Nano-Structures & Nano-Objects 35 (2023) 100990

journal homepage: www.elsevier.com/locate/nanoso

Contents lists available at ScienceDirect

Nano-Structures & Nano-Objects

Nano Structures
&Nano Objects

Recent advances of triboelectric, piezoelectric and pyroelectric N

nanogenerators

Check for
updates

Xiaoxiao Dong*?, Zhen Yang”, Jiayi Li ¢, Wenquan Jiang ¢, Jianmin Ren ?, Yanting Xu ¢,

Travis Shihao Hu ¢, Ming Li ¢*

2 College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China

b School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, Liaoning, China

¢ School of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
4 Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA

€ Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK

ARTICLE INFO ABSTRACT

Article history:

Received 26 February 2023

Received in revised form 28 April 2023
Accepted 31 May 2023

Nanogenerators are widely used in harvesting and converting mechanical or thermal energy into
electric energy. It is a promising way to capture energy from the surrounding environment as portable
power supplies and self-powered systems, offering great versatility and feasibility. Current studies
focus on designing nanogenerator structures and materials with high power outputs, multifunctionality
and low-cost characteristics. In this review, we will introduce the technological advances of three
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PENG fundamental components, including the working mechanism, structure design, materials selection
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perspectives are highlighted with a focus on offering new insights into developing the next generation
nanogenerators that are highly integrated, multifunctional and of upgraded performance.
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1. Introduction

Climate change and energy depletion are both significant in-
ternational crises facing the world today, so the rational use
and distribution of energy is of paramount importance. Reducing
existing energy consumption, finding new energy sources and
collecting different types of energy in our daily life for energy
conversion are effective solutions. Of these, finding new energy
source and methods of energy harvesting is more practical in the
long run [1-3]. Capturing as much energy as possible from the
surrounding environment is one of the prevalent research topics
today. Among the various energy harvesting systems, the nano-
generator (NG) is widely acknowledged by scientists because of
its astonishing working mechanism and high energy conversion
efficiency with a minimal amount of waste [4-7].

Unlike the ordinary generators, which need a certain speed to
generate voltage, NGs can generate electricity by collecting the
small scale of mechanical or thermal energy in the ambient envi-
ronment to change the micro physical structure of nanomaterials,
which generates static electricity and the flow of electrons be-
tween two materials [8-10]. Common NGs can be roughly divided
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into three types according to the different generation mecha-
nisms, namely, triboelectric nanogenerators (TENG), piezoelectric
nanogenerators (PENG) and pyroelectric nanogenerators (PyNG).
Among them, TENG and PENG convert external mechanical en-
ergy into electrical energy, while PyNGs convert heat energy into
electrical energy through temperature changes over time [11].
There are some reviews on nanogenerators which are based on
their different materials. The materials include various types,
such as aerogel [12], BaTiOs [13], cellulose [14], carbon [15],
lateral nanowire or nanobelt [16], etc. These reviews help readers
to understand the nanogenerators from material aspects, and we
will not explain thiS ASPECT in this review any further.

Besides advancement/improving energy generation technolo-
gies, NGs are gaining popularity and developing rapidly due to
their many advantages, such as being self-powered, sustainably
harvesting energy from the environment, together with their light
weight, low cost and environmental friendliness. This kind of
self-powered system has broad application prospects (intelligent
humanoid robot, motion tracking, human-interactive interfaces,
physiological signal monitoring etc.). For example, NGs could be
used to monitor things like pulse signals in the medical field,
and in the textile field, garments prepared by the combination of
fibers and nanogenerators can realize signals to sense for energy
harvesting or signal monitoring [ 17-21]. However, the NG system
has a limited electrical power output, multifunctional capability,
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stability and service life [22-26]. On the basis of understanding
the working mechanism of different kinds of NGs, the core of im-
proving the performance of NGs is through ingenious structural
design and material selection [27,28]. Although developments
and advances are becoming available, there remains a large gap
between the best performing NGs and real-world applications.
Designing rational structures and materials for NGs are urgent is-
sues, which need addressing for the process of commercialization
and industrialization in the future.

In this review, we provide a comprehensive overview of three
standard NGs, namely TENG, PENG and PyNG, including the work-
ing mechanism of three common nanogenerators (Section 2),
compositional structures (Section 3), materials (Section 4) and
the emerging applications (i.e., sensors, wearable electronics and
artificial intelligence) (Section 5). The challenges and perspectives
of NGs are also discussed at the end of the review. Although this
article describes the basic situation of three common nanogener-
ators, some details can be further expanded. We hope that this
paper can provide a comprehensive framework for readers who
want to understand the field of nanogenerators.

2. Nanogenerators working mechanism

Understanding the working mechanism of various NGs helps
to design structures and select material, to achieve the desired
performance by optimizing the relevant parameters. This chap-
ter systematically introduced the working mechanism of three
common NGs, TENG, PENG and PyNG, and briefly discussed the
advantages and disadvantages of these kinds of NGs.

2.1. Triboelectric nanogenerator (TENG)

Triboelectric nanogenerators (TENGs) generate static electric-
ity by contact electrification, which is where two materials come
in contact, electricity charges swap between them which leads to
one material being positively charged while the other one is neg-
atively charged [29-31]. The electric cloud-potential well mode
explains the foundation mechanism of a TENG. The combination
of the electrification effect and electrostatic induction converted
various kinds of random and low-frequency mechanical energy
existing in the environment into electric energy. When exposed
to external stimuli, the displacement between the layers of the
TENG changes, causing a change in the number of positive and
negative charges on dielectric fabric and conductive fabric. The
accumulated potential difference between the two layers of the
TENG promotes the flow of electrons to generate a current (Fig. 1
(a)) [32-35]. Relevant studies also show that temperature and
curvature play an essential role in charge transfer during tribo-
logical generation. The hotter sides are prone to be positively
charged, while the cooler sides are inclined to be negatively
charged. Due to the thermionic emission effect, electrons are
transferred from a hotter part to a cooler one. Besides that,
irregular surfaces also affect the electric charges. Convex sides
tend to be negatively charged, while concave sides prefer to
be positively charged. These basic theoretical studies provide
essential guidance and reference for the design and preparation
of TENGs.

The mode of TENGs can be classified into four types: contact-
separation (CS) mode, lateral sliding (LS) mode, single-electrode
(SE) mode and freestanding (FS) mode. In the next chapter, the
four modes are discussed in detail. Overall, TENGs offer low costs,
high output performance, stability, short response time and high
sensitivity. The future development trend of TENGs is closer to
integration and miniaturization [36].
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2.2. Piezoelectric nanogenerator (PENG)

PENGs generate electric power through external mechani-
cal stress and material deformation, known as the piezoelec-
tric effect [37,39,40]. The piezoelectric effect is introduced when
a piezoelectric material is subjected to an external force, the
electrical charges are exchanged between the materials and the
accumulation of charges at both ends of the material forms an
electric dipole. The electric dipole moment is generated by the
deformation of the orientated non-centrosymmetric crystal struc-
ture or by the presence of a porous electret with a persistent
charge in the pore (Fig. 1(b)) [41-43]. In general, the main rea-
son for the formation of piezoelectric potential is due to the
relative displacement between the cations with respect to the
anions. Precisely, due to the charges of the cations and anions
coinciding with one another, the piezoelectric materials do not
have polarization inside at the beginning. When the material
is subjected to external pressure, it deforms and generates the
negative strain and the volume decreases. The charging center
separates to form an electric dipole, and the electric dipole dis-
tance also changes, thus generating a voltage potential. This is
the conversion process from mechanical energy to electricity [44-
47]. Due to the two conducting electrodes being in full contact,
the maximized pressed state is achieved with the highest polar-
ization density. When the external force is released, the electron
reflux rebalances the charge caused by the strain release under
the short circuit condition. When the measuring system is con-
nected in reverse, the signal of output voltage and current will be
reversed. The piezoelectric coefficient of piezoelectric materials
measures the conversion efficiency from mechanical stress to
electric energy, the higher the piezoelectric coefficient, the higher
the piezoelectric material’s energy conversion efficiency [48-51].

On the whole, PENGs have high sensitivity, fast response, low
energy consumption and can be effectively used for the detection
of dynamic pressure signals, however, due to the working mech-
anism, PENGs cannot detect static pressure, so the application
scope of PENGs has limitations [52,53].

2.3. Pyroelectric nanogenerator (PyNG)

PyNGs convert free heat in the environment into electrical
energy based on the Seebeck and pyroelectric effects [54-58]. The
pyroelectric effect depicts temporary voltage generation by the
thermoelectric materials under transient conditions [59]. Studies
show that the higher the temperature, the more kinetic energy
the charge carrier has, and the kinetic energy of a hot charge
carrier is higher than that of a cold one, which makes the hot
carrier move to the cold side. Therefore, the open circuit volt-
age obtained between the two ends of a material is subject to
a temperature gradient. When the charge carrier concentration
reaches equilibrium, an electromotive force will be generated at
both ends of the conductor and signal sensing will be realized
according to the Seebeck effect of the material (Fig. 1(c)) [38,60-
62]. To ensure efficient generation of thermoelectric power, since
the Seebeck effect greatly dependent on the temperature gradient
and the electricity flow, the thermoelectric materials are typically
semiconductors or semi-metals with a combination of reasonable
electrical conductivity and Seebeck coefficient.

PyNGs do not have to undergo mechanical deformation like
TENGs and PENGs, which make PyNGs have great potential for a
powering wearable electronic system. For example, in cold condi-
tions outside the winter, to make full use of the temperature fluc-
tuations between the environment and the human body, through
the polarization changes between the electrodes to convert heat
energy into electricity [63].
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Fig. 1. The working mechanism of different NGs, (a) TENG. (b) PENG [37]. Copyright 2019, Wiley-VCH. (c) PyNG [38]. Copyright 2012, Elsevier B.V.

3. Compositional structures

The structure has a critical effect on the performance output
of nanogenerators. Among various usage scenarios and functional
characteristics, the structure of TENGs and PENG can be classified
as a single structure, forming structure and multilayer stacking
structure. In addition to that, the forming structure can be further
categorized into 2D and 3D. Specifically, PyNGs have combined
other structural NGs together to reach a high energy conversion
efficiency in recent years.

3.1. Triboelectric nanogenerator (TENG)

As mentioned in chapter 2, TENGs have four modes. Although
the four TENG types have similar working mechanisms, their
structures are quite different [36]. The contact-separation (CS)
mode of a TENG is composed of two different triboelectric po-
larity materials and electrodes, which requires a large gap. Under
the action of an external force, the two materials produce vertical
movement and generate charge on the surface of the contact
(Fig. 2a (i)) [64-66]. The CS is more convenient for sensing pres-
sure changes and producing high output voltage, however, the
downside is the pulse output [67,68].

The lateral sliding (LS) mode uses two materials to form tri-
boelectric through external forces in the horizontal/ rotational
direction, and this mode almost does not require a gap (Fig. 2a
(ii)) [69]. The advantages of the LS mode are high frequency,
continuous and high electricity output. However, this mode is
prone to damage the material surface and has poor long-term
stability [70].

Unlike the CS and LS structures, the single-electrode (SE) mode
has only one electrode and one friction layer (Fig. 2a (iii)). The
TENG in this mode uses the external object as another layer of
friction material and triboelectrification through the interaction
of the external environment with itself makes it easy to integrate
with other components/devices or to carry along. It is also ben-
eficial for harvesting energy, while the structure of this mode is
relatively simple. However, the disadvantages of this mode are
low output and signal instability [71].

The structure of the freestanding (FS) mode consists of two
fixed symmetric electrodes and external objects move freely be-
tween the two electrodes. This type of TENG is suitable for detect-
ing multiple forms of the moving objects to get a signal for change
(Fig. 2a (iv)). The drawback is that this mode is inconvenient to
move due to fixed electrodes and complex integration [72]. In
addition to the four basic modes of TENGs, the specific structural
design of a TENG can be divided into a single structure, forming
structure and multilayer stacking structure.

The single structure is made by attaching a dielectric polymer
to the electrode material by winding and wrapping, having a
similar structure to a spinning thread. The advantages of this
structure are simple, low cost, good performance and suitable for
large-scale preparation [73-75]. However, due to the limitation
of the electrode material’s properties, its overall scalability needs
to be improved. To solve this problem, the electrode material
can be wound on a stretchable fiber surface, or a conductive
material can be prepared into a helical structure which is built
into the dielectric polymer [76-80]. Usually, this single structure
is suitable for the CS and SE modes, where the CS mode has higher
electrical output and better stretchability than the SE mode. In
most cases, the CS mode of this structure is designed with a core-
shell structure to avoid abrasion, in which a gap exists between
the inner core column and the outer shell tube. In this situation,
the structure of the CS mode can be classified into four types:
the dielectric layer wrapped around an inner electrode as the
core with the outer electrode as the shell is type I [81-84], the
outer electrode with the same configuration as the core is type
Il [85,86], the inner electrode wound on a dielectric fiber as the
core with the same configuration as the shell is type III [87-89],
while the outer surface of type III further covered by a dielectric
or encapsulation layer is type IV [90,91]. Type I is the simplest
structure. Types Il and III have gradually evolved to prevent
charge leakage and to expand the application scenarios. Finally,
type IV was developed to improve stretchability. One of the
most important design principles is that materials with different
triboelectric polarities are chosen for the outer side of the inner
core column and the inner side of the outer shell tube [92].
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Fig. 2. (a) CS, LS, FS and SE four basic modes of TENGs [36]. Copyright 2019, Elsevier Ltd. (b) The single structure of a PENG [97], Copyright 2011, Wiley-VCH. (c) The
forming structure of a PENG [98], Copyright 2018, The Authors, Published by MDPI. (d) The stacking structure of a PENG [99], Copyright 2015, American Chemical
Society. (e) The structure of a PyNG [100]. Copyright 2012, the Royal Society of Chemistry.

To improve the electrical output and expand the width of
applications, the fibers or straps can be woven in 2D/ 3D forming
structures. The cooperation of various materials and weaving
methods can improve the electrical output performance of TENGs
more efficiently [93]. In addition, to facilitate the preparation of
a high-performance TENG, for example by protecting electrodes
and preventing charge leakage, the TENG can be designed and
prepared with a multilayer stacking structure [94,95]. For exam-
ple, Seung et al. grew ZnO nanorods on an Ag-coated common
fabric, coated them with a layer of polydimethylsiloxane (PDMS),
then coated the top side with a layer of silver-coated fabric. This
multilayer stacking structure can efficiently improve the overall
TENG power output performance and mechanical robustness [96].

3.2. Piezoelectric nanogenerator (PENG)

The PENG structure is divided into three parts consisting of
a metal-insulator-metal sandwiched structure, which has two
metal electrodes with an insulating piezoelectric layer between
them [101].

Preparing a PENG with working stability, mechanical endura-
nce, piezoelectric output performance and other characteristics
is the direction that researchers have been working hard on. To
refine and enrich the functional features, the structures of PENGs
are continuously improving. In the beginning, a simple single
structure appeared, wrapping flexible piezoelectric materials on
high strength and high modulus fibers. This method relies on the
relative motion of fibers to generate power, so it is difficult to be
applied in daily wearable usage (Fig. 2b) [97,102]. Subsequently,
by spirally winding fiber electrodes on the outer layer of the
selected piezoelectric fiber, a PENG prepared in this way can
effectively collect human motion energies. The outer electrode
can be directly deposited on the surface of a piezoelectric fiber by
the vacuum deposition method, which makes it have great appli-
cation prospects in human body wearing [103,104]. The studies
show that the hybrid PENG structure composed of a piezoelectric
polymer coated on the surface of nano-structured piezoelectric
materials can improve the mechanical properties and polarization
output characteristics [105-107]. Moreover, preparing a PENG
with a core-shell nanostructure can provide higher polarization
possibility between the inner and outer electrodes [108]. In

addition, the PENG can be designed with a spiral multilayer
cladding structure, which helps increase the piezoelectric com-
posite’s active area, thus improving the power generation effi-
ciency

[109-111].

To further improve the piezoelectric outputs of PENGs, similar
to the structure of TENGs, one strategy is to combine multiple
piezoelectric fibers into fabrics by using textile forming tech-
niques, such as woven, double-arc shaped, knitted, microporous
and looping structures (Fig. 2¢) [98]. Zhou et al. used poly(3,4-
ethylenedioxythiphene) (PEDOT)-coated poly (vinylidene fluo-
ride) (PVDF) electrospun yarns to weave high pressure-sensitive
2D fabric-based PENGs [112]. The single fiber or strap weave
sometimes results in lower power outputs. To solve this problem,
various fibers or straps can be used for 2D fabrics and the short
circuit phenomenon can be well avoided by changing the material
of the fibers or straps used [113-116]. To integrate more piezo-
electric components into PENGs to enhance the energy harvesting
capability of the PENGs, researchers have woven fibers or straps
into 3D structures [117,118], and have even used multilayer
stacking structures of multiple materials. Choosing functional ma-
terials for the integrated design of a multilayer network structure
can give the prepared multilayer stacked structure better piezo-
electric outputs (Fig. 2d) [99,119-123]. For example, Maity et al.
designed an all-organic PENG based on multilayer assembled
electrospun PVDF nanofiber mats. They used PVDF NFs as the
active piezoelectric component and placed PEDTO-coated PVDF
NFs as the electrodes through the vapor phase. This multilayer
network structure integrated with compatible electrode enhances
the output voltage and current (Voc ~ 48 V, Isc ~ 6 nA) and
shows ultra-sensitivity towards human movements [124].

3.3. Pyroelectric nanogenerator (PyNG)

PyNGs are composed of many thermocouples connected elec-
trically in series and thermally in parallel in order to achieve a
thermo-induced potential of a few volts to power small electronic
devices, motors or to charge a battery. PyNGs usually consist of
three parts, which are an upper metal layer, a middle-polarized
layer and a lower metal layer. The upper metal layer is designed
for the sufficient collection of heat, the middle layer converts



X. Dong, Z. Yang, J. Li et al.

thermal energy into electricity through internal polarization and
the lower metal layer acts as the lower electrode [125]. The
device is sandwiched between ceramic layers to avoid short-
circuiting between the metal interconnects and to ensure an
excellent thermal exchange with the surroundings. The additive
effect of the thermo-voltage created by each thermocouple is only
possible if their legs are connected. The n-type leg has a negative
Seebeck coefficient, i.e. the electrons thermally diffuse to the cold
side, while in the p-type leg a temperature gradient causes the
propagation of holes towards the lower energy region. An elec-
tromotive force is induced in the circuit as a force acting against
further charge carrier migration (Fig. 2e) [100]. In addition, on re-
searching for pyroelectric energy conversion, the Olsen cycle (also
called Ericsson cycle) can also be adopted, where a pyroelectric
material is sandwiched between two electrodes in contact with
a cold (T¢) and a hot source (Ty), while applying low (E.) or high
electric fields (Ey) to perform the Olsen cycle [126-131].

PyNGs are often combined with other kinds of nanogenerator
to design and produce multifunctional nanogenerators. Wang
et al. prepared a coupling nanogenerator based on a single struc-
ture and realized the coupling effect of friction-piezoelectric-
thermal by selecting and modifying the materials. Since a single
friction-piezoelectric unit has the defect of a low voltage and a
single pyroelectric unit has the problem of a low current, neither
of them alone can provide power for two in-series light bulbs.
However, the synergies between the two units, which gets the
most energy from the surroundings, combine the nanogenerators
to light the series bulbs [132]. Zi et al. also reported a friction-
piezoelectric-thermal hybrid NG, where mechanical energy is
collected by a sliding TENG and a pressing PENG. The sliding
motion causes a change in the surface charge and the pressure
causes a change in the internal polarization of the material,
creating an electric current that flows through the external cir-
cuit. In addition, heat generated by the friction of the selected
material causes a change in polarization within the device to form
an electric current. This coupled configuration of the structured
device successfully realized the temperature and normal force of
the self-power supply [133].

4. Materials of nanogenerators

The materials of a nanogenerator directly affect the perfor-
mance and efficiency of the nanogenerator. Materials are un-
doubtedly one of the most important elements in the preparation
of NGs. In this chapter, we mainly introduce various NG (TENG,
PENG and PyNG) materials, including the electric materials and
electrode materials.

4.1. Electric materials

Electric materials are mainly used to convert external energy
into electricity, which is the most important part of the NGs’
materials. The design of such materials is key to improving the
performance of NGs. Due to the different working mechanisms of
TENGs, PENGs and PyNGs, there are also great differences in the
selection of their electric materials (Fig. 3). This section will give
a specific introduction into the electric materials of different NGs.

4.1.1. Triboelectric materials

The fact that a material becomes charged after frictional con-
tact with another material is a triboelectric effect induced by
contact [134-137]. Physical contact between materials usually
produces opposite charges and the strength of the charges varies
from material to material. The triboelectric series is a tool used to
describe triboelectricity, which ranks different materials accord-
ing to their tendency to gain or lose electrons, depending on the
material’s physical properties [138,139].
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Based on the working mechanism and structure, the selection
of triboelectric materials for TENGs considers the ability to gain
and lose electrons; the larger the electron affinity gap between
the friction layer materials, the higher the charge transfer effi-
ciency and the higher the electric energy generated through the
triboelectric effect [ 140-142]. The electrical output properties of
TENGs depend on the induced potential difference between the
two paired tribomaterials. To get a larger contact surface area,
the surface of the friction layer material is usually roughened
so that more charge transfer can be accepted to improve the
TENG’s sensitivity and electrical output performance [143,144].
The triboelectric series helps select which materials can generate
the most static electricity through friction for the preparation
of high-performance TENGs. In the earliest period, Wilcke et al.
established the first triboelectric series by listing around ten
common materials in order of polarity [145]. Shaw and Hen-
niker extended the triboelectric series by adding natural and
synthetic polymers to the sequence [146,147]. Recently, Zou et al.
updated the triboelectric series by normalizing the triboelectric
charge density (TECD) of a wide range of polymers, regarding
their triboelectric polarization in a well-controlled environment
to show the intrinsic physical properties of the materials [148].
In addition, the reports of an expanded series of textile-related
triboelectric materials, including 21 commercial and new fibers,
have significant application potential in TENGs [149,150].

In general, common friction layer materials in TENGs mainly
include polymers, metals, fibers etc [151]. Zhang et al. sum-
marized 100 articles about TENGs, among which 14 commonly
used electron acceptor materials and 20 electron donor materials
were detailed [152]. In addition to these traditional materials,
Hajra et al. combined non-toxic, biocompatible and edible organic
cyclodextrin in their selection for a TENG. They used a cost-
effective ultrasonic synthesis to fabricate alpha, beta and gamma
cyclodextrin metal-organic frameworks (CD-MOFs) at tempera-
ture. The highly crystalline CD-MOFs were pressed uniformly on
a copper substrate as the triboelectric layer of the TENG, which
showed great potential application value. This work effectively
expands the application of MOF materials in TENGs [153]. Due to
the lack of a multifunctional material in the triboelectric series,
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combining feasible new materials is one of the effective methods
to improve the performance of TENGs. Therefore, researchers can
try the feasibility of applying new materials in the field of TENGs.

4.1.2. Piezoelectric materials

Piezoelectric materials generate voltage/current by sensing
external pressure. Electrical output properties of PENGs mainly
depend on the polarization charge of the piezoelectric materials.
Generally, piezoelectric materials can be divided into piezoceram-
ics and piezopolymers. Piezoceramics have a high piezoelectric
coefficient, rigidity and brittleness, which limit their application
in some flexible devices. The piezoelectric effect is associated
with noncentrosymmetric crystals. Natural materials like quartz
and berlinite have the piezoelectric effect. In engineering ma-
terials, zirconium titanate (PZT), zinc oxide (ZnO) and barium
titanate (BaTiO3) will be endowed with piezoelectricity after the
process of polarization. In addition, the most studied systems are
perovskite, ilmenite, bismuth-layer and tungsten bronze struc-
ture ferroelectrics. Among many similar materials, piezoelectric
materials with a perovskite structure usually exhibit a more
obvious piezoelectric effect [154,155]. Hao et al. reviewed per-
ovskite type piezoelectric ceramics. It is pointed out that compo-
sitional engineering and microstructural engineering approaches
can enhance the strain and stability properties of perovskite
piezoelectric ceramics [156].

Concerning piezopolymers, polyvinylidene fluoride (PVDF) and
its copolymer polyvinylidene fluoride-trifluoride (PVDF-TrFE) are
common materials. This kind of material has a good compre-
hensive performance, such as high sensitivity, high chemical
resistances and high resistance to mechanical damage [157-159].
This type of piezoelectric polymer is flexible, but its piezoelectric
coefficient is low. To further improve the mechanical endurance,
piezoelectric output performance and match to ambient vibra-
tions, piezoceramics can be incorporated into the piezoelectric
polymer, by adjusting the composition and the proportion of
the two, to get the ideal performance for a PENG, such as PZT,
BT, ZnO, KNN-based PVDF [160-162]. For example, Tian et al.
design a self-powered rich lamellar crystal baklava-structured
PZT/PVDF piezoelectric sensor for real-time monitoring of table
tennis training and scalable sports. This composite developed
sensor has an excellent sensitivity of 6.38 mV/ N and an ultra-fast
response time of 21 ms [22].

4.1.3. Thermoelectric materials

Thermoelectric materials can be divided into inorganic, or-
ganic and inorganic-organic composite thermoelectric materials,
at present. Like piezoelectric materials, inorganic thermoelectric
materials usually have a high thermoelectric conversion effi-
ciency, however, their poor flexibility limits their application in
flexible devices. Organic thermoelectric materials usually have
good flexibility, but a low conversion efficiency [163,164]. Com-
mon inorganic thermoelectric materials are mainly metal com-
pounds, such as bismuth telluride (Bi;Te3), tin selenide (SnSe;),
silicon germanium alloy etc [165,166]. Organic thermoelectric
materials include graphene, carbon nanotubes (CNT) and poly
(3, 4-vinyl dioxy thiophene):poly (styrene sulfonic acid) (PEDOT:
PSS) etc [167-169]. To account for the conductivity, conversion
efficiency and flexibility, some studies have combined organic
and inorganic thermoelectric materials, which is currently the
most common material usage of PyNGs [170-173].

In addition, the pyroelectric coefficient is a property of the
material itself, which is related to the output performance of
the PyNG, and the pyroelectric coefficient can be changed by
controlling the crystallinity, strain coupling effect and polymer
modification. For example, the pyroelectric properties of a PyNG
can be enhanced by ion modification, forming a self-polarized fer-
roelectric 8 phase and a porous structure [174-177]. Therefore, in
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order to increase the performance of PyNGs, researchers consider
on how to select and improve materials, enhancing the pyroelec-
tric coefficient [178,179]. For example, Kim et al. controlled the
crystallinity of P(VDF-TrFE) with a high dipole moment solvent to
enhance the pyroelectric coefficient [180]. Lee et al. introduced
stretchable PyNGs with a thermally induced stain coupling effect
in order to enhance the output performance of the PyNG using
P(VDF-TrFE) and PDMS [181].

4.2. Electrode materials

The electrode materials play the role of induced charge, and
they has no major influence on the performance of NGs. Accord-
ing to the requirements of the application field, the selection
of electrode materials should take into account the conductiv-
ity, flexibility, service life and cost factors. Besides, some nano-
generators also need to consider environmental factors, so the
preparation of nanogenerators should also take into account the
corrosion resistance and wear resistance [182-185]. Nowadays,
the most commonly used electrode materials are metal, carbon-
based materials and conductive polymers [186-188]. Among the
metallic electrode materials, aluminum and copper are popular
because of their high conductivity and low cost. Here, we sum-
marize the electric materials and electrodes of different kinds of
NGs, as shown in Table 1. Some typical examples are listed here
and the application of these NGs is also briefly summarized.

In addition to the above introduction of the basic content,
there are several hybrid types of NGs. Various characteristics of
the materials are core to the preparation of hybrid NGs, such
as the design of the preparation materials, at the same time
as the triboelectric, pyroelectric and piezoelectric properties etc.
At present, many researchers tend to study hybrid NGs, due
to hybrid NGs having the advantages of the different kinds of
NGs at the same time, which can provide important value for
applications in the field of NGs. This kind of hybrid NGs has
a lot of related reviews, so this will not be expanded more
here [189-193].

5. Applications

The applications of NGs are ubiquitous and endless, in this
chapter, we focus on three applications: there are sensors (one of
the first applications to appear), wearable electronics (currently
the most common application) and artificial intelligence (future
application trend).

5.1. Sensors

The application of NGs in sensors has attracted wide attention
due to its obvious effect. NG sensors can be divided into strain
sensing and thermal sensing, according to the way the NGs’
materials respond, and the common one is strain sensing. In
addition, NG sensors can be divided into mechanical motion and
fluid sensors, according to the solid-liquid state of the NG ma-
terial; the mechanical motion sensor has been studied relatively
more [210-213]. NGs sensors have many application scenarios,
such as intelligent sports, health monitoring and security. In this
section, we introduce the NGs used as sensors applications from
above mentioned areas.

When a NG sensor is used in the monitoring of biological
health signals, the sensor collect signals from biological motion
tracking and gesture recognition to reflect the real-time statistics
of biological motion and behaviors. Liu et al. fabricated a self-
powered and miniaturized endocardial pressure sensor (SEPS)
based on TENG. They implanted the SEPS into a pig heart model
and tested its sensitivity to 1.195 mV mm Hg~!. Experiential and
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Table 1
Electric and electrode materials for different kinds of NGs.
Types of NGs Electric Electrode Performance Ref
materials materials
Cu, FEP Copper foil The acceleration of the object can be detected, [194]
the sensitivity is 0.080 V s?/ m
TENGs PDMS Multi-wall Can recognize finger movements, with the [195]
carbon sensitivity of 1.5 kPa~!
nanotubes
FEP, Acrylic ITO Can detect human eye movement and release [196]
acid an electrical signal of 750 mV
PDMS, PMMA PMMA with Self-lighting shoes and self-lighting tiles which [197]
gold films and can be made luminous upon footfall
nanoparticles
PDMS Graphene Detects finger movements by touch with a [198]
minimum pressure of 1.3 kPa
PET, PDMS ITO The voltage and current density can reach 18 [199]
V and 0.13 pA, excellent stability (~100000)
PDMS, Al Al A tremendous current density of 0.10 mA [200]
cm~2 and a voltage output of up to 130 V
could be obtained
PVDF, FET Silver ink The sensor that can be monitored at least 300 [36]
coating Pa
PENGs PVDF PZT The sensitivity and ultra-fast response time of [22]
sensor are 6.38 mV/ N and 21 ms
IDE@PE PZT-GFF Efficient energy harvesting (~60 V, ~500 nA) [201]
and multi-mode (bending and pressing) energy
harvesting ability
BaTiO; Silver flakes Can be stretched to more than 300% strain [202]
nanoparticles,
P(VDF-TIFE)
Nanofiber mat Cu foil Producing an outstanding open-circuit voltage [203]
(~68 V) and short circuit current (~0.1 pA)
with a power density of 53.2 WW/cm?
P(VDE-TrFE), Cu Exhibit an optimized piezoelectric coefficient [204]
CsPbBr; QD (245 pC N 1)
PEDOT: PSS silver Can produce a voltage of 0.52 V and a power [205]
PYNGs of 0.32 pW
PVDF Al Self-powered human respiration and [206]
temperature sensor, producing a 42 V
open-circuit voltage
Graphene Graphene Can detect the strain of objects, and the [207]

response time is less than 0.6 s

P(VDE-TTFE), Ag/Ag NWs, Au Enhance output performance [208]

PDMS

PDMS-CNTs Graphene Realize stretchable hybrid PyNGs for wearable [209]
nanosheet electronic devices

theoretical studies were performed to verify that SEPS has good
mechanical stability and responds well to stress (Fig. 4a) [214].
Yi et al. prepared a highly flexible and self-powered TENG with
a sandwiched structure to achieve biomechanical energy harvest-
ing and real-time biometric authentication. They sewed the TENG
sensor onto socks and used the frequency difference caused by
foot speed to distinguish between walking and running. They also
developed a self-powered wearable keyboard that could be used
to record physiological signals by integrating the large-area TENG
sensor array. The results show that the TENG sensor prepared in
this study can monitor the movement signals of human body very
well (Fig. 4b) [215].

There are many similar works that have been done using
various kinds of materials and these studies will not be covered
in detail here [216-220]. In addition to the common types of
materials described in the previous chapter, there are several
other materials studied. For example, Shuai et al. used hydrogel
to fabricated a TENG sensor to monitor hand gestures [221].
Apart from the monitoring of biologically related vital signals,
another interesting study is the large-scale health monitoring of
structures. Zhang et al. developed a multifunctional composite

rebars with an embedded TENG mechanisms and demonstrated
the feasibility of embedding structural elements to detect damage
patterns in concrete beams at multiple scales, providing a pio-
neering study in the field of architecture [222]. The research on
TENGs as sensors is relatively more abundant, however, research
on PENGs as well the TENG and PENG combination as sensors
has also become popular in recent years. In general, the research
of NGs as sensors has been perfected, but further improvement
is needed in the aspects of sensing accuracy, preparation cost,
time-consuming installation, etc.

5.2. Wearable electronics

Wearable electronics is one of the most important applications
of NGs in recent years. They are often used in medical treatment
and motion detection at present [37,223-225]. Wearable elec-
tronics need to be folded and worn continuously, like clothing,
and can collect and store energy continuously through human ac-
tivities. The energy of the surrounding environment is converted
into electrical signal sensing to provide communication, inter-
action, monitoring, perception and other auxiliary functions for
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Fig. 4. (a) A commercial arterial pressure sensor measuring the electrocardiogram and the SEPS outputs [214]. Copyright 2019, Wiley-VCH. (b) The schematic and
collected data diagram of a prepared TENG sensor used as pedometer and the self-powered keyboard [215]. Copyright 2021, the Spring Nature.

human life. Therefore, nano-generators that can be used as wear-
able electronic products need good energy conversion efficiency
and service life [226-228]. The first structure of a wearable self-
powered system was proposed by Wang’s group. In this work,
they prepared a supercapacitor and wearable TENG combined
power system using fiber optic materials. By testing, its specific
capacitance can reach 83.5 F cm™ and its capacitance can still be
maintained at more than 94% after 5000 cycles. The main material
of the wearable electronics for the TENG is PDMS, which is woven
into a jacket through optical fiber materials. During jogging, the
voltage can be increased to 8 mV within 10 s, realizing the power
supply of wearable electronic devices [229]. Wang's group has
reported a number of research projects in the field of wearable
electronics using NGs and one of the studies was for medical
surveillance. They developed a flexible self-powered sensor based
on a TENG that can reliably measure human pulse and blood
pressure on many parts of the human body (Fig. 5a). PTFE and
PET are used as two friction layers, ITO as the electrode, and
finally PDMS is used for packaging. The schematic diagram of the
signal received from the sensor is shown in Fig. 5b. The sensor
has an ultra-high sensitivity (45.7 mV Pa~!), ultra-fast response
time (less than 5 ms) and no performance degradation was ob-
served for up to 40,000 motion cycles [230]. Their group also
reported a scalable machine-programmed TENG, which was used
to collect energy for human movement, with an output voltage
of 232 V and a power density of 66.13mV/m?. The integration of
a small-size power management module, converting an irregular
alternating current into stable DC output, can be very good in
order to achieve a self-power supply. By testing the stretchability,
washability and air permeability, it has been shown that the
prepared TENG has great application prospects in the field of
self-powered wearable electronics and smart textiles (Fig. 5c and
5d) [231].

There are many other studies like this and in general the
application of nanogenerators in the field of wearable electronics
is relatively perfect at present. It should be noted that the mate-
rials selected for the preparation of the TENG used in wearable

electronics should have an excellent self-power ability, and the
prepared TENG should have good service life, tensile and bending
properties, and have washable resistance.

5.3. Artificial intelligence

Artificial intelligence (Al) is the simulation of the intelligence
process of human beings by robots, which aims to realize an
intelligent working state through technology. Al can usually iden-
tify people based on their unique physiological characteristics,
such as face, voice, smell, fingerprint, heartbeat, etc. In the fu-
ture, NG applications will also be combined with Al, which can
play an important role in medical treatment, communication,
transportation and other fields. In recent years, research on the
combination of NG and Al has become a trend in the field of
NG applications, and some state-of-the-art advances have been
published. In these researches, NGs are mainly prepared into
sensors to collect signals from the human body and then com-
bined with Al for data processing, so as to realize remote control
in a human-machine interactive (HMI) system [22,234,235]. For
example, Yang et al. prepared a PENG device by growing 2D
SnS, through CVD, which generates different voltages (off, I, II,
III) under different bending states of the human index finger,
and the SnS, PENG device can reach an open-circuit voltage
and short-circuit current of 6 mV and 60 pA, respectively. In
addition, the PENG devices can be used as a drive unit of the
synchronous human-robot interface for an advanced smart sign
language system and realizes human-machine synchronous con-
trol (Fig. 6a) [234]. Nanogenerators can also be used as flexible
acoustic sensors for speech recognition and artificial synapses,
which convert the original speech sound into analog electrical
data to further machine learning [236-241]. Liu et al. developed a
distinctive structure for a self-powered synapse transistor (SPST)
to emulate synapse functions. The voltage was provided by a
TENG without using additional voltage to generate a pre-synapse
spike. When two input spikes (—1 V, 30 ms) from TENGs were
both applied on a gate as the pre-synaptic input terminals, along
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Fig. 5. (a) A nanogenerator used to test electrical signals in various parts of the body (fingertip, wrist, ear and ankle). (b) A schematic diagram of the signal management
circuit [232]. Copyright 2018, Wiley-VCH. (c) The structure of the TENG used for wearable electrics. (d) The schematic illustration of various self-powered smart

electronics driven by the TENG [233]. Copyright 2021, Elsevier Ltd.

with any input positive spike (1 V, 30 ms) from Tm, the “AND”
logic function (1 A threshold current) was achieved. The “OR”
logic function can also be realized. The results show that the
SPST can combine signals from multiple inputs and realize logic
functions, which will be of great benefit to future Al (Fig. 6b.).
Furthermore, Pavlov’s dog experiment also proves that SPST can
be applied to touch research experiments and has an important
contribution to neuromorphological engineering (Fig. 6¢) [242].

Recently, there has been related research on the combina-
tion of NGs and Al for network security. Maharjan et al. re-
ported a new self-powered electromagnetic-triboelectric based
hybrid nanogenerator for keystroke dynamics driven biometric
authentication systems integrated with neural network-based Al
(Fig. 6d). They developed a set of customized data acquisition
and a signal processing system by acquiring and processing the
key information. Their ANN-based Al model for user identification
and authentication achieved a high accuracy of 99% in user au-
thentication using hybrid nanogenerators, even under a common
password among multiple users. On the same key dimension, the
hybrid nanogenerators offer high accuracy and double security
compared with individual nanogenerator based authentication
(Fig. 6e). This work combines the nanogenerator as a sensor with
the field of Al, providing a new possibility for a high cybersecurity
layer in the computation world [246]. In general, the applica-
tion of Al with NGs shows great potential for the future, such
as flexible neuromorphic cognitive platforms, human-computer
interaction, face and voice recognition. However, it is still at a
preliminary stage and faces many difficulties (recognition accu-
racy, learning response speed, etc.) to be overcome in future
developments.

6. Conclusion and perspectives

In this work, we have comprehensively reviewed three kinds
of common NGs (triboelectric, piezoelectric and pyroelectric),
specially focusing on the working mechanism, structural design,
materials selection and applications (Table 2.). Moreover, it was
necessary to introduce and discuss the current research status,
future development trends and faced challenges of NGs.

Regarding the structure design, TENGs and PENGs are mainly
developed from a single structure at the beginning and then are
developed into a multilayer stacking structure later on to improve
the output efficiency of the NGs further. PyNGs have similar struc-
ture as the TENGs and PENGs. PyNGs are frequently combined
with other kinds of NG to obtain high performance, multifunc-
tional compound NGs. Regarding the materials, we introduced
electric and electrode materials, which are essential for the NGs’
preparation. The NGs’ electric material plays an important role
to convert external energy into electric energy, which is related
to their performance. The electrode materials just play the role of
induced charge. Finally, the fields of sensors, wearable electronics
and artificial intelligence have been introduced, which may prove
to be possible applications for NGs. The future is likely to see an
increase in the use of artificial intelligence.

The development of NGs is relatively complete in terms of
theoretical research, structural design material selection and ap-
plication, however, there is still a large gap between research
and practical commercial applications. To produce high-output,
multifunctional, low-cost NGs, the future development trend will
be around the structural design and different functional mate-
rials selection. The structure design of NGs needs to be con-
cerned with the use situation, and another trend will be towards
higher performance output and miniaturization. Regarding ma-
terial selection, improving output, promoting multi-functionality
and low cost is the core of all NG development. TENGs can
expand the sequence of friction materials by developing new ma-
terials. PENGs currently have issues with poor reliable stability,
large hysteresis behavior with a strong nonlinearity, which can
be solved by manipulating the grain size and configurations of
domains. To improve the efficiency of PyNGs, substances with
high thermal conductivity can be doped with electrode substrates
on the top and bottom, or by combining with other types of
NGs. At the same time, developing new materials with tribo-
electric/piezoelectric/pyroelectric power generation and hybrid
NGs will help advance the progress in the field of NGs. Re-
garding the applications of NGs, it is necessary to improve the
sensing sensitivity and accuracy in the field of sensors. Stretcha-
bility, flexibility, comfortability, biocompatibility, washability and
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gl;'ll;azrative summary of the compositional structures, materials and applications of various NGs.
Category  Compositional Materials Applications Ref
structures
Single structure Metal, Carbon fiber Wearable electronics [247]
Metal rubber, Stainless-steel fiber — Sensors [248]
TENGs 2D/ 3D forming structure Fiber, Polymer Wearable electronics [249]
Metal, Fabric Wearable keyboards [250]
Multilayer stacking structure Wearable cloth [251]
Metal, Polymer Wearable electronics [252]
Artificial intelligence [253]
Single structure Metal nanosheet Artificial intelligence [254]
PENGs 2D/ 3D forming structure Polymer nanofiber Sensors [255]
Liquid metal Understanding mechanical properties [256]
Fiber Energy harvesting [257]
Multilayer cladding structure Nanowire Wearable Energy-Harvesting [258]
Polymer, Nanofiber Sensors [259]
PyNGs Multifunctional hybrid structure  Polymer nanowire, Nylon electronics [260]
Metal, Polymer film sensors [261]

permeability are important factors to be further considered to
fabricate wearable electrodes. In addition, pairing artificial intel-
ligence with NGs may provide an avenue for further research and
improvements of NGs.

As a whole, the NGs make use of the semiconductor properties
of nanowires and the piezoelectric effect to realize sustainable
and accessible energy generation. NGs have simple and diverse
structures, stable output and high energy conversion efficiencies.
NGs play an important role in the sustainable development of
human beings and the design of NGs provides a new direction for

10

green energy. However, there is still a big gap between the prac-
tical application effect of NGs and the ideal effect at present. NGs
are an emerging research area and there are many challenging
issues to be solved. (1) Developing multiple structural couplings
and miniaturizing the structures of NGs to meet more application
situations. (2) Reasonable design, selection and development of
new NG materials, so that NGs can have increased practical ap-
plication. (3) Improving the output efficiency, stability and service
life of the NGs’ self-powered system to enhance the performance
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of NGs and expand the development process of NGs in the future
(Fig. 7).
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