

+ (k → −k), (A.10)

Ŵ
(4)Gσ
μν ab33(k, q) = 2(δ3aδ3b − δab)

ig2
ρg2

σ

2
T

∑

n(even)

[∫

d3p

(2π)3
Dπ (p)2Dσ (k + p)

×((k + p)2 − m2
π )gμνFFσ [p,k]2

]

p0=iwn

, (A.11)

where we have excluded all corrections including ρρρ or ρρρρ vertices.

A.2. Vertex correction form factor correction

Here we give the expressions for the total regularized vertex corrections, including terms 

where the ρ meson couples to a heavy-pion propagator.

Ŵ
′ (3)
μab3(k, q) = Ŵ

(3)ρ
μab3(k, q) + Ŵ

(3)σ
μab3(k, q)

+gρǫ3ab(2k + q)i

(�
(ρ)
π (q + k)

A2
ρ + �k2

+ �
(ρ)
π (k)

A2
ρ + (�q + �k)2

)

+gρǫ3ab(2k + q)i

(�
(σ )
π (q + k)

A2
σ + �k2

+ �
(σ )
π (k)

A2
σ + (�q + �k)2

)

, (A.12)

Ŵ
′ (4)
μν ab33(k, q) = Ŵ

(4)ρ
μν ab33(k, q) + Ŵ

(4)σ
μν ab33(k, q)

− igρǫ3ca

A2
ρ + �k2

[

(2k − q)iŴ
(3)ρ
ν bc3(k,−q) + (2k + q)jŴ

(3)ρ
μcb3(−q − k, q)

]

− igρǫ3ca

A2
σ + �k2

[

(2k − q)iŴ
(3)σ
ν bc3(k,−q) + (2k + q)jŴ

(3)σ
μcb3(−q − k, q)

]
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− igρǫ3bc

A2
ρ + �k2

[

(2k + q)iŴ
(3)ρ
ν ac3(−k,−q) + (2k − q)jŴ

(3)ρ
μca3(−q + k, q)

]

− igρǫ3bc

A2
σ + �k2

[

(2k + q)iŴ
(3)σ
ν ac3(−k,−q) + (2k − q)jŴ

(3)σ
μca3(−q + k, q)

]

−ig2
ρ(δab − δ3aδ3b)

{

(2k − q)i(2k − q)j

[

�
(ρ)
π (−q + k)

(A2
ρ + �k2)2

+ 2�
(ρ)
π (k)

(A2
ρ + (−�q + �k)2)(A2

ρ + �k2)
+ �

(σ )
π (−q + k)

(A2
σ + �k2)2

+ 2�
(σ )
π (k)

(A2
σ + (−�q + �k)2)(A2

σ + �k2)

]

+ (2k + q)i(2k + q)j

[

�
(ρ)
π (q + k)

(A2
ρ + �k2)2

+ 2�
(ρ)
π (k)

(A2
ρ + (�q + �k)2)(A2

ρ + �k2)
+ �

(σ )
π (q + k)

(A2
σ + �k2)2

+ 2�
(σ )
π (k)

(A2
σ + (�q + �k)2)(A2

σ + �k2)

]

− 4δij

�
(ρ)
π (k)

A2
ρ + �k2

− 4δij

�
(σ )
π (k)

A2
σ + �k2

}

,

(A.13)

where Ŵ
(3)(ρ/σ )

μab3 and Ŵ
(4)(ρ/σ )

μν ab33 are the total regularized vertex corrections, AR =
√

�2
R/4 + m2

π , 

and the indices i and j designate the spatial components of μ and ν. For i = 0 or j = 0 the 

corresponding term should be dropped.

A.3. Removing double counting

We must take care to avoid double-counting of self-energy diagrams when calculating �
μν
ρ . 

Double-counting occurs due to the self-consistent treatment of the ρππ vertex and the pion 

propagator. For the corrections to the ρππ vertex, double-counting is encountered due to the 

presence of the Landau cut within vertex corrections, i.e., thermal ππ scattering with the external 

ρ. Furthermore, double-counting is generated in all the corrections to the ρρππ vertex.

For the corrections to the ρππ vertex, double-counting occurs due to Ŵ
(3)Cρ
μab3 and Ŵ

(3)Cσ
μab3 . 

We see that these vertex corrections produce the same self-energy diagram when used to dress 

the right or left hand vertex of the ππ -loop. Furthermore, consider the higher-order corrections 

obtained by dressing Ŵ
(3)Cρ
μab3 or Ŵ

(3)Cσ
μab3 with three-point vertex corrections. Such higher-order 

vertex corrections do not produce unique contributions to the ρ self-energy, because these self-

energies are also produced by dressing one vertex of the ππ -loop with Ŵ
(3)Cρ
μab3 or Ŵ

(3)Cσ
μab3 and 

the other vertex with a three-point vertex correction. Double-counting is encountered because 

the thermal particles in the vertex corrections are identical to those in the ρ self-energy. The 

vertex corrections are defined such that they do not include vacuum particles, therefore we only 

encounter double-counting when dressing the Landau cut of �
μν
ρ . In this work we avoid double-

counting in the ππ -loop by only dressing the right-hand ρππ vertex with the self-consistently 

calculated Ŵ
(3)Cρ
μab3 or Ŵ

(3)Cσ
μab3 vertex correction.

Next, we address double-counting in the corrections to the ρρππ vertex. As we have seen for 

the unitarity cut of the ππ -loop, double-counting is avoided when we dress the vacuum tadpole 

loop and its Bose enhancement. However, when the pion in the tadpole loop is thermal, all of 
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the four-point corrections generate double-counting. The double counting is generated by one 

of two scenarios: First, the ρ self-energy contribution derived from the correction is equivalent 

to a self-energy obtained from dressing the ππ -loop. We see that Ŵ
(4)B1ρ
μν ab33 and Ŵ

(4)B2ρ
μν ab33 can 

be generated by dressing the ππ -loop with Ŵ
(3)Aρ
μab3 . Alternatively, Ŵ

(4)Eρ
μν ab33, Ŵ

(4)Gρ
μν ab33, Ŵ

(4)Eσ
μν ab33, 

and Ŵ
(4)Gσ
μν ab33 simply dress a pion propagator in �

μν
ρ with a thermal πρ or πσ loop. However, 

these diagrams are already included in �
μν
ρ through the resummation of the pion propagator, 

introduced in Eq. (28). The second scenario occurs in Ŵ
(4)Aρ
μν ab33. In this case a unique diagram 

is generated by the vertex corrections, however, the diagram includes a ππ -loop in which the 

two pions have identical 4-momentum. This configuration generates double-counting, because 

the pions are indistinguishable. Therefore, an additional symmetry factor of 1
2

needs to be added 

to Ŵ
(4)Aρ
μν ab33 when the tadpole loop contains a thermal pion.

We have verified analytically that if all double counting is dropped gauge invariance is not 

violated.

Appendix B. Matsubara sums

In this appendix we establish the spectral representations used to perform the Matsubara sums 

appearing in the ρ self-energy, and provide the results of the summations. We begin by presenting 

the corrections to the ππ -loop from the three-point vertex corrections in Sec. B.1. In Sec. B.2 we 

present the corrections to the tadpole loop from the four-point vertex corrections, and in Sec. B.3

we give the total correction to the ρ self-energy.

B.1. ππ -loop corrections

Here we write the imaginary parts of Ŵ
(3)Aρ
μab3 , Ŵ

(3)Bρ
μab3 , Ŵ

(3)Cρ
μab3 , and Ŵ

(3)Cσ
μab3 , relevant for main-

taining gauge invariance.

ImŴ
(3)Aρ
μab3 (k, q) = −ǫ3ab

3g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dνλ
ρ (p + k)]gμλ(k − p)ν

×FFρ[−q + p,q + k]FFρ[p,k]�(k0 + w)(f (w) − f (k0 + w))

]

p0=w

+ǫ3ab

3g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dνλ
ρ (p + k)]gμλ(k − p)ν

×FFρ[−q + p,q + k]FFρ[p,k]�(−k0 + w)

×(f (w) − f (−k0 + w))

]

p0=−w

, (B.1)

ImŴ
(3)Bρ
μab3 (k, q) = −ǫ3ab

3g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dνλ
ρ (q + k + p)]

gμλ(q + k − p)νFFρ[q + p,k]FFρ[p,q + k]�(q0 + k0 + w)

×(f (w) − f (q0 + k0 + w))

]

p0=w
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+ǫ3ab

3g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dνλ
ρ (q + k + p)]

×gμλ(q + k − p)νFFρ[q + p,k]FFρ[p,q + k]�(−q0 − k0 + w)

×(f (w) − f (−q0 − k0 + w))

]

p0=−w

. (B.2)

In order to help group Ŵ
(3)Cρ
μab3 and Ŵ

(3)Cσ
μab3 into spectral representations we break each term into 

four functions:

ImŴ
(3)Cρk
μab3 (k, q) = ǫ3ab

g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Re[Dπ (q − p)]Im[Dνλ
ρ (p + k)]

×(−2p + q)μ(k + 2q − p)λ(k − p)νFFρ[p,k]

×FFρ[−q + p,q + k]�(k0 + w)(f (w) − f (k0 + w))

]

p0=w

−ǫ3ab

g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Re[Dπ (q − p)]

×Im[Dνλ
ρ (p + k)](−2p + q)μ(−p + k + 2q)λ(k − p)νFFρ[p,k]

×FFρ[−q + p,q + k]�(−k0 + w)(f (w) − f (−k0 + w))

]

p0=−w

,

(B.3)

ImŴ
(3)Cρq

μab3 (k, q) = ǫ3ab

g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Re[Dπ (q + p)]

×Im[Dνλ
ρ (q + k + p)](−2p − q)μ(−p + k + q)λ

×(k − q − p)νFFρ[q + p,k]FFρ[p,q + k]�(q0 + k0 + w)

×(f (w) − f (q0 + k0 + w))

]

p0=w

−ǫ3ab

g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Re[Dπ (q + p)]

×Im[Dνλ
ρ (q + k + p)](−2p − q)μ(−p + k + q)λ

×(k − q − p)νFFρ[q + p,k]FFρ[p,q + k]�(−q0 − k0 + w)

×(f (w) − f (−q0 − k0 + w))

]

p0=−w

, (B.4)

ImŴ
(3)Cρkπ
μab3 (k, q) = −ǫ3ab

g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dπ (q − p)]

×Re[Dνλ
ρ (p + k)](−2p + q)μ(−p + k + 2q)λ
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×(k − p)νFFρ[p,k]FFρ[−q + p,q + k]

×(f (w) − f (q0 + w))

]

p0=−w

, (B.5)

ImŴ
(3)Cρqπ

μab3 (k, q) = ǫ3ab

g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dπ (q + p)]

×Re[Dνλ
ρ (q + k + p)](−2p − q)μ(−p + k + q)λ(k − q − p)ν

×FFρ[q + p,k]FFρ[p,q + k](f (w) − f (q0 + w))

]

p0=w

, (B.6)

ImŴ
(3)Cσk
μab3 (k, q) = ǫ3ab

gρg2
σ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Re[Dπ (q − p)]

×Im[Dσ (p + k)](p + k)2 − m2
π )(−2p + q)μFFρ[p,k]

×FFρ[−q + p,q + k]�(k0 + w)(f (w) − f (k0 + w))

]

p0=w

−ǫ3ab

gρg2
σ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Re[Dπ (q − p)]

×Im[Dσ (p + k)]((p + k)2 − m2
π )(−2p + q)μFFρ[p,k]

×FFρ[−q + p,q + k]�(−k0 + w)(f (w) − f (−k0 + w))

]

p0=−w

,

(B.7)

ImŴ
(3)Cσq

μab3 (k, q) = ǫ3ab

gρg2
σ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Re[Dπ (q + p)]

×Im[Dσ (q+k+p)]((q+k+p)2 − m2
π )(−2p − q)μFFρ[q+p,k]

×FFρ[p,q + k]�(q0 + k0 + w)(f (w) − f (q0 + k0 + w))

]

p0=w

−ǫ3ab

gρg2
σ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Re[Dπ (q + p)]

×Im[Dσ (q + k + p)]((q + k + p)2 − m2
π )(−2p − q)μ

×FFρ[q + p,k]FFρ[p,q + k]�(−q0 − k0 + w)(f (w)

− f (−q0 − k0 + w))

]

p0=−w

, (B.8)

ImŴ
(3)Cσkπ
μab3 (k, q) = −ǫ3ab

gρg2
σ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dπ (q − p)]

×Re[Dσ (p + k)]((p + k)2 − m2
π )(−2p + q)μFFσ [p,k]

31



J. Atchison and R. Rapp Nuclear Physics A 1037 (2023) 122704

×FFσ [−q + p,q + k](f (w) − f (q0 + w))

]

p0=w

, (B.9)

ImŴ
(3)Cσqπ

μab3 (k, q) = ǫ3ab

gρg2
σ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dπ (q + p)]

×Re[Dσ (q + k + p)]((q + k + p)2 − m2
π )(−2p − q)μ

×FFσ [q + p,k]FFσ [p,q + k](f (w) − f (q0 + w))

]

p0=w

. (B.10)

Here the heaviside step function (�) is introduced, so that we only include vertex corrections 

generated by the Landau cut of the pion self-energy.

Next, we address the real parts of the vertex corrections. In the calculation of Re�π we never 

explicitly utilized ReD(ρ/σ ), opting instead to calculate Re�π with subtracted dispersion rela-

tions. In order to maintain gauge invariance, we must calculate the vertex corrections with the 

same ReD(ρ/σ ) as was used in Re�π . Thus the real parts of the vertex corrections are also cal-

culated with subtracted dispersion relations:

ReŴ
(3)Aρ
μab3 (k, q) = −1

π

∞
∫

−∞
dw

(

ImŴ
(3)Aρ
μab3 ({w, �k}, q)

k0 − w
−

ImŴ
(3)Aρ
μab3

(

{w, �k}, q
)

−w

)

, (B.11)

ReŴ
(3)Bρ
μab3 (k, q) = −1

π

∞
∫

−∞
dw

(

ImŴ
(3)Bρ
μab3 ({w, �k}, q)

k0 − w
−

ImŴ
(3)Bρ
μab3

(

{w, �k}, q
)

−q0 − w

)

, (B.12)

ReŴ
(3)C(ρ/σ)k

μab3 (k, q)

= −1

π

∞
∫

−∞
dw

(

ImŴ
(3)C(ρ/σ)k

μab3 ({w, �k}, q)

k0 − w
−

ImŴ
(3)C(ρ/σ)k

μab3

(

{w, �k}, q
)

−w

)

, (B.13)

ReŴ
(3)C(ρ/σ)q

μab3 (k, q)

= −1

π

∞
∫

−∞
dw

(

ImŴ
(3)C(ρ/σ)q

μab3 ({w, �k}, q)

k0 − w
−

ImŴ
(3)C(ρ/σ)q

μab3

(

{w, �k}, q
)

−q0 − w

)

, (B.14)

ReŴ
(3)C(ρ/σ)πk

μab3 (k, q) = −1

π

∞
∫

−∞
dw

ImŴ
(3)C(ρ/σ)πk

μab3 ({w, �k}, q)

k0 − w
, (B.15)

ReŴ
(3)C(ρ/σ)πq

μab3 (k, q) = −1

π

∞
∫

−∞
dw

ImŴ
(3)C(ρ/σ)πq

μab3 ({w, �k}, q)

k0 − w
. (B.16)

The subtractions are determined by the argument of the ρ or σ propagator in the ver-

tex correction, and are fixed by the subtractions used in the pion self-energy. Notably, 

ReŴ
(3)C(ρ/σ)π(k/q)

μab3 does not include a subtraction, because it is not proportional to ReD(ρ/σ ). 

Instead, ReŴ
(3)C(ρ/σ)π(k/q)

μab3 is proportional to ImD(ρ/σ ) and ImŴ
(3)C(ρ/σ)π(k/q)

μab3 is proportional 

to ReD(ρ/σ ). Thus, to maintain consistent ρ and σ propagators we perform a subtraction on 

ImŴ
(3)C(ρ/σ)π(k/q)

μab3 , rather than ReŴ
(3)C(ρ/σ)π(k/q)

μab3 .
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ImŴ̃
(3)Cρπk
μab3 (k, q) = ImŴ

(3)C(ρ/σ)πk

μab3 (k, q) − ImŴ
(3)Cρπk
μab3 ({k0 = 0, �k}, q), (B.17)

ImŴ̃
(3)Cρπq

μab3 (k, q) = ImŴ
(3)C(ρ/σ)πq

μab3 (k, q) − ImŴ
(3)Cρπq

μab3 ({k0 = −q0, �k}, q), (B.18)

ImŴ̃
(3)Cσπk
μab3 (k, q) = ImŴ

(3)C(ρ/σ)πk

μab3 (k, q) − ImŴ
(3)Cσπk
μab3 ({k0 = 0, �k}, q), (B.19)

ImŴ̃
(3)Cσπq

μab3 (k, q) = ImŴ
(3)C(ρ/σ)πq

μab3 (k, q) − ImŴ
(3)Cσπq

μab3 ({k0 = −q0, �k}, q). (B.20)

The subtractions allow for a straightforward implementation of spectral representations, without 

introducing an additional violation of gauge invariance. The spectral representations are given 

by:

Dπ (k)Ŵ
(3)k
μab3(k, q) = −1

π

∞
∫

−∞
dv

Im
[

Dπ (v, �k)Ŵ
(3)k
μab3({v, �k}, q)

]

k0 − v + iǫ
, (B.21)

Dπ (q + k)Ŵ
(3)q

μab3(q + k, q) = −1

π

∞
∫

−∞
dv′ Im

[

Dπ (v′, �k)Ŵ
(3)q

μab3({v′, �k}, q)
]

q0 + k0 − v′ + iǫ
, (B.22)

Dπ (k)Ŵ
(3)k
μab3(k, q)2 = −1

π

∞
∫

−∞
dv

Im
[

Dπ (v, �k)Ŵ
(3)k
μab3({v, �k}, q)2

]

k0 − v + iǫ
, (B.23)

Dπ (q + k)Ŵ
(3)q

μab3(q + k, q)2 = −1

π

∞
∫

−∞
dv′ Im

[

Dπ (v′, �k)Ŵ
(3)q

μab3({v′, �k}, q)2
]

q0 + k0 − v′ + iǫ
, (B.24)

where we define the functions:

Ŵ
(3)k
μab3(k, q) = Ŵ

(3)Aρ
μab3 (k, q) + Ŵ

(3)Cρk
μab3 (k, q) + Ŵ̃

(3)Cρkπ
μab3 (k, q) + Ŵ

(3)Cσk
μab3 (k, q)

+Ŵ̃
(3)Cσkπ
μab3 (k, q) + gρǫ3ab(2k + q)i

( �π(ρ)(k)

�2
2ρ + (�q + �k)2

+ �π(σ)(k)

�2
2σ + (�q + �k)2

)

,

(B.25)

Ŵ
(3)q

μab3(k, q) = Ŵ
(3)Bρ
μab3 (−q + k, q) + Ŵ

(3)Cρq

μab3 (−q + k, q) + Ŵ̃
(3)Cρqπ

μab3 (−q + k, q)

+Ŵ
(3)Cσq

μab3 (−q + k, q) + Ŵ̃
(3)Cσqπ

μab3 (−q + k, q)

+gρǫ3ab(2k − q)i

( �π(ρ)(k)

�2
2ρ + (�k)2

+ �π(σ)(k)

�2
2σ + (�k)2

)

. (B.26)

The real part of the integrals in eqs. (B.21) through (B.24) are calculated from the principal 

values of the integrals.

We are now in place to calculate the transverse projection of the ππ -loop diagrams containing 

vertex corrections, at �q = 0. In terms of Ŵ
(3)k
μab3 and Ŵ

(3)q

μab3 one can write the transverse projection 

of the vertex corrections to the ππ -loop as

�ρ1(q0, �q = 0) = 2π

3
T

∑

n(even)

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dvdv′

π2

1

(k0 − v + iǫ)(q0 + k0 − v′ + iǫ)

[

2gρǫ3ab(2|�k|)Im[Dπ (v, �k)Ŵ
(3)k
3ba3({v, �k}, q)]Im[Dπ (v′, �k)]
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+2gρǫ3ab(2|�k|)Im[Dπ (v, �k)]Im[Dπ (v′, �k)Ŵ
(3)q

3ba3({v′, �k}, q)]
+2Im[Dπ (v, �k)Ŵ

(3)k
3ab3({v, �k}, q)]Im[Dπ (v′, �k)Ŵ

(3)q

3ba3({v′, �k}, q)]
−Im

[

Dπ (v, �k)
(

Ŵ
(3)k
3ab3({v, �k}, q)

)2]
Im[Dπ (v′, �k)]

−Im[Dπ (v, �k)]Im
[

Dπ (v′, �k)
(

Ŵ
(3)q

3ab3({v′, �k}, q)
)2]

]

k0=iωn

+ PV . (B.27)

One can now perform the Matsubara sum to obtain

�ρ1(q0, �q = 0) = −2π

3

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dvdv′

π2

(f (v) − f (v′))
q0 + v − v′

[

2gρǫ3ab(2|�k|)Im[Dπ (v, �k)Ŵ
(3)k
3ba3({v, �k}, q)]Im[Dπ (v′, �k)]

+2gρǫ3ab(2|�k|)Im[Dπ (v, �k)]Im[Dπ (v′, �k)Ŵ
(3)q

3ba3({v′, �k}, q)]
+2Im[Dπ (v, �k)Ŵ

(3)k
3ab3({v, �k}, q)]Im[Dπ (v′, �k)Ŵ

(3)q

3ba3({v′, �k}, q)]
−Im

[

Dπ (v, �k)
(

Ŵ
(3)k
3ab3({v, �k}, q)

)2]
Im[Dπ (v′, �k)]

−Im[Dπ (v, �k)]Im
[

Dπ (v′, �k)
(

Ŵ
(3)q

3ab3({v′, �k}, q)
)2]

]

+ PV , (B.28)

where PV denotes the Paulli-Villars regularization terms, defined by dressing the vacuum Pauli-

Villars terms with thermal-pion self-energies and vertex corrections. Finally, we remove double-

counting introduced by Ŵ
(3)C(ρ/σ)

μab3 from the Landau cut of �ρ1. This is achieved by introducing 

a function, �̃ρ1, which subtracts the double-counting,

�̃ρ1(q0, �q = 0) = 2π

3

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dvdv′

π2

�(vv′)(f (v) − f (v′))
q0 + v − v′

[

gρǫ3ab(2|�k|)Im[Dπ (v, �k)χk({v, �k}, q)]Im[Dπ (v′, �k)]

+gρǫ3ab(2|�k|)Im[Dπ (v, �k)]Im[Dπ (v′, �k)χq({v′, �k}, q)]] , (B.29)

where

χk(k, q) = Ŵ
(3)Cρk
3ba3 (k, q) + Ŵ̃

(3)Cρkπ
3ba3 (k, q), (B.30)

χq(k, q) = Ŵ
(3)Cρq

3ba3 (−q + k, q) + Ŵ̃
(3)Cρqπ

3ba3 (−q + k, q) . (B.31)

B.2. Tadpole loop corrections

In this section we give the corrections to the tadpole loop from the ρρππ vertex corrections. 

To begin, we consider Ŵ
(4)Aρ
μν ab33, which we rewrite in terms of a function Ŵ̃

(4)Aρ
μν ab33 such that

Ŵ
(4)Aρ
μν ab33(k, q) = i

(

Ŵ̃
(4)Aρ
μν ab33(k, q) + Ŵ̃

(4)Aρ
μν ab33(−k, q)

)

. (B.32)

We have factored a complex i out of the vertex correction, so that it more closely resembles the 

vacuum ππρρ vertex. Additionally, it is more convenient to define spectral representations in 

terms of Ŵ̃
(4)Aρ
μν ab33. The imaginary part of Ŵ̃

(4)Aρ
μν ab33 is given by
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ImŴ̃
(4)Aρ
μν ab33(k, q) = (3δ3aδ3b − 5δab)

g4
ρ

2

∫

d3p

(2π)3

[

∞
∫

0

dw

−π
Im[Dπ (p)]Im[Dμν

ρ (q+k+p)]

×(f (w) − f (q0+k0+w))�(q0+k0+w)FFρ[q+p,k]2

]

p0=w

−(3δ3aδ3b−5δab)
g4

ρ

2

∫

d3p

(2π)3

[

∞
∫

0

dw

−π
Im[Dπ (p)]Im[Dμν

ρ (q+k+p)]

×(f (w) − f (−q0 − k0+w))�(−q0 − k0+w)FFρ[q+p,k]2

]

p0=−w

,

(B.33)

where we only write the cuts necessary to maintain gauge invariance. The real part of Ŵ
(4)Aρ
μν ab33

can be calculated with a subtracted dispersion relation,

ReŴ̃
(4)Aρ
μν ab33 = −1

π

∞
∫

−∞
dw

( ImŴ̃
(4)Aρ
μν ab33({w, �k}, q)

k0 − w
−

ImŴ̃
(4)Aρ
μν ab33

(

{w, �k}, q
)

−q0 − w

)

. (B.34)

The transverse projection of the ρ self-energy corrections derived from Ŵ
(4)Aρ
μν ab33 at �q = 0 are 

given by

�ρ2(q0,0) = 4π

3
T

∑

n(even)

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dvdv′

π2
Im[Dπ (v, �k)]Im[Ŵ̃(4)Aρ

ii aa33({−q0 + v′, �k}, q)]

× 1

(iωn − v + iǫ)(q0 + iωn − v′ + iǫ)
+ PV

= −4π

3

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dvdv′

π2
Im[Dπ (v, �k)]Im[Ŵ̃(4)Aρ

ii aa33({−q0 + v′, �k}, q)]

× 1

q0 + v − v′ + iǫ
(1 − 1

2
�(vv′))(f (v) − f (v′)) + PV, (B.35)

�0
ρ2 = 4π

3
T

∑

n(even)

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dv

−π
Re[Ŵ̃(4)Aρ

ii aa33({0, �k},0)] Im[Dπ (v, �k)]
(iωn − v + iǫ)

+ PV

= −4π

3

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dv

−π
Re[Ŵ̃(4)Aρ

ii aa33({0, �k},0)]

×Im[Dπ (v, �k)](1 − 1

2
�(v))f (v) + PV , (B.36)

where the theta functions are added in the last equalities to remove double-counting from the 

Landau cut, as was described in appendix A.3. Unlike the corrections to the ρππ vertex, Ŵ̃
(4)Aρ
ii aa33

introduces a nondispersive constant into the rho self-energy. Thus we explicitly calculated this 

constant with �0
ρ2.
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The corrections to the tadpole diagram due to the addition of a form factor can be expressed 

in a similar form. We write these contributions in terms of the following functions

Yk(k, {q0, �q = 0}) = −4gρǫ3cak3

�2
2ρ + �k2

[

Ŵ
(3)Aρ
3ac3 (k, q) + Ŵ

(3)Cρk
3ac3 (k, q) + Ŵ

′′ (3)Cρkπ
3ac3 (k, q)

]

−4gρǫ3cak3

�2
2σ + �k2

[

Ŵ
(3)Cσk
3ac3 (k, q) + Ŵ

(3)Cσkπ
μac3 (k, q)

]

−4g2
ρ

{

4k2
3

[

�π(ρ)(k)

(�2
2ρ + �k2)2

+ �π(σ)(k)

(�2
2σ + �k2)2

]

−3
�π(ρ)(k)

�2
2ρ + �k2

− 3
�π(σ)(k)

�2
2σ + �k2

}

, (B.37)

Yq(k, {q0, �q = 0}) = −4gρǫ3cak3

�2
2ρ + �k2

[

Ŵ
(3)Bρ
3ab3 (−q + k, q) + Ŵ

(3)Cρq

3ab3 (−q + k, q)

+Ŵ
(3)Cρqπ

3ab3 (−q + k, q)
]

− 4gρǫ3cak3

�2
2σ + �k2

[

Ŵ
(3)Cσq

3ab3 (−q + k, q)

+Ŵ
(3)Cσqπ

3ab3 (−q + k, q)
]

−8g2
ρk2

3

[

�π(ρ)(k)

(�2
2ρ + �k2)2

+ �π(σ)(k)

(�2
2σ + �k2)2

]

. (B.38)

The transverse projection of the corresponding ρ self-energy contributions at �q = 0 is given by

�ρ3(q0,0) = 2π

3
T

∑

n(even)

∫

d|�k|�k2

(2π)3

[

Dπ (k)
(

Yq(q + k, q) + Yq(q − k, q)

+Yk(k, q) + Yk(−k, q)
)

]

k0=iωn

= −4π

3

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dvdv′

π2
Im[Yq({v′, �k}, q)]Im[Dπ (v, �k)]

× 1

q0 + v − v′ + iǫ
(f (v) − f (v′)) + PV, (B.39)

�0
ρ3 = 4π

3
T

∑

n(even)

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dv

−π
Re[Yq({0, �k},0)] Im[Dπ (v, �k)]

(iωn − v + iǫ)

+4π

3
T

∑

n(even)

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dv

−π

Im
[

Yk({v, �k},0)Dπ (v, �k)
]

(iωn − v + iǫ)

= −4π

3

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dv

−π
Re[Yq({0, �k},0)]Im[Dπ (v, �k)]f (v)
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−4π

3

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dv

−π
Im

[

Yk({v, �k},0)Dπ (v, �k)
]

f (v) + PV , (B.40)

where we again explicitly calculate a nondispersive constant with �0
ρ3.

Next, we calculate corrections to the tadpole that can be expressed in terms of unitarity cuts 

of ρπ or σπ -loops, Ŵ
(4)B1ρ
μν ab33, Ŵ

(4)B2ρ
μν ab33, Ŵ

(4)Eρ
μν ab33, Ŵ

(4)Gρ
μν ab33, Ŵ

(4)Eσ
μν ab33, and Ŵ

(4)Gσ
μν ab33. These ρ self-

energies dress a pion propagator with the unitarity cut of the pion self-energy (�U
π ). For positive 

energy Im�
U(R)
π is given by

Im�U(R)
πρ (k, T ) = g2

R

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

− �(k0 − w)Im[Dπ (p)]Im[DR(k + p)]

×NRππ [p,k,p0 + k0]FFR[p,k]2(1 + f (w) + f (k0 − w))
]

p0=−w
,

(B.41)

For negative energies, �U
π is determined by forcing the imaginary part of the pion self-energy to 

be odd, that is enforcing the retarded property of the pion self-energy. The real part of �U
π can 

then be evaluated with the dispersion relation

Re�U
π (k) = −1

π
p.v.

∞
∫

0

dv2 Im�U
π (v, �k)

k2
0 − v2

− Im�U
π (v, �k)

−v2
. (B.42)

However, this dispersion relation converges quite slowly, resulting in an unphysical shift of the 

pion mass by approximately 800 MeV. The shift is produced by vacuum π → ρπ and π → σπ

decays and in principal should be absorbed into the pion mass; however, modifying the real part 

of the vacuum loop in only these diagrams would violate gauge invariance. In order to remove 

the shift systematically, while preserving gauge invariance, we resum the pion propagators in the 

ρ self-energy with �U
π yielding

�
μν
ρ U (q)

= g2
ρ

∫

d3k

(2π)3

∞
∫

−∞

dvdv′

π2

(2k + q)μ(2k + q)ν

q0 + v − v′ + iǫ
(f (v) − f (v′))�(vv′)

×Im[ 1

v2 − �k2 − m2
π − �π (v, �k,T ) − �U

π (v, �k,T ) − Re�U
π (mπ ,0,0)

]

×Im[ 1

(v′)2−(�q+�k)2−m2
π−�π (v′, �q + �k,T )−�U

π (v′, �q + �k,T )−Re�U
π (mπ ,0,0)

]

−2g2
ρgμν

∫

d3k

(2π)3

∞
∫

−∞

dv

−π
f (v)�(v)

×Im[ 1

v2 − �k2 − m2
π − �π (v, �k,T ) − �U

π (v, �k,T ) − Re�U
π (mπ ,0,0)

] , (B.43)
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where we have limited the integration with theta functions to ensure that we do not introduce new 

vacuum ρ self-energy diagrams. Finally, we apply Pauli-Villars regularization to the vacuum �U
π

loop, such that

Im�U
π (k,mπ , T ) → Im�U

π (k,mπ , T ) − 2Im�U
π (k,

√

m2
π + �2

0, T = 0) (B.44)

+Im�U
π (k,

√

m2
π + 2�2

0, T = 0) . (B.45)

Equation (B.43) contains the tadpole corrections derived from Ŵ
(4)Eρ
μν ab33, Ŵ

(4)Gρ
μν ab33, Ŵ

(4)Eσ
μν ab33, 

and Ŵ
(4)Gσ
μν ab33 in the resummation of the pion propagator. However, in Eq. (B.43) we are free 

to treat �U
π equivalently to �π , performing a zero-energy subtraction on Re�U

π . Furthermore, 

we add a constant shift Re�U
π (k0 = mπ , �k = 0, T = 0) to ensure that the vacuum pion mass is 

140 MeV at �p = 0. We are able add this constant without violating gauge invariance, because it 

simply amounts to a redefinition of the bare pion mass. It should be noted that because we have 

dressed the pion propagators with �U
π the Ward identities imply that additional vertex corrections 

must be calculated to maintain gauge invariance. These additional corrections correspond to the 

unitarity cuts of the previously calculated thermal vertex corrections. However, we have already 

encountered these corrections by dressing the unitarity cut of the ρ self-energy with thermal ver-

tex corrections. This symmetry is precisely why double-counting was encountered in the Landau 

cut. In fact, the first-order corrections to the resummation in Eq. (B.43) are already included in 

our formalism, and attempting to explicitly calculate first-order vertex corrections due to �U
π

would only introduce double-counting into the unitarity cut of �
μν
ρ .

We now take the transverse projections of �
μν
ρ U , at �q = 0 to obtain

�ρ4(q0,0)

=
4πg2

ρ

3

∫

dk�k2

(2π)3

∞
∫

−∞

dvdv′

π2

4�k2�(vv′)(f (v) − f (v′))
q0 + v − v′ + iǫ

×Im[ 1

v2 − �k2 − m2
π − �π (v, �k,T ) − �U

π (v, �k,T ) − Re�U
π (mπ ,0,0)

]

× Im[ 1

(v′)2−(�q+�k)2−m2
π−�π (v′, �q+�k,T )−�U

π (v′, �q+�k,T )−Re�U
π (mπ ,0,0)

]

(B.46)

�0
ρ4(q0,0) = −

8g2
ρ

3

∫

dk�k2

(2π)3

×
∞

∫

−∞

dv

−π
Im[ f (v)�(v)

v2−�k2−m2
π−�π (v, �k,T )−�U

π (v�k,T )−Re�U
π (mπ ,0,0)

] ,

(B.47)

where �0
ρ4 again calculates a nondispersive constant.

Finally, we calculate the ρ self-energy corrections due to Ŵ
(4)B1ρ
μν ab33 and Ŵ

(4)B2ρ
μν ab33. These correc-

tions can be expressed in terms of the unitarity cut of Ŵ
(3)Aρ
μab3 as

38
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ImŴ
(3)AUρ
μab3 (k, q)

= ǫ3ab

3g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dνλ
ρ (p + k)]gμλ(k − p)ν

×FFρ[−q + p,q + k]FFρ[p,k]�(k0 − w)(1 + f (w) + f (k0 − w))

]

p0=−w

−ǫ3ab

3g3
ρ

2

∫

d3p

(2π)3

∞
∫

0

dw

−π

[

Im[Dπ (p)]Im[Dνλ
ρ (p + k)]gμλ(k − p)ν

×FFρ[−q + p,q + k]FFρ[p,k]�(−k0 − w)(1 + f (w) + f (−k0 − w))

]

p0=w

−2
[

mπ →
√

m2
π + �2

0

]

T =0
+

[

mπ →
√

m2
π + 2�2

0

]

T =0
, (B.48)

where the last line implements the Pauli-Villars regularization on the vacuum loop. The real part 

of Ŵ
(3)AUρ
μab3 is given by the subtracted dispersion relation

ReŴ
(3)AUρ
μab3 (k, q) = −1

π
p.v.

∞
∫

−∞
dv

ImŴ
(3)AUρ
μab3 ({v, �k}, q)

k0 − v
−

ImŴ
(3)AUρ
μab3 ({v, �k}, q)

−v
. (B.49)

The self-energy correction arising from Ŵ
(4)B1ρ
μν ab33 and Ŵ

(4)B2ρ
μν ab33 is then given by

�ρ5(q0,0) = −8π

3

∫

d|�k|�k2

(2π)3

∞
∫

−∞

dvdv′

π2
Im[Dπ (v′, �k)]Im

[

Dπ (v, �k)Ŵ
(3)AUρ
3ba (v, �k)

]

×(2gρ |�k|ǫ3ab)
(f (v) − f (v′))

(q0 + v − v′ + iǫ)
�(vv′) , (B.50)

where we again limit our calculation to the Landau cut of �
μν
ρ .

B.3. Total corrections

The total contribution of the vertex corrections to the transverse projections of the ρ self-

energy, at �q = 0, is given by

�V C
ρ (q0,0) = �ρ1(q0,0) + �̃ρ1(q0,0) + �ρ2(q0,0) + �0

ρ2 + �ρ3(q0,0) + �0
ρ3

+�ρ4(q0,0) + �0
ρ4 + �ρ5(q0,0) . (B.51)

The imaginary part can be calculated from �ρ1, �̃ρ1, �ρ2, �ρ3, �ρ4, and �ρ5, by converting 
1

q0+v−v′+iǫ
into a delta-function and performing the remaining integrations. The real part can 

then be calculated through a dispersion relation,

Re�V C
ρ (q) = −1

π
p.v.

∞
∫

0

dv2Im�V C
ρ (v, �q)

q2
0 − v2

+ �0
ρ2 + �0

ρ3 + �0
ρ4 , (B.52)
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where we do not perform a subtraction, because we have explicitly calculated the nondispersive 

constant with �0
ρ2, �0

ρ3, and �0
ρ4.
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