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Abstract—The nearing end of Moore’s Law has been driving
the development of domain-specific hardware tailored to solve
a special set of problems. Along these lines, probabilistic com-
puting with inherently stochastic building blocks (p-bits) have
shown significant promise, particularly in the context of hard
optimization and statistical sampling problems. p-bits have been
proposed and demonstrated in different hardware substrates
ranging from small-scale stochastic magnetic tunnel junctions
(sMTJs) in asynchronous architectures to large-scale CMOS in
synchronous architectures. Here, we design and implement a
truly asynchronous and medium-scale p-computer (with ~ 512 p-
bits) that closely emulates the asynchronous dynamics of sMTJs
in Field Programmable Gate Arrays (FPGAs). Using hard in-
stances of the planted Ising glass problem on the Chimera lattice,
we evaluate the performance of the asynchronous architecture
against an ideal, synchronous design that performs parallelized
(chromatic) exact Gibbs sampling. We find that despite the lack
of any careful synchronization, the asynchronous design achieves
parallelism with comparable algorithmic scaling in the ideal,
carefully tuned and parallelized synchronous design. Our results
highlight the promise of massively scaled p-computers with
millions of free-running p-bits made out of nanoscale building
blocks such as stochastic magnetic tunnel junctions.

Index Terms—p-bits, combinatorial optimization, planted
Ising, Chimera lattice, asynchronous computing, massive par-
allelism, magnetic tunnel junctions

I. INTRODUCTION

With the nearing end of Moore’s Law, domain-specific
hardware and architectures are growing rapidly. The notion
of performing some tasks more efficiently (area, speed and/or
energy) rather than improving performance for general pur-
pose computing has led to the proliferation of special-purpose
accelerators. With their widespread use, hard optimization
problems have been a primary target of this approach and
a variety of different domain-specific hardware architectures
have emerged (see, Ref. [1] for a general and recent review).

As an example of this growing trend, probabilistic bits
or p-bits were introduced [2] as a building block which
can accelerate a broad family of algorithms including Monte
Carlo, Markov Chain Monte Carlo [3], Quantum Monte Carlo,
statistical sampling for Bayesian inference and Boltzmann
machine learning [4] methods. p-bits have been shown to
be compatible with powerful optimization techniques such as
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parallel tempering [5] with competitive performance relative
to all other Ising machines (classical and quantum) in select
problems such as integer factorization and Boolean satisfia-
bility [6]. Their combination with sophisticated algorithms [7]
could yield further advantages.

A natural advantage of the p-bit model is its native mapping
to the Ising Model and to the natural generalization of Ising
Models. This ensures that coupled p-bits can systematically
probe the exact Boltzmann distribution through Gibbs or
Metropolis sampling without any approximations or reduc-
tions, often necessary in alternative, non-bistable abstractions
of the Ising spin.

One particularly promising small-scale demonstration of
p-bits in an asynchronously operating mode was performed
in Ref. [8]. Combined with key breakthrough experiments
demonstrating nanosecond fluctuations in suitably designed
low barrier magnetic tunnel junctions (MTJ) [9], [10], these
results suggest the intriguing possibility of designing > million
bit probabilistic computers [11] in light of the remarkable
advances in the magnetic memory chip industry reaching
gigabit densities [12], [13]. Even though large scale p-bit
emulators have been designed and tested in FPGAs or ASICs,
[31, [6], [11], [14], [15], virtually all of these implementations
have been on synchronous hardware where a global clock
controlled the information flow.

In this paper, we make a first attempt in designing and build-
ing a physics-inspired, truly asynchronous architecture, which
more closely emulates the dynamics of interacting nanodevice-
based p-bits, analogously to interacting bodies (FIG. 1, upper
panel). We achieve this by an unconventional use of FPGAs
where individual p-bits are activated by decoupled ring os-
cillators and can have overlapping and out-of-phase clocks
with different frequencies. Considering how variations may
influence individual p-bit behavior in magnetic tunnel junction
based designs [16] the behavior of asynchronous p-computers
with built-in variations is worth investigating.

To compare the performance of the truly asynchronous p-
computer in the FPGA, we choose the planted Ising model
where a hard optimization problem is generated with a planted
solution [17], [18], allowing a reliable evaluation of the
asynchronous design with respect to exact Gibbs sampling.
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FIG. 1. Upper panel: Physics-inspired analogy between asynchronously interacting bodies and p-bits: both systems are asynchronous, local (sparse connectivity)
and massively parallel. (a) Asynchronous computer architecture: The local field (Eq. 1) for each p-bit is computed combinationally. Each p-bit has a different
clock with asynchronous activation (b) Asynchronous ring oscillator-based clocks (ROSC) where we draw an analogy between stochastic Magnetic Tunnel
Junction (sMTJ)-based p-bits and ROSCs. Large rings correspond to large energy-barrier sMTJs with higher retention times. (c) Measured frequency range

for ROSCs with different ring sizes in the FPGA implementation.
II. PHYSICS-INSPIRED ARCHITECTURE

The main equations of the p-bit model (FIG. 1a) involves
stochastic activation and a local field (synapse) calculation,
given by:

m; = sgn(tanh(ﬁ]i) — TU) I, = Z Jijmj + h; €))

where m; represents the bipolar p-bit state (£1), ry is a
uniform random number between (—1,+1) and [J], {h} are
the weights and biases for a given problem and S is the inverse
temperature.

Standard Gibbs sampling iterates Eq. 1 to reach the Boltz-
mann distribution defined by the weights and typically involves
a serialized update procedure with nested for loops. One
way to avoid this serial for loop is to perform block updates
between unconnected p-bits. This approach when applied in
software is called “chromatic sampling” [19] and a low-level
hardware realization of it was recently reported in Ref. [6].
However, this design also involves careful (synchronous) equal
phase shifting between the blocks so that multiple blocks do
not update simultaneously.

In this work, inspired by truly asynchronous small-scale
implementations of p-computers with nanodevices (based on
stochastic MTJs [4], [8]), we implemented a physics-inspired,
truly asynchronous Ising Computer where different p-bits
receive clocks with different frequencies with random phases.
In contrast to synchronous designs, no careful engineering

between the clocks of asynchronous p-bits were made. More-
over, unavoidable variations of sMTJs in highly scaled p-
computers with nanodevices would make such an engineering
extremely difficult if not impossible. We found that despite
the deliberate randomization of p-bit clocks and unavoidable
collisions breaking exact Gibbs sampling, the physics-inspired
design exhibited massive parallelism observed in carefully
tuned synchronous designs, not observed in standard CPU-
based Gibbs sampling (FIG. 3).

Ring Oscillator Generation: A ROSC clock consists of an
odd number of looped NOT gates. In our FPGA (Xilinx,
VCUL118), we attach controllable delays to our inverters to
make logical delays comparable to wire delays (FIG. 1b).
We designed the delay unit as a flip flop with a very fast
master clock (300 MHz) compared to the ROSC frequencies
that essentially acts as a combinational delay unit. In this
way, we were able to obtain highly regular ROSC clocks as
a function of ring sizes whose frequencies were measured by
specially designed counters (FIG. 1c). In our experiments, we
used 10 ROSCs to drive 512 p-bits in a Chimera lattice. Each
p-bit has a pseudorandom number generator, which is a 32-bit
Linear Feedback Shift Register (LFSR). The ROSCs activate
the LFSRs of the p-bits randomly based on the frequencies.
In this work, we have distributed the clocks among the p-
bits uniformly between 5 and 17 MHz. However, different
distributions for the clocks, e.g., Gaussian, could be used.
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FIG. 2. Planted Ising problems. (a) Chimera lattice with different sizes, depending on number of tiles. Different tiles were chosen in the same hardware
to change problem sizes, similar to Ref. [17] but all problems used a fixed 512-spin Chimera in our hardware. (b) Loop/close generation process shown
for ¢; = [6,8]. (c) Example graph with three loops (the colored hatchings) and a planted solution (the colors of the nodes). For each loop, the weights of
the couplings between neighbors are assigned to be either ferromagnetic (FM) interactions or antiferromagnetic (AFM), based on the plant. One randomly

selected coupling in each loop is flipped (spark symbol).

Since the Chimera graph is bi-partite, we did not assign the
same clock to two p-bits that are on the same partition to avoid
systematic parallel updates between connected p-bits. Future
work will consider dynamic clocking schemes where each p-
bit can have a different “retention time” much like MTJ-based
p-bits.

III. PLANTED ISING MODEL

An important class of hard optimization problems are those
with “planted” ground states that allow effective evaluation
of performance. We construct frustrated spin glasses with
planted solutions, following [17], on a 512-spin Chimera graph
where we used different number of tiles for different problem
sizes (FIG. 2a). A Hamiltonian generated by this process
is the sum of several local frustrated Hamiltonians which
we will call “clauses”. A planted solution will be used to
define these clauses so that it will be the ground energy of
the final Hamiltonian. Every instance is characterized by two
parameters: the clause density «, defined as n./n,, where n.
is the number of clauses and n,, is the number of nodes of the
graph, and the length of possible loops that form the clauses,
1 = [lmins lmaz > Where L, /mqs is the min/max loop length,
respectively. In this work, we chose & = 0.4 and ¢; = [4, §]
for all our instances used in this paper, that run on the same
512-spin Chimera lattice in our hardware.

Clause generation: A total of n. = an,, clauses is generated.
Each clause is an ordered sequence of nodes that creates a loop
of acceptable length in the graph. To obtain one, following
Ref. [17], we pick a random node and start a non-backtracking
random walk of at most [,,, steps. If the walker lands on an
already visited node, it means that a loop was formed and
the node can be considered its initial point. If the length of
the loop is > l,,,;, the clause is accepted, if it is not or if the
maximum number of steps is reached without closing the loop,
the process is repeated. FIG. 2b shows a few examples of this
process. A planted solution s is generated by creating a random

array of —1s and +1s of length n,,. A clause can be defined
as ¢y = {n1,M2y .oy Ny N1} With & € [Linin, lmaz), Where
ng4+1 = ni, representing the closing of the loop. Now, Vi €
[1,k] : i # j we increase Jy, n,,, by Sisi+1, while for j €
[1, k], picked at random, we increase Jy; n,,, by —s;5;41.
This last step serves to create a frustrated loop. Once this is
done for all clauses, the final J is calculated by summing J

and JT and by normalizing so that all J lie between [—1, +1].
IV. PERFORMANCE COMPARISON

We follow the time-to-solution formulation [17], [18] to
measure performance of the physics-inspired asynchronous
architecture.

TTS(Tv pR) = TNT(Tva) )

where N, is the expected number of repetitions we need to
perform an annealing schedule of time 7 to the energy ground
state at least once with probability pr. N, is defined as:

In (1 —pr)

Ne(7.PR) = T o) 3)
where pg is the probability of success in finding the ground
state in one annealing process of length 7.

To evaluate the performance of our asynchronous architec-
ture, we compared it to serialized Gibbs sampling on CPU
(2.6 GHz) and to synchronous colored Gibbs sampling on
FPGA. We investigated the scaling difficulty of planted Ising
instances with fixed ¢; and « across several Chimera graphs
increasing in size by changing the number of tiles used in a
Chimera, as illustrated in FIG. 2. For each set of tiles, we
generated 25 planted Ising instances, performing 50 simulated
annealing trials to estimate the success probability, pg(7), for
each instance (FIG. 3). Then an average success probability
ps(7) over all instances for a given tile was obtained. The
reference probability pr was set to 99%.

Given our limited number of trials and for simplicity, we
discarded the pg points when they were exactly zero, since



T T T T T T ]
3
10 F - —; 25 instances/point 7
) /_IL/_'_ 50 trials/instance
10F 'E/E Annealing to B=7
101 | —/—" Standard Gibbs (CPU) —
m [ ] Asynchronous Gibbs (FPGA) —
~ 9 l Synchronous Gibbs (FPGA) —¢— |
n 10°F 4
e L]
107k T/_?_’:
R e £
- N—— o ¢ -
R
A 3
,’\/I -+ ]
-3
10 _JI_ L Il Il Il Il L _g
32 72 128 200 288 392 512

number of p-bits

FIG. 3. Performance comparison of synchronous (graph colored-tuned),
asynchronous (physics-inspired, not colored, not tuned) and standard Gibbs
(CPU) samplers on the planted Ising problem.

these lead to an infinite TTS. For easier instances when
averaged ps = 1, we set TT'S = 7 since a single trial reaches
the ground state within 7 seconds.

We present the T'TS for solving 25 instances of the planted
Ising problems of 7 different sizes in FIG. 3. The standard
Gibbs (CPU) was implemented in Python using optimized
libraries for matrix calculations. The final two points were
not computed because of time limitations. We solved the
exact same instances on the FPGA programmed with the
asynchronous ROSC activated 512 p-bits with a fixed point
representation using 10-bits. As a reference, we also solved the
same instances using synchronous chromatic Gibbs sampling
on the same FPGA where careful phase shifting ensures no
simultaneous or incorrect updates (where I; calculation is not
complete) occur between neighboring p-bits (as in Ref. [6]).
On the other hand, the asynchronous solver is expected to take
samples with both of those errors when p-bit clocks are closely
separated. Our experiment investigates the usefulness of such
samples.

We solved each instance using a simple simulated annealing
schedule performing 50 trials per instance. We defined a linear
annealing schedule from 5 = 0.5 to 7 with a fixed annealing
time, 7 = 0.0014 s for each trial. The asynchronous architec-
ture received 10 clocks ranging from 5 to 17 MHz uniformly
distributed among the p-bits, the synchronous architecture was
set up with two stable and oppositely phase shifted clocks,
having approximately the average frequency (9.375 MHz)
of the 10 ROSC clocks. We believe this arrangement made
two designs equivalent beyond the asynchronous and inexact
dynamics of the ROSC since both designs approximately take
the same amount of samples within the fixed annealing time
7. The key result we obtained is shown in FIG. 3. We observe
a clear scaling difference between the CPU implementation of
standard serialized Gibbs sampling and the massively parallel
FPGA implementations which gain a scaling factor of ~ N
in their flips/second due to their massively parallel architec-
ture. Both solvers provide a roughly 5-orders of magnitude
prefactor improvement over the CPU. Intriguingly, the scaling
of the synchronous and asynchronous FPGA remain very

similar, despite the possibility of many collisions (parallel or
incorrect updates) in the asynchronous design. Indeed, the
carefully tuned synchronous design performs strictly better
than the asynchronous one in all instances. Nevertheless,
it is encouraging to observe that the asynchronous design
without any carefully engineered clocks or tuning performs
nearly as well, leading to the promising possibility of truly
asynchronous, million bit p-computers with stochastic MTJs
or other nanodevices.
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