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Abstract—Cyber-physical systems (CPS) are susceptible to
physical attacks, and researchers are exploring ways to detect
them. One method involves monitoring the system for a set
duration, known as the time-window, and identifying residual
errors that exceed a predetermined threshold. However, this
approach means that any sensor attack alert can only be triggered
after the time-window has elapsed. The length of the time-window
affects the detection delay and the likelihood of false alarms, with
a shorter time-window leading to quicker detection but a higher
false positive rate, and a longer time-window resulting in slower
detection but a lower false positive rate.

While researchers aim to choose a fixed time-window that
balances a low false positive rate and short detection delay, this
goal is difficult to attain due to a trade-off between the two. An
alternative solution proposed in this paper is to have a variable
time-window that can adapt based on the current state of the
CPS. For instance, if the CPS is heading towards an unsafe state,
it is more crucial to reduce the detection delay (by decreasing
the time-window) rather than reducing the false alarm rate,
and vice versa. The paper presents a sensor attack detection
framework that dynamically adjusts the time-window, enabling
attack alerts to be triggered before the system enters dangerous
regions, ensuring timely detection. This framework consists of
three components: attack detector, state predictor, and window
adaptor. We have evaluated our work using real-world data, and
the results demonstrate that our solution improves the usability
and timeliness of time-window-based attack detectors.

Index Terms—attack detection, sensor attack, CPS Security,
Attack and Detection

I. INTRODUCTION

Cyber-physical systems (CPS) refer to systems that are en-
gineered through the integration of physical and computational
components. These systems have found application in var-
ious fields, including healthcare, manufacturing, agriculture,
aeronautics, energy, building design, civil infrastructure, trans-
portation, and environmental quality. CPS includes systems
such as smart grids, medical monitoring devices, industrial
control systems, building controls, and autonomous vehicles.
These systems depend on a close integration of software and
hardware components. The software, also known as ”cyber”
components, comprises the computing and communication as-
pects of the system. The hardware, or ”physical” components,
consist of sensors that measure the system state, and actuators

that produce rotary or linear motion, such as opening valves
or increasing throttle.

The integration of software and hardware in CPS has
increased the vulnerability of systems that previously had
closed architectures. Cyber components of CPS face attacks
similar to those experienced by traditional computer soft-
ware and networks, such as network eavesdropping (sniffing),
buffer overflow, packet spoofing, and data modification attacks.
Moreover, the physical components of CPS can be compro-
mised, leading to the injection of malicious signals that impede
the function and behavior of the system. These attacks on
the physical components of CPS are referred to as physical
attacks. Examples of physical attacks in the real world include
bombarding cameras with light, injecting false GPS signals,
and injecting false radar signals.

Defensive measures for CPS cyber attacks are more ad-
vanced than those for physical attacks because some con-
ventional cyber-security solutions can also help defend CPSs
against cyber attacks. Firmware hardening [1], control-flow
integrity [2], and memory isolation [3] are examples of such
solutions. However, they are less effective against physical
attacks since these attacks do not target software/network
components directly. Therefore, there is an urgent need for
physical attack defense solutions.

Numerous research efforts have been undertaken to protect
CPS from physical attacks, with a particular emphasis on
detecting sensor attacks. However, many of the proposed so-
lutions are impractical because they fail to adequately address
the need for timely detection of attacks. One commonly used
detection method involves monitoring the system for a fixed
duration, known as the time-window, and identifying residual
errors that exceed a predetermined threshold. However, this
approach means that any alert for a sensor attack can only be
triggered after the time-window has passed. The length of the
time-window affects the detection delay (i.e., duration between
attack launch and when it is detected) and the probability of
false alarms. A shorter time-window results in faster detection
but a higher false positive rate, while a longer time-window
leads to slower detection but a lower false positive rate.
Researchers aim to find a fixed time-window that strikes a
balance between a low false positive rate and a short detection
delay, but this is challenging due to a trade-off between the979-8-3503-3902-4/23/$31.00 ©2023 IEEE



two factors. In addition, selecting a fixed time-window renders
it impractical for the detector to meet the detection deadlines,
which refer to the time frame within which the attack must be
identified before the system enters an unsafe operating state. It
is crucial and necessary to ensure that the CPS does not enter
unsafe operating states in the event of an attack. Detecting
an attack only after destructive effects have transpired is as
harmful as not having an attack detector at all.

This paper suggests an alternative solution to address the
issues with a fixed time-window attack detector by proposing a
variable time-window attack detector that can adjust according
to the current state of the CPS. For example, if the CPS
is approaching an unsafe state, reducing the detection delay
(by shortening the time-window) becomes more critical than
reducing the false alarm rate, and vice versa. The paper
aims to demonstrate that a variable time-window detector is
more practical for real-time systems and proposes a variable
time-windowed framework to detect sensor attacks before the
system enters an unsafe state. The framework comprises three
key components: the attack detector, the state predictor, and
the window adaptor. The attack detector is at the heart of the
framework, using a stateful detection strategy that performs
statistical tests on residuals with variable window sizes de-
pending on the detection deadline. The state predictor uses a
data model to predict sensor measurements that represent the
typical behavior of the automotive CPS. Finally, the window
adaptor determines the detection deadline, after which the
system may enter an unsafe operating state.

The contributions of this paper are as follows: Firstly, it
presents an argument supported by evidence to demonstrate
that a variable-time window detector is more practical for
real-time systems. Secondly, it proposes, designs, and creates
a prototype for a variable-time attack detector. Thirdly, it
evaluates the proposed framework’s effectiveness using real
world data.

The paper is structured as follows: Section II covers some
preliminaries, including detection strategies and the threat
model. In Section III, we describe the proposed framework’s
components, including the state predictor, attack detector, and
window adaptor. Section IV presents our experimental setup,
the conducted experiments, and the evaluation results. We
delve into related work, discussion, and conclusion in Sections
V, VI, and VII, respectively.

II. PRELIMINARIES

A. Detection Strategy

As noted above, attack detectors perform statistical tests
on the residuals, rk. They raise alerts whenever the expected
and observed signals significantly differ, i.e. the residual is
large. Two main strategies are used for attack detection namely
stateless and stateful tests [4]. In a stateless test, only one time
shot is considered and the detector raises an alert for every
deviation at time k (i.e. |yk − ŷk| = rk ≥ τ , where τ is a
predetermined threshold). This strategy tends to produce many
false alarms as the cause of the deviation may be a transient

fault at that point in time. Typical examples of this are found
in chi-squared (χ̃2) detectors.

Stateful strategy, on the other hand, considers multiple time-
steps to determine if an alert should be raised. It maintains a
statistic, Sk, that keeps track of the historical changes of rk.
An alert is raised whenever a persistent deviation is observed
over multiple time-steps (i.e. Sk ≥ τ ). Keeping track of the
historical changes of rk can be done in multiple ways such as
(1) using change detectors (2) taking an exponential weighted
moving average (EWMA) and (3) taking an average over
a time-window. We focus on detectors that use the stateful
strategy and use a fixed-time window.

B. Threat Model

In our threat model, we consider the possibility of an
adversary compromising the sensor through physical attacks
that introduce interfering signals, such as magnetic fields or
light, into the sensor’s physical environment. Such an attack
would compromise the accuracy and integrity of the sensor’s
measurements, leading to the transmission of incorrect system
state information to the controller. This false sensor data would
have a ripple effect on both the control input computed by the
controller and the control output performed by the actuator,
ultimately causing the system to deviate from its reference
state.

Furthermore, we make the assumption that the attacker has
no access to the control program and proposed framework
components running on-board. As mentioned earlier, we do not
center our attention on cyber attacks that target the software
and communication components, as these can be efficiently
protected using existing software security techniques like CFI.
Instead, our focus is entirely on sensor attacks. It should be
noted that this paper does not address attacks aimed at non-
vehicle control logic, such as the computer vision system of
the automotive CPS.

C. Framework Overview

The proposed framework’s components work together to
signal an alert for a sensor attack before the CPS enters
an unsafe operating state. Figure 1 presents the end-to-end
framework of our suggested variable-window real-time sensor
attack detector. The state predictor component anticipates the
expected sensor measurements during system operation. The
window adaptor component calculates the detection deadline
and window length (detection delay) that enable the framework
to meet detection deadlines. The attack detector component
receives input from the window adaptor and the state predictor
and executes the following tasks: (1) calculates the residual rk
(i.e., the difference between the expected and observed values).
If rk is significant, it obtains the window size from the window
adaptor as input, (2) the window size input is employed in
the detection strategy to decide whether to raise an alarm. It
should be noted that the selection of variable window sizes
allows our detector framework to adapt its behavior to meet
detection deadlines.
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Fig. 1: System design of variable window real-time sensor
attack detection framework.

III. DESIGN

A. Design of Attack Detector

We present the design of the attack detector component
in this section. The component is responsible for performing
the attack detection strategy of our framework utilizing inputs
from the Window Adaptor (§III-C) and the State Predictor
(§III-B) components.

We formulate the attack detection problem as follows. Given
the predicted (expected) sensor value ŷt ∈ Rn, the observed
sensor reading yt ∈ Rn, a predetermined threshold τ , and the
window length l, we want to determine the appropriate time
to raise an alarm talarm before the system touch unsafe state:

talarm =

k∑
t=k−l+1

rt > τ (1)

where rt = |yt − ŷt|. Note here that the moving sum of
the residuals is taken over a window [k − l + 1, k]. The ŷt
used in Eqn. 1 is the output of the state predictor which has
the responsibility of predicting expected sensor values. The
window adaptor provides the window length l to be used in
the detection strategy.

B. Design of State Predictor

In this subsection, we describe the design of the state
predictor component. This component is responsib for fore-
casting system states by using historical data from a fixed-size
sliding window, i.e., fixed-size reception fields. We utilize the
Temporal Convolutional Network (TCN) [5] for this purpose.

TCN is a convolutional sequence prediction architecture
specifically designed to capture action segmentation in time-
series initially [6], [7]. Recently, several studies have demon-
strated that TCN outperforms RNN-based structures on various
time-series tasks [8]–[11]. TCNs have the ability to take a se-
quence of any length and map it to an output sequence of equal
length, just like an RNN. TCNs differ from RNNs in that the
convolutions in TCNs are causal (i.e., there is no information
”leakage” from the future to the past). Additionally, TCNs can

Fig. 2: Temporal Convolutional Networks structure

be trained easily in parallel since the network does not contain
gate components.

We opted to use TCN instead of memory-based RNNs like
LSTM and GRU as our state predictor component for the
following reasons:

• Firstly, TCN delivers higher prediction accuracy than
LSTM, meaning that the generated predictions are closer
to the actual system state.

• Secondly, research has demonstrated that TCN has a
shorter inference time than LSTM [12], which can en-
hance the framework’s decision-making speed by en-
abling faster inference of sensor speeds. Consequently,
using TCN can achieve a shorter detection delay.

• Lastly, because TCN can be considerably deep, it can
memorize longer histories than LSTM. A longer memory
is beneficial in generating better predictions when there
are long-term dependencies between data and the time
horizon.

Fig. 2 illustrates the architecture of TCN. With each layer,
the prediction for each step benefits from a range of time
dependencies of varying lengths. As a result, TCN has a rela-
tively long memory that increases with depth. Moreover, TCN
does not include any intricate components like LSTM gates,
which suggests that TCN should have a faster inference speed
than LSTM while maintaining the same level of accuracy.

Given a previously observed input sequence x0, x1, ..., xT ,
we can use TCN to predict a corresponding output sequence
y0, y1, ..., yT . This kind of sequence modeling network is any
function f : X T+1 → YT+1 that produces a mapping

ŷ0, ŷ1, ..., ŷT = f(x0, x1, ..., xT ) (2)

if it satisfies the causal constraint that yt depends
only on x0, x1, ..., xt and not on any future inputs
xt+1, xt+2, ..., xT [5].

The TCN relies on two key principles: the output should
have the same length as the input, and information from future
time steps should not impact past predictions. To fulfill these



principles, TCN employs a 1D fully-convolutional network
(FCD). However, a basic convolution can only examine histor-
ical data within a window that is proportional to the network’s
size. Therefore, TCN utilizes dilated convolutions [5]. The
dilated convolution operation F is applied to each element s of
a 1-D sequence input x∈ Rn and a filter f : {0, 1, ..., k−1} →
R. It can be defined as:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (3)

where d is the dilation factor, k is the filter size, and s− d · i
accounts for the direction of the past.

Fig. 2 demonstrates that each layer in the TCN has a
distinct dilation rate s, which represents the distance between
convolutional operations and enables the network to select
which time steps to apply convolution to. In addition, a
residual connection is used to combine the input to the layer
and the convolutional signal. The dilated output Ŝ(l)

t of the lth

layer at time step t, and the output S(l)
t after applying residual

connections, can be expressed as [7]:

Ŝ
(l)
t = f

(
W (1)S

(l−1)
t−s +W (2)S

(l−1)
t + b

)
(4)

S
(l)
t = S

(l−1)
t + V Ŝ

(l)
t + e (5)

where W (i) denotes the ith convolution filter in the layer, b
denotes the bias vector, v and e denotes the weights and bias
vector of the residual.
Pre-processing and Sensor correlation

In cyber-physical systems, it is common to use multiple
types of sensors for tasks such as function execution and
environmental navigation. For instance, modern vehicles are
equipped with various sensors including wheel speed, engine
speed, GPS, and boost pressure. While these sensors may
monitor different physical phenomena, their measurements can
exhibit correlation [13]. For example, when the accelerator
is pressed, it is likely that both the wheel speed and engine
speed will increase. Thus, we can say that the accelerator,
wheel speed, and engine speed sensors are correlated. Our
objective is to leverage or capture these correlations in our
model. Therefore, we aim to select the most correlated sensors
to train our model. While we may know of some correlated
sensors from our experience with driving, we seek to confirm
these correlations using the Pearson’s Correlation Coefficient
(PCC) algorithm, as well as discover new correlations that are
not obvious to our domain knowledge. The result of the PCC
algorithm is a correlation matrix depicted in Figure 3.

PCC is a linear correlation measure between two sets of
variables, with values ranging from +1 to -1. If X and Y
are two variables, a PCC value of +1 indicates that when X
increases, Y also increases, while a PCC value of -1 indicates
that when X decreases, Y also decreases. A PCC value of
0 means that there is no linear relationship between X and
Y . As illustrated in Fig. 3, the vehicle speed, engine speed,
and wheel speed sensors are strongly correlated, while the
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Fig. 3: Example confirming the wheel speed sensors in the
dataset has strong correlation with the wheel speed, engine
speed and boost pressure sensors.Table I shows the available
sensors in the dataset.

SCS Tip Up sensor has no correlation with the wheel speed
sensor. We chose sensors with PCC values above +0.6 to train
our model.

C. Design of Window Adaptor

This component serves the purpose of determining the
optimal length of the time window to be utilized in the
attack detector. It is comprised of two subsystems, namely
the deadline estimator and the window-length analyzer, which
are elaborated upon in the following sections.

1) Deadline Estimator: As mentioned earlier, the effective-
ness of attack detectors is not solely dependent on correctly
raising attack alarms, but also on detecting them in a timely
manner, that is, before the system enters unsafe states. Detect-
ing attacks after the system has entered unsafe states is deemed
potentially worthless and can result in harmful consequences.

In this paper, we refer to the estimated time in the future
when the system might reach the unsafe set as the detection
deadline. It is important to note that our proposed framework
does not depend on any particular method for estimating the
deadline.

The choice of a deadline estimation method typically relies
on whether system dynamics information or system data is
available. In [14], the authors utilized system dynamics infor-
mation to perform reachability analysis, which was then used
to compute the deadline. Although this approach can provide
more accurate reachable set approximations, it is not appli-
cable in many important applications where detailed system
dynamics information is either unavailable or only accessible
through simulations. Consequently, data-driven approaches
have gained attention from researchers. For example, in [15],
the authors proposed a data-driven deadline estimation method
that utilizes only system data to calculate the maximum change



rate of the sensor value and estimate the shortest time when the
system might reach the unsafe set. Recently, many data-driven
reachability analysis methods such as [16]–[22] have been
proposed; however, most of these methods are computationally
expensive and only applicable in offline scenarios, making
them unsuitable for real-time systems like cyber-physical
systems. For example, in [16], an experiment that computed
the reachable set approximation took 39 minutes. To address
this issue, we propose a purely data-driven deadline estimation
method that is not computationally expensive and therefore
well-suited for resource-constrained systems.

The proposed method involves using data-driven reachabil-
ity analysis to obtain approximations of the reachable set and
subsequently checking if the unsafe set is encompassed within
this set. If this condition is met, the minimum time required
for the system to reach an unsafe state is identified as the
detection deadline.

We define the data-driven reachability analysis as a time
series forecasting problem where we predict sensor values
over a finite time horizon [t0, t1]. To this end, we adopt
Autoregressive Integrated Moving Average (ARIMA) as the
technique for predicting sensor values. ARIMA generalizes
Autoregressive Moving Average (ARMA) which combines
the Autoregressive (AR) process and Moving Average (MA)
processes to build a composite model of the time series.

An AR model of order p, i.e., AR(p), can be represented
as a linear process by:

yt = c+

p∑
i=1

ϕiyt−i + ϵt (6)

where the terms in ϕi are autocorrelation coefficients at lags
1,2. . . p, c is a constant and ϵt is white noise.

The MA model of order q, i.e., MA(q) is represented as

yt = µ+

q∑
i=0

θiϵt−i (7)

where µ refers to the expectation of yt, θ is weight that is
applied to the current and previous values of a stochastic term
in the time series. ϵt is the Gaussian white noise. Thus, an
ARIMA model of order (p, q, d) is formed by adding the AR
and MA models as:

yt = c+

p∑
i=1

ϕiyt−i + ϵt +

q∑
i=0

θiϵt−i (8)

The parameters of the ARIMA model ARIMA(p, q, d) are
defined as follows: p : refers to the number of lag observations
included in the model (it is also known as the lag order). d
represents the number of times that the raw observations are
differenced and q is the size of the moving average window,
also called the order of moving average.

Once the ARIMA model is trained from offline data, it can
be used online to predict sensor values or the reachable set
R̂[t0,treach] which is defined as:

R̂[t0,treach] = ŷ(t0), ŷ(t1), ŷ(t2) . . . ŷ(treach) (9)

Let Λ represent the unsafe set associated with sensor.
Hence the system is considered safe over the finite time
horizon, [t0, t1], if R̂[t0,treach] ∩ Λ = ∅. Otherwise, it can be
asserted that the reachable set contains unsafe set. Therefore,
we proceed to the next step to find the minimum time td
(t0 ≥ td ≤ treach) that is associated with an unsafe state
within the reachable set R̂[t0,treach]. td thus, become the
detection deadline.

2) Window-length Analyzer: This component determines
the appropriate window length to be used in the detection
strategy. Remember that the choice of time-window length
dictates a trade-off between false alarm rate and detection
delay. This component enables the framework to bias detection
delay and false alarm rate. One of the goals of the proposed
attack detector framework is to meet the attack detection
deadline.

This component functions in two phases. The offline phase
profiles the CPS to build a lookup table that establishes
the relationship between the time-window length, and the
detection delay. This phase is performed only once for the
CPS. During the online phase, to perform its online adaptive
functionality, the window analyzer queries the lookup table to
output the time window length that adjusts the detection delay
to meet the given detection deadline.

IV. EVALUATION

In this section, we evaluate the effectiveness of the proposed
solution. Firstly, we assess the state predictor’s capability to
learn the nominal system behavior. Secondly, we compare our
variable approach with the fixed window approach. Lastly, we
measure the false-positive and false-negative rates.

A. Experimental Setup

Our implementation of the deep learning model was carried
out in Python, utilizing the PyTorch Deep Learning frame-
work. To train the model, the dataset was split into three parts:
training set, validation set, and test set, with proportions of
60%, 20%, and 20%, respectively. We obtained our dataset
from the AEGIS Big Data Project [23]1, a publicly-available
real-world automotive CAN bus dataset, which includes sensor
data sampled at 20Hz. The types of sensors used are listed in
Table I.

B. Experiments and results

Experiment I: This experiment aims to evaluate the state
prediction capability of the state predictor and the degree to
which the model has captured the nominal system behavior.
The accuracy of state prediction indicates the effectiveness of
the model in capturing the system’s behavior. The prediction
results for the wheel speed and engine revolution sensor values
are presented in Fig.4 and Fig.5, respectively. The figure
shows a close match between the actual measurements and
the forecast lines, indicating that the model has effectively
captured the nominal system behavior. As shown in Fig. 6, the
model incurred near-zero errors on average, approximating the

1https://zenodo.org/record/3267184#.X5YtpIhKg2x



TABLE I: Some sensors in the dataset used in experiment.

CAN bus Sensors GPS Sensors IMU Sensors

ASR Acceleration Accelerometer X
AccPedal Current sec Accelerometer Y
AirIntakeTemperature Direction Accelerometer Z
AmbientTemperature Distance Body acceleration X
BoostPressure Velocity Body acceleration Y
BrkVoltage Body acceleration Z
EngineSpeed CAN G force
EngineTemperature Magnetometer X
Kickdown Magnetometer Y
MFS Tip Down Magnetometer Z
MFS Tip Up Velocity X
SteerAngle Velocity Y
Trq FrictionLoss Velocity Z
Trq Indicated
VehicleSpeed
WheelSpeed FL
WheelSpeed FR
WheelSpeed RL
WheelSpeed RR
Yawrate

ASR = Acceleration Slip Regulation, ACC = Acceleration,
BRK = Break, MFS = Misfiring System, TRQ = Torque,
FL = Front Left, FR = Front Right, RL = Rear Left,
RR = Rear Right, G = Gravity

system behavior. However, to further improve the model, it is
recommended to use additional training data containing more
nominal system data

Experiment II: In this experiment, we measure the false-
positive (FP) and false-negative (FN) rates of the detector.
First, we embed ten simulated attack ranges in the test data set.
The first attack range compromises the observed sensor mea-
surement by adding 0.2 km/h. The magnitude of subsequent
attack ranges increases by 0.2 km/h i.e. the second attack range
adds 0.4 km/h to the data, the third 0.6 km/h and so on.

Second, the detector is tasked to detect the ten attacks
under different monitoring parameters (window length and
threshold). Fig. 7 shows the results of FP. It can be observed
that as the window length gets larger, the FP decreases. This
observation is due to normalization of the accumulated errors
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Fig. 4: The state predictor forecasting the wheel speed sensor.

Fig. 5: The state predictor forecasting the engine speed sensor.

Fig. 6: The error between the state predictor’s forecasting of
the engine speed sensor.

before the threshold comparison. Hence, a larger window
results in smaller normalized errors. On the other hand, the
FN is observed in Fig. 8 to increase as the window get
larger. The same reason for the FP results also attributes to
the FN observation. These two observations show the detector
can vary its behavior by varying the window length and still
achieve acceptable low FP and FN.

Experiment III: This experiment shows how the proposed
framework allows for flexible detection delays to be achieved
by the detector, thereby enabling it to meet detection deadlines.
To compare the effectiveness of our variable-window detector
with a fixed-window attack detector solution, such as the one
described in [24], we consider an attack scenario where the
attack is initiated at 10s and the detection deadline is set at 16s,
beyond which the system enters an unsafe region. The results
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of the experiment and the attack scenario are illustrated in
Fig. 10.

The figure shows that the length of the time window
influences the time taken to detect the attack, or in other
words, the detection delay. Each window length corresponds
to a specific detection delay; for example, Fig.10a resulted
in a detection delay of 11s, whereas Fig.10e resulted in a
detection delay of 15s. Additionally, we observe from the
figure that the fixed-time-window detector consistently has
the same detection delay (17.5s in our experiment), making it
incapable of meeting varying detection deadlines. In contrast,
our variable-window detector framework can adapt to different
detection deadlines by selecting appropriate window lengths.

V. RELATED WORK

Given the indispensable roles that cyber-physical systems
play in modern society, their security issues have received due
attention, especially from the research community. Broadly, re-
searchers have addressed (1) CPS vulnerabilities and exploita-
tion [25]–[35], (2) preventing CPS attacks [29], [30], [36]–
[39], (3) detecting CPS attacks [4], [40]–[46], and mitigating
CPS attacks [14], [34], [47]–[51]. The general mechanism for
attack detection solutions include observing the internal state
of a CPS subsystem or the CPS as a whole. Other solutions
monitor the interaction of the CPS components in order to
spot any malicious or anomalous activities. Lastly, the CPS
can be monitored through out-of-band channels such as radio
frequency emissions from a CPS component [42]. Commonly,
researchers create models from system data or system dy-
namics information that captures the normal behavior of the
system. The models are used to predict the expected behavior
of the CPS. The predictions are compared with observed

State Prediction
Detection
Strategy

Alert

Fig. 9: The general attack detection strategy

system state data to determine any on-going malicious activity.
Fig. 9 shows this general strategy for attack detection.

Existing works have captured the dynamics of the systems in
various ways. Some treat the system as a black box by building
a data model from system data such as sensor measurement,
system logs, and command inputs and outputs. Such works
include but not limited to [13], [15], [52]–[55]. The state
predictor in our framework follows this approach to model
the physics of the system.

In other research works, the approximate knowledge about
the physical dynamics (physical invariant) of the system are
known in terms of the set of equations. Therefore, they treat
the system as a greybox by learning the parameters of the set
of equations utilizing techniques such as system identification
(SI). Works in this direction have considered the system as
a linear dynamical system (LDS) [24] or as a non-linear
system [56].

The sensor measurements in a system have correlations
among them as a result of physical laws. Whenever the
correlation is violated it is an indication of an attack or fault.
Existing works have employed various techniques to exploit
the correlation in their attack detection mechanism. Some
researchers have used homogeneous sensors [?] for corre-
lation exploitation whereas others have used heterogeneous
sensors [13], [52], [57], [58]. Our framework also exploits
correlation among heterogeneous sensors. Unlike, existing
works, we address the timing constraints of attack detection.

Although there are many attack detection works, the issue of
raising an alert in a timely manner remain largely unexplored.
Most of the literature have focused on correctly detecting an
attack without considering the timeliness of doing so. To the
best of our knowledge, [15] is one of the attack detection
works that addresses the real-time needs of attack detectors.
Their real-time attack detection framework selects the appro-
priate CUSUM bias parameter that enables the detector to
raise an alert before the system touch unsafe regions. The
solution provided in [15], however, is inapplicable to time-
window-based sensor attack detectors since their CUSUM-
based solution do not utilize time windows. Our work fills
this gap by providing the real-time needs of the numerous
time-window sensor attack detectors. We note that the authors
in [14], [59] also consider real-time issue in autonomous
CPS security, however, their work focuses on attack recovery
instead of attack detection. In brevity, [14], [59] devise a
reactive solution that seeks to ensure that the CPS attack
is mitigated before the system plunge into unsafe operating
states.

VI. DISCUSSION

A. Attack Recovery

In ensuring the security of Cyber-Physical Systems (CPS),
sensor attack detection is a vital step as it helps identify any
malicious activity. The output of attack detectors is usually an
alarm. However, it is equally important to consider what steps
should be taken after the alarm has been raised. While humans
can often mitigate the attack after detection in most practical
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Fig. 10: Comparing our framework with a fixed time-window approach. In all scenarios, the fixed-time-window detector raises
the alarm at 17.5s always. Our approach enables varying the window length such that alarms can be raised before the detection
deadline.

situations, it is crucial to have automatic attack recovery
measures in place to restore the system or enable it to operate
safely in critical modes.

While the focus of this paper is on timely attack detection, it
does not cover attack recovery. However, the proposed solution
can be integrated with attack recovery solutions, such as those
discussed in [14], [50], [59], to enhance the overall security
of CPS.

B. Limitations

The effectiveness of the proposed solution presented in this
paper relies heavily on accurately estimating the detection
deadline. Most methods for estimating deadlines depend on
reachability analysis, which is a popular and effective way
to ensure safety in uncertain situations. Reachability analysis

characterizes all possible system evolutions. However, despite
significant progress in the study of reachability analysis,
computing the exact reachable state is still an open problem.
It is worth noting that our proposed framework does not
rely on any particular deadline estimation method. However,
since the best available deadline estimation method provides
an approximation rather than an exact reachable set, our
framework may make decisions based on erroneous detection
deadlines in some cases.

Finally, the proposed framework is dependent on accurately
modeling system dynamics to predict expected system behav-
ior. However, the framework is not reliant on any specific
system model. In this work, we proposed building the sys-
tem model using system data, as obtaining system dynamic
information can often be challenging. With sufficient training



data, the model should be able to accurately estimate the
system state. However, it can be difficult to obtain training
data that covers every system behavior necessary for the model
to learn and capture accurately. Online learning techniques
may be useful to continue to train the model as new data
is generated. It is important to note, however, that in online
learning, an attacker may inject malicious signals that the
model could learn as normal behavior. Distinguishing between
normal system behavior and malicious, stealthy signals for
online model learning remains an open problem.

C. Applicability to other CPS domain

This paper presents a solution that specifically targets the
autonomous cyber-physical system domain. It is worth noting
that the proposed solution can also be applied to other CPS
domains, such as industrial control systems and smart grids.
In more stable CPS environments where the system behavior
is more predictable, the estimation of the detection deadline
can be more accurately computed, resulting in more reliable
and timely attack detection.

VII. CONCLUSION

Modern society relies on cyber-physical systems for safety-
critical functions. However, the integration of information
technology with physical processes has exposed these once-
isolated systems to a variety of attacks. Traditional cyberse-
curity solutions are not sufficient against physical attacks, and
existing sensor attack detection solutions do not address the
timing and usability of attack detectors adequately. To address
these issues, this paper proposes a variable-time window
detector that can adjust its metrics based on the current state
of the CPS to meet the detection deadline. Unlike fixed time-
window detectors, our proposed framework adapts its behavior
to meet attack detection deadlines. This framework consists of
three components: attack detector, state predictor, and window
adaptor. We have evaluated our work using real-world data,
and the results demonstrate that our solution improves the use-
fulness and timeliness of time-window-based attack detectors.
This leads to more reliable and robust cyber-physical systems.
Furthermore, we emphasize that our proposed solution is
applicable to other CPS domains, such as industrial control
systems and smart grids, and can be particularly effective in
stable CPS where the system evolution is more predictable,
enabling more accurate deadline estimation.
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