

1 **Impact of Temperature and Oxygen Availability on Gene Expression Patterns of**

2 ***Mycobacterium ulcerans***

3

4 **Laxmi Dhungel¹, Raisa Bonner¹, Meagan Cook¹, Duncan Henson¹, Trent Moulder¹, M.**

5 **Eric Benbow²⁻⁵ and Heather Jordan^{1*}**

6

7 ¹Department of Biological Sciences, Mississippi State University, MS, USA

8 ²Department of Entomology, Michigan State University, East Lansing, MI, USA

9 ³Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI,
10 USA

11 ⁴AgBioResearch, Michigan State University, East Lansing, MI, USA

12 ⁵Department of Osteopathic Medical Specialties, Michigan State University, East Lansing,
13 MI, USA

14

15 **Email addresses: Laxmi Dhungel (ldhungel@umc.edu); Raisa Bonner
16 (rbonner@skidmore.edu); Meagan Cook (mnc200@msstate.edu); Duncan Henson
17 (wdh154@msstate.edu); Trent Moulder (trentmoulder14@gmail.com); M. Eric Benbow
18 (eric.benbow@gmail.com); Heather Jordan (jordan@biology.msstate.edu)**

19

20 ***Correspondance: jordan@biology.msstate.edu**

21

22 **Abstract**

23 Buruli ulcer disease is a neglected tropical disease caused by the environmental pathogen
24 *Mycobacterium ulcerans*. The *M. ulcerans* major virulence factor is mycolactone, a lipid
25 cytotoxic compound whose genes are encoded on plasmid. Although an exact reservoir and
26 mode(s) of transmission is unknown, data provide evidence of both. First, Buruli ulcer
27 incidence and *M. ulcerans* presence have been linked to slow-moving water with low oxygen.

28 *M. ulcerans* has also been suggested to be sensitive to UV due to termination in *crtI*, encoding
29 a phytoene dehydrogenase, required for carotenoid production. Further, *M. ulcerans* has been
30 shown to cause disease following puncture, but not when introduced to open abrasion sites,
31 suggesting puncture necessary for transmission and pathology. Despite these findings, the
32 function and modulation of mycolactone and other genes in response to dynamic abiotic
33 conditions such as UV, temperature, and oxygen, has not been shown. In this study, we
34 investigated modulation of mycolactone and other genes on exposure to changing UV and
35 oxygen microenvironmental conditions. Mycolactone expression was downregulated on
36 exposure to single stress high temperature and did not change significantly with exposure to
37 UV, however, was upregulated when exposed to microaerophilic conditions. Mycolactone
38 expression was downregulated under combined stress of high temperature and low oxygen but
39 there was upregulation of several stress response genes. Taken together, results suggest that
40 temperature shapes *M. ulcerans* metabolic response more so than UV exposure or oxygen
41 requirements. These data aid to define the environmental niche of *M. ulcerans* and metabolic
42 responses during initial human infection.

43

44 Importance

45 Buruli ulcer is a debilitating skin disease caused by the environmental pathogen,
46 *Mycobacterium ulcerans*. *M. ulcerans* produces a toxic compound, mycolactone that leads to
47 tissue necrosis and ulceration. Barriers to preventing Buruli ulcer include an incomplete
48 understanding of *M. ulcerans* reservoirs, how the pathogen is transmitted, and under what
49 circumstances mycolactone and other *M. ulcerans* genes are expressed and produced in its
50 natural environment and in the host. We conducted a study to investigate *M. ulcerans* gene
51 expression under several individual or combined abiotic conditions. Our data showed that
52 mycolactone expression was downregulated under combined stress of high temperature and

53 low oxygen but there was upregulation of several stress response genes. These data are among
54 only a few studies measuring modulation of mycolactone and other *M. ulcerans* genes that
55 could be involved in pathogen fitness in its natural environment and virulence while within the
56 host.

57

58 Keywords: Buruli ulcer; *Mycobacterium ulcerans*; Mycolactone; gene expression

59

60 **Introduction**

61 Buruli ulcer is a neglected tropical disease caused by an environmental pathogen,
62 *Mycobacterium ulcerans*. The disease is characterized by an often painless nodule that can later
63 develop into an ulcer (1). Buruli ulcer is the third most common mycobacterial infection and
64 has been reported in over 33 countries worldwide (1). Buruli ulcer is often associated with
65 functional limitations and limb deformities in cases of deferred treatment, and imposes a
66 significantly negative medical, psychological and socio-economic impact on affected patients
67 (2, 3). The major virulence factor of *M. ulcerans* is mycolactone, a lipid cytotoxic compound
68 whose genes are encoded on the large plasmid, pMUM001(4). Mycolactone diffuses through
69 healthy tissue leading to pathology that impacts a wide variety of cells through modulation of
70 immune functioning, inhibiting immune regulating proteins, or by causing cytoskeletal
71 rearrangement, cell cycle arrest, necrosis or apoptosis, depending on cell type (5).

72

73 Morbidity has, in part, been exacerbated by the fact that the mode of *M. ulcerans* transmission
74 remains unknown; however, multiple mechanisms have been proposed and investigated (6, 7).

75 Epidemiological evidence links Buruli ulcer incidence to slow moving aquatic habitats (8-10).

76 This has also been supported by the finding of *M. ulcerans* DNA in association with aquatic
77 plant biofilms, water filtrand, soil, and invertebrates (11-15). Slow-moving water with low

78 oxygen concentration has also been included as a risk factor (9, 10, 15-17). Laboratory studies
79 showed *M. ulcerans* leads to disease pathology following puncture, but not when introduced to
80 an open abrasion site (18, 19), and mosquitoes and other biting insects have also been
81 implicated as potential mechanical vectors (7).

82

83 As an environmental pathogen, *M. ulcerans* naturally resides in a complex community of
84 aquatic life presumably structured by biological interactions and abiotic environmental factors
85 (6). When reviewing other systems, such as the environmental pathogens *Burkholderia*
86 *cenocepacia* and *Vibrio vulnificus*, low oxygen concentration and high temperature have been
87 shown to upregulate virulence factors (20, 21). Additionally, temperature-regulated toxin
88 production has been observed in pathogenic bacteria such as enterohemorrhagic *Escherichia*
89 *coli* (EHEC), *Yersinia enterocolitica* and *Bacillus anthracis* (22). Data from these other
90 pathogens studies suggest a need to investigate the possible role of higher temperature and
91 lower oxygen yielding changes in mycolactone production, in establishment of disease and
92 fitness within its natural environment (19). Understanding modulation of mycolactone and
93 other gene expression in response to temperature and oxygen gradients will not only aid in
94 understanding *M. ulcerans* response to changing abiotic conditions in aquatic environments,
95 but also in understanding *M. ulcerans* virulence and pathogenesis leading to disease, depending
96 upon transmission route.

97

98 *M. ulcerans* is also suggested to be UV sensitive due to termination in *crtL*, a gene responsible
99 for carotenoid production (23). As a replicative reservoir of *M. ulcerans* is unknown within
100 aquatic habitats, it is not clear whether *M. ulcerans* replicates in areas that are protected from
101 UV or has developed machineries to counteract adverse UV effects (6). Thus, investigating

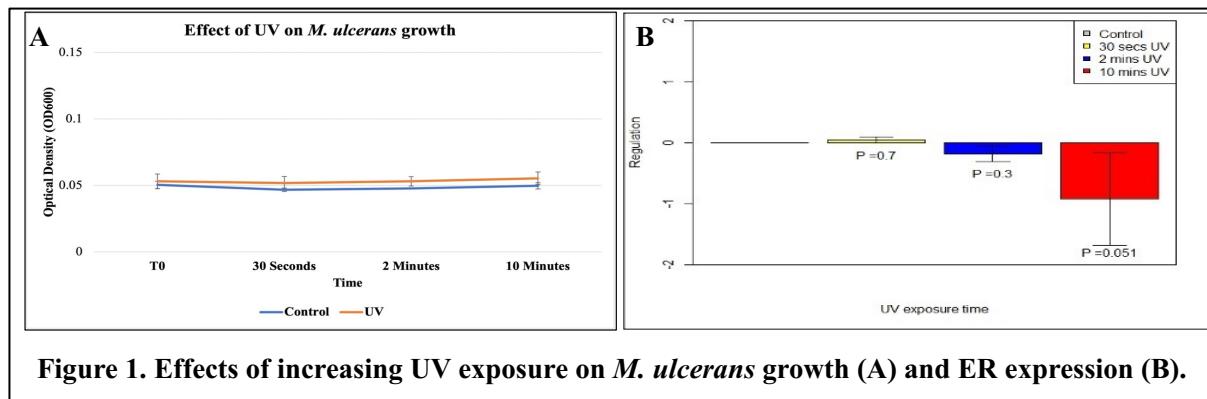
102 whether mycolactone influences protection against UV through a pigment mediated or other
103 mechanism can provide further insight into *M. ulcerans* reservoirs.

104

105 Few studies have been published exploring mycolactone gene expression. One study showed
106 that transcription of several key mycolactone biosynthetic genes are driven by a SigA-like
107 promoter (24); however, the study did not determine environmental or growth-phase signals
108 inducing mycolactone gene expression. An *in vitro* study showed mycolactone genes
109 downregulated in response to various sugar sources (25), and other research showed that
110 nutrient availability (chitin vs. calcium) regulates several metabolic pathways in *M. ulcerans*;
111 however, mycolactone toxin was not expressed in these nutrient abundant environments
112 suggesting that its expression may be regulated mainly during stressful conditions (26).

113

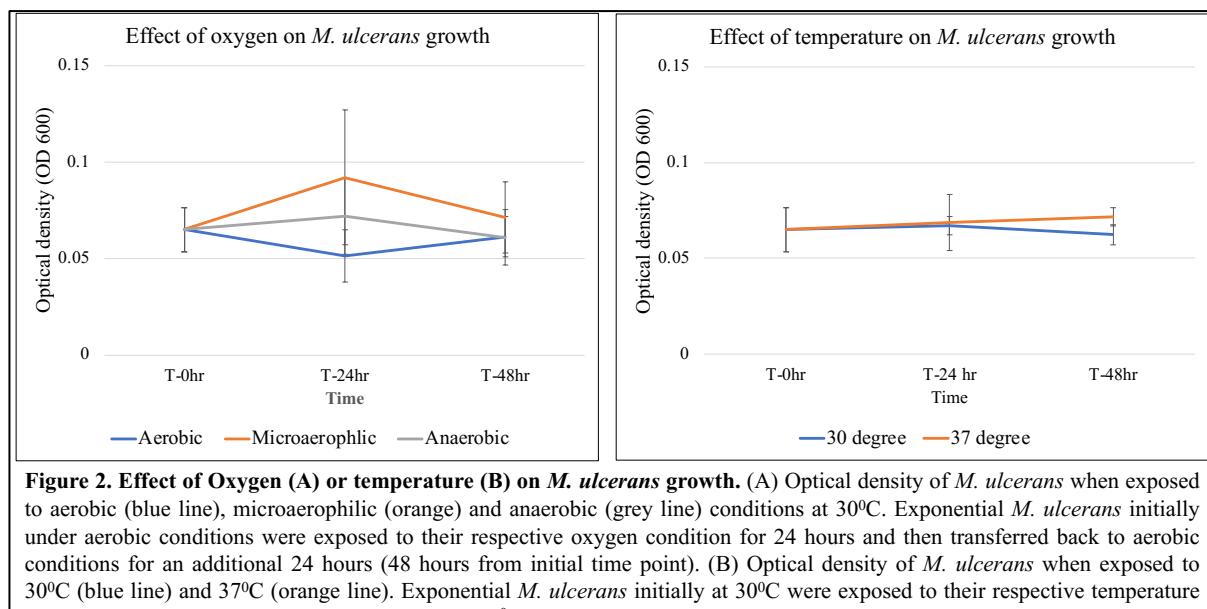
114 In this study, we investigated how exposure to single and combined abiotic factors affected *M.*
115 *ulcerans* growth, modulation of mycolactone expression via RT-qPCR, and global gene
116 expression of a subset of samples via RNASeq. First, we tested the effect of UV exposure on
117 *M. ulcerans* growth and mycolactone gene expression, then whether growth and mycolactone
118 and other *M. ulcerans* genes were modulated under changing temperature and oxygen, and the
119 combined interactive effect of the latter two. These data fill gaps in knowledge regarding *M.*
120 *ulcerans* stress response, providing molecular evidence for how fitness may be influenced by
121 abiotic conditions of aquatic ecosystems and in Buruli ulcer wounds.


122

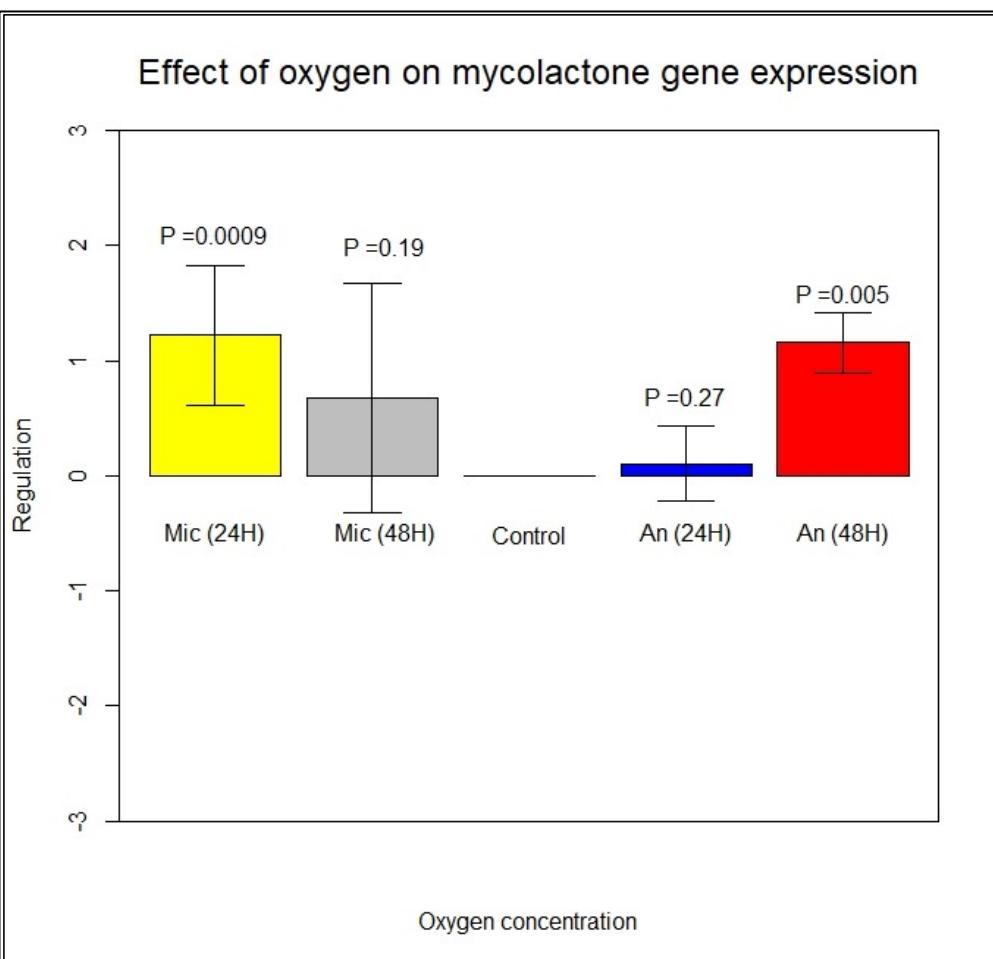
123 **Results**

124 ***Little effect of UV exposure on M. ulcerans growth and ER gene expression***

125 Compared to controls no significant difference in *M. ulcerans* growth was observed following
126 exposure to UV for 30 seconds ($p=0.18$), 2 minutes ($p=0.45$) or 10 minutes ($p=0.10$) (Figure


127 1A). There was a negligible effect on mycolactone gene expression upon exposure of *M.*
128 *ulcerans* to UV for 30 seconds, whereas there was a slight downregulation with exposure to
129 UV for 2 minutes; but neither of these effects were statistically significant (Figure 1B).
130 However, ER gene expression trended toward significant downregulation on exposure to UV
131 for 10 minutes ($p=0.051$, Figure 1B).

132 **Figure 1. Effects of increasing UV exposure on *M. ulcerans* growth (A) and ER expression (B).**

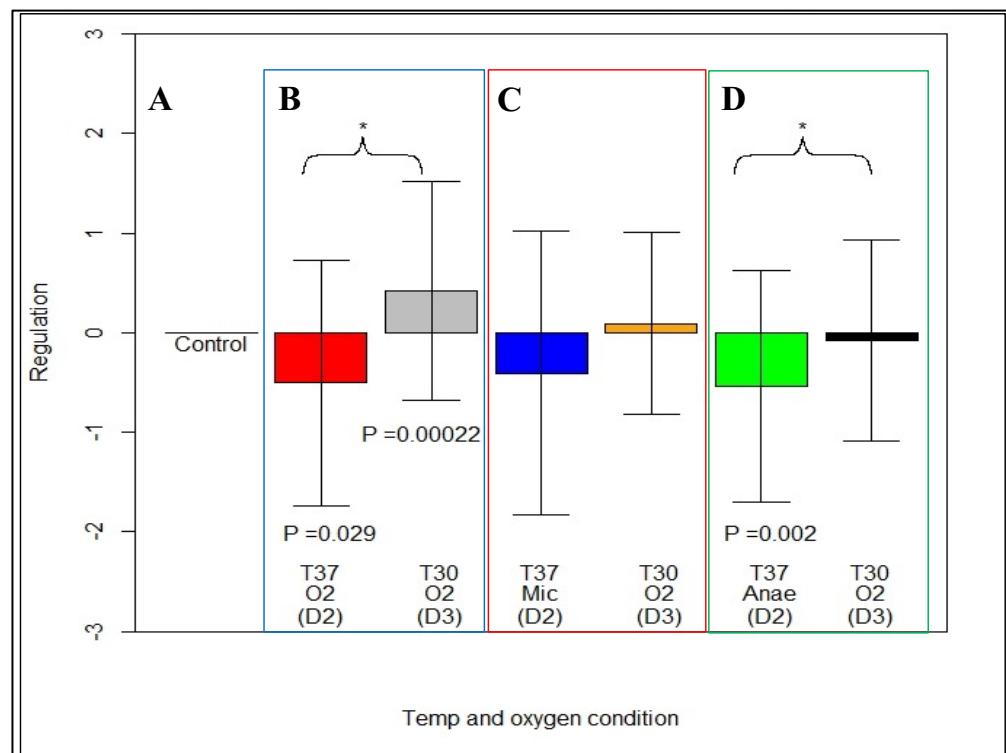

133 ***M. ulcerans* growth and mycolactone expression when exposed to single and combined**
134 ***environmental stressors***

135 Across all time points there was no statistical difference in *M. ulcerans* growth (at 30° C) under
136 microaerophilic or anaerobic conditions in comparison to aerobic conditions (Figure 2A).
137 Similarly, there was no significant difference in *M. ulcerans* growth when subjected to different
138 temperatures (30°C vs 37°C) for 24 hours (Figure 2B). When cultures were brought back to
139 30°C, those that had been subjected to 37°C were not significantly different from those
140 subjected to 30°C based on growth (Figure 2B).

Figure 2. Effect of Oxygen (A) or temperature (B) on *M. ulcerans* growth. (A) Optical density of *M. ulcerans* when exposed to aerobic (blue line), microaerophilic (orange) and anaerobic (grey line) conditions at 30°C. Exponential *M. ulcerans* initially under aerobic conditions were exposed to their respective oxygen condition for 24 hours and then transferred back to aerobic conditions for an additional 24 hours (48 hours from initial time point). (B) Optical density of *M. ulcerans* when exposed to 30°C (blue line) and 37°C (orange line). Exponential *M. ulcerans* initially at 30°C were exposed to their respective temperature conditions for 24 hours and then exposed back to 30°C for an additional 24 hours (48 hours from initial time point).

143 Exposure of *M. ulcerans* to microaerophilic conditions for 24 hours showed significant
 144 upregulation of ER gene expression ($p=0.0009$). Gene expression was slightly downregulated
 145 when *M. ulcerans* exposed to microaerophilic conditions at 30°C were transferred back to
 146 aerobic conditions, but the difference was not statistically significant (Figure 3). *M. ulcerans*
 147 exposed to anaerobic conditions for 24 hours had non-significant upregulation of mycolactone
 148 gene expression. However, upon transferring the anaerobic exposed bacteria back to aerobic
 149 conditions, there was significant ($p=0.005$) upregulation of mycolactone gene expression
 150 compared to controls grown under aerobic conditions over the 3 day study (Figure 3).

Figure 3. *M. ulcerans* ER regulation after exposure to microaerophilic or anaerobic conditions compared to aerobic conditions. Exposure to a microaerophilic environment for 24 hours caused significant upregulation [Mic (24H); $P=0.0009$] of ER expression (yellow bar) and transferring the bacteria back to aerobic condition led to slight downregulation in ER expression [Mic (48H), grey bar]. Exposure of *M. ulcerans* to anaerobic conditions for 24 hours led to slight ER gene upregulation [AN (24H), blue bar], but transfer back to aerobic conditions caused significant ER upregulation [AN (48H), $P=0.005$, red bar] compared to control *M. ulcerans* exposed to aerobic conditions during the entire 3-day experiment (Control bar). Error bars indicate Standard errors. *M. ulcerans* was at 30° C for all the oxygen conditions.


152

153

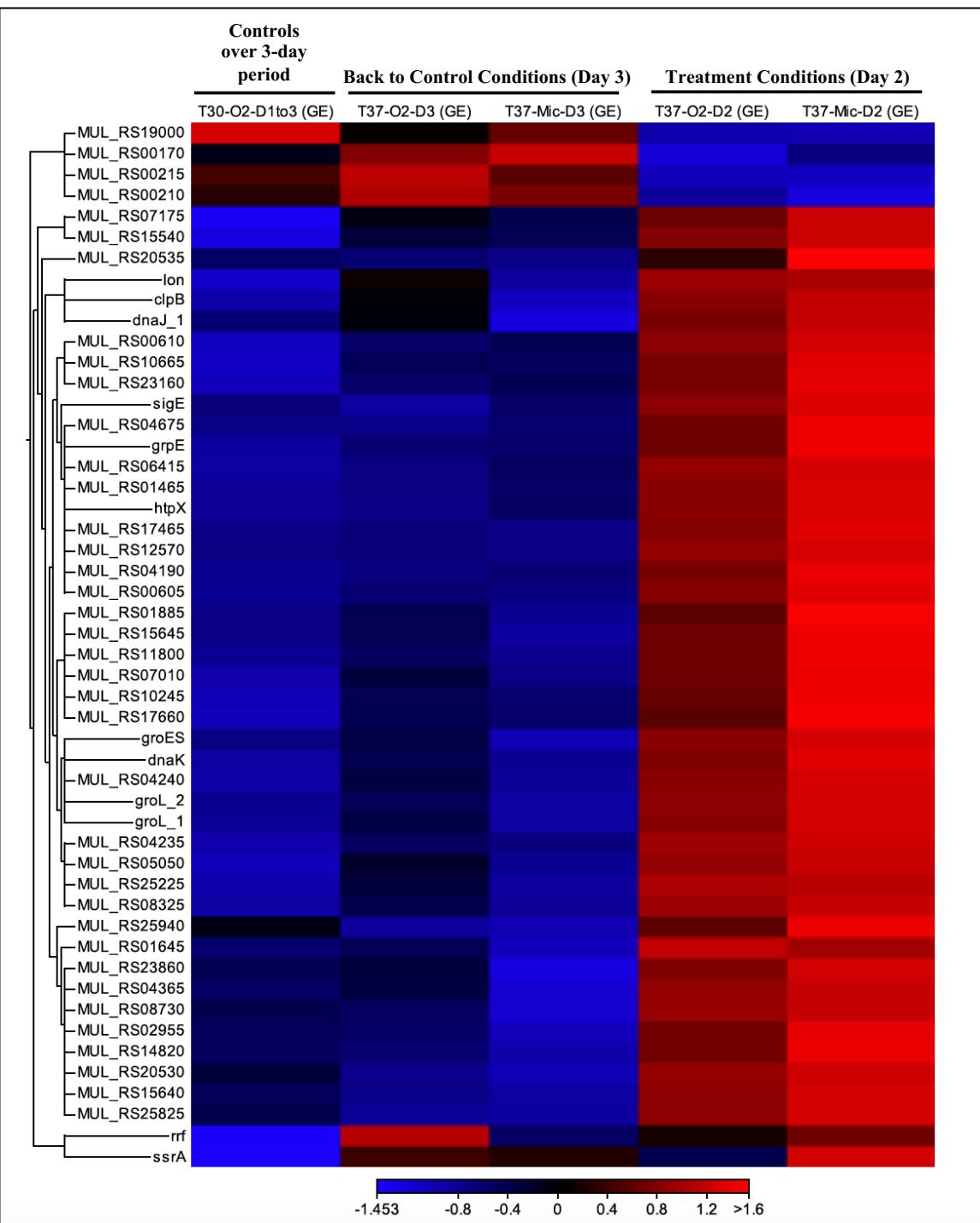
154 ER gene expression was significantly downregulated when *M. ulcerans* grown aerobically at
 155 30°C (Control) were exposed aerobically at 37°C ($p= 0.02923$) for 24 hours, and significantly
 156 upregulated when brought back to aerobic at 30°C ($p=0.0002$ compared to control and $p=0.001$
 157 compared to 37°C at aerobic condition-day 2). Although ER gene expression was

158 downregulated when exposed to 37°C under microaerophilic conditions and upregulated when
159 brought back to 30°C and aerobic conditions, the regulation was not statistically significant
160 (Figure 4A).

161

Figure 4. Regulation of ER expression after *M. ulcerans* exposure to differing temperature and oxygen conditions. (A) Control conditions of *M. ulcerans* at 30°C and aerobic conditions from days 1-3; (B and in blue box): *M. ulcerans* exposed to 37°C and aerobic conditions on Day 2 [T37-O2 (D2)] but transferred back to 30°C and aerobic condition on day 3 [T30-O2 (D3)]; (C and in red box): *M. ulcerans* exposed to 37°C and microaerophilic condition on day 2 [T37-Mic (D2)] but transferred back to 30°C and aerobic condition on day 3 [T30-O2 (D3)]; (D and in green box): *M. ulcerans* exposed to 37°C and anaerobic condition on day 2 [T37-Anae (D2)] but transferred back to 30°C and aerobic condition on day 3 [T37-O2 (D3)]: Bars indicate standard error. P values indicate significance values between treatment and control. Stars indicate significance within treatments.

162


163 The shift of *M. ulcerans* at 30°C under aerobic conditions to 37°C and anaerobic conditions
164 showed significant downregulation of ER gene expression (p=0.002). When the cultures were
165 brought back to control conditions, ER gene expression was not statistically different from the
166 control, but significantly upregulated (p=0.01) compared to *M. ulcerans* at 37°C under
167 anaerobic conditions on day 2 (Figure 4B).

168

169 ***M. ulcerans* global stress response on exposure to high temperature and low oxygen**
170 **conditions**

171 RNAseq analysis was performed to determine regulated gene response to exponentially grown
172 *M. ulcerans* at 30°C under aerobic conditions that were exposed to 37°C or to the combination
173 of 37°C and microaerophilic conditions. A heat-map representing 50 of the top significant
174 differentially regulated genes across treatments and timepoints compared to the control
175 condition is shown in Figure 5, however, a heat map and list of all significantly differentially
176 regulated genes can be found in Supplemental Figure 1 and Supplemental Table 1, respectively.

177

Figure 5. Fifty significantly differentially regulated genes across treatments and timepoints. T30-O2-D1-3: *M. ulcerans* grown aerobically at 30°C for the entire 3 day study; T37-O2-D3: *M. ulcerans* grown aerobically at 37°C for 24 hours but then moved back to control conditions for 24 hours; T37-Mic-D3: *M. ulcerans* grown microaerophilicly at 37°C for 24 hours but then moved back to control conditions for 24 hours; T37-O2-D2: *M. ulcerans* grown aerobically at 37°C for 24 hours; T37-Mic-D2: *M. ulcerans* grown microaerophilicly at 37°C for 24 hours.

179 RNASeq data showed 187 differentially regulated genes when *M. ulcerans* was grown
180 aerobically at 37°C compared to those that remained in control conditions for the duration of
181 the experiment. There were 158 upregulated genes including one gene involved in
182 Environmental Informational Processing, 19 with Genetic Information Processing, 45 with
183 Metabolism, and 4 with Signaling and Cellular Processes. Two genes were uncharacterized,
184 and 87 had no KEGG orthology (KO) assigned. Twenty-nine genes were significantly
185 downregulated compared to *M. ulcerans* in control conditions, including 3 involved in
186 Environmental Informational Processing, 4 with Genetic Information Processing, 13 involved
187 in Metabolism (3 of which were MUP001 plasmid genes MUP032c, MUP039c, and MUP040c,
188 encoding for MLSB, MLSA2 and MLSA1, respectively), and 2 involved in Signaling and
189 Cellular Processes (4, 24). Seven significantly downregulated genes had no KO assigned
190 (Figure 5, Supplemental Figure 1 and Supplemental Table 1).

191
192 *M. ulcerans* moved back to control conditions on day 3 from being grown aerobically at 37°C
193 showed only 12 significantly upregulated genes compared to *M. ulcerans* grown under control
194 conditions for the entire experiment. These included 5 genes involved in Genetic Information
195 Processing, 6 genes involved in Metabolism (including MUP032c and MUP039c), and 1 with
196 no KO assigned. Only seven genes were significantly downregulated compared to those under
197 control conditions including 4 involved in Metabolism, and 3 with no KO assigned (Figure 5,
198 Supplemental Figure 1 and Supplemental Table 1).

199
200 When *M. ulcerans* was grown microaerophilicly at 37°C there were 372 significantly and
201 differentially regulated genes compared to *M. ulcerans* grown in control conditions for the
202 entire experiment. A total of 349 genes were upregulated including 3 genes involved in

203 Environmental Informational Processing, 38 involved in Genetic Information Processing
204 (including MUP001 plasmid gene MUP005c, encoding a possible chromosome partitioning
205 protein ParA) (27), 110 with Metabolism, and 7 with Signaling and Cellular Processes. Three
206 genes were uncharacterized, and 188 had no KO assigned. Twenty-three genes were
207 significantly downregulated compared to control conditions including 2 involved in
208 Environmental Informational Processing, 2 with Genetic Information Processing, 11 involved
209 in Metabolism (3 of which were MUP001 plasmid genes MUP039c, and MUP040c, encoding
210 for MLSA2 and MLSA1, respectively), and 1 involved in Signaling and Cellular Processes.
211 Seven significantly downregulated genes had no KO assigned.

212

213 When *M. ulcerans* was returned to control conditions on day 3 after being grown
214 microaerophilicly at 37°C there were only 2 significantly upregulated genes compared to *M.*
215 *ulcerans* grown under control conditions for the entire experiment. These upregulated genes
216 included 2 gene involved in Metabolism, and 1 with no KO assigned. Only 5 genes were
217 significantly downregulated compared to control, with all 5 being involved in Metabolism,
218 including MUP032c.

219

220 Finally, comparison of gene expression among *M. ulcerans* growing at 37°C either aerobically
221 or microaerophically showed 76 genes that were upregulated under the microaerophilic
222 conditions compared to aerobic condition. These included 12 genes involved in Genetic
223 Information Processing, 28 genes involved in Metabolism, 4 involved with Signaling and
224 Cellular Processes, and 32 with no KO assigned. There were no statistically significant
225 differences in downregulated *M. ulcerans* genes between either of the oxygen treatment
226 conditions grown at 37°C.

227

228 **Discussion**

229 The capacity of *Mycobacterium ulcerans* to sense, respond and adapt to variable and hostile
230 environmental conditions inevitably makes it successful in its natural environment and
231 increases its ability to survive in its host. With this in mind, we conducted one of the first
232 studies investigating *M. ulcerans* growth and transcriptional response (including modulation
233 of mycolactone gene expression and global responses) to the abiotic conditions of UV,
234 temperature, and oxygen, in an effort to better understand the *M. ulcerans* environmental niche
235 and factors promoting *M. ulcerans* pathogenesis.

236

237 Premature termination of the *crtI* gene in *M. ulcerans* that protects its progenitor, *M. marinum*,
238 against sunlight damage suggests *M. ulcerans* either resides in UV protected areas or there is
239 presence of other machineries to counteract the damage (28, 29). However, in our study, *M.*
240 *ulcerans* growth was not affected by UV radiation exposure for 10 min. Further investigations
241 exposing *M. ulcerans* to longer duration is needed to confirm its resistance to UV radiation
242 over longer exposure times. Although our study showed downregulation of mycolactone (ER)
243 expression on UV exposure via RT-qPCR, this was not significant. Under laboratory
244 conditions, wild-type *M. ulcerans* produces bright yellow pigmented colonies, while
245 mycolactone mutants are white, suggesting mycolactone mediated protection may be possible
246 (4, 25). In our study, the color of UV treated *M. ulcerans* colonies were yellow on M7H10
247 agar plates (data not shown) indicating mycolactone production. Quantitation of mycolactone
248 production and the use of a mycolactone negative mutant will further elucidate the effect of
249 UV beyond gene expression. Further studies on transcriptional analysis are also required to
250 understand regulation of other machineries that can confer photoprotection and/or DNA repair
251 to protect *M. ulcerans* against UV damage.

252

253 Exposure to higher temperature and lower than optimal oxygen conditions is also known to
254 modulate stress response and virulence genes in environmental pathogens that can aid in the
255 bacterial survival and pathogenicity inside the human host (30, 31). Differences in oxygen
256 conditions did not impact *M. ulcerans* growth in our study. *M. ulcerans* exposure to anaerobic
257 conditions caused slight upregulation of ER gene expression, however, was statistically non-
258 significant. But when *M. ulcerans* was brought back to aerobic conditions 24 hours later, ER
259 gene expression was significantly upregulated. The combining of anaerobic and 37°C
260 conditions caused significant downregulation of the ER gene that was significantly upregulated
261 when brought back to aerobic and 30°C conditions. *M. ulcerans* lacks anaerobic pathway genes
262 and because of this are suggested to be adapted to an aerobic or microaerophilic environmental
263 niche (28). However, its association with mammalian feces and asymptomatic gut colonization
264 raises questions regarding viability, yet lack of pathogenicity in the anaerobic intestinal
265 environment (32-37). Although the single stress anaerobic condition did not affect
266 mycolactone gene expression, combining high temperature and anaerobic conditions
267 downregulated mycolactone gene expression in our study, and may account for the lack of
268 pathogenesis in the mammalian intestine. Indeed, in *S. aureus*, another pathogen system, toxic
269 shock syndrome toxin 1 (TSST-1) was produced in a CO₂ environment (38, 39), increasing
270 production when there was a shift from anaerobic to increasing oxygen concentrations (2%);
271 however, toxin production was decreased for increasing oxygen concentration (6%) in an
272 environment without CO₂ (39). Similarly, slight reduction in oxygen concentrations in
273 microaerophilic environments could enhance ER gene expression but this effect may not occur
274 at 0% oxygen in anaerobic environments, suggesting the possibility of a very narrow niche of
275 *M. ulcerans* and mycolactone expression.

276

277 Under the 30⁰C-microaerophilic condition, the ER gene was significantly upregulated, but was
278 downregulated when brought back to aerobic conditions. On the other hand, ER was
279 significantly downregulated when *M. ulcerans* was placed at 37⁰C-aerobic then significantly
280 upregulated when brought back to 30⁰C-aerobic. Further, our *M. ulcerans* RNASeq data from
281 the 37⁰C-aerobic treatment showed downregulation of *mlsA1*, *mlsA2*, and *mlsB*, type I
282 polyketide synthase genes whose proteins synthesize the upper side chain and mycolactone
283 core, and the acyl side chain, respectively (4, 24). Exposing *M. ulcerans* to combined
284 microaerophilic and 37⁰C stress conditions led to ER gene downregulation that was not
285 statistically significant through RT-qPCR, though *M. ulcerans* RNASeq data under these
286 combined conditions showed significant downregulation of *mlsA1* and *mlsA2*. These data
287 contrast with our initial hypothesis that predicted upregulation of mycolactone in response to
288 combined effects of high temperature and low oxygen conditions which we presumed to be
289 similar in the subdermal environment during human infection.

290

291 When considering how our *in vitro* data could fit within the infection model, one must consider
292 the skin environment. The partial pressure of oxygen (PO₂) is lower at different layers of skin
293 (superficial-8.0 ± 3.2 mmHg, dermal papillae- 24.0 ± 6.4 and sub-papillary plexus-35.2 ± 8.0)
294 compared to PO₂ at atmosphere (160 mmHg) (40). The sudden exposure to higher temperature
295 and lower oxygen conditions depending on the skin layer could induce adaptive stress response
296 mechanisms in *M. ulcerans* causing it to use its energy efficiently for production of enzymes
297 and other proteins, and lipids. Triggering appropriate responses that allow survival and
298 propagation under these conditions could compromise mycolactone synthesis, while also
299 directing the expression of other genes modulating virulence and pathogenicity. However,
300 these are speculations that require much deeper examination for mechanistic validation.

301

302 Nevertheless, the combined stress of 37⁰C-microaerophilic conditions upregulated genes for
303 lipid metabolism (Acyl-CoA dehydrogenases) and mycolic acid synthesis (*accD6, mas, ethA*),
304 similar to what has been shown in *M. bovis* and *M. tuberculosis* (41-43). Another upregulated
305 gene, *eth*, encodes oxidoreductase that oxidizes keto-mycolic acid to synthesize waxy mycolic
306 acids (44). The upregulation of these genes in our study suggests that combined temperature-
307 oxygen stress caused disturbance in overall *M. ulcerans* metabolism and cell wall synthesis.
308 Upregulation of the *mmsA* gene, which generates propionyl CoA that produces fatty acids
309 required for cell envelope formation suggests effects of combined stress on the cell membrane
310 (45-47).

311

312 Genes encoding transcriptional regulators SigB, SigE and WhiB5 were also among
313 significantly upregulated genes in *M. ulcerans* compared to controls within the 37⁰C-
314 microaerophilic treatment. Sigma B is one of the principal sigma factors and is considered a
315 general stress responder in mycobacteria (48, 49). SigB also positively regulates expression of
316 chaperonins such as *groEL2* and *groES*, antigens such as ESAT-6-like proteins and cell-wall
317 associated and lipid metabolism related genes in *M. tuberculosis* (50). WhiB proteins are redox
318 sensing transcriptional regulators (51). WhiB5 positively regulates 58 genes including type VII
319 secretion systems (ESX-2 and 4) (51). WhiB5 proteins in *M. tuberculosis* are relatively stable
320 and under-expressed in aerobic conditions but are slightly upregulated at 0% oxygen (52). They
321 are suggested to be immunomodulators and enhancers of *M. tuberculosis* survival during
322 nutrient limitation (51).

323

324 Finally, stress response genes *hsp20, grpE, clpB, groES, groEL1* and *groEL2, dnaJ, dnaK*
325 *ahpC*, and *ahpD* were also among those upregulated on exposure of *M. ulcerans* under
326 combined 37⁰C -microaerophilic conditions. These genes respond to heat shock and oxidative

327 stress (41, 49, 53). The *clpB* gene is associated with virulence in several gram positive (e.g. *S.*
328 *aureus*) and negative pathogens (e.g. *Salmonella enterica* serovar *typhimurium*) (54). In *M.*
329 *tuberculosis*, *clpB* enhances biofilm formation and promotes survival against hypoxia, heat
330 stress and inside macrophages (54). Similarly, *dnaK* provides *M. tuberculosis* protection
331 against heat shock and oxidative stress inside the macrophage (43, 55). Proteins ClpB, GroES,
332 GroEL1, DnaK, AhpC, and AhpD are found in the extracellular matrix (ECM) of *M. ulcerans*
333 biofilm, and *M. ulcerans* with ECM have higher colonization and virulence (56). Upregulation
334 of these *M. ulcerans* genes *in vitro* suggests that environmental signals such as temperature,
335 oxygen, UV, pH, etc. could trigger adaptive responses of *M. ulcerans* to these stresses during
336 infection, or within polymicrobial communities in its natural environment. These genes could
337 promote biofilm formation and enhance colonization and virulence activity of *M. ulcerans*.
338 And, although mycolactone is considered as a major virulence factor, more investigations are
339 needed to understand the impact of genes (and their products) such as *clpB* and others that are
340 known virulence determinants in other bacteria. Another important consideration is that in this
341 study we defined higher temperature and lower than optimal oxygen conditions as “stressed
342 conditions” for *M. ulcerans* based on current knowledge about its growth in lab conditions;
343 however, these environmental conditions may not be a “stressed environment” for *M. ulcerans*
344 in its natural habitat and *M. ulcerans*’s response to fluctuating temperature and oxygen
345 conditions may simply be a “response” instead of “stress response”.

346
347 Many of the same genes discussed above that were upregulated in the 37°C-microaerophilic
348 treatment were also upregulated in the 37°C-aerobic treatment. But interestingly, no statistical
349 differences in downregulated genes were found when comparing combined stress 37°C-
350 microaerophilic to single stress of 37°C-aerobic treatment. Altogether, our data suggest a
351 higher impact of temperature than oxygen on *M. ulcerans* and mycolactone expression. One

352 possible explanation may be that the microaerophilic conditions induce upregulation of
353 mycolactone expression, but the combined stress of high temperature and low oxygen
354 prioritizes the expression of other essential genes (i.e. stress response and fatty acid degradation
355 genes as discussed above), thereby compromising mycolactone synthesis. This is a mechanism
356 found in other pathogens. For instance, in *Vibrio cholerae*, the promoter of cholera toxin
357 regulator (*toxR*) and heat shock (*htpG*) genes overlap but are transcribed in opposite directions
358 (57, 58). Hence, increase in temperature allows transcription of the *htpG* gene with reduction
359 in *toxR* expression. Another consideration is, in *M. ulcerans*, the ER domain is present
360 repeatedly in the *mlsA* gene (3 times in *mlsA1* and 1 time in *mlsA2*); however, this domain is
361 absent in the *mlsB* gene (4). Hence, ER represents one of many possible genes involved in
362 mycolactone synthesis, but its regulation does not solely depict mycolactone gene expression.
363 Thus, this may account for the discrepancy in RT-qPCR and RNASeq results for mycolactone
364 expression.

365

366 Finally, data support that mycolactone producing mycobacteria (MPM) such as *M. ulcerans*
367 and other ecological variants evolved from a common *M. marinum* progenitor by undergoing
368 various gene deletions, pseudogene formation and rearrangement, and acquiring plasmid
369 pMUM to adapt to a specific ecological niche (59). In the evolutionary hierarchy, *M. liflandii*
370 is suggested to be an intermediate between the ancestor *M. marinum* M and *M. ulcerans* Agy99,
371 as *M. marinum* consists of all gene cluster present in *M. liflandii* and *M. liflandii* consists of all
372 gene cluster present in *M. ulcerans* (60). But there are some genes that are pseudogenized in
373 *M. ulcerans* but not in *M. liflandii* and vice-versa, indicating that there was a significant and
374 independent reductive evolution of their genomes. These differences in mutation patterns along
375 with the variation in type of mycolactone produced indicates that these variants experience
376 different sets of environmental pressure and have adapted to occupy different niches,

377 underscored by differing hosts (6, 61). Therefore, it would be interesting to determine whether
378 these responses are also observed for other MPMs.

379
380 In conclusion, *M. ulcerans* acquired plasmid pMUM001 at the expense of a large deletion in
381 its genome thereby suggesting its specific role in adaptation to a particular environment (59).
382 In this study, *M. ulcerans* was exposed to several abiotic stresses to understand their effect on
383 *M. ulcerans* growth, and mycolactone and other gene expression. Our data suggest that *M.*
384 *ulcerans* may reside in a microaerophilic habitat in the environment and mycolactone could
385 provide a fitness advantage in those environments. Data also suggest that *M. ulcerans* may
386 have higher tolerance to UV than previously thought and mycolactone may provide a fitness
387 advantage in this context. The exposure of *M. ulcerans* to combined high temperature (37⁰C)
388 and low oxygen upregulated several stress response genes and other genes known to be
389 involved in virulence in *M. tuberculosis*, while mycolactone gene expression was
390 downregulated-suggesting other virulence factors may be utilized by *M. ulcerans*. Further,
391 downregulation of mycolactone expression on exposure to combined anaerobic and 37⁰C could
392 partly explain the reason behind the asymptomatic gut colonization of different mammals as
393 reported in previous studies (35). Some limitations to this study such as small sample size,
394 short duration exposure of *M. ulcerans* to UV radiations (up to 10 mins) and no transcriptome
395 analysis to study other machineries that can protect *M. ulcerans* against UV damage should be
396 addressed in future studies. Additionally, short time points were selected for this study to
397 understand the impacts of short term exposure on *M. ulcerans* response through changes in
398 gene expression; however, measuring responses to longer exposure times will be important
399 future experiments. Finally, investigations measuring mycolactone production, and using a
400 mycolactone negative *M. ulcerans* mutant and other MPMs are needed to further elucidate the
401 role of mycolactone against these and other abiotic stresses. But altogether, these initial data

402 increase our understanding of *M. ulcerans* response to a changing environment and open doors
403 to future studies that may provide insight to the *M. ulcerans* environment and pathogenesis
404 upon host infection.

405

406 **Materials and methods**

407 **Bacterial strains and culture**

408 A 1% inoculum of *Mycobacterium ulcerans* JKD8083 or *Agy*99 was inoculated into 30mL
409 total volume Middlebrook 7H9 (M7H9) broth containing Oleic Albumin Dextrose Catalase
410 (OADC) and incubated aerobically at 30°C for 4-6 weeks to reach exponential phase for use in
411 this study.

412

413 **Measurement of optical density (OD600)**

414 *M. ulcerans* cells form aggregates in culture. Hence, aggregates were broken by passage
415 through a 20G syringe, followed by a 25G syringe 10 times. Optical density was measured
416 using a ThermoScientific Genesys 20 spectrophotometer, with M7H9 medium used as a blank.
417 Syringe passage of *M. ulcerans* was used for all experiments.

418

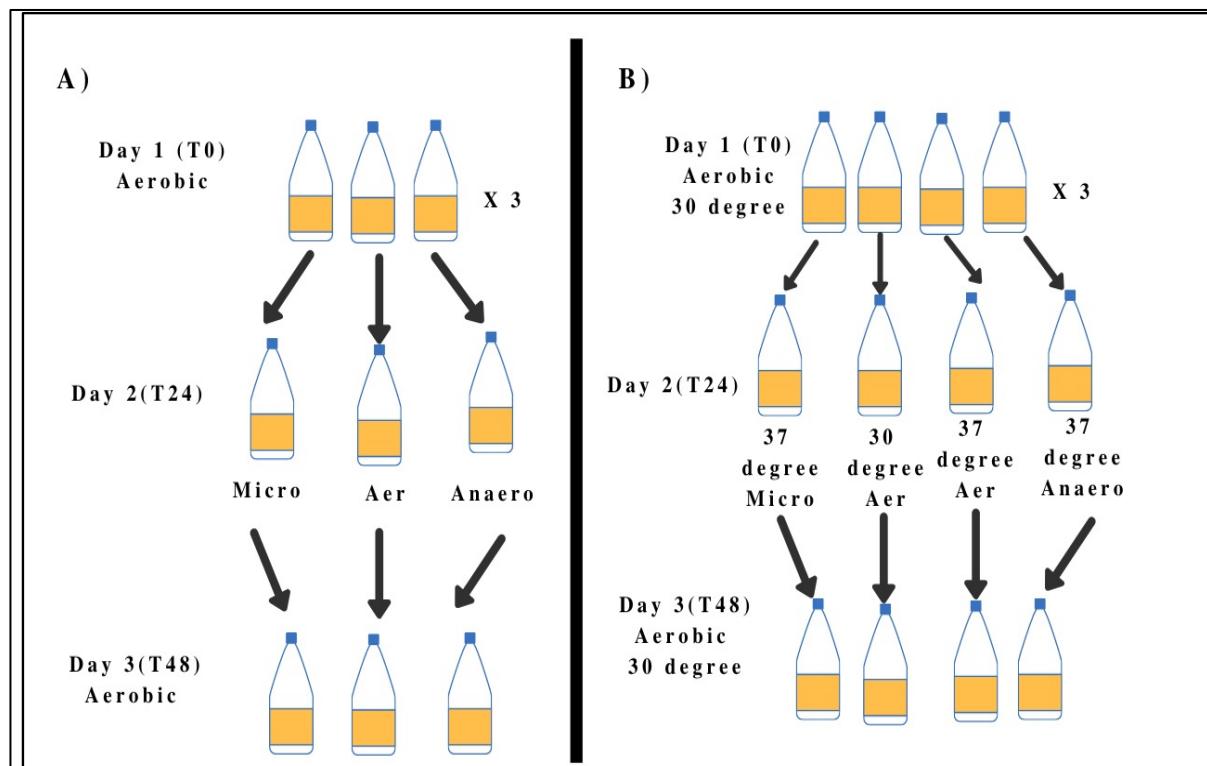
419 **Measurement of bacterial growth**

420 *M. ulcerans* was serially diluted in \log_{10} concentrations (from undiluted to 10^{-6}) and plated onto
421 M7H10 agar plates (10 uL) in triplicate using the spread plate technique and incubated at 30°C.
422 Colonies were counted to determine CFUs/mL after 4-6 weeks to determine the effect of the
423 abiotic factors on *M. ulcerans* growth, and a mean was taken for the triplicates, with standard
424 errors calculated.

425

426 **Effect of UV exposure on *M. ulcerans* growth and mycolactone gene expression**

427 Mycolactone expression was measured on exposure to UV at different time intervals (30s, 2
428 min and 10 min). The time for UV exposure was determined based on work by David *et al.*
429 (1971), where *M. tuberculosis* and *M. marinum* were exposed to UV for up to 30 seconds and
430 were inactivated (90%) by 7 seconds and 22 seconds UV exposure, respectively (62). *M.*
431 *ulcerans* during exponential growth (5.7×10^5 CFU/mL, 30 mL) was transferred to individual
432 Petri plates and exposed to UV (254 nm wavelength) for their respective time interval to
433 measure *M. ulcerans* growth and modulation of mycolactone gene expression. Controls
434 included *M. ulcerans* transferred to Petri plates, but without UV exposure. At each timepoint
435 and condition, 1 mL of *M. ulcerans* was transferred for serial dilution and growth measurement
436 by optical density and CFU count, and 5.0 mL of sample was transferred for RNA isolation
437 and RT-qPCR to measure mycolactone gene expression as described below.


438

439 **Effect of temperature and oxygen on *M. ulcerans* growth and mycolactone gene
440 expression**

441 To determine the effects of different oxygen conditions on *M. ulcerans* growth, *M. ulcerans*
442 initially grown aerobically at 30°C were exposed to either microaerophilic or anaerobic
443 conditions at 30°C for 24 hours, by placing those cultures within anaerobic chambers with
444 appropriate gas paks (BD) and oxygen indicators (Figure 6A). Optical density was measured
445 initially, and after 24 hours. *M. ulcerans* cultures were then placed back in aerobic conditions
446 at 30°C for an additional 24 hours (48 hours from initial time point). The optical density for
447 each treatment and timepoint was measured. To study the effects of temperature, *M. ulcerans*
448 in exponential growth aerobically at 30°C were exposed to 37°C for 24 hours and then placed
449 back in the 30°C incubator for an additional 24 hours. The optical density was measured for
450 each treatment and time point. At each timepoint and condition, 1 mL of sample was

451 transferred for serial dilution and growth measurement, and 5.0 mL of sample was transferred
452 for RNA isolation and RT-qPCR to measure mycolactone gene expression. Each experiment
453 was conducted with triplicate replicates and at least three times.

454

Figure 6. Schematic representation of study on the effect of oxygen (A) and combined high temperature (37°C) and low oxygen (microaerophilic and anaerobic) condition (B) on mycolactone and *M. ulcerans* global gene expression.

455

456 **Combined effect of high temperature and low oxygen in mycolactone and global gene
457 expression**

458 Exponentially grown *M. ulcerans* (4-6 weeks) aerobically and at 30°C were exposed to 37°C
459 under microaerophilic or anaerobic conditions for 24 hours (Figure 6B). After 24 hours, the
460 cultures were again brought back to control conditions (30°C and aerobic) for an additional 24
461 hours (48 hours from initial timepoint). Optical densities were measured for each condition and

462 timepoint, with samples also collected and analyzed as described above. Each experiment was
463 conducted with triplicate replicates (Figure 6B).

464

465 **RNA isolation**

466 *M. ulcerans* RNA was isolated using the Trizol method, according to manufacturer instructions.
467 Bacterial cells were pelleted by centrifugation, with supernatant removed, and 1.0 mL Trizol
468 reagent was added to the pellet and mixed thoroughly and bead beaded. After incubation for
469 one hour, chloroform was added and centrifuged for phase separation. The aqueous phase
470 containing RNA was obtained and precipitated using isopropanol followed by washing with
471 75% ethanol. The pellet was dried and dissolved in nuclease-free water to obtain RNA
472 suspension. RNA was quantified using the qubit 2.0, integrity verified by gel electrophoresis,
473 and DNase treated as necessary.

474

475 **Preparation of cDNA**

476 cDNA was prepared with appropriate controls using the Verso cDNA Synthesis kit according
477 to the manufacturer's instructions. The reaction mixture included 4 μ l synthesis buffer, 2 μ l
478 dNTP mix, 1 μ l random hexamer, 1 μ l verso enzyme and 1 μ l RT enhancer (to prevent genomic
479 DNA carryover) was added to the template and heated at 42°C for one hour to obtain cDNA.
480 Absence of genomic DNA was confirmed by qPCR.

481

482 **Quantitative Real Time PCR (RT-qPCR)**

483 RT-qPCR targeting the enoyl reductase (ER) domain of module B of pMUM001 responsible
484 for mycolactone production was performed on cDNA (15, 63, 64). The polyphosphate kinase
485 (*ppk*) gene was used as a reference gene (25). The master mix contained one μ l of each forward
486 and reverse primer for *ppk* gene and ER gene, 2.5 μ l of ER probe and *ppk* probe, 12.5 μ l of

487 master mix and 0.5 μ l water and 3 μ l template cDNA per well of PCR plate. The forward
488 primer for ER was 5'CGCCTACATCGCTTGG3' and reverse primer
489 5'ATTGAATCGCAGCCATACC3'. The forward *ppk* primer was 5'
490 CGGGAAACTACAACAGCAAGACC 3' and the *ppk* reverse was 5'
491 CCACCAACAGATTGCGATAGG 3'. PCR was conducted on triplicate samples using a
492 BioRad CFX96 with parameters that include 95.0°C for 10:00 min, and 39 cycles of 95.0°C
493 for 15 seconds, 55.0°C for 30 seconds, 57.0°C for 30 seconds.

494

495 **RNASeq Analysis**

496 RNA libraries were created from combined triplicate replicates of *M. ulcerans* RNA samples
497 under aerobic and 30°C (T0-T48H), aerobic and 37°C (T24 H), microaerophilic and 37°C (T24
498 H), and samples that were transferred from 37°C, aerobic or microaerophilic conditions to
499 aerobic and 30°C at 48 H [aerobic and 37°C (T48 H), microaerophilic and 37°C (T48 H)]
500 conditions. Libraries were created using the NEBNext® Ultra™ RNA Library Prep Kit and
501 NEBNext® Multiplex Oligos (Dual Index Primers) for Illumina® and associated protocols.
502 High-throughput RNA sequencing was performed by St. Jude Children's Research Hospital on
503 an Illumina HiSeq2000 with 2 X 150bp PE (paired end) read lengths. Sequences were initially
504 trimmed by the sequencing facility using TrimGalore v0.4.2 but a more stringent quality
505 trimming was also performed using default parameters within the Qiagen CLC Workbench
506 20.0.1 (<https://www.qiagenbioinformatics.com/>) following QC analysis of sequence reads. *M.*
507 *ulcerans* Agy99 and plasmid pMUM001 reference genomes were joined (References Sequence
508 NC_008611 joined with Reference Sequence NC_005916, Assembly GCF_000013925.1,
509 https://www.ncbi.nlm.nih.gov/assembly/GCF_000013925.1), and RNASeq data were mapped
510 with the following parameters: (a) maximum number of allowed mismatches was set at 2, with
511 insertions and deletions set at 3; (b) Length and similarity fractions were set to 0.9, with

512 autodetection for both strands; (c) minimum number of hits per read was set to 10. All genes
513 listed in heatmaps are labeled as listed in RefSeq for a particular locus tag given in the reference
514 genomes' annotation.

515

516 Differential expression was measured in the CLC Workbench that used the assumption that
517 transcripts with similar average expression levels had similar variability, according to the CLC
518 Manual. Statistical differential expression tests were performed based on a negative binomial
519 generalized linear model similar to that of edgeR (65). Differentially expressed genes were
520 generated based on a false discovery rate -corrected *p*-value (FDR) using the Wald test for
521 comparing the effects of treatments compared to control, or treatments compared across time.

522 Treatment reads with a fold change of 1.5 or higher, and FDR adjusted P-value less than or
523 equal to 0.05 were considered significant (66). Statistically significant, differentially regulated

524 gene transcripts were further annotated into pathways by linking protein ID with potential
525 conserved domains and protein classifications archived within the Conserved Domain
526 Database (“Conserved Domains and Protein Classification,” n.d.), and by using the UniProt
527 (“UniProt,” n.d.), KEGG (Kanehisa Laboratories, n.d.), and STRING databases (ELIXIR Core

528 Data Resources, n.d.), gene annotations within NCBI
529 (https://www.ncbi.nlm.nih.gov/nuccore/NC_008611.1) and

530 (https://www.ncbi.nlm.nih.gov/nuccore/NC_005916), mycolactone locus patent information
531 (<https://www.freepatentsonline.com/y2006/0024806.html>) and the Mycobrowser genomic and
532 proteomic database for reference against other mycobacterial species
533 (<https://mycobrowser.epfl.ch/genes/Rv0753c>).

534

535 **Statistical analysis**

536 Significant difference changes in *M. ulcerans* growth under control conditions compared to
537 abiotic treatment conditions were determined using a student's T-test. RT-qPCR data were
538 analyzed by relative quantification of gene expression compared to the control using python
539 code implementing the $\Delta\Delta CT$ method (67). The reference gene used was *ppk* and ER was used
540 for the target gene. The fold change in gene expression was determined to obtain regulation
541 relative to control (baseline). If the fold change relative to control was greater than 1 then it
542 was considered upregulated. If fold change was less than 1 then it was considered
543 downregulated. The amount of downregulation (for fold change 0 to 1) was determined by
544 calculating negative of the reciprocal of fold change, as described by Babu, 2004 (68). The
545 significant cut-off value (α) for upregulation and downregulation was $p=0.050$.

546

547 **Data Availability**

548 Raw sequences are archived in the NCBI Sequence Read Archive (SRA) under Bioproject
549 Accession number: PRJNA907849.

550

551 **Acknowledgements**

552 This work was supported, in part, by the joint NSF-NIH-NIFA Ecology and Evolution of
553 Infectious Disease program [DEB 1911457] awarded to HRJ and MEB. The funders had no
554 role in study design, data collection and interpretation, or the decision to submit the work for
555 publication.

556

557 **References**

558 1. K. Roltgen and G. Pluschke: Buruli Ulcer: History and Disease Burden. In: *Buruli*
559 *Ulcer: Mycobacterium Ulcerans Disease*. Ed G. Pluschke&K. Roltgen. Cham (CH) (2019)
560 doi:10.1007/978-3-030-11114-4_1

561 2. M. Beissner, N. Arens, F. Wiedemann, E. Piten, B. Kobara, M. Bauer, K. H. Herbinger,
562 K. Badziklou, A. Banla Kere, T. Loscher, J. Nitschke and G. Bretzel: Treatment Outcome of
563 Patients with Buruli Ulcer Disease in Togo. *PLoS Negl Trop Dis*, 9(10), e0004170 (2015)
564 doi:10.1371/journal.pntd.0004170

565 3. T. K. Hamzat and B. Boakye-Afram: Health-related quality of life among persons living
566 with buruli ulcer in amasaman community, ga west district accra, ghana. *Int J Health Sci
(Qassim)*, 5(1), 29-38 (2011)

568 4. T. P. Stinear, A. Mve-Obiang, P. L. Small, W. Frigui, M. J. Pryor, R. Brosch, G. A.
569 Jenkin, P. D. Johnson, J. K. Davies, R. E. Lee, S. Adusumilli, T. Garnier, S. F. Haydock, P. F.
570 Leadlay and S. T. Cole: Giant plasmid-encoded polyketide synthases produce the macrolide
571 toxin of *Mycobacterium ulcerans*. *Proc Natl Acad Sci U S A*, 101(5), 1345-9 (2004)
572 doi:10.1073/pnas.0305877101

573 5. F. S. Sarfo, R. Phillips, M. Wansbrough-Jones and R. E. Simmonds: Recent advances:
574 role of mycolactone in the pathogenesis and monitoring of *Mycobacterium ulcerans*
575 infection/Buruli ulcer disease. *Cell Microbiol*, 18(1), 17-29 (2016) doi:10.1111/cmi.12547

576 6. J. P. Receveur, A. Bauer, J. L. Pechal, S. Picq, M. Dogbe, H. R. Jordan, A. W.
577 Rakestraw, K. Fast, M. Sandel, C. Chevillon, J. F. Guegan, J. R. Wallace and M. E. Benbow:
578 A need for null models in understanding disease transmission: the example of *Mycobacterium*
579 *ulcerans* (Buruli ulcer disease). *FEMS Microbiol Rev*, 46(1) (2022)
580 doi:10.1093/femsre/fuab045

581 7. A. J. Muleta, R. Lappan, T. P. Stinear and C. Greening: Understanding the transmission
582 of *Mycobacterium ulcerans*: A step towards controlling Buruli ulcer. *PLoS Negl Trop Dis*,
583 15(8), e0009678 (2021) doi:10.1371/journal.pntd.0009678

584 8. L. P. Campbell, A. O. Finley, M. E. Benbow, J. Gronseth, P. Small, R. C. Johnson, G.
585 E. Sopoh, R. M. Merritt, H. Williamson and J. Qi: Spatial Analysis of Anthropogenic
586 Landscape Disturbance and Buruli Ulcer Disease in Benin. *PLoS Negl Trop Dis*, 9(10),
587 e0004123 (2015) doi:10.1371/journal.pntd.0004123

588 9. R. W. Merritt, E. D. Walker, P. L. Small, J. R. Wallace, P. D. Johnson, M. E. Benbow
589 and D. A. Boakye: Ecology and transmission of Buruli ulcer disease: a systematic review. *PLoS
590 Negl Trop Dis*, 4(12), e911 (2010) doi:10.1371/journal.pntd.0000911

591 10. J. Noeske, C. Kuaban, S. Rondini, P. Sorlin, L. Ciaffi, J. Mbuagbaw, F. Portaels and G.
592 Pluschke: Buruli ulcer disease in Cameroon rediscovered. *Am J Trop Med Hyg*, 70(5), 520-6
593 (2004)

594 11. J. A. Fyfe, C. J. Lavender, P. D. Johnson, M. Globan, A. Sievers, J. Azuolas and T. P.
595 Stinear: Development and application of two multiplex real-time PCR assays for the detection
596 of *Mycobacterium ulcerans* in clinical and environmental samples. *Appl Environ Microbiol*,
597 73(15), 4733-40 (2007) doi:10.1128/AEM.02971-06

598 12. R. Kotlowski, A. Martin, A. Ablordey, K. Chemlal, P. A. Fonteyne and F. Portaels:
599 One-tube cell lysis and DNA extraction procedure for PCR-based detection of *Mycobacterium*
600 ulcerans in aquatic insects, molluscs and fish. *J Med Microbiol*, 53(Pt 9), 927-933 (2004)
601 doi:10.1099/jmm.0.45593-0

602 13. K. Vandelannoote, L. Durnez, D. Amissah, S. Gryseels, A. Dodoo, S. Yeboah, P. Addo,
603 M. Eddyani, H. Leirs, A. Ablordey and F. Portaels: Application of real-time PCR in Ghana, a
604 Buruli ulcer-endemic country, confirms the presence of *Mycobacterium ulcerans* in the
605 environment. *FEMS Microbiol Lett*, 304(2), 191-4 (2010) doi:10.1111/j.1574-
606 6968.2010.01902.x

607 14. H. R. Williamson, M. E. Benbow, K. D. Nguyen, D. C. Beachboard, R. K.
608 Kimbirauskas, M. D. McIntosh, C. Quaye, E. O. Ampadu, D. Boakye, R. W. Merritt and P. L.
609 Small: Distribution of *Mycobacterium ulcerans* in buruli ulcer endemic and non-endemic
610 aquatic sites in Ghana. *PLoS Negl Trop Dis*, 2(3), e205 (2008)
611 doi:10.1371/journal.pntd.0000205

612 15. H. R. Williamson, M. E. Benbow, L. P. Campbell, C. R. Johnson, G. Sopoh, Y. Barogui,
613 R. W. Merritt and P. L. Small: Detection of *Mycobacterium ulcerans* in the environment
614 predicts prevalence of Buruli ulcer in Benin. *PLoS Negl Trop Dis*, 6(1), e1506 (2012)
615 doi:10.1371/journal.pntd.0001506

616 16. K. Carolan, A. Garchitorena, G. E. Garcia-Pena, A. Morris, J. Landier, A. Fontanet, P.
617 Le Gall, G. Texier, L. Marsollier, R. E. Gozlan, S. Eyangoh, D. Lo Seen and J. F. Guegan:
618 Topography and land cover of watersheds predicts the distribution of the environmental
619 pathogen *Mycobacterium ulcerans* in aquatic insects. *PLoS Negl Trop Dis*, 8(11), e3298 (2014)
620 doi:10.1371/journal.pntd.0003298

621 17. A. Garchitorena, B. Roche, R. Kamgang, J. Ossomba, J. Babonneau, J. Landier, A.
622 Fontanet, A. Flahault, S. Eyangoh, J. F. Guegan and L. Marsollier: *Mycobacterium ulcerans*
623 ecological dynamics and its association with freshwater ecosystems and aquatic communities:
624 results from a 12-month environmental survey in Cameroon. *PLoS Negl Trop Dis*, 8(5), e2879
625 (2014) doi:10.1371/journal.pntd.0002879

626 18. J. R. Wallace, K. M. Mangas, J. L. Porter, R. Marcisin, S. J. Pidot, B. Howden, T. F.
627 Omansen, W. Zeng, J. K. Axford, P. D. R. Johnson and T. P. Stinear: *Mycobacterium ulcerans*
628 low infectious dose and mechanical transmission support insect bites and puncturing injuries
629 in the spread of Buruli ulcer. *PLoS Negl Trop Dis*, 11(4), e0005553 (2017)
630 doi:10.1371/journal.pntd.0005553

631 19. H. R. Williamson, L. Mosi, R. Donnell, M. Aqqad, R. W. Merritt and P. L. Small:
632 *Mycobacterium ulcerans* fails to infect through skin abrasions in a guinea pig infection model:
633 implications for transmission. *PLoS Negl Trop Dis*, 8(4), e2770 (2014)
634 doi:10.1371/journal.pntd.0002770

635 20. B. L. Phippen and J. D. Oliver: Impact of hypoxia on gene expression patterns by the
636 human pathogen, *Vibrio vulnificus*, and bacterial community composition in a North Carolina
637 estuary. *Geohealth*, 1(1), 37-50 (2017) doi:10.1002/2016GH000024

638 21. A. M. Sass, C. Schmerk, K. Agnoli, P. J. Norville, L. Eberl, M. A. Valvano and E.
639 Mahenthiralingam: The unexpected discovery of a novel low-oxygen-activated locus for the
640 anoxic persistence of *Burkholderia cenocepacia*. *ISME J*, 7(8), 1568-81 (2013)
641 doi:10.1038/ismej.2013.36

642 22. O. Lam, J. Wheeler and C. M. Tang: Thermal control of virulence factors in bacteria: a
643 hot topic. *Virulence*, 5(8), 852-62 (2014) doi:10.4161/21505594.2014.970949

644 23. D. Zingue, A. Bouam, R. B. D. Tian and M. Drancourt: Buruli Ulcer, a Prototype for
645 Ecosystem-Related Infection, Caused by *Mycobacterium ulcerans*. *Clin Microbiol Rev*, 31(1)
646 (2018) doi:10.1128/CMR.00045-17

647 24. N. J. Tobias, T. Seemann, S. J. Pidot, J. L. Porter, L. Marsollier, E. Marion, F.
648 Letournel, T. Zakir, J. Azuolas, J. R. Wallace, H. Hong, J. K. Davies, B. P. Howden, P. D.
649 Johnson, G. A. Jenkin and T. P. Stinear: Mycolactone gene expression is controlled by strong
650 SigA-like promoters with utility in studies of *Mycobacterium ulcerans* and buruli ulcer. *PLoS*
651 *Negl Trop Dis*, 3(11), e553 (2009) doi:10.1371/journal.pntd.0000553

652 25. C. Deshayes, S. K. Angala, E. Marion, I. Brandli, J. Babonneau, L. Preisser, S.
653 Eyangoh, Y. Delneste, P. Legras, C. De Chastellier, T. P. Stinear, M. Jackson and L. Marsollier:
654 Regulation of mycolactone, the *Mycobacterium ulcerans* toxin, depends on nutrient source.
655 *PLoS Negl Trop Dis*, 7(11), e2502 (2013) doi:10.1371/journal.pntd.0002502

656 26. D. Sanhueza, J. F. Guegan, H. Jordan and C. Chevillon: Environmental Variations in
657 *Mycobacterium ulcerans* Transcriptome: Absence of Mycolactone Expression in Suboptimal
658 Environments. *Toxins (Basel)*, 11(3) (2019) doi:10.3390/toxins11030146

659 27. T. P. Stinear, S. T. Cole, P. F. Leadlay, P. L. C. Small, P. D. R. Johnson, G. A. Jenkin,
660 J. K. Davies and S. F. Haydock: Mycolactone locus: an assembly line for producing novel
661 polyketides, therapeutic and prophylactic uses. In, United States (2006)

662 28. C. Demangel, T. P. Stinear and S. T. Cole: Buruli ulcer: reductive evolution enhances
663 pathogenicity of *Mycobacterium ulcerans*. *Nat Rev Microbiol*, 7(1), 50-60 (2009)
664 doi:10.1038/nrmicro2077

665 29. T. P. Stinear, G. A. Jenkin, P. D. Johnson and J. K. Davies: Comparative genetic
666 analysis of *Mycobacterium ulcerans* and *Mycobacterium marinum* reveals evidence of recent
667 divergence. *J Bacteriol*, 182(22), 6322-30 (2000) doi:10.1128/JB.182.22.6322-6330.2000

668 30. F. C. Fang, E. R. Frawley, T. Tapscott and A. Vázquez-Torres: Bacterial Stress
669 Responses during Host Infection. *Cell Host Microbe*, 20(2), 133-43 (2016)
670 doi:10.1016/j.chom.2016.07.009

671 31. K. Avican, J. Aldahdooh, M. Togninalli, A. K. M. F. Mahmud, J. Tang, K. M.
672 Borgwardt, M. Rhen and M. Fällman: RNA atlas of human bacterial pathogens uncovers stress
673 dynamics linked to infection. *Nature Communications*, 12(1), 3282 (2021)
674 doi:10.1038/s41467-021-23588-w

675 32. C. Carson, C. J. Lavender, K. A. Handasyde, C. R. O'Brien, N. Hewitt, P. D. Johnson
676 and J. A. Fyfe: Potential wildlife sentinels for monitoring the endemic spread of human buruli
677 ulcer in South-East australia. *PLoS Negl Trop Dis*, 8(1), e2668 (2014)
678 doi:10.1371/journal.pntd.0002668

679 33. J. A. Fyfe, C. J. Lavender, K. A. Handasyde, A. R. Legione, C. R. O'Brien, T. P. Stinear,
680 S. J. Pidot, T. Seemann, M. E. Benbow, J. R. Wallace, C. McCowan and P. D. Johnson: A
681 major role for mammals in the ecology of *Mycobacterium ulcerans*. *PLoS Negl Trop Dis*, 4(8),
682 e791 (2010) doi:10.1371/journal.pntd.0000791

683 34. C. J. Lavender, T. P. Stinear, P. D. Johnson, J. Azuolas, M. E. Benbow, J. R. Wallace
684 and J. A. Fyfe: Evaluation of VNTR typing for the identification of *Mycobacterium ulcerans*
685 in environmental samples from Victoria, Australia. *FEMS Microbiol Lett*, 287(2), 250-5 (2008)
686 doi:10.1111/j.1574-6968.2008.01328.x

687 35. C. R. O'Brien, K. A. Handasyde, J. Hibble, C. J. Lavender, A. R. Legione, C. McCowan,
688 M. Globan, A. T. Mitchell, H. E. McCracken, P. D. Johnson and J. A. Fyfe: Clinical,
689 microbiological and pathological findings of *Mycobacterium ulcerans* infection in three
690 Australian Possum species. *PLoS Negl Trop Dis*, 8(1), e2666 (2014)
691 doi:10.1371/journal.pntd.0002666

692 36. K. Roltgen, G. Pluschke, P. D. R. Johnson and J. Fyfe: *Mycobacterium ulcerans* DNA
693 in Bandicoot Excreta in Buruli Ulcer-Endemic Area, Northern Queensland, Australia. *Emerg
694 Infect Dis*, 23(12), 2042-2045 (2017) doi:10.3201/eid2312.170780

695 37. R. B. Tian, S. Niamke, H. Tissot-Dupont and M. Drancourt: Detection of
696 *Mycobacterium ulcerans* DNA in the Environment, Ivory Coast. *PLoS One*, 11(3), e0151567
697 (2016) doi:10.1371/journal.pone.0151567

698 38. A. C. Wong and M. S. Bergdoll: Effect of environmental conditions on production of
699 toxic shock syndrome toxin 1 by *Staphylococcus aureus*. *Infect Immun*, 58(4), 1026-9 (1990)
700 doi:10.1128/iai.58.4.1026-1029.1990

701 39. J. M. Yarwood and P. M. Schlievert: Oxygen and carbon dioxide regulation of toxic
702 shock syndrome toxin 1 production by *Staphylococcus aureus* MN8. *J Clin Microbiol*, 38(5),
703 1797-803 (2000) doi:10.1128/JCM.38.5.1797-1803.2000

704 40. W. Wang, C. P. Winlove and C. C. Michel: Oxygen partial pressure in outer layers of
705 skin of human finger nail folds. *J Physiol*, 549(Pt 3), 855-63 (2003)
706 doi:10.1113/jphysiol.2002.037994

707 41. R. Srivastava, A. Saxena and B. Srivastava: Differential Expression of Proteins of
708 *Mycobacterium bovis* BCG during Adaptation to Anaerobic Non Replicating Persistence.
709 *International Journal of Pulmonology and Infectious Diseases* (2018)

710 42. J. Pawelczyk, A. Brzostek, L. Kremer, B. Dziadek, A. Rumijowska-Galewicz, M.
711 Fiolka and J. Dziadek: AccD6, a key carboxyltransferase essential for mycolic acid synthesis
712 in *Mycobacterium tuberculosis*, is dispensable in a nonpathogenic strain. *J Bacteriol*, 193(24),
713 6960-72 (2011) doi:10.1128/JB.05638-11

714 43. D. G. Muttucumaru, G. Roberts, J. Hinds, R. A. Stabler and T. Parish: Gene expression
715 profile of *Mycobacterium tuberculosis* in a non-replicating state. *Tuberculosis (Edinb)*, 84(3-
716 4), 239-46 (2004) doi:10.1016/j.tube.2003.12.006

717 44. M. L. Ang, S. Z. Zainul Rahim, G. Shui, P. Dianiskova, J. Madacki, W. Lin, V. H. Koh,
718 J. M. Martinez Gomez, S. Sudarkodi, A. Bendt, M. Wenk, K. Mikusova, J. Kordulakova, K.
719 Pethe and S. Alonso: An ethA-ethR-deficient *Mycobacterium bovis* BCG mutant displays
720 increased adherence to mammalian cells and greater persistence in vivo, which correlate with
721 altered mycolic acid composition. *Infect Immun*, 82(5), 1850-9 (2014) doi:10.1128/IAI.01332-
722 13

723 45. N. Ganief, J. Sjouerman, C. Albeldas, K. C. Nakedi, C. Hermann, B. Calder, J. M.
724 Blackburn and N. C. Soares: Associating H₂O₂-and NO-related changes in the proteome of
725 *Mycobacterium smegmatis* with enhanced survival in macrophage. *Emerg Microbes Infect*,
726 7(1), 212 (2018) doi:10.1038/s41426-018-0210-2

727 46. K. H. Rohde, D. F. T. Veiga, S. Caldwell, G. Balázs and D. G. Russell: Linking the
728 Transcriptional Profiles and the Physiological States of *Mycobacterium tuberculosis* during an
729 Extended Intracellular Infection. *PLOS Pathogens*, 8(6), e1002769 (2012)
730 doi:10.1371/journal.ppat.1002769

731 47. W. Lee, B. C. VanderVen, R. J. Fahey and D. G. Russell: Intracellular *Mycobacterium*
732 tuberculosis exploits host-derived fatty acids to limit metabolic stress. *J Biol Chem*, 288(10),
733 6788-800 (2013) doi:10.1074/jbc.M112.445056

734 48. R. Manganelli, M. I. Voskuil, G. K. Schoolnik and I. Smith: The *Mycobacterium*
735 tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in
736 macrophages. *Mol Microbiol*, 41(2), 423-37 (2001) doi:10.1046/j.1365-2958.2001.02525.x

737 49. B. M. Pettersson, S. Das, P. R. Behra, H. R. Jordan, M. Ramesh, A. Mallick, K. M.
738 Root, M. N. Cheramie, I. de la Cruz Melara, P. L. Small, S. Dasgupta, D. G. Ennis and L. A.
739 Kirsebom: Comparative Sigma Factor-mRNA Levels in *Mycobacterium marinum* under Stress
740 Conditions and during Host Infection. *PLoS One*, 10(10), e0139823 (2015)
741 doi:10.1371/journal.pone.0139823

742 50. J. H. Lee, P. C. Karakousis and W. R. Bishai: Roles of SigB and SigF in the
743 *Mycobacterium tuberculosis* sigma factor network. *J Bacteriol*, 190(2), 699-707 (2008)
744 doi:10.1128/JB.01273-07

745 51. S. Casonato, A. Cervantes Sanchez, H. Haruki, M. Rengifo Gonzalez, R. Provvedi, E.
746 Dainese, T. Jaouen, S. Gola, E. Bini, M. Vicente, K. Johnsson, D. Ghisotti, G. Palu, R.
747 Hernandez-Pando and R. Manganelli: WhiB5, a transcriptional regulator that contributes to
748 *Mycobacterium tuberculosis* virulence and reactivation. *Infect Immun*, 80(9), 3132-44 (2012)
749 doi:10.1128/IAI.06328-11

750 52. C. Larsson, B. Luna, N. C. Ammerman, M. Maiga, N. Agarwal and W. R. Bishai: Gene
751 expression of *Mycobacterium tuberculosis* putative transcription factors whiB1-7 in redox
752 environments. *PLoS One*, 7(7), e37516 (2012) doi:10.1371/journal.pone.0037516

753 53. G. Legname, P. Buono, G. Fossati, N. Monzini, P. Mascagni, D. Modena and F.
754 Marcucci: Evidence for GroES acting as a transcriptional regulator. *Biochem Biophys Res
755 Commun*, 229(2), 412-8 (1996) doi:10.1006/bbrc.1996.1818

756 54. P. Tripathi, L. K. Singh, S. Kumari, O. R. Hakiem and J. K. Batra: ClpB is an essential
757 stress regulator of *Mycobacterium tuberculosis* and endows survival advantage to dormant
758 bacilli. *Int J Med Microbiol*, 310(3), 151402 (2020) doi:10.1016/j.ijmm.2020.151402

759 55. S. Raman, T. Song, X. Puyang, S. Bardarov, W. R. Jacobs, Jr. and R. N. Husson: The
760 alternative sigma factor SigH regulates major components of oxidative and heat stress
761 responses in *Mycobacterium tuberculosis*. *J Bacteriol*, 183(20), 6119-25 (2001)
762 doi:10.1128/JB.183.20.6119-6125.2001

763 56. L. Marsollier, P. Brodin, M. Jackson, J. Kordulakova, P. Tafelmeyer, E. Carbonnelle,
764 J. Aubry, G. Milon, P. Legras, J. P. Andre, C. Leroy, J. Cottin, M. L. Guillou, G. Reysset and
765 S. T. Cole: Impact of *Mycobacterium ulcerans* biofilm on transmissibility to ecological niches
766 and Buruli ulcer pathogenesis. *PLoS Pathog*, 3(5), e62 (2007)
767 doi:10.1371/journal.ppat.0030062

768 57. C. Parsot and J. J. Mekalanos: Expression of ToxR, the transcriptional activator of the
769 virulence factors in *Vibrio cholerae*, is modulated by the heat shock response. *Proc Natl Acad
770 Sci U S A*, 87(24), 9898-902 (1990) doi:10.1073/pnas.87.24.9898

771 58. J. Slauch, R. Taylor and S. Maloy: Survival in a cruel world: how *Vibrio cholerae* and
772 *Salmonella* respond to an unwilling host. *Genes Dev*, 11(14), 1761-74 (1997)
773 doi:10.1101/gad.11.14.1761

774 59. M. J. Yip, J. L. Porter, J. A. Fyfe, C. J. Lavender, F. Portaels, M. Rhodes, H. Kator, A.
775 Colorni, G. A. Jenkin and T. Stinear: Evolution of *Mycobacterium ulcerans* and other
776 mycolactone-producing mycobacteria from a common *Mycobacterium marinum* progenitor. *J
777 Bacteriol*, 189(5), 2021-9 (2007) doi:10.1128/JB.01442-06

778 60. N. J. Tobias, K. D. Doig, M. H. Medema, H. Chen, V. Haring, R. Moore, T. Seemann
779 and T. P. Stinear: Complete genome sequence of the frog pathogen *Mycobacterium ulcerans*
780 ecovar *Liflandii*. *J Bacteriol*, 195(3), 556-64 (2013) doi:10.1128/JB.02132-12

781 61. K. D. Doig, K. E. Holt, J. A. Fyfe, C. J. Lavender, M. Eddyani, F. Portaels, D. Yeboah-
782 Manu, G. Pluschke, T. Seemann and T. P. Stinear: On the origin of *Mycobacterium ulcerans*,
783 the causative agent of Buruli ulcer. *BMC Genomics*, 13, 258 (2012) doi:10.1186/1471-2164-
784 13-258

785 62. H. L. David, W. D. Jones, Jr. and C. M. Newman: Ultraviolet light inactivation and
786 photoreactivation in the mycobacteria. *Infect Immun*, 4(3), 318-9 (1971)
787 doi:10.1128/iai.4.3.318-319.1971

788 63. D. Hoornstra, M. A. Andersson, V. V. Teplova, R. Mikkola, L. M. Uotila, L. C.
789 Andersson, M. Roivainen, C. G. Gahmberg and M. S. Salkinoja-Salonen: Potato crop as a
790 source of emetic *Bacillus cereus* and cereulide-induced mammalian cell toxicity. *Appl Environ
791 Microbiol*, 79(12), 3534-43 (2013) doi:10.1128/AEM.00201-13

792 64. G. A. Jenkin, T. P. Stinear, P. D. Johnson and J. K. Davies: Subtractive hybridization
793 reveals a type I polyketide synthase locus specific to *Mycobacterium ulcerans*. *J Bacteriol*,
794 185(23), 6870-82 (2003) doi:10.1128/JB.185.23.6870-6882.2003

795 65. M. D. Robinson, D. J. McCarthy and G. K. Smyth: edgeR: a Bioconductor package for
796 differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1), 139-40
797 (2010) doi:10.1093/bioinformatics/btp616

798 66. I. C. Ibraim, M. T. D. Parise, D. Parise, M. Z. T. Sfeir, T. L. de Paula Castro, A. R.
799 Wattam, P. Ghosh, D. Barh, E. M. Souza, A. Goes-Neto, A. C. P. Gomide and V. Azevedo:
800 Transcriptome profile of *Corynebacterium pseudotuberculosis* in response to iron limitation.
801 *BMC Genomics*, 20(1), 663 (2019) doi:10.1186/s12864-019-6018-1

802 67. K. J. Livak and T. D. Schmittgen: Analysis of relative gene expression data using real-
803 time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*, 25(4), 402-8 (2001)
804 doi:10.1006/meth.2001.1262

805 68. M. M. Babu: An Introduction to Microarray Data Analysis. In: *Computational*
806 *Genomics: Theory and Application*. (2004)

807

808 **Figure Legends**

809 **Figure 1. Effects of increasing UV exposure on *M. ulcerans* growth (A) and ER expression**
810 **(B).**

811

812 **Figure 2. Effect of Oxygen (A) or temperature (B) on *M. ulcerans* growth.** (A) Optical
813 density of *M. ulcerans* when exposed to aerobic (blue line), microaerophilic (orange) and
814 anaerobic (grey line) conditions at 30°C. Exponential *M. ulcerans* initially under aerobic
815 conditions were exposed to their respective oxygen condition for 24 hours and then transferred
816 back to aerobic conditions for an additional 24 hours (48 hours from initial time point). (B)
817 Optical density of *M. ulcerans* when exposed to 30°C (blue line) and 37°C (orange line).
818 Exponential *M. ulcerans* initially at 30°C were exposed to their respective temperature
819 conditions for 24 hours and then exposed back to 30°C for an additional 24 hours (48 hours
820 from initial time point).

821

822 **Figure 3. *M. ulcerans* ER regulation after exposure to microaerophilic or anaerobic**
823 **conditions compared to aerobic conditions.** Exposure to a microaerophilic environment for
824 24 hours caused significant upregulation [Mic (24H); P=0.0009] of ER expression (yellow bar)
825 and transferring the bacteria back to aerobic condition led to slight downregulation in ER
826 expression [Mic (48H), grey bar]. Exposure of *M. ulcerans* to anaerobic conditions for 24 hours
827 led to slight ER gene upregulation [AN (24H), blue bar], but transfer back to aerobic conditions
828 caused significant ER upregulation [AN (48H), P=0.005, red bar] compared to control *M.*
829 *ulcerans* exposed to aerobic conditions during the entire 3-day experiment (Control bar). Error
830 bars indicate Standard errors. *M. ulcerans* was at 30° C for all the oxygen conditions.

831

832 **Figure 4. Regulation of ER expression after *M. ulcerans* exposure to differing**
833 **temperature and oxygen conditions. (A)** Control conditions of *M. ulcerans* at 30° C and
834 aerobic conditions from days 1-3; (B and in blue box): *M. ulcerans* exposed to 37° C and aerobic
835 conditions on Day 2 [T37-O2 (D2)] but transferred back to 30° C and aerobic condition on day
836 3 [T30-O2 (D3)]; (C and in red box): *M. ulcerans* exposed to 37° C and microaerophilic
837 condition on day 2 [T37-Mic (D2)] but transferred back to 30° C and aerobic condition on day
838 3 [T30-O2 (D3)]; (D and in green box): *M. ulcerans* exposed to 37° C and anaerobic condition
839 on day 2 [T37-Anae (D2)] but transferred back to 30° C and aerobic condition on day 3 [T37-
840 O2 (D3)]: Bars indicate standard error. P values indicate significance values between treatment
841 and control. Stars indicate significance within treatments.

842

843 **Figure 5. Fifty significantly differentially regulated genes across treatments and**
844 **timepoints.** T30-O2-D1-3: *M. ulcerans* grown aerobically at 30° C for the entire 3 day study;
845 T37-O2-D3: *M. ulcerans* grown aerobically at 37° C for 24 hours but then moved back to
846 control conditions for 24 hours; T37-Mic-D3: *M. ulcerans* grown microaerophilicly at 37° C for

847 24 hours but then moved back to control conditions for 24 hours; T37-02-D2: *M. ulcerans*
848 grown aerobically at 37°C for 24 hours; T37-Mic-D2: *M. ulcerans* grown microaerophilicly at
849 37°C for 24 hours. All genes listed in the heatmap are labeled as listed in RefSeq for a particular
850 gene or locus tag given in the reference genomes' annotation.

851

852 **Figure 6. Schematic representation of study on the effect of oxygen (A) and combined**
853 **high temperature (37°C) and low oxygen (microaerophilic and anaerobic) condition (B)**
854 **on mycolactone and *M. ulcerans* global gene expression.**

855

856