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Abstract

The determination of transport coefficients plays a central role in characterizing hot and dense nuclear
matter. Currently, there are significant discrepancies between various calculations of the electric conductiv-
ity of hot hadronic matter. In the present work we calculate the electric conductivity of hot pion matter by
extracting it from the electromagnetic spectral function, via its zero energy limit at vanishing 3-momentum,
within the Vector Dominance Model (VDM). Since within the VDM the photon couples to the hadronic
currents primarily through the p meson, we use hadronic many-body theory to calculate the p-meson’s
self-energy in hot pion matter, by dressing its pion cloud with thermal -p and -0 loops including vertex
corrections to maintain gauge invariance. In particular, we analyze the low-energy transport peak of the
spectral function, extract its behavior with temperature and compare to (the results of) existing approaches
in the literature.

Published by Elsevier B.V.

Keywords: Conductivity; Hadronic matter; Pion gas

1. Introduction

A central goal of high-energy nuclear physics is to study and characterize hot and dense
nuclear matter which can be created in heavy-ion collisions (HICs) over a large range of center-
of-mass energies. A common way to characterize the long-wavelength properties of the medium
are transport coefficients, which can be used to describe the transport of conserved charges
through the fireball in nuclear collisions. One such coefficient is the electric conductivity, o],
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which will be the focus of this paper. In particular, we will take advantage of the close relation
of o to the thermal dilepton emission rate [1], as both quantities are directly proportional to
the electromagnetic spectral function of the strongly interacting medium. On the one hand, this
allows to establish connections between the processes that are widely implemented to describe
low-mass dilepton and photon radiation observed in experiments at the SPS, RHIC, HADES
and the LHC [2—4]. On the other hand, renewed interest in the conductivity has recently been
triggered by future plans to access the pertinent transport peak more directly in experiment
through very low-mass and low-momentum dileptons, as being envisaged at the Schwer-Ionen
Synchrotron (SIS), the Relativistuc Heavy-lon Collider (RHIC) and the Large Hadron Collider
(LHC) [5-7]. Thus far, available calculations of the electric conductivity of hot hadronic matter
have utilized various formalisms and yielded results that vary considerably, by up to an order of
magnitude or even more [8—18]. In addition, some of the calculations appear to produce a con-
ductivity that is below a conjectured quantum lower bound proposed in Ref. [9]. In this work, we
seek to address the above questions by performing a hadronic quantum many-body calculation
of the conductivity, albeit constrained to a system of hot pion matter.

The dilepton emission rate is proportional to the imaginary part of the electromagnetic
(EM) current-current correlation function, i.e., the EM spectral function, pgm. At the same
time, the electric conductivity can be obtained from pgym as its low-energy limit at zero 3-
momentum [19-21]. Within the vector dominance model (VDM) the EM correlator is propor-
tional to the light vector meson propagators, Dy, most notably the p-meson’s (V=p). In the
vacuum and in a hadronic description, the latter is related to the p’s self-energy (X, ), which
is governed by 2-pion decays. In the medium, the dressing of the p’s pion cloud in a nuclear
medium has been widely studied [22-26], and found to give a key contribution to the low-mass
dilepton enhancement observed in experiment. The effects of thermal 77 scattering, generally
believed to be less important, have not been studied as widely [27,28]. However, at relatively
small temperatures and vanishing baryon chemical potential baryon-antibaryon excitations are
suppressed and the effects of the lighter pions dominate. Since at very low dilepton masses one
expects large contributions from the hadronic phase in nuclear collisions, and since at RHIC and
the LHC the baryon-chemical potential is small (although contributions from thermally excited
baryon-antibaryons are not negligible), a reliable calculation of the conductivity of hot hadronic
matter is likely to require the inclusion of thermal pions. Toward this end we here calculate pgm
at zero 3-momentum for hot pion matter and analyze the emerging conductivity, thereby serv-
ing as a first step in adding thermal w7 scattering to the baryonic effects calculated in previous
works [26].

When dressing the pion cloud of the p-meson with medium excitations, i.e., pion self-
energies, it is important to preserve EM gauge invariance, which requires the introduction of
appropriate vertex corrections [24,26,29]. The construction of these vertex corrections can be
guided by Ward identities, which ensure that the resulting p-meson self-energy, and thus the
EM correlation function, is 4-dimensionally transverse, which is a necessary condition for gauge
invariance. These vertex corrections were constructed, e.g., in Refs. [24,26,29] for the case of
nuclear matter and in Refs. [28,30] for hot pion matter. The introduction of vertex corrections
becomes even more challenging in the context of the conductivity, as to render it finite, a dressing
of all in medium propagators with a finite width is required. In the present work, pgm and the
electric conductivity will be calculated in hot pion matter both with and without vertex correc-
tions.

This paper is organized as follows: in Sec. 2 we introduce our microscopic model for the p-
propagator and self-energy, first in the vacuum with constraints from scattering data, followed by
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the general form at finite temperature and a calculation of the conductivity for on-shell thermal
pions that allows to recover the kinetic-theory result. In Sec. 3 we calculate the pion self-energy
in a thermal pion gas, based on S- and P-wave scattering through sigma and rho resonances,
again constrained by vacuum scattering data. Section 4 is dedicated to the construction of vertex
corrections required to maintain gauge invariance at finite temperature. In Sec. 5 we discuss our
numerical results for the in-medium EM spectral function, with focus on the low-energy transport
peak and pertinent conductivity of hot pion matter, with and without vertex corrections, and put
our results into the context of existing literature. In Sec. 6 we discuss two further applications,
namely a calculation of the charge susceptibility and a test of a current-conservation sum rule.
Finally, we summarize and discuss future work in Sec. 7.

2. Hadronic model for the rho meson

In this section we discuss the connection between thermal dilepton rates and the conductivity
via the EM spectral function and compute the latter within VDM (Sec. 2.1) based on a hadronic
model for the p propagator. We calculate the p self-energy in vacuum (Sec. 2.2) and at finite
temperature (Sec. 2.3), followed by a preliminary on-shell calculation of the conductivity to
make contact with kinetic theory (Sec. 2.4).

2.1. EM spectral function in the vector dominance model

The thermal dilepton emission rate can be expressed through the EM spectral function as [19,
20]:

dRiyi- gy

d*q 273M

5 f%(q0. T)pem(M . q. T, 1up) ()

where f2 denotes the Bose-Einstein distribution, M? = qg — ¢? is the dilepton’s invariant

mass, and agy = % the fine-structure constant. The spectral function, in turn, is defined via
the imaginary part of the EM current-current correlation in the strong-interaction medium,
pEM = —2 ImIIgMm, with a polarization average implied as [Igyv = glwl'IgK,[ /3. The electric
conductivity can be obtained from the spatial components of the spectral function at zero 3-
momentum in the low-energy limit [21],

oa(T) = (=¢*/6) lim [ (q0.G =0.T)/g0 @)

Note that at finite 7', the retarded spectral function goes linearly to zero with energy, and thus the
division by g¢ leads to a finite result provided the imaginary part is non-vanishing for small g.

For invariant masses below approximately 1 GeV, the EM correlator is well described by the
VDM, represented by the so-called field-current identity between the vector meson fields, V#
and the hadronic EM current:

2 2 2

. m m m
Y e L 3)

8p 8w 8¢

where the gy denote pertinent hadronic couplings. Since g4, 2~ 3g,, the primary contribution
arises from the p meson leading to [31]:
4
m
ImIljy ~ — ImD}” . 4)
]
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Fig. 1. Vacuum pion loops contributing to the p self-energy to leading order in the coupling constant (left panel: 7z 7 -loop,
right panel: tadpole loop).

The task of computing the EM spectral function is thus converted into calculating the p spectral
function which is given in terms of its self-energy, %) " In vacuum, the latter is generated by
the p’s 2-pion cloud, including its 2-pion decay with a branching ratio of near 100%. At finite
temperature, the pions are subject to rescattering off thermal-medium particles, which we will
approximate by a pion gas. We will discuss those two cases in the following sections.

2.2. Rho meson in vacuum
When gauging the free pion Lagrangian with a p meson using minimal substitution, and

adding the p-meson mass and field-strength terms, one obtains the following effective La-
grangian for the -p system:

1 - - 1 - - 1 1
Lr+Lp= 0.0 0" = Smzd -6 — 2pup" + 5 (mP) pup”, (5)
1 - - - - 1 - -
Lap = 5i8ppu(Tsd - "¢+ ") Tp) = S8, pu" T - T3, (6)

Here, pyy = 0,00 — 0y pop, T3 = —i€34p, and my; = 140 MeV is the pion mass. To leading order in
the gauge coupling constant, g,, the vacuum p propagator, with a “bare mass mﬁ)o), receives two
contributions, diagrammatically depicted in Fig. 1. The first one, the w-loop, gives rise to the
vacuum p — w7 decay, while the purely real “tadpole” diagram produces a constant shift in the
p mass. However, the tadpole is essential to ensure a 4-dimensionally transverse p self-energy,
guZh" =01[29].

From the Lagrangian, the free pion propagator, D, pwm vertex, F;(/.3()ab)’ and ppmm vertex,

r;(fz(ab’ follow as:
Ysp— (7)
TR —m2 tie’
3
T e = 8p€cab 2k + ). ®)
T aped = 82 (28abSea — SacBba — Saddbe)uv - ©)

where Greek (Roman) indices are used to denote Lorentz (isospin) space. Fig. 2 displays the
propagators and vertices diagrammatically. The p self-energy energy diagrams can be evaluated
as

T A AL ) 3
Ep () = 5 WDT[(]()DTI (g +k)Fu3ub(k7 ‘I)Fuyw(q +k,—q)

1 [ d*% @
=3 WDn(k)Fwam(k,q). w0
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Fig. 2. From left to right: -propagator, p-propagator, pr vertex, and wwpp vertex.

A symmetry factor of % has been added to both terms to remove double counting of pion states,
since the different pions are distinguishable in particle space (different charge states), but not in
isospin space.

To regularize the loop integrals for E’pL " we employ the Pauli-Villars scheme as a means to
maintain gauge invariance [29,32]. In this scheme, p self-energies are calculated by subtracting
“heavy-pion” propagators from the physical ones in the unregularized self-energy, yielding

Y (g) =B (g ma) — 238V (g, \Jm2 + A + 4 (q.\[/mE +2A}) . (11)

We adopt the values of g, = 5.9, mﬁ,o) =853 MeV, and A9 = 1 GeV, which have been previously
fitted to the P-wave wr phase shifts and pion electromagnetic form factor [26].
Finally, E;,“ " can be resummed into the vacuum p propagator yielding [29]:

Ty Ay kM kY

k
)+

D =Dy 06"+ T+ T (12)
1
EAS ETEEA TN 9
k* kY
S H) = (8" + 5T (14)

In the following, we drop the prime notation from the regularized p self-energy.
2.3. General form of p self-energy at finite temperature

We calculate ¥, " at finite temperature within the imaginary-time formalism, using the meth-
ods outlined in Refs. [33,34]; one obtains

Bk [ dvdv Qk +q)* 2k +q)" -
LV _ 2
X, @) =g, (27[)3/ 2 qotv—v tic Im[ Dy (v, k)]
x Im[ Dy (v, k +PIF @) — F)) +Iraa s (15)
where
88" i -
Tpyg = Z;ﬂ /d3k/dvlm[Dﬂ(v,k)]f(v). (16)

The first term is complex, while the second is purely real. The imaginary part of Zﬁ " can be
slightly simplified as



J. Atchison and R. Rapp Nuclear Physics A 1037 (2023) 122704

v , [ d%k [ dv - L
Im¥5"(q) = ¢, (271)3/_—nlm[Dn(v,k)]Im[Dn(QO—v,q+k)]
0
x 2k + )" 2k +¢)" (1 + f(v) + f(q0 — v))
&k [ dv . .
+2g/23 @y / __n_Im[Dn (v, ) Im[Dx (g0 + v, g + k)]
0
x 2k + )" 2k +q)"(f(v) = f(qo+v)), a7

where we have separated the self-energy into two “cuts”. The first integral corresponds to the
unitarity cut, which represents the vacuum p — 7w decay and its Bose enhancement, while the
second integral is referred to as Landau cut which represents pm scattering through an inter-
mediate pion state. The energy dependent part of the real part of Eﬁ " can be calculated from a
dispersion relation, while the constant shift from the tadpole diagram can be calculated directly
as

o0
| R
ReEg”(q) = ?p.v./dv2q2 = ImEg”(v, q) +TIaq s (18)
2 -
0

where p.v. indicates the principal value of the integral.
At finite temperature the breaking of Lorentz invariance splits the p propagator at finite
3-momentum into transverse and longitudinal modes that can be expressed in terms of projection
Ay j7aY;
operators Py~ and P; " as [35]

pY N p L
M2 =m0 —5T(q, T) '+ M2— 02 — 5L, T) ' (m0)?M2 "

DY (q.T) = (19)

where M? = qg — g7 is the p meson’s invariant mass. The projection operators are defined by

P}“}:O, foru=0o0rv=0,

P. v = 8’“1 — : for M,V S {1 2 3} (20)
) 52 9’ 9 b 9 b
n q"q" I

pHY — > g/W PRy (21)

The transverse and longitudinal components of the rho self-energy, E; and E’/;, follow as
(g, T)=P;"%,(q,T) + P/ S5(q, T). (22)

For ¢ =0, X7(q0, T) = Z1(q0, T), allowing one to write the conductivity in terms of only the
transverse projection of the rho self-energy:

2 _(m0)4
e (mp)

Ol = — lim Im — .
: [613 — (m%)2 — =7(q0.4 =0)

2 dim, (23)

2.4. On-shell pion approximation

For very small energies ImD,, is approximately proportional to ImEg, which is dominated by
the Landau cut below gg & 2m . Therefore the conductivity can be approximated as

6
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(24)

Oel

o d v

—2¢2 [ d’k dv 5 o 4k|2eT
—— | —=ImD; (v, k)] X —————,
3 (2m) ) -7 T(—1+eT)?

where we have taken the limit gy — O analytically. We see that one must introduce a finite pion
width into D, in order to obtain a finite conductivity. This implies that we have to include at
least two thermal-pion insertions in order to obtain a result beyond the ideal-gas limit. One can
approximate the conductivity using a small, but finite, pion width, I';;. In this approximation the
pion propagator becomes

D, (k)= . 1 (25)
T 20 T ko?évk—i—i%”’

with w; = /k2 + m2 . In the small-width limit [ImD (k)] is approximately
» w1
[ImD (k)] =~ — — (ko — wy) - (26)
4wk FJ‘[
One can use Eqgs. (24) and (26) to show that
2¢? a3k v}
37 ] GnpT,

S0+ fwr)) , 27

Oel =

where v = |l¥ |/wy is the pion’s velocity. This result agrees with similar calculations where the
conductivity is expressed in terms of the pion width [10,17,36].

3. Thermal n scattering

In this section we calculate the pion self-energy due to thermal S- and P-wave w7 scattering.
The self-energy can be resummed into a thermal pion propagator yielding

1

Dr (ko. k) = 1 (28)
We first obtain the self-energy expression from the Matsubara formalism in terms of the 7w
scattering amplitude (Sec. 3.1), discuss the implementation of phenomenological vertex form
factors (Sec. 3.2) and constraints from vacuum w7 phase shifts and cross sections (Sec. 3.3), and
finally present our numerical results for the pion optical potentials in a hot pion gas (Sec. 3.4).

3.1. Pion self-energy

Assuming the dominance of s-channel resonances we are able to describe S- and P-wave
7 interactions up to center-of-mass (CM) energies of about 1 GeV [37], which is sufficient for
the typical temperatures under consideration. Such scatterings can be fairly well approximated
through ¢ (500) and p(770) resonances, whose pertinent diagrams are illustrated in Fig. 3. We
use the vertices and propagators established in Sec. 2.2 to construct the pion self-energy for
mw scattering through a p resonance, while we follow the approach outlined in Refs. [34,37]
to calculate scattering through an effective o (500) resonance. The in-medium pion self-energies
(R = 0, p) are then obtained as
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Fig. 3. The pion self-energy resulting from resonant scattering of a pion with a thermal pion through intermediate p (left)
and o (right) mesons.

o]

d’p dwdw’ -
R 2 > >
X (k) =gzg @) / 7 [Im[Dn (w, p)IIm[Dg(w’, k + p)]
—0o0
 Newnlp, K, w'TFFR (gé) (f (w) — f(w’))] 29)
ko+w—w +ie Po=w
with the vertex functions
(k> — p*)?
Npazlp kow'l=—k - p)* + —————— (30)
pnmlP p w’2—(p+k)2
and
2 722 2
—(k _

Nomalp. k'] = 2= +2p) = 31)

The vacuum p propagator, D4, is taken from Eq. (12) and D, is the vacuum o (500) propagator,
1

D, (E) = , 32

where m, is the bare sigma mass and ¥ its vacuum self-energy,
d|k|k? (E* — m2)FF, (k)?
5,5y =3¢, [ DI e ) (33)

(27m)? wi(E? — 4a),% +ie)

Although we dress the intermediate p(770) and o (500) propagators in ¥, with their vacuum
self-energies, the pion propagators within X, are not dressed. These propagators will not in-
duce an infinite conductivity, because they correspond to thermal pions, while only intermediate
particle states transmit charge through the medium.

3.2. Form factor

Phenomenological form factors FFp at each vertex are a standard tool to simulate the finite-
size effects of hadrons while also regularizing vacuum loop integrals. For the purpose of the 77
scattering amplitude we do not employ the Pauli-Villars scheme (which is not necessary) but
resort to a simpler form given by

FF,( ) Azp + mzp (34)
qcMm) =
8 A2 +4(m2 + g2y (p. k)
A2

FE, (gem) = g (35)

7 A2 +4(m2 + g2y (p, k)

(p+ ) — k% — p?)? — 4k?p?

aém(p. k) = : (36)

4(p +hk)?
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Fig. 4. Fits to the isoscalar S- (upper panel) and isovector P-wave (lower panel) 77 scattering phase shift via o and p
resonance scattering, respectively, compared to experimental data [38].

where gcMm is pion momentum in the CM system of the collision. In the following section we
constrain the parameters of the w7 amplitudes through vacuum scattering data.

3.3. Comparisons to vacuum data

For comparisons to vacuum scattering data the pion energies, kg and pg, are taken to be on-
shell, while the CM energy, Ecm = 4/, is taken as an external variable. The CM momentum is
then given by

gem(s) = ,/2 —m2 . (37)

From the vacuum resonance self-energies, the w scattering phase shift in the pertinent reso-
nance channel (R = p, ) can be obtained as

ImXz(Ecm)
ReZr(Ecm)

We utilize these data to fit our parameters resulting to describe the S- and P-wave mr scattering
phase shifts [38]. The fits are shown in Fig. 4 based on the values: g, = 8.86, m, = 0.934GeV,
A, =1.85GeV, and A, =0.745GeV. The fit quality is rather good up to CM energies of 1 GeV
which is sufficient for our application to a thermal pion gas for temperatures of up to 180 MeV.
Finally, we calculate the resulting elastic w7 cross section by utilizing the optical theorem to
express it through the imaginary part of the forward scattering amplitude M,

tandg(Ecm) = — (38)
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Fig. 5. Comparison of our 77 cross section (blue) to experimental data (black dots) [39] and two previous works with
applications to the electric conductivity: Breit-Wigner ansatz for the p-resonance cross section (red) [8], K-matrix for-
malism (green) [16]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

S
s(s —4m?2)

T

Onr(s)=— Im[M5 5 (s)], (39)

where the amplitude for a given spin-isospin channel can be related to the resonance propagator
as

2
M (s) = %"(s —m2) Dy (s)FF, (gn) (40)

MY (s) = g5 (s — 4m2) D (s)FF, (qdy).- (1)

In Fig. 5 we compare our cross section to experimental data [39], and to several other works
where it was also used as an input to calculating the electric conductivity [8,16]. The p resonance
peak in our cross section turns out to be somewhat narrower than experimental data, a feature
that is apparently shared by other calculations and possibly related to the absence of non-resonant
“background” terms.

3.4. Optical potentials

To obtain the in-medium pion self energy we first compute the imaginary part directly from
Eq. (29) and subsequently the real part from a subtracted dispersion relation,

T dw /ImS,(w. k) ImE,w. k)
ReE,,(k):/;( T ) 42)

The subtraction ensures that ReX; is zero for zero energy. This is motivated by the pion being a
Goldstone boson, to approximately implement chiral constraints on the low-energy behavior of
the amplitudes [27,37]. A convenient and more intuitive way to represent the pion self-energy,
whose dimension is quadratic in energy, is to define corresponding “optical potentials”, which
formally can be thought of as resulting from the leading-order corrections to the pion’s dispersion
relation. Their on-shell values take the form

Uy (k) = Sr (g, k)20, 43)

10
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Fig. 6. Imaginary (upper panel) and real part (lower panel) of the on-shell pion optical potential in hot pion matter, plotted
as a function of 3-momentum for 7 = 150 MeV. Contributions from the rho (blue) and sigma (red) resonances are shown
in addition to the total (purple).

representing the real and imaginary parts of the in-medium contributions to the on-shell pion
self-energy (also note that —2ImU,, amounts to the Breit-Wigner width, I';; (or full-width-half-
maximum), around the on-shell pole in the spectral function) We graph the real and imaginary
parts of the optical potential in Fig. 6; they generate a pion mass shifts of up to £10 MeV, and
pion widths of up to 30 MeV. This is in rather good agreement with the results of Refs. [27,40]
for the o and p channels. However, for momenta of up to ~ 1 GeV the imaginary part of our
total pion self-energy is a few MeV smaller than that obtained in the previous work, because the
latter also contains non-resonant S-wave and D-wave contributions. As these contributions lead
to additional complications with preserving gauge invariance, while their quantitative impact is
only at the 10% level, we neglect them for now.

4. Gauge invariance in medium

In this section we scrutinize the issue of gauge invariance, that is violated when introducing
in-medium pion self-energies and therefore needs to be restored by accounting for pertinent ver-
tex corrections. Toward this end, we first introduce in Sec. 4.1 the Ward identities between 2-, 3-
and 4-point functions in our model that provide a sufficient criterion for a gauge invariant set of
diagrams. In Sec. 4.2 we lay out the general strategy of how the pertinent vertex functions can

11
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be constructed. In Sec. 4.3 we address the complications associated with having to dress inter-
mediate propagators inside the vertex corrections which is dictated by rendering the conductivity
finite, while in Sec. 4.4 we elaborate on how to approximately maintain gauge invariance in the
presence of form factors that figure in the vertex corrections. Finally, in Sec. 4.5 we summarize
our expression for the transverse p self-energy in compact form at vanishing 3-momentum that
will be used for the calculation of the conductivity.

4.1. Ward identities

In the VDM the p meson couples to a conserved current, and thus must be four-dimensionally
transverse, g, Zg " = 0. Transversality is ensured if the p7r 77 and ppm 7 vertices satisfy the Ward-
Takahashi identities between the 2-point and 3-point functions, as well as the 3-point and 4-point
functions in the model, i.e.,

3 _ _
7T 3 = gpesan (D7 (k +q) — D' (k) , 44)
np® r® k, —q) — €3 T Lk +q, — 45
9" ap33 = 18p(€3cal’pe3 (ks =q) — €3pc sk + g, —q)) (45)

The Ward-Takahashi identities are straightforwardly satisfied in vacuum, but are upset by the
introduction of a thermal pion self-energy in D, . This can be remedied by considering thermal
corrections to the pr and pprm vertices [28,32]. Following these references, the in-medium
vertices can be written as

3 3
T s = 80€3ab 2k + @) + T (46)
4 . 4
F,(,Laa[ﬁ} = 218% (Bab — 03a03p)guv + F;/_(vzzb% ) 47)

where F/(Z)w and I (3)ab3 are vertex corrections to the prr and ppm vertices. The Ward iden-
tities will hold if the vertex corrections satisfy

4" 03 = 8p€3ab(Zn (k) — T (k + q)), 43)
Q“Flffi,b33 =igp(€3ca F;(223 (k, —q) — €3bc-T:)(C333(k +q,—9), (49)

In the following, we will use these as our guiding principle.
4.2. Vertex corrections

The corrections to the prw vertex sufficient to satisfy the Ward identities can be generated by
coupling a p meson (or photon) to all possible charged-particle lines in X, . Similarly, one can
couple two p mesons to X in all possible configurations to obtain corrections to the ppm ver-
tex [32]. We then analytically determine which vertex corrections are necessary to maintain the
Ward identities when Dy, is dressed with only thermal w7 scattering. Figs. 7 through 9 show the
vertex corrections resulting from dressing D, with fo ) and 27(,”). We show only the minimum
diagrams necessary to maintain gauge invariance. Consequently, there are fewer corrections for
the o resonance interactions, because the o meson is neutral and the o vertex is a Lorentz
scalar. Furthermore, the vertex corrections require the ppp, pppp, and o vertices. Terms in-
cluding the ppp or pppp vertex contain multiple p propagators, and are therefore suppressed by
1 /m%. Thus we drop all corrections containing these vertices and do not write them here.
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W i

Fig. 7. Corrections to the pr 7 vertex due to EJ(T'O ).
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Fig. 9. Left panel: Correction to the pr vertex due to 2(0) Right panels: Corrections to the ppmr 7w vertex due to EJ(TU).

In order to calculate vertex corrections involving a o meson we introduce an effective o
vertex that corresponds to our calculation of the vacuum self-energy of the o meson through 7w
loops in Sec. 3.1,

T = iSupgoy/s —m2 , (50)

which reproduces our results for X, and E,(,U). The expression for Fr('r3()1b can then be used to
calculate vertex corrections involving the o w7 vertex. We calculate all diagrams resulting from
replacing a vacuum vertex with a corresponding vertex correction. For the four-point vertex
corrections, we also include diagrams resulting from interchanging p-meson or pion propagators
when they produce unique vertex corrections.

4.3. Dressing intermediate particles

The vertex corrections contain intermediate p, o, and pion propagators. As we have seen
for the Landau cut of X", if these propagators are not dressed, the conductivity will diverge.
Therefore, we dress the p and o propagators with their vacuum self-energies and treat the
intermediate-pion propagators self-consistently, i.e.,

1

D) = s (51)
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However, thermal pions within vertex corrections and the pion self-energy are not dressed. The
widths in the pion and p propagators cause another layer of violation of gauge invariance.
However, the violation due to dressing D, only occurs in vertex corrections containing mul-
tiple p propagators, which are suppressed by powers of 1/m,. The violation due to dressing
intermediate-pion propagators within vertex corrections can be corrected by dressing the prw
vertices that couple to an external p with three point-vertex corrections and dressing thermal-
pion propagators, creating a self-consistency equation. These effects are expected to be small,
due to the small pion width, thus we will not calculate these corrections in this work.

4.4. Vertex correction form factors

In Ref. [32] the in-medium dressing of the pions with nucleons and A(1232)’s was imple-
mented in a non-relativistic approximation, so that the corresponding form factors depended
only on the pion’s three-momentum (the lab frame momentum). The form factors were gener-
ated by attaching heavy pions to the external pions in X, and the vertex corrections. These form
factors violated the Ward identities, however, this violation was corrected by including further
vertex corrections, derived by coupling p mesons directly to heavy-pion propagators [32]. The
additional vertex corrections could be expressed in terms of the pion self-energy and the original
corrections to the pw vertex. Two complications arise when applying the regularization pro-
cedure from Ref. [32] with the form factors introduced in Sec. 3.2. First, different form factors
were introduced for the S- and P-wave contributions to the self-energy, and second, the CM
momentum was used to as the variable.

In order to extend the approach of Ref. [32] to multiple form factors we note that X5 and its

vertex corrections, %2 and ' @7 independently satisfy Egs. (48) and (49), such that

(p)
g

nab3 uvab33’
3
G"TI 8 = 8pesan(EL (k) — 5Lk + ¢)) (52)
4 . 3 3
CI"FL(UL’ZB =i8p(€3ca F:J(hgg (k, —q) — e3bc1“’u(63§ k+q,—q)) . (33)

Similarly, ¥'9) and its vertex corrections, F;fz)b‘g and 1"; 533;233, satisfy

¢TI0 = gpesan(E () — 5O (k +¢)) (54)
4T s = igp(€3eall 0% (k. —q) — €3l 03 (k +4.—4)) . (55)

One realizes that the o and p resonances form subgroups that independently satisfy the Ward
identities. Thus, the regularization procedure from Ref. [32] can be applied separately to S- and
P-wave scattering. The total regularized vertex corrections are then given by the sum of the
corrections for each resonance.

Next we address the use of the CM momentum in the form factor. For 7 scattering we cannot
apply the non-relativistic approximations which mandated to employ a form factor depending
on the CM momentum, gcy. Furthermore, the dependence on gcy, rather than &, prevents the
introduction of spurious total-momentum dependencies. While the use of gcm renders the pion
self-energy more robust, it is not clear how to satisfy the Ward identities in this framework.
However, the violation of the Ward identities is proportional to the difference in the qéM of
the two pions in the p self-energy wm loop over A%e' Since we are chiefly interested in o,
which involves the zero-momentum low-energy limit of the EM spectral function, the violation
is parametrically suppressed, because A%e is on the order of several hundred MeV, while gcwm is

14
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on the order of a few tens of MeV. This low energy suppression is expected because the form
factors are constructed to suppress high-momentum behavior, while minimally affecting the low-
momentum regime. Furthermore, to leading order the violation is proportional to qg (where qq is
the p-meson’s energy), while A, is on the order of 1 GeV for the p resonance. Thus, the violation
due to the form factors in X, should still be appreciably suppressed around the rho mass.
Although A, = 0.745 GeV) is of the same order as m,, the effects of 7w -resonant scattering
through a o resonance on the EM spectral function are suppressed for large go. Therefore, the
violation of gauge invariance due to using gcym in the form factor is expected to be small even
for go around the rho mass.

Additionally, in order to further analyze the effect of the violation on our results, and provide
an approximate correction for the violation, we follow the approach of Ref. [32] and generate
additional vertex corrections involving heavy-pion propagators. However, at the vertices where
a heavy-pion propagator couples to a thermal loop we replace the lab frame momentum, k, with
the center of mass momentum, gcm. In Sec. 5 we will assess the effect of the additional vertex
corrections on the EM spectral function, in order to quantify the effect this violation of gauge
invariance has on our results.

The total vertex corrections to the prr vertex, including terms where the p meson couples to
a heavy-pion propagator, can then be written in terms of the original vertex corrections plus terms
involving the pion self-energy. Similarly, the total corrections to the ppoww vertex can be written
in terms of the original corrections plus terms involving the pion self-energy or the original vertex
corrections to the pmwm vertex. The regularized corrections to the prw and ppmm vertices are
written out in Appendix A.

4.5. p self-energy at finite temperature

Here we write the transverse projection of Egv for arbitrary pmmw and ppmm vertices,

3 4 .
Fx(tzzbS(k’ q) and Fl(izab%(k’ q),atq =0:

4w T d|K|k> -
=5 % %Dnao[un(q + ) (gp€3as 1D + T30} k. )

n(even)

2
x(8p€3ba I + T35k +4. —q)) = (tﬁ Filhska)] 6
where we have performed the angular integrations analytically, and w, are discrete Matsubara
frequencies. The vertex corrections are complex and introduce nontrivial energy dependence into
the vertices, and thus must be written with a spectral representation, before Matsubara sums are
performed. In appendix B we establish the relevant spectral representations and carry out the
summations in eq. (56).

5. Electromagnetic spectral function in pion matter

We are now in position to discuss our numerical results, starting with the in-medium p
self-energy in Sec. 5.1, followed by the EM spectral function in Sec. 5.2 and the temperature
dependence of the electric conductivity in Sec. 5.3.
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Fig. 10. Imaginary (upper panel) and real part (lower panel) of the transverse projection of the p self-energy in vacuum
(blue line) and at 7=150 MeV with (purple) and without vertex corrections (red). The results include both p and o
resonances in the 7 scattering amplitude.

5.1. Rho self-energy

Let us first illustrate the role of the vertex corrections. In Fig. 10 we display the imaginary
and real parts of the transverse projection of the p self-energy at g = 0, with and without vertex
corrections, at a temperature of 7=150 MeV. Compared to the vacuum result, the use of in-
medium pion propagators enhances the imaginary part considerably, most notably below the
two-pion threshold where the vacuum result vanishes. At the same time the magnitude of the real
part reduces, except below threshold, where the vacuum result is small and attractive while the
in-medium one has turned significantly repulsive. The inclusion of vertex corrections increases
the imaginary part, which is expected as they create additional inelastic channels, again most
notably in the sub-threshold region, while the real part also shows a slight increase. Next, we
turn to the temperature dependence of the p self-energy, illustrated in Fig. 11 (which includes
vertex corrections). As we have seen before, the medium effects on ReE/T) are repulsive, causing

the rho mass to increase. The increase of Im2£ with temperature is again most pronounced in
the low-energy regime, while the increase at higher energies produces a broadening of the p
resonance peak. In particular, the Landau cut of the p self-energy, corresponding tow + p — 7
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Fig. 11. Imaginary (upper panel) and real (lower panel) part of the transverse projection of the p self-energy at ¢ =0 in
vacuum (blue), and for various temperatures (7=100 MeV: purple, T=150 MeV: brown, and 7=180 MeV: red), including
vertex corrections. Results include the p and o resonances in the w7 scattering amplitude.

scattering, generates a marked bump at very low energy, which, as we will see more clearly in
the next section, corresponds to a broadening of the transport peak in pgMm.

5.2. EM spectral function

In this section we will discuss our results for the EM spectral function, averaged over trans-
verse polarization and divided by energy with a normalization that yields the value of the electric
conductivity at the intercept at zero energy, e’ ng /6qo, recall Eq. (2). In particular, the division
by energy will clearly exhibit the transport peak near vanishing energy.

We start by analyzing the different contributions from thermal wn scattering, first focusing
on the case without vertex corrections at a fixed temperature of 7=150 MeV, cf. Fig. 12. Maybe
somewhat surprisingly, at high energies, where the unitarity cut dominates, the rescattering con-
tributions encoded in the pion self-energy have rather little impact on the medium effects on
the p-meson resonance peak; its thermal broadening is almost entirely driven by the Bose en-
hancement of the intermediate pions in the pion gas; it also features a thermal mass shift that is
probably a bit too large since our w-p Lagrangian is not chirally symmetric (and therefore miss-
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Fig. 12. Electromagnetic spectral function, scaled such that the zero-energy intercept corresponds to o, plotted as a
function of energy at ¢ = 0 (upper and lower panels differ by the selected energy range). Results are shown excluding
vertex corrections for only P-wave scattering (red lines), only S-wave scattering (brown lines), and allowing P- and
S-wave scattering (purple lines), and compared to the vacuum curve (blue line).

ing, e.g., an attractive contribution from p + 7 — a; scattering; the simultaneous implementation
of chiral symmetry and gauge invariance is beyond the scope of this work). In the low-energy
region we now clearly see the development of the transport peak, essentially generated by the
Landau cut. The pion width generated by scattering off thermal pions plays a key role, with the
p resonance providing the dominant contribution: when only including the p contribution, the
transport peak is much broader and the conductivity is about a factor 2 smaller compared to the
case with only the o contribution.

Turning to the temperature dependence, but still without vertex corrections, the p resonance
peak shows the expected broadening increasing with temperature, cf. Fig. 13. At low energies,
the conductivity decreases significantly from 7=100 MeV to 150 MeV, but is almost unchanged
between 150 and 180 MeV. This shows that a minimum can develop in the conductivity, caused
by a misalignment of thermal pion energies with that of the resonant particles towards higher
temperatures; in other words, if the thermal energies of the charge carriers are beyond those
needed for resonance excitations, charge can be transported more freely again.

Finally, Fig. 14 displays the EM spectral function when vertex corrections are included, for
various temperatures. The vertex corrections result in a broadening of the p peak that increases
with temperature. This is expected because the corrections increase the p’s interaction with the
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Fig. 13. Electromagnetic spectral function, scaled such that the zero-energy intercept corresponds to o, plotted as a
function of energy at ¢ = 0 (upper and lower panels differ by the selected energy range). Results excluding vertex
corrections are plotted for vacuum (blue line), at 7=100 MeV (purple lines), 7=150 MeV (brown lines), and 7=180
MeV (red lines).

medium. Furthermore, we see an increase of the transport peak due to the vertex corrections.
This is somewhat counter-intuitive, because the transport peak is proportional to the electric
conductivity. Therefore, it appears that increasing the medium interaction by including vertex
corrections has resulted in a more conductive medium. In order to understand this phenomenon,
we note that the p meson does not transmit electric charge through the medium. Charge is trans-
mitted by the charged pion states, and any increase in Im%, will reduce the conductivity. On
the other hand, the p self-energy determines how the external photon couples to the medium.
Therefore, the various p self-energy diagrams represent different channels through which elec-
tric charge can travel, i.e., the vertex corrections introduce additional channels, increasing the
electric conductivity.

5.3. Electric conductivity over temperature

Let us first summarize in Fig. 15 our pion gas results for the conductivity, divided by tem-
perature, for various scenarios as a function of temperature. When only including P-wave (p-
resonance) scattering for the pion self-energies the temperature dependence is most pronounced,
indicating that with increasing temperature the typical thermal pion energies provide markedly
increasing overlap for resonance formation, thus reducing the conductivity; vertex corrections
have little impact on this result. On the other, the temperature dependence is much less pro-
nounced when only the much broader o resonance is included. The pertinent conductivity is
actually smaller than for p resonance reactions only, since the relative low thermal energies at
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Fig. 14. Electromagnetic spectral function, scaled such that the zero-energy intercept corresponds to o, plotted as a
function of energy at ¢ = 0 (upper and lower panels differ by the selected energy range). We plot results including vertex
corrections for 7=100 MeV (purple lines), 7=150 MeV (brown lines), and 7=180 MeV (red lines). The vacuum line is
also plotted in blue.

small temperatures are dominated by S-wave interactions; however, around 7 2 110 MeV, the p
resonance interactions take over and dominate at still higher 7'. Interestingly, the vertex correc-
tions have a larger effect in the o channels, caused primarily by Fffii%’ (expressions are given
in Appendix A). When both resonances are included, the effect of this correction is greatly re-

duced, because the dominant p self-energy diagram from Fl(f;ig is inversely proportional to the
pion width squared, and the p resonance significantly increases the pion width. At the same
time, other p self-energy diagrams are only suppressed by the inverse pion width. In particular,
the largest corrections to the p self-energy, when both resonances are included, turn out to arise
from FSS%)B and Fﬁgfgﬁ (see Appendix A for the explicit expressions), accounting for about
70% of the vertex corrections’ contribution to the p self-energy. Overall, with both resonances
included, the vertex corrections increase the conductivity by approximately 10% throughout.

Next, we examine the impact of the additional vertex corrections induced by the form factors.
The conductivity with and without these corrections is plotted in Fig. 16, along with the con-
ductivity without any vertex corrections. Form factors are still included in all results, in order to
ensure convergence of the calculation. One can see that the form factor correction terms provide
only a small increase in the total conductivity, of approximately 2.5%.

Finally, we compare our results for the hot pion matter conductivity to results from the litera-
ture in Fig. 17. Our conductivity is significantly larger than the results from kinetic theory using
Breit-Wigner cross sections [8], chiral perturbation theory [10], and a relaxation time approxima-
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Fig. 15. Pion gas conductivity over temperature for different 77 scattering resonances, with and without vertex correc-
tions. Results including only the o resonance are plotted in red (vertex corrections excluded) and green (vertex corrections
included). Results including only the p resonance are plotted in blue (vertex corrections excluded) and orange (vertex
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(vertex corrections included).
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Fig. 16. Pion gas conductivity over temperature without vertex corrections (blue), with vertex corrections (red), and
including all vertex corrections except those induced by the form factor (green). The results include w7 scattering
through rho and sigma resonances.

tion [18], but it is smaller than the K -matrix results of Ref. [16]. However, our calculation agrees
well with the real-time field theory results of Ref. [17]. In Refs. [8,10,16,17] expressions for the
conductivity are provided in terms of either the pion width or the relaxation time (sometimes
equated to the collisions time), which are similar to our Eq. (27); however, the inputs for the
pion width vary considerably. For example, in Ref. [18], the momentum averaged charged-pion
relaxation time at 7=150 MeV (using vacuum p and o channel cross sections) amounts to ca. 2
fm/c (3 fm/c for neutral pions), which translates into a reaction rate of ~100 MeV, substantially
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Fig. 17. Our results for the electric conductivity over temperature (blue line) compared to previous calculations in pion
matter and 1QCD results: brown line: kinetic-theory using Breit-Wigner cross sections [8], green line: K-matrix ap-
proach [16], orange line: chiral perturbation theory [10], red line: real-time thermal field theory [17], magenta line:
relaxation time approximation with Chapman-Enskog technique [18], black, purple and cyan dots: lattice QCD for N =2
light flavors [13,14] and for N p=2+1 [12], respectively. The black dashed line indicates a proposed lower bound from
Ref. [9] using a holographic calculation for a supersymmetric Yang-Millls plasma.

larger than our optical potential of ' = —2ImU,; ~ 20 — 30 MeV. Fig. 17 also indicates that the
pion gas results are significantly larger than 1QCD calculations, with most 1QCD results falling
below a proposed lower bound from a calculation for a strongly coupled supersymmetric Yang-
Mills plasma using AdS/CFT duality [9] (which, however, depends on the number of degrees of
freedom in the calculation and therefore may not be appropriate to be compared to pion matter;
we will return to this issue Sec. 6.1 below). Furthermore, in Ref. [12] it is cautioned that the
extraction of the conductivity at low temperature from 1QCD computations of Euclidean vector-
current correlators faces difficulties in extracting narrow transport peaks created by hadronic
interactions.

Our results support a pion matter conductivity significantly higher than the lower bound pro-
posed in Ref. [9]. Furthermore, our calculations indicate that the effects of the vertex corrections
are rather small (at the ~ 10% level), whereas the conductivity is dominated by the Landau cut
of the p self-energy, which is related to the pion’s collisional width. As demonstrated in Eq. (27),
consistent with kinetic theory, the conductivity is essentially inversely proportional to the pion’s
width. Therefore, the conductivity is sensitive to pionic interactions and a robust calculation of
the pion’s width is required in order to reliably extract the conductivity.

6. Applications of the electromagnetic spectral function
In this section we further analyze the EM spectral function by utilizing it to calculate the
charge susceptibility which facilitates a more quantitative context for comparisons to conjectured

quantum lower bound, and testing our calculation’s with a current conservation sum rule.
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Fig. 18. Electric conductivity divided by 2 times the charge susceptibility, normalized such that the lower bound is one.
The susceptibility is calculated without vertex corrections, but results are shown for the conductivity with (red line) and
without (blue line) vertex corrections and compared to the lower bound calculated in Ref. [9] (black dashed line).

6.1. Charge susceptibility

When comparing o/ T to proposed quantum lower bounds (and 1QCD calculations), some
care is in order as this quantity, albeit dimensionless, depends on the number of degrees of free-
dom in the theory, which is quite different for a pion gas. To mitigate this difference, it has been
proposed [9] to rather divide the conductivity by the charge susceptibility. To leading order in e?
the susceptibility is related to the EM Debye mass squared [41-44]. Within the VDM one can
express the Debye mass in terms of the temporal component of the p propagator [45],

8 =mp =~ lim [ (n))"/&3 D (40 = 0.9) ~ ()" /83 D}f,0(0,0)]. (57)

We recall that the conductivity corresponds to the time-like limit of Iml'[g;\}/[, while the suscep-
tibility is determined by the space-like limit of ReHgK,I. Though our formalism can be extended
to finite ¢, we have not calculated vertex corrections at finite g yet, as this presents significant
numerical challenges while only producing a ~10% effect. Therefore, we here extract E using
from p self-energy in H%(l)v[ with dressed pion propagators neglecting vertex corrections.

In Fig. 18 we plot our result for (27 To¢))/(¢* E) and compare it to the proposed lower bound
of 1 from Ref. [9]. We see that our pion-gas values are approximately a factor of five larger
than this lower bound. Furthermore, our results display a minimum between 120 and 140 MeV.
Therefore, we see that even when the number of degrees of freedom is accounted for, our result
is well above the proposed lower bound.

6.2. Current conservation sum rule

As a further test of the internal consistency of our calculation, we insert our EM spectral
function into a sum rule derived based on charge conservation in Ref. [46],
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Table 1
Violation of the sum rule proposed in ref. [46] for various temperatures.
Calc 100 MeV 120 MeV 150 MeV 180 MeV
No VC 32% .34% .36% 57%
vC .92% .67% .33% .24%
VC No FF Corr. .38% .39% 32% 35%
00 00
1 1
/dw—ImH(w, T):/dw—ImHvaC(w) . (58)
w w
0 0

In order to quantify the violation of the sum rule, we calculate the percent change of the left-hand
side of Eq. (58) relative to the vacuum value. The violations with and without vertex correction
are collected in Table 1. Before including vertex corrections the violation is on average less
than 0.5%. When vertex corrections are included the violation increases for 7=100 MeV and
120 MeV, but is reduced for 7=150 MeV and 180 MeV. Furthermore, adding the corrections
induced by the form factors tends to increase the violation. While this increase provides further
motivation to investigate a form factor that improves on gauge invariance, it is reassuring that the
violation is consistently less than 1%. In order to gain precision at this level we would likely also
have to refine the numerical computations and calculate further iterations of the self-consistency
equation induced by the pion self-energy.

7. Summary and future work

We have calculated the electric conductivity of hot pion matter employing a quantum-field
theoretic approach that is rooted in successful descriptions of thermal-dilepton spectra in heavy-
ion collisions [1,47]. Based on the VDM, the EM spectral function is related to the imaginary
part of the light vector-meson propagators (most notably the p), and interactions with the ther-
mal medium have been evaluated through the p self-energy. In pion matter the latter exhibits a
transport peak through its Landau cut which corresponds to the scattering of a low-energy o (or
photon) with thermal pions from the heat bath. The width of the transport peak (and with it a fi-
nite conductivity) is generated through thermal w7 scattering producing finite collisional widths
for both in- and outgoing pions. We have included S- and P-wave scatterings through o and p
resonances, respectively, to obtain in-medium pion self-energies and resummed those through
the pion propagators within the p self-energy. We then remedied violations of gauge invariance
induced by this dressing with suitably constructed corrections to the pmr and ppmm vertices
guided by Ward-Takahashi identities. The effect of the vertex corrections on the conductivity
turns out to be rather moderate, resulting in an approximately 10% increase due to additional
charge-conduction channels provided by the modified vertices. Both S- and P-wave mwm scat-
tering contribute to the conductivity, with the latter (former) being the leading contribution at
temperatures above (below) ~100 MeV.

Our results suggest a conductivity significantly larger than found in previous calculations
using kinetic theory, chiral perturbation theory, a Chapman-Enskog type relaxation time approx-
imation, or a K -matrix formalism [8,10,16,18]. Our values agree with the real-time field theory
calculation in Ref. [17]. However, the variation in the conductivity does not appear to be due
to the choice of formalism, as the different formalisms produce similar expressions for the con-
ductivity in terms of the pion width. Rather, the most important differences appear to originate
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from the model for the in-medium self-energy. Furthermore, our conductivity is well above the
quantum lower bound proposed in Ref. [9]. This can be better quantified when normalizing the
oe1 values by the pertinent charge susceptibilities, as to remove the dependency on the number of
degrees of freedom in the different systems. In that normalization our result is about a factor of
~5 above the lower bound.

We intend to extend our formalism to study the strong-coupling limit by increasing g, as our
calculations, rooted in quantum mechanics, may be expected to respect a pertinent lower bound.
In this limit, the higher-order corrections may not be as heavily suppressed, therefore they will
require further scrutiny. Another extension concerns the inclusion of additional hadronic species
in the confined medium. This will require a more complete calculation of the in medium p self-
energy, for which existing results can be utilized [1]. In particular, we will include baryonic
effects on the self-energy, which will be crucial when comparing our calculation to results from
HICs. The effect of nucleons at finite density and temperature can be included by combining
this work’s pion self-energy with that of Ref. [26] while accounting for additional vertex cor-
rections to the p self-energy. Furthermore, we will include direct couplings of the p to mesons
and baryons in the surrounding hot hadronic medium which are usually dominated by resonance
excitations. Both the probing of the strong-coupling limit and the more complete hadronic mat-
ter calculation will likely bring the conductivity closer to the lower bound. Furthermore, in a
more strongly coupled medium an increase in the conductivity due to the vertex corrections
may also occur and provide a significant contribution. This may be one of the mechanisms that
may contribute to a saturation value within a quantum-mechanical framework with conserving
approximations, and thus enable to probe quantum lower bounds in a controlled way. Finally, ex-
perimental efforts to measure very-low mass dileptons are underway by HADES at GSI, STAR at
BNL, and ALICE-3 for LHC run-5 down to a few tens of MeV [5-7]. Our calculations suggest
that these measurements should be able to access the mass region where the transport peak is
prevalent, and thus may provide a measurement of the conductivity. However, more quantitative
predictions of thermal-emission spectra from heavy-ion collisions in the very-low-mass region
require a more complete hadronic matter calculation, as indicated above.
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Appendix A. Vertex correction formulation

In this appendix we elaborate on our calculation of the vertex corrections. We give the ex-
plicit expressions for the vertex corrections in Sec. A.1, implement form factors in Sec. A.2, and
discuss the elimination of double-counting issues from the p self-energy in Sec. A.3.

A.l. Vertex correction integrals

The corrections to the pzr vertex due to the p resonance are given by

3¢; &3
(3Ap _ o p N
Fans b @) = 3 —LT ) / W[Dn@w; (k+ p)gusk = p)u

n(even)

x FF,[p, kIFF,[lq + p, —q + k]} , (A.1)

PO=iwy

3¢ &3
(3)Bp _ 4 p 2
Frans &) =€ —ET ) /W[Dn(p)Dz (@ +k+ P)gur(qg +k— p)y

n(even)

xFF,[p,q + kIFF,[q + p, k]] , (A.2)

Po=iwn

3 3
B3)Cp _ 8 d’p A
Fans k) =€ T ) / Ty [Dn (P)Dx(q +p)D) g +k+p)2p+q)u

n(even)

X(=p+k+q)k—p—q)FF,[p,q+kIFF,[q + p, k]}

po=iwy
(A.3)
The corrections to the pzr vertex due to the o resonance are given by
2 3
3)C 808 d’p
Fﬂabg’(k, q) = €3ab > =T Z / ) [Dn(p)Dn(q +p)Ds (g +k+ p)
n(even)
x (g +k+p)?* =m2)2p +9),FFylp, g + kIFF,lq + p, k]}
po=iwp
(A4)
The corrections to the ppm vertex due to the p resonance are given by
4 3
44 18 d’p
Fvapsa (k- @) = (50ap = 38383) =T ) [ / Gy (PP (@ +k+ p)
n(even)
xFF,lq + p, k]z] + (k > —k), (A.5)
Po=iwy,
@B1p ig) d*p
M) =207 | [ S D p)Da () Dpupth+ p)
n(even)
x2p +@)u(p — KPFE, [ p, k]z} + (k= —k)), (A.6)
po=iwp
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4)B 4B
T e k. q) =T 0P (k. ), (A7)

4 g d’p
Fftlgfgﬁ(ka)=(5ab+53a53b)7pT Z [/_(271)3 D (p)*Dr(p+q)Dplk + plap

n(even)

X(2p+@)u(p =0 (p =0 2p + @) FF,[p, k]z} |
PoO=1Wp

+ (k= —k), (A.8)

. 4 3
4G, 18 d’p
r;3a£33(k,q)=—2(83a53b+5ab)7"T > [/—(anDn(p)ZDgﬂ

n(even)
x(k+ p)(k — p)a(k — p)pguvFF,lp, k]z] I (A.9)
Po=1wWy

Finally the corrections to the ppm vertex due to the o resonance are given by

) 3
1858 d’p
Fvabss (k- @) = Gap = 83a83) =51 [ / )3 Dr (D (p + ) Dok + p)

n(even)

x((k+ p)* —m2)2p + @) (2p + @)vFFs [ p, k]z]

po=iwp
+ (k > —k), (A.10)
. 2 2 3
8,8 d’p
T s (k. q) = 2830835 — Sab) =T ) [ / an(p)zmﬂ p)
n(even)
x((k + p)* — m2) g, FFs [ p, k]z] , (A.11)
Po=iwy

where we have excluded all corrections including ppp or pppp vertices.
A.2. Vertex correction form factor correction

Here we give the expressions for the total regularized vertex corrections, including terms
where the p meson couples to a heavy-pion propagator.

3 3 3
IO k) =T0 (k. q) + TN (k. q)

() ()
Xr (g +k) Xy (k)
+80€3ab(2k + q)i 5 IR
( A2 +k Ap—l—(q—i-k))
(o) (o)
pIR: (q + k) Xp (k)
+8p€3ab (2k + q)i 5 —— ), (A.12)
( AZ 4+ k2 A§+(q+k)2)

7(4) @p (€]
Uvapsk.@) =T opss k. q) + F;wi}m(k’ q)

i8p€3 3 X
— A2P+ CI_;2 [(Zk - Q)ir‘()lzg (k, —q) + 2k + q)j FL ZZS(_q —k, 6])]
P

3)o

igo€3
—33 [k = Tk —q) + 2k +), T (g —k.q)

A2 4 k2
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i8p€3b 5 s
S [k I =)+ G0 T+ k)]
)
igp€3bc 3) 3
oL [+ T (k=) + Ch = ), T (—q + . )]
o

S (=g + k)

| 2 . J— .
—i8,(8ab — 53a53b)!(2k —q)i(2k q),[ o 7y

23 (k) = (=g + k)
+ T . :
(A2 4+ (=G +Kk)?) (A2 +Kk2) (A2 +Kk?)?
(o) (p)
2% (k) (g +k)
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257 (k) IR ORI > 0
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(A.13)

where FS;(})%/ %) and Ffz (a%? are the total regularized vertex corrections, Ag = /A% /4 +m2,

and the indices i and j designate the spatial components of y and v. For i =0 or j = 0 the
corresponding term should be dropped.

A.3. Removing double counting

We must take care to avoid double-counting of self-energy diagrams when calculating ng.
Double-counting occurs due to the self-consistent treatment of the pmm vertex and the pion
propagator. For the corrections to the pwm vertex, double-counting is encountered due to the
presence of the Landau cut within vertex corrections, i.e., thermal 7 scattering with the external
p. Furthermore, double-counting is generated in all the corrections to the ppm vertex.

For the corrections to the pmm vertex, double-counting occurs due to I”Siig) and nglig .
We see that these vertex corrections produce the same self-energy diagram when used to dress
the right or left hand vertex of the w-loop. Furthermore, consider the higher-order corrections
obtained by dressing Fl(fiig or Ff)ig with three-point vertex corrections. Such higher-order
vertex corrections do not produce unique contributions to the p self-energy, because these self-
energies are also produced by dressing one vertex of the w-loop with FS{)I%) or Fff;i; and
the other vertex with a three-point vertex correction. Double-counting is encountered because
the thermal particles in the vertex corrections are identical to those in the p self-energy. The
vertex corrections are defined such that they do not include vacuum particles, therefore we only
encounter double-counting when dressing the Landau cut of £5". In this work we avoid double-
counting in the w-loop by only dressing the right-hand pm vertex with the self-consistently
calculated F/(i)zig) or Fﬂi; vertex correction.

Next, we address double-counting in the corrections to the ppz vertex. As we have seen for
the unitarity cut of the w-loop, double-counting is avoided when we dress the vacuum tadpole

loop and its Bose enhancement. However, when the pion in the tadpole loop is thermal, all of
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the four-point corrections generate double-counting. The double counting is generated by one
of two scenarios: First, the p self-energy contribution derived from the correction is equivalent
to a self-energy obtained from dressing the mwm-loop. We see that Fl(j?g},% and nggﬁ& can

be generated by dressing the 7 -loop with FSZI‘% . Alternatively, F;(ju)f;:%’ Fg‘%’%, I‘fjgfgw

and F;(jzglgﬁ simply dress a pion propagator in £5" with a thermal 7p or o loop. However,

these diagrams are already included in 5" through the resummation of the pion propagator,
introduced in Eq. (28). The second scenario occurs in Fff32£33. In this case a unique diagram
is generated by the vertex corrections, however, the diagram includes a w-loop in which the
two pions have identical 4-momentum. This configuration generates double-counting, because
the pions are indistinguishable. Therefore, an additional symmetry factor of % needs to be added

to Fl(fv) 21’;33 when the tadpole loop contains a thermal pion.

We have verified analytically that if all double counting is dropped gauge invariance is not
violated.

Appendix B. Matsubara sums

In this appendix we establish the spectral representations used to perform the Matsubara sums
appearing in the p self-energy, and provide the results of the summations. We begin by presenting
the corrections to the 77 -loop from the three-point vertex corrections in Sec. B.1. In Sec. B.2 we
present the corrections to the tadpole loop from the four-point vertex corrections, and in Sec. B.3
we give the total correction to the p self-energy.

B.1. wm-loop corrections

r®4e pGBp G)Cp

3)Co .
wabs® Liapzs Upnabs» and Flwb3 , relevant for main-

Here we write the imaginary parts of
taining gauge invariance.
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0
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38 [ dp [d
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Here the heaviside step function (®) is introduced, so that we only include vertex corrections
generated by the Landau cut of the pion self-energy.

Next, we address the real parts of the vertex corrections. In the calculation of ReX; we never
explicitly utilized ReD, /), opting instead to calculate ReX; with subtracted dispersion rela-
tions. In order to maintain gauge invariance, we must calculate the vertex corrections with the
same ReD(, /) as was used in ReX . Thus the real parts of the vertex corrections are also cal-
culated with subtracted dispersion relations:

o0 3)Ap 7 (3)Ap 7
-1 ImI” ({w,k},q) ImI {w,k}, g
Rel0? (k. q) = — / dw( ab3 _ImCs ) . (B
b4 ko —w —w
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o0 3)Bp 7 (3)Bp 7
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T ko —w —qo—w
—0o0
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_ ImI” ({w, k}, q)
(B)C(p/o)mk _ -1 wab3
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—0oQ
(3)C(p/o)mq z
_ ImI’ (w, k}, @)
3)C(p/o)ng _ 1 jab3
ReFﬂa,ﬁ (k,q) = - /dw po— . (B.16)
—00

The subtractions are determined by the argument of the p or o propagator in the ver-

tex correction, and are fixed by the subtractions used in the pion self-energy. Notably,

ReFS{)l%p /9mk/D) goes not include a subtraction, because it is not proportional to ReD(y /o).

Instead, Rel"f;%p 197 & 19 5 proportional to ImDy,/s) and Iml"f;%p /0w (k/9) is proportional

to ReD(,/5). Thus, to maintain consistent p and o propagators we perform a subtraction on

Iml"l(f;%p/a)”(k/q), rather than ReFffig;p/g)n(k/q).

32



J. Atchison and R. Rapp Nuclear Physics A 1037 (2023) 122704

Il (k, ) = I 0577 (k. q) — I 000 (ko = 0.k}, ), (B.17)
Imf* 207 (k, q) = I P/ (k) — ImE 8™ (ko = —qo. k). ). (B.18)
0T (k. q) = ImE ™ (ke g) — ImE O™ (ko = 0.k}, ). (B.19)
I ke, q) = I P/ (ke q) — ImE 7™ (ko = —q0. k}. @) (B.20)

The subtractions allow for a straightforward implementation of spectral representations, without
introducing an additional violation of gauge invariance. The spectral representations are given
by:
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—0Q
where we define the functions:
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AL+ (02 A3, + ()2

The real part of the integrals in eqs. (B.21) through (B.24) are calculated from the principal
values of the integrals.

We are now in place to calculate the transverse projection of the i -loop diagrams containing
vertex corrections, at ¢ = 0. In terms of F;(E:)z];:

of the vertex corrections to the w-loop as

B)q . o
sand I \Lab3 ONE can write the transverse projection

> - o]
R 2T d|k|k? f dvdv’ 1
> R =0)=—T
01(q0, q ) 3 Z / (27)3 T2 (ko —v+ie)(go+ko—v +ie€)
n(even) —00

[28p€306 CIDIMID (0, DTt (0, 8, UL D (0, K]
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- - - 3 -
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0=1Wn

One can now perform the Matsubara sum to obtain

27 [ d|k|k? ]odvdv’ (f () — )
3 (2n)3 72 go+v—v

—0o0
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where PV denotes the Paulli-Villars regularization terms, defined by dressing the vacuum Pauli-
Villars terms with thermal-pion self-energies and vertex corrections. Finally, we remove double-

counting introduced by FSZ%’O /%) from the Landau cut of ¥ o1. This is achieved by introducing

a function, ¥ o1, which subtracts the double-counting,

o0

$ 1 *—0)—27{ d|l¥|l€2 / dvdv' ®(wv)(f(v) — f(V))
P10 4 == 37 | (2n)3 P qo+v—v
—00
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+8p€3052IKNIM[ Dy (v, ) IIm[ D, (v, k) x 7 ({v', K}, )11 , (B.29)
where
x5, @) =) e, q) + )L (k, ), (B.30)
X9k, q) = TSI (=g +k, q) + TSP (g + k. q) - (B.31)

B.2. Tadpole loop corrections

In this section we give the corrections to the tadpole loop from the ppmm vertex corrections.

To begin, we consider F/(:?Z\f%, which we rewrite in terms of a function ﬁff321633 such that

4)A @A ~(4)A
T sk, q) = i (TS A0 (k. q) + T o0 (—k. ) (B.32)

We have factored a complex i out of the vertex correction, so that it more closely resembles the

vacuum mwpp vertex. Additionally, it is more convenient to define spectral representations in

terms of 42 . The imaginary part of ﬁff32£3

v ab33- 5 is given by
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HA gé d3
Imruvalgﬁ (k,q) = (383403 — 58ab)7 )

d v
[ / L [ Dy (pYIMI DAY (q+h+p)]
0

X (f(w) — f(qot+ko+w))O(qo+ko+w)FF,[g+p, k]z}
po=w
4

g d*p
—(383(163;,—58@)7”

@2n)?

OOd
[ / — Im[ Dy (p)Im[D}" (q+k+p)]
0

x(f(w) = f(—=qo — ko+w))O(—go — ko+w)FF,[g+p, k]z} ,
Po=—w

(B.33)

where we only write the cuts necessary to maintain gauge invariance. The real part of Fﬁ?'s}fw
can be calculated with a subtracted dispersion relation,

HAp
Rery,v ab33 =

o0 A Ap 7 =@ Ap 7
-1 ml" ({w,k},¢) ImI {w,k},q
-1 / dw v ab33 _ uvab33( )) . (B.34)

ko —w —qo— W

The transverse projection of the p self-energy corrections derived from @A Uab33 at ¢ =0 are
given by

diklk* [ dvd
S0, 0= 2T Y / én'ﬁ / O D 0, RIS (g0 +. K1 )

n(even)

1

X . . — +PV
(iwp —v+ie)(qo+iw, —v' +i€)
- - o0
—4x [ dlklk* [ dvd . Ao -
B (2m)3 w2 Im[ Dz (v, )L} 55 ((=q0 + V', k). 9)]
—00
1

1 , ,
Xm(l = 30V ©) = ) +PV, (B.35)

. )
1Y [ Ik / AV el (0, ]y, 0] e Lr O] py

n(even) @m)? (iwn — v +ie€)
- dIkli? [ dv @®Ap
3 ) @ /__nR 82%5({0, k), 0)]
xIm[ Dy (v, K)1(1 — %@(v))f(v) +PV, 536)

where the theta functions are added in the last equalities to remove double-counting from the
Landau cut, as was described in appendix A.3. Unlike the corrections to the pr vertex, Fl(j%&
introduces a nondispersive constant into the rho self-energy. Thus we explicitly calculated this

. 0
constant with X 02
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The corrections to the tadpole diagram due to the addition of a form factor can be expressed
in a similar form. We write these contributions in terms of the following functions

- 4g,€3cqk3
Vek, (0.4 =0)) = —ﬁ[ P50 (k. 0) + TS (@) + TR0 ) |

4gp63wk3[ B3)Cok (3)Cokr
28pE3caf3[RO)Cak oy | (k,q)]
A%o’ +k2 3ac3

nacl
_4g? a2 X (p) (f) . En(a)(_’f)
r (A3, +K2)% (A}, +k2)?

Erip®) 3 By (k) ]

- = (B.37
2 +k2 A2 +k2 )

- 4g €3 k3 3 He
Y, (k,{q0,G =0}) =— &[F( )Bp 3)Coq

L2 L a3 (=g +k,q) + T35 (=g +k.q)

4gp€3caks e
A etk

3)C

T (g + k)] -
3)C

T (g + ko) |

—8g2k2 Zxp)®) | Ereo® | (B.38)
PULAS, R (A5, +R)?

The transverse projection of the corresponding o self-energy contributions at ¢ = 0 is given by

d|k|k?
23(q0,0) = —T Z /(2 E Dﬂ(k)(Yq(Q+kaI)+Yq(q_ka)

n(even)

+Yelk, ) + Yi(—k, )|

ko=iwy
4 (AR T dvdv " .
=[G [ iy, (R gl D 0.
xq0 o S FO) PV, (B39)
d|k|k? Im[ Dy (v, k)]
'03_ n(ge:)/ (2m)3 / —Rettg 10, gl O)]( w—U+i€)
> /d|k|k2 / dv Im[Y({v, k},0) Dr (v, K)]
n(even) (27[)3 - (iwp —v+i€)
am (AR [ d
i (;T'p [ Retv 0.8, 0miD 0.1 0
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il IS wﬂl [Ye({v, K}, 0) Dy (v, B)] PV B.40
"3 ] on)? f —Im (v, k},0) Dy (v, k)] f(v) + PV, (B.40)

—00

where we again explicitly calculate a nondispersive constant with 223.

Next, we calculate corrections to the tadpole that can be expressed in terms of unitarity cuts
@Bip #Bzp HEp @®Gp DEo #Go

of pm or om-loops, Fwab33, Fwab33, I”Wab%, Fwab33, Fwab33, and prab33' These p self-

energies dress a pion propagator with the unitarity cut of the pion self-energy (Efrj ). For positive

energy ImZ,[T] R i given by

e ¢]

d? d
sl Ok 1 =gk [ 55 / [ - ©tko — w)m( D (p)IIm{Dr k + )]
0
xNiwrlp. k. o+ kolFFRp. kP14 )+ flko —w))]
(B.41)

For negative energies, =V is determined by forcing the imaginary part of the pion self-energy to
be odd, that is enforcing the retarded property of the pion self-energy. The real part of Eg can
then be evaluated with the dispersion relation

oIzl (v, k) Im=Y (v, k)
12— 2 —

o
-1
RexY (k) = — PV f dv (B.42)

0

However, this dispersion relation converges quite slowly, resulting in an unphysical shift of the
pion mass by approximately 800 MeV. The shift is produced by vacaum = — p7r and 7 — ox
decays and in principal should be absorbed into the pion mass; however, modifying the real part
of the vacuum loop in only these diagrams would violate gauge invariance. In order to remove
the shift systematically, while preserving gauge invariance, we resum the pion propagators in the
o self-energy with XY yielding

=0 @
k[ dvdd @k + ) Ch+q)"
— 52 o /
G ()’ / n? qgo+v—v +ie (f ) = fW)OW)
1
xIm[

- = = ]
v2—k?—m2 — (v, k, T) — ZY (v, k, T) —ReZY (m, 0, 0)
1
Im[ —= — — ]
(V)2 —=(G+k)>—m2 -2, (v',g +k, T)=2Y (v', G +k, T)—ReXY (my,0,0)

2w [ A [ dv
—2¢2¢ / - f = fwew

1
V2 —k2—m2 — S, (. k. T) — 2V (0, k, T) — ReZU (., 0, 0)

1, (B.43)
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where we have limited the integration with theta functions to ensure that we do not introduce new
vacuum p self-energy diagrams. Finally, we apply Pauli-Villars regularization to the vacuum zle/
loop, such that

XY (k, my, T) — ImEY (k, my, T) — 2ImEY (k, \/m2 4+ AL, T =0) (B.44)

+ImZY (k, \/m2 +2A2, T =0) . (B.45)

Equation (B.43) contains the tadpole corrections derived from F;(jgflf%’ Fff32£33, F§j35533,

and F;(fzglf% in the resummation of the pion propagator. However, in Eq. (B.43) we are free

to treat XY equivalently to ¥, performing a zero-energy subtraction on ReXY. Furthermore,
we add a constant shift ReEfT] (ko = mn,l; =0, T = 0) to ensure that the vacuum pion mass is
140 MeV at p = 0. We are able add this constant without violating gauge invariance, because it
simply amounts to a redefinition of the bare pion mass. It should be noted that because we have
dressed the pion propagators with ©¥ the Ward identities imply that additional vertex corrections
must be calculated to maintain gauge invariance. These additional corrections correspond to the
unitarity cuts of the previously calculated thermal vertex corrections. However, we have already
encountered these corrections by dressing the unitarity cut of the p self-energy with thermal ver-
tex corrections. This symmetry is precisely why double-counting was encountered in the Landau
cut. In fact, the first-order corrections to the resummation in Eq. (B.43) are already included in
our formalism, and attempting to explicitly calculate first-order vertex corrections due to Ef{
would only introduce double-counting into the unitarity cut of Zﬁ Y.
We now take the transverse projections of Eﬁ 'Z], at ¢ = 0 to obtain

% 54(q0,0)
2 72 e I AL2 / /
4mgl [ dkk f dvdv' 420 (wv)(f(v) — F()))
T3 (2m)3 w2 go+v—1 +ie
—00
1
xIm][ = = = ]
v2—k2—m2 — (v, k, T) — ZY (v, k, T) —ReXY (m, 0, 0)
1
x Im[ — — — ]
(V)2 —=(G+k)>—m2 =%, (v, g+k, T)—EY (v, g+k, T)—ReZY (mx, 0, 0)
(B.46)
8g2 [ dkk>
%, (q0,0) = ——=2
o0
dv F()O()
X —Im|[ = = = )
—7 2—K2—m2 =3, (v.k, T)—%U (vk, T)—Re XY (1., 0, 0)

—00

(B.47)

where Eg 4 again calculates a nondispersive constant.

Finally, we calculate the p self-energy corrections due to Fffz 12;)23 and Fffz 13%3. These correc-

(3Ap

tions can be expressed in terms of the unitarity cut of I’ ab3 3
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(3)AUp

IrnI‘lwl73 (k,q)
3¢3 [ d®p [ duw
— P A
=aa— | Gy / — [Im[Dn (P)IImD"(p + k)1gpurk — p)v

0

xFFy[—q + p,q + kIFF,[p, k1O (ko — w)(1 + f(w) + f (ko — w))}

po=—w

3¢3 [ d®p [ dw )
—€ap—" e / ;[Imwn(mumwx(p +K)1gpunk — p)y
0

xFFy[—q + p,q + kIFF,[p, k]O(=ko — w)(1 + f(w) + f(—ko — w))}

po=w

_Z[mn —/m2 + A%]T:O + [mn —/mZ + 2A(2)] o’ (B.48)

where the last line implements the Pauli-Villars regularization on the vacuum loop. The real part

of FSZ‘;} ? is given by the subtracted dispersion relation

(3)AUp 7 (3)AUp P
-1 ImI” (fv.k},q)  ImD ({v.k}, q)
Rel' Ve (k gy= —p.. f dy—1ab3 L (B.49)
pab- T ko —v —v
—00
The self-energy correction arising from Fffz 5;7’3)3 and F;(fv) 152‘3)3 is then given by
87 [ dFR2 [ dvdy
—OTT vav - > ~(3)AUp -
Zps5(90.0) = — 58 / = Im[ Dy (v, k) IIm[ Dz (v, k)50 ° (v, k)]
—00
> (f) - fQ))
x(2gplkl€zan) O, (B.50)

(go+v—1"+ie)

where we again limit our calculation to the Landau cut of £5".
B.3. Total corrections

The total contribution of the vertex corrections to the transverse projections of the p self-
energy, at ¢ = 0, is given by

27 € (90, 0) = Zp1(g0. 0) + Z,1(q0. 0) + Z,2(q0. 0) + 29, + Zp3(q0. 0) + =05
+2,4(90,0) + 0, + Tp5(q0. 0) - (B.51)

The imaginary part can be calculated from X,1, Z,1, Zp2, Xp3, Zp4, and X5, by converting
m into a delta-functif)n anfl performing the remaining integrations. The real part can
then be calculated through a dispersion relation,

1 ]OdwﬂlmEXC (v,§)

Rex) € (q) = —pv. +320+ 20+ 39, (B.52)

2
CI()_U2
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where we do not perform a subtraction, because we have explicitly calculated the nondispersive

constant with Egz, 223, and 224.
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