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Abstract

Buruli ulcer disease is a neglected tropical disease caused by the environmental pathogen
Mycobacterium ulcerans. The M. ulcerans major virulence factor is mycolactone, a lipid
cytotoxic compound whose genes are encoded on plasmid. Although an exact reservoir and
mode(s) of transmission is unknown, data provide evidence of both. First, Buruli ulcer

incidence and M. ulcerans presence have been linked to slow-moving water with low oxygen.
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M. ulcerans has also been suggested to be sensitive to UV due to termination in crt/, encoding
a phytoene dehydrogenase, required for carotenoid production. Further, M. ulcerans has been
shown to cause disease following puncture, but not when introduced to open abrasion sites,
suggesting puncture necessary for transmission and pathology. Despite these findings, the
function and modulation of mycolactone and other genes in response to dynamic abiotic
conditions such as UV, temperature, and oxygen, has not been shown. In this study, we
investigated modulation of mycolactone and other genes on exposure to changing UV and
oxygen microenvironmental conditions. Mycolactone expression was downregulated on
exposure to single stress high temperature and did not change significantly with exposure to
UV, however, was upregulated when exposed to microaerophilic conditions. Mycolactone
expression was downregulated under combined stress of high temperature and low oxygen but
there was upregulation of several stress response genes. Taken together, results suggest that
temperature shapes M. ulcerans metabolic response more so than UV exposure or oxygen
requirements. These data aid to define the environmental niche of M. ulcerans and metabolic

responses during initial human infection.

Importance

Buruli ulcer is a debilitating skin disease caused by the environmental pathogen,
Mycobacterium ulcerans. M. ulcerans produces a toxic compound, mycolactone that leads to
tissue necrosis and ulceration. Barriers to preventing Buruli ulcer include an incomplete
understanding of M. ulcerans reservoirs, how the pathogen is transmitted, and under what
circumstances mycolactone and other M. ulcerans genes are expressed and produced in its
natural environment and in the host. We conducted a study to investigate M. ulcerans gene
expression under several individual or combined abiotic conditions. Our data showed that

mycolactone expression was downregulated under combined stress of high temperature and
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low oxygen but there was upregulation of several stress response genes. These data are among
only a few studies measuring modulation of mycolactone and other M. ulcerans genes that
could be involved in pathogen fitness in its natural environment and virulence while within the

host.

Keywords: Buruli ulcer; Mycobacterium ulcerans; Mycolactone; gene expression

Introduction

Buruli ulcer is a neglected tropical disease caused by an environmental pathogen,
Mycobacterium ulcerans. The disease is characterized by an often painless nodule that can later
develop into an ulcer (1). Buruli ulcer is the third most common mycobacterial infection and
has been reported in over 33 countries worldwide (1). Buruli ulcer is often associated with
functional limitations and limb deformities in cases of deferred treatment, and imposes a
significantly negative medical, psychological and socio-economic impact on affected patients
(2, 3). The major virulence factor of M. ulcerans is mycolactone, a lipid cytotoxic compound
whose genes are encoded on the large plasmid, pMUMO01(4). Mycolactone diffuses through
healthy tissue leading to pathology that impacts a wide variety of cells through modulation of
immune functioning, inhibiting immune regulating proteins, or by causing cytoskeletal

rearrangement, cell cycle arrest, necrosis or apoptosis, depending on cell type (5).

Morbidity has, in part, been exacerbated by the fact that the mode of M. ulcerans transmission
remains unknown; however, multiple mechanisms have been proposed and investigated (6, 7).
Epidemiological evidence links Buruli ulcer incidence to slow moving aquatic habitats (8-10).
This has also been supported by the finding of M. ulcerans DNA in association with aquatic

plant biofilms, water filtrand, soil, and invertebrates (11-15). Slow-moving water with low
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oxygen concentration has also been included as a risk factor (9, 10, 15-17). Laboratory studies
showed M. ulcerans leads to disease pathology following puncture, but not when introduced to
an open abrasion site (18, 19), and mosquitoes and other biting insects have also been

implicated as potential mechanical vectors (7).

As an environmental pathogen, M. ulcerans naturally resides in a complex community of
aquatic life presumably structured by biological interactions and abiotic environmental factors
(6). When reviewing other systems, such as the environmental pathogens Burkholderia
cenocepacia and Vibrio vulnificus, low oxygen concentration and high temperature have been
shown to upregulate virulence factors (20, 21). Additionally, temperature-regulated toxin
production has been observed in pathogenic bacteria such as enterohemorrhagic Escherichia
coli (EHEC), Yersinia enterocolitica and Bacillus anthracis (22). Data from these other
pathogens studies suggest a need to investigate the possible role of higher temperature and
lower oxygen yielding changes in mycolactone production, in establishment of disease and
fitness within its natural environment (19). Understanding modulation of mycolactone and
other gene expression in response to temperature and oxygen gradients will not only aid in
understanding M. ulcerans response to changing abiotic conditions in aquatic environments,
but also in understanding M. ulcerans virulence and pathogenesis leading to disease, depending

upon transmission route.

M. ulcerans is also suggested to be UV sensitive due to termination in crtL, a gene responsible
for carotenoid production (23). As a replicative reservoir of M. ulcerans is unknown within
aquatic habitats, it is not clear whether M. ulcerans replicates in areas that are protected from

UV or has developed machineries to counteract adverse UV effects (6). Thus, investigating
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whether mycolactone influences protection against UV through a pigment mediated or other

mechanism can provide further insight into M. ulcerans reservoirs.

Few studies have been published exploring mycolactone gene expression. One study showed
that transcription of several key mycolactone biosynthetic genes are driven by a SigA-like
promoter (24); however, the study did not determine environmental or growth-phase signals
inducing mycolactone gene expression. An in vitro study showed mycolactone genes
downregulated in response to various sugar sources (25), and other research showed that
nutrient availability (chitin vs. calcium) regulates several metabolic pathways in M. ulcerans;
however, mycolactone toxin was not expressed in these nutrient abundant environments

suggesting that its expression may be regulated mainly during stressful conditions (26).

In this study, we investigated how exposure to single and combined abiotic factors affected M.
ulcerans growth, modulation of mycolactone expression via RT-qPCR, and global gene
expression of a subset of samples via RNASeq. First, we tested the effect of UV exposure on
M. ulcerans growth and mycolactone gene expression, then whether growth and mycolactone
and other M. ulcerans genes were modulated under changing temperature and oxygen, and the
combined interactive effect of the latter two. These data fill gaps in knowledge regarding M.
ulcerans stress response, providing molecular evidence for how fitness may be influenced by

abiotic conditions of aquatic ecosystems and in Buruli ulcer wounds.

Results
Little effect of UV exposure on M. ulcerans growth and ER gene expression
Compared to controls no significant difference in M. ulcerans growth was observed following

exposure to UV for 30 seconds (p=0.18), 2 minutes (p=0.45) or 10 minutes (p=0.10) (Figure
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1A). There was a negligible effect on mycolactone gene expression upon exposure of M.
ulcerans to UV for 30 seconds, whereas there was a slight downregulation with exposure to
UV for 2 minutes; but neither of these effects were statistically significant (Figure 1B).
However, ER gene expression trended toward significant downregulation on exposure to UV

for 10 minutes (p=0.051, Figure 1B).
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Figure 1. Effects of increasing UV exposure on M. ulcerans growth (A) and ER expression (B).

M. ulcerans growth and mycolactone expression when exposed to single and combined
environmental stressors

Across all time points there was no statistical difference in M. ulcerans growth (at 30° C) under
microaerophilic or anaerobic conditions in comparison to aerobic conditions (Figure 2A).
Similarly, there was no significant difference in M. ulcerans growth when subjected to different
temperatures (30°C vs 37°C) for 24 hours (Figure 2B). When cultures were brought back to
30°C, those that had been subjected to 37°C were not significantly different from those

subjected to 30°C based on growth (Figure 2B).



141

142
143

144

145

146

147

148

149

150

151

Effect of oxygen on M. ulcerans growth Effect of temperature on M. ulcerans growth
0.15 0.15
s } S
(=3 (=3
= =
a a
g o g o
= T [ = T ,/—N
Q Q
= l 3 |
= 0.05 \k% = 005
2 S
& S
0 0
T-Ohr T-24hr T-48hr T-Ohr T-24 hr T-48hr
Time Time
—Aerobic Microaerophlic Anaerobic —30 degree 37 degree

Figure 2. Effect of Oxygen (A) or temperature (B) on M. ulcerans growth. (A) Optical density of M. ulcerans when exposed
to aerobic (blue line), microaerophilic (orange) and anaerobic (grey line) conditions at 30°C. Exponential M. ulcerans initially
under aerobic conditions were exposed to their respective oxygen condition for 24 hours and then transferred back to aerobic
conditions for an additional 24 hours (48 hours from initial time point). (B) Optical density of M. ulcerans when exposed to
309C (blue line) and 37°C (orange line). Exponential M. ulcerans initially at 30°C were exposed to their respective temperature
conditions for 24 hours and then exposed back to 30°C for an additional 24 hours (48 hours from initial time point).

Exposure of M. ulcerans to microaerophilic conditions for 24 hours showed significant
upregulation of ER gene expression (p=0.0009). Gene expression was slightly downregulated
when M. ulcerans exposed to microaerophilic conditions at 30° C were transferred back to
aerobic conditions, but the difference was not statistically significant (Figure 3). M. ulcerans
exposed to anaerobic conditions for 24 hours had non-significant upregulation of mycolactone
gene expression. However, upon transferring the anaerobic exposed bacteria back to aerobic
conditions, there was significant (p=0.005) upregulation of mycolactone gene expression

compared to controls grown under aerobic conditions over the 3 day study (Figure 3).




152
153

154

155

156

157

Effect of oxygen on mycolactone gene expression

(o) ]
i B P =019
T P =0.005
| P =027
-
al
-‘(Tj‘
= =R %
3 L
o Mic(24H)  Mic(48H)  Conrol  An(24H)  An(48H)
('}I —

-3

Oxygen concentration

Figure 3. M. ulcerans ER regulation after exposure to microaerophilic or
anaerobic conditions compared to aerobic conditions. Exposure to a
microaerophilic environment for 24 hours caused significant upregulation [Mic
(24H); P=0.0009] of ER expression (yellow bar) and transferring the bacteria
back to aerobic condition led to slight downregulation in ER expression [Mic
(48H), grey bar]. Exposure of M. ulcerans to anaerobic conditions for 24 hours
led to slight ER gene upregulation [AN (24H), blue bar], but transfer back to
aerobic conditions caused significant ER upregulation [AN (48H), P=0.005, red
bar] compared to control M. ulcerans exposed to aerobic conditions during the
entire 3-day experiment (Control bar). Error bars indicate Standard errors. M.

ulcerans was at 30° C for all the oxygen conditions.

ER gene expression was significantly downregulated when M. ulcerans grown aerobically at
30°C (Control) were exposed aerobically at 37°C (p= 0.02923) for 24 hours, and significantly
upregulated when brought back to aerobic at 30°C (p=0.0002 compared to control and p=0.001

compared to 37°C at aerobic condition-day 2). Although ER gene expression was



158  downregulated when exposed to 37°C under microaerophilic conditions and upregulated when
159  brought back to 30°C and aerobic conditions, the regulation was not statistically significant
160  (Figure 4A).
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Figure 4. Regulation of ER expression after M. ulcerans
exposure to differing temperature and oxygen conditions. (A)
Control conditions of M. ulcerans at 30°C and aerobic conditions
from days 1-3; (B and in blue box): M. ulcerans exposed to 37°C
and aerobic conditions on Day 2 [T37-O2 (D2)] but transferred
back to 30°C and aerobic condition on day 3 [T30-O2 (D3)]; (C and
in red box): M. ulcerans exposed to 37°C and microacrophilic
condition on day 2 [T37-Mic (D2)] but transferred back to 30°C and
aerobic condition on day 3 [T30-O2 (D3)]; (D and in green box):
M. ulcerans exposed to 37°C and anaerobic condition on day 2
[T37-Anae (D2)] but transferred back to 30°C and aerobic condition
on day 3 [T37-O2 (D3)]: Bars indicate standard error. P values
indicate significance values between treatment and control. Stars
indicate significance within treatments.
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The shift of M. ulcerans at 30°C under aerobic conditions to 37°C and anaerobic conditions
showed significant downregulation of ER gene expression (p=0.002). When the cultures were
brought back to control conditions, ER gene expression was not statistically different from the
control, but significantly upregulated (p=0.01) compared to M. ulcerans at 37°C under

anaerobic conditions on day 2 (Figure 4B).

M. ulcerans global stress response on exposure to high temperature and low oxygen
conditions

RNAseq analysis was performed to determine regulated gene response to exponentially grown
M. ulcerans at 30°C under aerobic conditions that were exposed to 37°C or to the combination
of 37°C and microaerophilic conditions. A heat-map representing 50 of the top significant
differentially regulated genes across treatments and timepoints compared to the control
condition is shown in Figure 5, however, a heat map and list of all significantly differentially

regulated genes can be found in Supplemental Figure 1 and Supplemental Table 1, respectively.

10
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Figure 5. Fifty significantly differentially regulated genes across
treatments and timepoints. T30-O2-D1-3: M. ulcerans grown aerobically at
30°C for the entire 3 day study; T37-02-D3: M. ulcerans grown aerobically at
37°C for 24 hours but then moved back to control conditions for 24 hours; T37-
Mic-D3: M. ulcerans grown microaerophilicly at 37°C for 24 hours but then
moved back to control conditions for 24 hours; T37-02-D2: M. ulcerans grown
aerobically at 37°C for 24 hours; T37-Mic-D2: M. ulcerans grown
microaerophilicly at 37°C for 24 hours.
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RNASeq data showed 187 differentially regulated genes when M. ulcerans was grown
aerobically at 37°C compared to those that remained in control conditions for the duration of
the experiment. There were 158 upregulated genes including one gene involved in
Environmental Informational Processing, 19 with Genetic Information Processing, 45 with
Metabolism, and 4 with Signaling and Cellular Processes. Two genes were uncharacterized,
and 87 had no KEGG orthology (KO) assigned. Twenty-nine genes were significantly
downregulated compared to M. ulcerans in control conditions, including 3 involved in
Environmental Informational Processing, 4 with Genetic Information Processing, 13 involved
in Metabolism (3 of which were MUP0O01 plasmid genes MUP032¢c, MUP039c, and MUP040c,
encoding for MLSB, MLSA2 and MLSALI, respectively), and 2 involved in Signaling and
Cellular Processes (4, 24). Seven significantly downregulated genes had no KO assigned

(Figure 5, Supplemental Figure 1 and Supplemental Table 1).

M. ulcerans moved back to control conditions on day 3 from being grown aerobically at 37°C
showed only 12 significantly upregulated genes compared to M. ulcerans grown under control
conditions for the entire experiment. These included 5 genes involved in Genetic Information
Processing, 6 genes involved in Metabolism (including MUP032¢ and MUPO039c¢), and 1 with
no KO assigned. Only seven genes were significantly downregulated compared to those under
control conditions including 4 involved in Metabolism, and 3 with no KO assigned (Figure 5,

Supplemental Figure 1 and Supplemental Table 1).

When M. ulcerans was grown microaerophilicly at 37°C there were 372 significantly and

differentially regulated genes compared to M. ulcerans grown in control conditions for the

entire experiment. A total of 349 genes were upregulated including 3 genes involved in

12
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Environmental Informational Processing, 38 involved in Genetic Information Processing
(including MUPOO1 plasmid gene MUPO0O5c, encoding a possible chromosome partitioning
protein ParA) (27), 110 with Metabolism, and 7 with Signaling and Cellular Processes. Three
genes were uncharacterized, and 188 had no KO assigned. Twenty-three genes were
significantly downregulated compared to control conditions including 2 involved in
Environmental Informational Processing, 2 with Genetic Information Processing, 11 involved
in Metabolism (3 of which were MUPOO1 plasmid genes MUP039c, and MUP040c, encoding
for MLSA2 and MLSALI, respectively), and 1 involved in Signaling and Cellular Processes.

Seven significantly downregulated genes had no KO assigned.

When M. ulcerans was returned to control conditions on day 3 after being grown
microaerophilicly at 37°C there were only 2 significantly upregulated genes compared to M.
ulcerans grown under control conditions for the entire experiment. These upregulated genes
included 2 gene involved in Metabolism, and 1 with no KO assigned. Only 5 genes were
significantly downregulated compared to control, with all 5 being involved in Metabolism,

including MUPO032c.

Finally, comparison of gene expression among M. ulcerans growing at 37°C either aerobically
or microaerophically showed 76 genes that were upregulated under the microaerophilic
conditions compared to aerobic condition. These included 12 genes involved in Genetic
Information Processing, 28 genes involved in Metabolism, 4 involved with Signaling and
Cellular Processes, and 32 with no KO assigned. There were no statistically significant
differences in downregulated M. ulcerans genes between either of the oxygen treatment

conditions grown at 37°C.
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Discussion

The capacity of Mycobacterium ulcerans to sense, respond and adapt to variable and hostile
environmental conditions inevitably makes it successful in its natural environment and
increases its ability to survive in its host. With this in mind, we conducted one of the first
studies investigating M. ulcerans growth and transcriptional response (including modulation
of mycolactone gene expression and global responses) to the abiotic conditions of UV,
temperature, and oxygen, in an effort to better understand the M. ulcerans environmental niche

and factors promoting M. ulcerans pathogenesis.

Premature termination of the crtl gene in M. ulcerans that protects its progenitor, M. marinum,
against sunlight damage suggests M. ulcerans either resides in UV protected areas or there is
presence of other machineries to counteract the damage (28, 29). However, in our study, M.
ulcerans growth was not affected by UV radiation exposure for 10 min. Further investigations
exposing M. ulcerans to longer duration is needed to confirm its resistance to UV radiation
over longer exposure times. Although our study showed downregulation of mycolactone (ER)
expression on UV exposure via RT-qPCR, this was not significant. Under laboratory
conditions, wild-type M. ulcerans produces bright yellow pigmented colonies, while
mycolactone mutants are white, suggesting mycolactone mediated protection may be possible
(4, 25). In our study, the color of UV treated M. ulcerans colonies were yellow on M7H10
agar plates (data not shown) indicating mycolactone production. Quantitation of mycolactone
production and the use of a mycolactone negative mutant will further elucidate the effect of
UV beyond gene expression. Further studies on transcriptional analysis are also required to
understand regulation of other machineries that can confer photoprotection and/or DNA repair

to protect M. ulcerans against UV damage.
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Exposure to higher temperature and lower than optimal oxygen conditions is also known to
modulate stress response and virulence genes in environmental pathogens that can aid in the
bacterial survival and pathogenicity inside the human host (30, 31). Differences in oxygen
conditions did not impact M. ulcerans growth in our study. M. ulcerans exposure to anaerobic
conditions caused slight upregulation of ER gene expression, however, was statistically non-
significant. But when M. ulcerans was brought back to aerobic conditions 24 hours later, ER
gene expression was significantly upregulated. The combining of anaerobic and 37°C
conditions caused significant downregulation of the ER gene that was significantly upregulated
when brought back to aerobic and 30°C conditions. M. ulcerans lacks anaerobic pathway genes
and because of this are suggested to be adapted to an aerobic or microaerophilic environmental
niche (28). However, its association with mammalian feces and asymptomatic gut colonization
raises questions regarding viability, yet lack of pathogenicity in the anaerobic intestinal
environment (32-37). Although the single stress anaerobic condition did not affect
mycolactone gene expression, combining high temperature and anaerobic conditions
downregulated mycolactone gene expression in our study, and may account for the lack of
pathogenesis in the mammalian intestine. Indeed, in S. aureus, another pathogen system, toxic
shock syndrome toxin 1 (TSST-1) was produced in a CO; environment (38, 39), increasing
production when there was a shift from anaerobic to increasing oxygen concentrations (2%);
however, toxin production was decreased for increasing oxygen concentration (6%) in an
environment without CO2 (39). Similarly, slight reduction in oxygen concentrations in
microaerophilic environments could enhance ER gene expression but this effect may not occur
at 0% oxygen in anaerobic environments, suggesting the possibility of a very narrow niche of

M. ulcerans and mycolactone expression.
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Under the 30°C-microaerophilic condition, the ER gene was significantly upregulated, but was
downregulated when brought back to aerobic conditions. On the other hand, ER was
significantly downregulated when M. ulcerans was placed at 37°C-aerobic then significantly
upregulated when brought back to 30°C-aerobic. Further, our M. ulcerans RNASeq data from
the 37°C-aerobic treatment showed downregulation of misAl, misA2, and misB, type 1
polyketide synthase genes whose proteins synthesize the upper side chain and macolactone
core, and the acyl side chain, respectively (4, 24).  Exposing M. ulcerans to combined
microaerophilic and 37°C stress conditions led to ER gene downregulation that was not
statistically significant through RT-qPCR, though M. ulcerans RNASeq data under these
combined conditions showed significant downregulation of mis4/ and milsA2. These data
contrast with our initial hypothesis that predicted upregulation of mycolactone in response to
combined effects of high temperature and low oxygen conditions which we presumed to be

similar in the subdermal environment during human infection.

When considering how our in vitro data could fit within the infection model, one must consider
the skin environment. The partial pressure of oxygen (PO) is lower at different layers of skin
(superficial-8.0 + 3.2 mmHg, dermal papillae- 24.0 + 6.4 and sub-papillary plexus-35.2 + 8.0)
compared to PO, at atmosphere (160 mmHg) (40). The sudden exposure to higher temperature
and lower oxygen conditions depending on the skin layer could induce adaptive stress response
mechanisms in M. ulcerans causing it to use its energy efficiently for production of enzymes
and other proteins, and lipids. Triggering appropriate responses that allow survival and
propagation under these conditions could compromise mycolactone synthesis, while also
directing the expression of other genes modulating virulence and pathogenicity. However,

these are speculations that require much deeper examination for mechanistic validation.
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Nevertheless, the combined stress of 37°C-microaerophilic conditions upregulated genes for
lipid metabolism (Acyl-CoA dehydrogenases) and mycolic acid synthesis (accD6, mas, ethA),
similar to what has been shown in M. bovis and M. tuberculosis (41-43). Another upregulated
gene, eth, encodes oxidoreductase that oxidizes keto-mycolic acid to synthesize waxy mycolic
acids (44). The upregulation of these genes in our study suggests that combined temperature-
oxygen stress caused disturbance in overall M. ulcerans metabolism and cell wall synthesis.
Upregulation of the mmsA gene, which generates propionyl CoA that produces fatty acids
required for cell envelope formation suggests effects of combined stress on the cell membrane

(45-47).

Genes encoding transcriptional regulators SigB, SigE and WhiB5 were also among
significantly upregulated genes in M. ulcerans compared to controls within the 37°C-
microaerophillic treatment. Sigma B is one of the principal sigma factors and is considered a
general stress responder in mycobacteria (48, 49). SigB also positively regulates expression of
chaperonins such as groEL2 and groES, antigens such as ESAT-6-like proteins and cell-wall
associated and lipid metabolism related genes in M. tuberculosis (50). WhiB proteins are redox
sensing transcriptional regulators (51). WhiBS5 positively regulates 58 genes including type VII
secretion systems (ESX-2 and 4) (51). WhiB5 proteins in M. tuberculosis are relatively stable
and under-expressed in aerobic conditions but are slightly upregulated at 0% oxygen (52). They
are suggested to be immunomodulators and enhancers of M. tuberculosis survival during

nutrient limitation (51).

Finally, stress response genes hsp20, grpE, clpB, groES, groELI and groEL2, dnal, dnaK

ahpC, and ahpD were also among those upregulated on exposure of M. ulcerans under

combined 37°C -microaerophilic conditions. These genes respond to heat shock and oxidative
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stress (41, 49, 53). The clpB gene is associated with virulence in several gram positive (e.g. S.
aureus) and negative pathogens (e.g. Salmonella enterica serovar typhimurium) (54). In M.
tuberculosis, clpB enhances biofilm formation and promotes survival against hypoxia, heat
stress and inside macrophages (54). Similarly, dnaK provides M. tuberculosis protection
against heat shock and oxidative stress inside the macrophage (43, 55). Proteins ClpB, GroES,
GroEL1, DnaK, AhpC, and AhpD are found in the extracellular matrix (ECM) of M. ulcerans
biofilm, and M. ulcerans with ECM have higher colonization and virulence (56). Upregulation
of these M. ulcerans genes in vitro suggests that environmental signals such as temperature,
oxygen, UV, pH, etc. could trigger adaptive responses of M. ulcerans to these stresses during
infection, or within polymicrobial communities in its natural environment. These genes could
promote biofilm formation and enhance colonization and virulence activity of M. ulcerans.
And, although mycolactone is considered as a major virulence factor, more investigations are
needed to understand the impact of genes (and their products) such as c/pB and others that are
known virulence determinants in other bacteria. Another important consideration is that in this
study we defined higher temperature and lower than optimal oxygen conditions as “stressed
conditions” for M. ulcerans based on current knowledge about its growth in lab conditions;
however, these environmental conditions may not be a “stressed environment” for M. ulcerans
in its natural habitat and M. ulcerans’s response to fluctuating temperature and oxygen

conditions may simply be a “response” instead of “‘stress response”.

Many of the same genes discussed above that were upregulated in the 37°C-microaerophilic
treatment were also upregulated in the 37°C-aerobic treatment. But interestingly, no statistical
differences in downregulated genes were found when comparing combined stress 37°C-
microaerophilic to single stress of 37°C-aerobic treatment. Altogether, our data suggest a

higher impact of temperature than oxygen on M. ulcerans and mycolactone expression. One
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possible explanation may be that the microaerophilic conditions induce upregulation of
mycolactone expression, but the combined stress of high temperature and low oxygen
prioritizes the expression of other essential genes (i.e. stress response and fatty acid degradation
genes as discussed above), thereby compromising mycolactone synthesis. This is a mechanism
found in other pathogens. For instance, in Vibrio cholerae, the promoter of cholera toxin
regulator (toxR) and heat shock (htpG) genes overlap but are transcribed in opposite directions
(57, 58). Hence, increase in temperature allows transcription of the 4tpG gene with reduction
in toxR expression. Another consideration is, in M. ulcerans, the ER domain is present
repeatedly in the mlsA gene (3 times in mlsAl and 1 time in mlsA2); however, this domain is
absent in the m/sB gene (4). Hence, ER represents one of many possible genes involved in
mycolactone synthesis, but its regulation does not solely depict mycolactone gene expression.
Thus, this may account for the discrepancy in RT-qPCR and RNASeq results for mycolactone

expression.

Finally, data support that mycolactone producing mycobacteria (MPM) such as M. ulcerans
and other ecological variants evolved from a common M. marinum progenitor by undergoing
various gene deletions, pseudogene formation and rearrangement, and acquiring plasmid
pMUM to adapt to a specific ecological niche (59). In the evolutionary hierarchy, M. liflandii
is suggested to be an intermediate between the ancestor M. marinum M and M. ulcerans Agy99,
as M. marinum consists of all gene cluster present in M. liflandii and M. liflandii consists of all
gene cluster present in M. ulcerans (60). But there are some genes that are pseudogenized in
M. ulcerans but not in M. liflandii and vice-versa, indicating that there was a significant and
independent reductive evolution of their genomes. These differences in mutation patterns along
with the variation in type of mycolactone produced indicates that these variants experience

different sets of environmental pressure and have adapted to occupy different niches,
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underscored by differing hosts (6, 61). Therefore, it would be interesting to determine whether

these responses are also observed for other MPMs.

In conclusion, M. ulcerans acquired plasmid pMUMOOI at the expense of a large deletion in
its genome thereby suggesting its specific role in adaptation to a particular environment (59).
In this study, M. ulcerans was exposed to several abiotic stresses to understand their effect on
M. ulcerans growth, and mycolactone and other gene expression. Our data suggest that M.
ulcerans may reside in a microaerophilic habitat in the environment and mycolactone could
provide a fitness advantage in those environments. Data also suggest that M. ulcerans may
have higher tolerance to UV than previously thought and mycolactone may provide a fitness
advantage in this context. The exposure of M. ulcerans to combined high temperature (37°C)
and low oxygen upregulated several stress response genes and other genes known to be
involved in virulence in M tuberculosis, while mycolactone gene expression was
downregulated-suggesting other virulence factors may be utilized by M. ulcerans. Further,
downregulation of mycolactone expression on exposure to combined anaerobic and 37°C could
partly explain the reason behind the asymptomatic gut colonization of different mammals as
reported in previous studies (35). Some limitations to this study such as small sample size,
short duration exposure of M. ulcerans to UV radiations (up to 10 mins) and no transcriptome
analysis to study other machineries that can protect M. ulcerans against UV damage should be
addressed in future studies. Additionally, short time points were selected for this study to
understand the impacts of short term exposure on M. ulcerans response through changes in
gene expression; however, measuring responses to longer exposure times will be important
future experiments. Finally, investigations measuring mycolactone production, and using a
mycolactone negative M. ulcerans mutant and other MPMs are needed to further elucidate the

role of mycolactone against these and other abiotic stresses. But altogether, these initial data
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increase our understanding of M. ulcerans response to a changing environment and open doors
to future studies that may provide insight to the M. ulcerans environment and pathogenesis

upon host infection.

Materials and methods

Bacterial strains and culture

A 1% inoculum of Mpycobacterium ulcerans JKD8083 or Agy99 was inoculated into 30mL
total volume Middlebrook 7H9 (M7H9) broth containing Oleic Albumin Dextrose Catalase
(OADC) and incubated aerobically at 30°C for 4-6 weeks to reach exponential phase for use in

this study.

Measurement of optical density (OD600)

M. ulcerans cells form aggregates in culture. Hence, aggregates were broken by passage
through a 20G syringe, followed by a 25G syringe 10 times. Optical density was measured
using a ThermoScientific Genesys 20 spectrophotometer, with M7H9 medium used as a blank.

Syringe passage of M. ulcerans was used for all experiments.

Measurement of bacterial growth

M. ulcerans was serially diluted in logio concentrations (from undiluted to 10-%) and plated onto
M7H10 agar plates (10 uL) in triplicate using the spread plate technique and incubated at 30°C.
Colonies were counted to determine CFUs/mL after 4-6 weeks to determine the effect of the
abiotic factors on M. ulcerans growth, and a mean was taken for the triplicates, with standard

errors calculated.

Effect of UV exposure on M. ulcerans growth and mycolactone gene expression
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Mycolactone expression was measured on exposure to UV at different time intervals (30s, 2
min and 10 min). The time for UV exposure was determined based on work by David et al.
(1971), where M. tuberculosis and M. marinum were exposed to UV for up to 30 seconds and
were inactivated (90%) by 7 seconds and 22 seconds UV exposure, respectively (62). M.
ulcerans during exponential growth (5.7 x 10° CFU/mL, 30 mL) was transferred to individual
Petri plates and exposed to UV (254 nm wavelength) for their respective time interval to
measure M. ulcerans growth and modulation of mycolactone gene expression. Controls
included M. ulcerans transferred to Petri plates, but without UV exposure. At each timepoint
and condition, 1 mL of M. ulcerans was transferred for serial dilution and growth measurement
by optical density and CFU count, and 5.0 mL of sample was transferred for RNA isolation

and RT-qPCR to measure mycolactone gene expression as described below.

Effect of temperature and oxygen on M. ulcerans growth and mycolactone gene
expression

To determine the effects of different oxygen conditions on M. ulcerans growth, M. ulcerans
initially grown aerobically at 30°C were exposed to either microaerophilic or anaerobic
conditions at 30°C for 24 hours, by placing those cultures within anaerobic chambers with
appropriate gas paks (BD) and oxygen indicators (Figure 6A). Optical density was measured
initially, and after 24 hours. M. ulcerans cultures were then placed back in aerobic conditions
at 30°C for an additional 24 hours (48 hours from initial time point). The optical density for
each treatment and timepoint was measured. To study the effects of temperature, M. ulcerans
in exponential growth aerobically at 30°C were exposed to 37°C for 24 hours and then placed
back in the 30°C incubator for an additional 24 hours. The optical density was measured for

each treatment and time point. At each timepoint and condition, 1 mL of sample was
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transferred for serial dilution and growth measurement, and 5.0 mL of sample was transferred

for RNA isolation and RT-qPCR to measure mycolactone gene expression. Each experiment

was conducted with triplicate replicates and at least three times.

A)

Day 1 (T0)
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B)
A Vot
D ay 1 (TO / \\. /A\\. F’ﬂ\ ff \
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Figure 6. Schematic representation of study on the effect of oxygen (A) and
combined high temperature (37°C) and low oxygen (microaerophilic and
anaerobic) condition (B) on mycolactone and M. ulcerans global gene
expression.

Day 3(T48) \ / ,/
Aerobic

30 degree

Combined effect of high temperature and low oxygen in mycolactone and global gene
expression

Exponentially grown M. ulcerans (4-6 weeks) aerobically and at 30°C were exposed to 37°C
under microaerophilic or anaerobic conditions for 24 hours (Figure 6B). After 24 hours, the
cultures were again brought back to control conditions (30°C and aerobic) for an additional 24

hours (48 hours from initial timepoint). Optical densities were measured for each condition and
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timepoint, with samples also collected and analyzed as described above. Each experiment was

conducted with triplicate replicates (Figure 6B).

RNA isolation

M. ulcerans RNA was isolated using the Trizol method, according to manufacturer instructions.
Bacterial cells were pelleted by centrifugation, with supernatant removed, and 1.0 mL Trizol
reagent was added to the pellet and mixed thoroughly and bead beaded. After incubation for
one hour, chloroform was added and centrifuged for phase separation. The aqueous phase
containing RNA was obtained and precipitated using isopropanol followed by washing with
75% ethanol. The pellet was dried and dissolved in nuclease-free water to obtain RNA
suspension. RNA was quantified using the qubit 2.0, integrity verified by gel electrophoresis,

and DNase treated as necessary.

Preparation of cDNA

cDNA was prepared with appropriate controls using the Verso cDNA Synthesis kit according
to the manufacturer’s instructions. The reaction mixture included 4 pl synthesis buffer, 2 pl
dNTP mix, 1 pl random hexamer, 1 pl verso enzyme and 1 pl RT enhancer (to prevent genomic
DNA carryover) was added to the template and heated at 42°C for one hour to obtain cDNA.

Absence of genomic DNA was confirmed by qPCR.

Quantitative Real Time PCR (RT-qPCR)

RT-qPCR targeting the enoyl reductase (ER) domain of module B of pMUMO01 responsible
for mycolactone production was performed on cDNA (15, 63, 64). The polyphosphate kinase
(ppk) gene was used as a reference gene (25). The master mix contained one pl of each forward

and reverse primer for ppk gene and ER gene, 2.5 pul of ER probe and ppk probe, 12.5 pul of
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master mix and 0.5 pl water and 3 pl template cDNA per well of PCR plate. The forward
primer for ER was 5’CGCCTACATCGCTTTGG3’ and reverse  primer
5’ATTGAATCGCAGCCATACC3’. The forward  ppk primer was 5
CGGGAAACTACAACAGCAAGACC 3 and the ppk reverse was 5’
CCACCAACAGATTGCGATAGG 3’. PCR was conducted on triplicate samples using a

BioRad CFX96 with parameters that include 95.0°C for 10:00 min, and 39 cycles of 95.0°C

for 15 seconds, 55.0°C for 30 seconds, 57.0°C for 30 seconds.

RNASeq Analysis

RNA libraries were created from combined triplicate replicates of M. ulcerans RNA samples
under aerobic and 30°C (T0-T48H), aerobic and 37°C (T24 H), microaerophilic and 37°C (T24
H), and samples that were transferred from 37°C, aerobic or microaerophilic conditions to
aerobic and 30°C at 48 H [aerobic and 37°C (T48 H), microaerophilic and 37°C (T48 H)]
conditions. Libraries were created using the NEBNext® Ultra™ RNA Library Prep Kit and
NEBNext® Multiplex Oligos (Dual Index Primers) for [llumina® and associated protocols.
High-throughput RNA sequencing was performed by St. Jude Children’s Research Hospital on
an I[llumina HiSeq2000 with 2 X 150bp PE (paired end) read lengths. Sequences were initially
trimmed by the sequencing facility using TrimGalore v0.4.2 but a more stringent quality
trimming was also performed using default parameters within the Qiagen CLC Workbench
20.0.1 (https://www.qiagenbioinformatics.com/) following QC analysis of sequence reads. M.
ulcerans Agy99 and plasmid pMUMOO01 reference genomes were joined (References Sequence
NC 008611 joined with Reference Sequence NC 005916, Assembly GCF _000013925.1,
https://www.ncbi.nlm.nih.gov/assembly/GCF_000013925.1), and RNASeq data were mapped
with the following parameters: (a) maximum number of allowed mismatches was set at 2, with

insertions and deletions set at 3; (b) Length and similarity fractions were set to 0.9, with
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autodetection for both strands; (¢) minimum number of hits per read was set to 10. All genes
listed in heatmaps are labeled as listed in RefSeq for a particular locus tag given in the reference

genomes’ annotation.

Differential expression was measured in the CLC Workbench that used the assumption that
transcripts with similar average expression levels had similar variability, according to the CLC
Manual. Statistical differential expression tests were performed based on a negative binominal
generalized linear model similar to that of edgeR (65). Differentially expressed genes were
generated based on a false discovery rate -corrected p-value (FDR) using the Wald test for
comparing the effects of treatments compared to control, or treatments compared across time.
Treatment reads with a fold change of 1.5 or higher, and FDR adjusted P-value less than or
equal to 0.05 were considered significant (66). Statistically significant, differentially regulated
gene transcripts were further annotated into pathways by linking protein ID with potential
conserved domains and protein classifications archived within the Conserved Domain
Database (“Conserved Domains and Protein Classification,” n.d.), and by using the UniProt
(“UniProt,” n.d.), KEGG (Kanehisa Laboratories, n.d.), and STRING databases (ELIXIR Core
Data Resources, n.d.), gene annotations within NCBI

(https://www.ncbi.nlm.nih.gov/nuccore/NC_008611.1 and

https://www.ncbi.nlm.nih.gov/nuccore/NC _005916), mycolactone locus patent information

(https://www.freepatentsonline.com/y2006/0024806.html) and the Mycobrowser genomic and
proteomic  database @ for  reference  against other = mycobacterial  species

(https://mycobrowser.epfl.ch/genes/Rv0753c).

Statistical analysis
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Significant difference changes in M. ulcerans growth under control conditions compared to
abiotic treatment conditions were determined using a student’s T-test. RT-qPCR data were
analyzed by relative quantification of gene expression compared to the control using python
code implementing the AACT method (67). The reference gene used was ppk and ER was used
for the target gene. The fold change in gene expression was determined to obtain regulation
relative to control (baseline). If the fold change relative to control was greater than 1 then it
was considered upregulated. If fold change was less than 1 then it was considered
downregulated. The amount of downregulation (for fold change 0 to 1) was determined by
calculating negative of the reciprocal of fold change, as described by Babu, 2004 (68). The

significant cut-off value (o) for upregulation and downregulation was p=0.050.

Data Availability
Raw sequences are archived in the NCBI Sequence Read Archive (SRA) under Bioproject

Accession number: PRINA907849.
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Figure Legends

Figure 1. Effects of increasing UV exposure on M. ulcerans growth (A) and ER expression

(B).

Figure 2. Effect of Oxygen (A) or temperature (B) on M. ulcerans growth. (A) Optical
density of M. ulcerans when exposed to aerobic (blue line), microaerophilic (orange) and
anaerobic (grey line) conditions at 30°C. Exponential M. ulcerans initially under aerobic
conditions were exposed to their respective oxygen condition for 24 hours and then transferred
back to aerobic conditions for an additional 24 hours (48 hours from initial time point). (B)
Optical density of M. ulcerans when exposed to 30°C (blue line) and 37°C (orange line).
Exponential M. ulcerans initially at 30°C were exposed to their respective temperature
conditions for 24 hours and then exposed back to 30°C for an additional 24 hours (48 hours

from initial time point).
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Figure 3. M. ulcerans ER regulation after exposure to microaerophilic or anaerobic
conditions compared to aerobic conditions. Exposure to a microaerophilic environment for
24 hours caused significant upregulation [Mic (24H); P=0.0009] of ER expression (yellow bar)
and transferring the bacteria back to aerobic condition led to slight downregulation in ER
expression [Mic (48H), grey bar]. Exposure of M. ulcerans to anaerobic conditions for 24 hours
led to slight ER gene upregulation [AN (24H), blue bar], but transfer back to aerobic conditions
caused significant ER upregulation [AN (48H), P=0.005, red bar] compared to control M.
ulcerans exposed to aerobic conditions during the entire 3-day experiment (Control bar). Error

bars indicate Standard errors. M. ulcerans was at 30° C for all the oxygen conditions.

Figure 4. Regulation of ER expression after M. ulcerans exposure to differing
temperature and oxygen conditions. (A) Control conditions of M. ulcerans at 30°C and
aerobic conditions from days 1-3; (B and in blue box): M. ulcerans exposed to 37°C and aerobic
conditions on Day 2 [T37-02 (D2)] but transferred back to 30°C and aerobic condition on day
3 [T30-02 (D3)]; (C and in red box): M. ulcerans exposed to 37°C and microaerophilic
condition on day 2 [T37-Mic (D2)] but transferred back to 30°C and aerobic condition on day
3 [T30-02 (D3)]; (D and in green box): M. ulcerans exposed to 37°C and anaerobic condition
on day 2 [T37-Anae (D2)] but transferred back to 30°C and aerobic condition on day 3 [T37-
02 (D3)]: Bars indicate standard error. P values indicate significance values between treatment

and control. Stars indicate significance within treatments.

Figure 5. Fifty significantly differentially regulated genes across treatments and
timepoints. T30-O2-D1-3: M. ulcerans grown aerobically at 30°C for the entire 3 day study;
T37-02-D3: M. ulcerans grown aerobically at 37°C for 24 hours but then moved back to

control conditions for 24 hours; T37-Mic-D3: M. ulcerans grown microaerophilicly at 37°C for
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24 hours but then moved back to control conditions for 24 hours; T37-02-D2: M. ulcerans
grown aerobically at 37°C for 24 hours; T37-Mic-D2: M. ulcerans grown microaerophilicly at
37°C for 24 hours. All genes listed in the heatmap are labeled as listed in RefSeq for a particular

gene or locus tag given in the reference genomes’ annotation.

Figure 6. Schematic representation of study on the effect of oxygen (A) and combined

high temperature (37°C) and low oxygen (microaerophilic and anaerobic) condition (B)

on mycolactone and M. ulcerans global gene expression.
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