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Quantum simulation of weak-field light-matter interactions
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Simulation of the interaction of light with matter, including at the few-photon level, is important for un-
derstanding the optical and optoelectronic properties of materials and for modeling next-generation nonlinear
spectroscopies that use entangled light. At the few-photon level the quantum properties of the electromagnetic
field must be accounted for with a quantized treatment of the field, and then such simulations quickly become
intractable, especially if the matter subsystem must be modeled with a large number of degrees of freedom, as can
be required to accurately capture many-body effects and quantum noise sources. Motivated by this we develop
a quantum simulation framework for simulating such light-matter interactions on platforms with controllable
bosonic degrees of freedom, such as vibrational modes in the trapped ion platform. The key innovation in our
work is a scheme for simulating interactions with a continuum field using only a few discrete bosonic modes,
which is enabled by a Green’s function (response function) formalism. We develop the simulation approach,
sketch how the simulation can be performed using trapped ions, and then illustrate the method with numerical
examples. Our work expands the reach of quantum simulation to important light-matter interaction models
and illustrates the advantages of extracting dynamical quantities such as response functions from quantum
simulations.
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I. INTRODUCTION

The fundamental physics of light-matter interactions was
conceived more than half a century ago with the formulation
of quantum electrodynamics [1,2], followed by the distilla-
tion of a theory of quantum optics [3,4]. Despite this, new
surprising phenomena in the realm of how light interacts with
matter are still being uncovered today. This is especially true
in regimes of light-matter interaction where the electromag-
netic field and the material system it interacts with must both
be treated quantum mechanically, i.e., where semiclassical
approximations break down. Examples of recent results in
this area are the revelation that a single photon can be jointly
absorbed by two atoms given the right conditions [5], and the
establishment of the fundamental limits and tradeoffs present
in building detectors for single or few photons [6–9].

There are also many applications that benefit from accurate
modeling and simulation of the interaction of weak fields
with complex material systems, including: (i) understanding
and mimicking light absorption by photosynthetic organisms,
where it is a challenge to understand the mechanisms by
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which the initial stages of photosynthesis can be efficient,
even in the weak illumination conditions that many organ-
isms live in [10,11], (ii) interpretation of recently developed
nonlinear spectroscopies that use entangled states of few
photons, which have the potential to provide unprecedented
resolution of electronic, molecular, and condensed phase dy-
namics [12,13], and (iii) designing next-generation nanoscale
engineered photodetectors that can tailor the interaction dy-
namics between light and matter [6–9]. In such settings, where
exotic light fields like single photon wavepackets interact
with nanoscale structured materials and molecules, one typ-
ically has a quantum many-body model description of the
physics that cannot be solved exactly and is also intractable
to solve numerically on a computer. Tractable semiclassical
approximations that are suitable in other settings often pro-
duce inaccurate predictions in the settings described above.
This model complexity is an obstacle to many important
phenomena arising from weak-field light-matter interactions.
Additionally, experiments themselves can be difficult to per-
form due to the need to prepare exotic quantum states of light.

These obstacles provide the motivation for the quantum
simulation technique we present in this paper. Quantum sim-
ulators are nascent hardware platforms that have the potential
to transform the landscape of what is tractable for simulation
of physics and chemistry models. This technique can be ap-
plied to any problem involving the interaction of matter with
weak-field states of light and can be used to study the coherent
dynamics of such systems. Additionally, this technique can be
generalized to model other types of nonlocally and/or time-
dependently coupled baths such as phononic wavepackets.
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FIG. 1. We develop a quantum simulation approach that enable
platforms with controllable bosonic degrees of freedom, such as the
trapped ion system shown on the right, to simulate the dynamics of
matter, such as the chromophoric complex on the left, in response to
illumination by extremely weak light fields. Such dynamics is rele-
vant for understanding the behavior of photodetectors, photovoltaics,
biochemical systems such as photosynthetic light harvesting com-
plexes, and for modeling new weak-field spectroscopy experiments.

We focus on analog quantum simulation platforms, where the
underlying physics of the system to be simulated is encoded
into the Hamiltonian of a tunable system, who’s dynamics
then naturally carries out the simulation task. Trapped ions are
one of the leading platforms for analog quantum simulation
due to the long coherence times, high degree of controllability,
and scalability afforded by the platform [14]. In fact, recent
demonstrations using trapped ions have included simulation
of models of quantum magnetism [15], of many-body local-
ization phenomena [16], of discrete time crystals [17], and of
energy transfer phenomena [18].

In this work we study how light-matter interactions be-
tween exotic weak light fields and fundamental matter degrees
of freedom can be simulated using ions trapped in linear radio-
frequency (RF) traps, see Fig. 1. A key aspect of the quantum
simulation model we propose is that the electromagnetic field
is modeled by the quantized vibrational degrees of freedom in
a trapped ion system. Due to the high degree of controllability
of the trapped ion system, almost arbitrary states of the vi-
brational modes can be engineered, thus allowing simulation
of interactions with exotic electromagnetic field modes that
would be difficult to prepare, especially at optical frequencies.
While electromagnetic field modes and vibrational modes are
both bosonic degrees of freedom, an immediate obstacle to
a simulation of the former with the latter is that while a
general electromagnetic field is described by a continuum
of harmonic modes, any simulation platform only contains
a small, discrete number of vibrational modes. To overcome
this difficulty, we formulate a novel form of simulation that
proceeds via reconstruction of response functions from en-
sembles of quantum simulation experiments, and analyze the
simulation cost in terms of the model being simulated. We also
provide a detailed description and analysis of the implemen-
tation of our simulation protocol on a trapped-ion quantum
simulator.

In the more general context, the approach we sketch
is an example of using quantum simulation for calculation
of physically relevant response functions [19–22]. Although
we present a formulation of the approach specific to ana-
log trapped-ion quantum simulators, it is suitable for other
hardware platforms with bosonic degrees of freedom (e.g.,

circuit-QED [23] or cavity-QED [24]), and there is a natu-
ral digitization of the approach, e.g., through Trotterization,
which we will comment on in Sec. VI. Quantum simulation
is widely believed to have potential to enable simulations
that are intractable on conventional computers. Our methods
introduce the simulation of weak-field light-matter interac-
tions into the quantum simulation toolbox, and as quantum
simulation capabilities scale, our methods could be applied
to model the interaction of weak electromagnetic fields with
materials and molecules that are too complex for conventional
simulation and modeling tools.

We note that there have been previous proposals to simulate
vibrational degrees of freedom in molecules with bosonic
degrees of freedom in trapped-ion systems [25] and to utilize
quantum optical networks to emulate and sample vibronic
spectra of molecules [26,27]. To our knowledge, our proposal
is the first to show that simulation of quantized states of elec-
tromagnetic fields is also possible with trapped-ion bosonic
modes.

The remainder of the paper is structured as follows. In
Sec. II we present a brief overview of trapped-ion physics
and the type of Hamiltonian models that can be engineered on
this platform. Section III presents the light-matter interaction
and dynamics that we wish to simulate, and then in Sec. IV
we detail our response function approach for simulating these
dynamics on a platform like trapped ions with a fixed number
of stationary bosonic modes. Section V presents examples
illustrating the scheme, with numerical simulations. Then in
Sec. VI we discuss important considerations when scaling
the proposed simulation scheme to large systems, and in
Sec. VII we discuss application of our response function ap-
proach to quantum simulation to models beyond light-matter
interactions. Finally, Sec. VIII concludes with a summary of
contributions made in this work.

II. TRAPPED ION HAMILTONIANS

The trapped-ion platform allows for realization of a rich
set of quantum models with localized degrees of freedom,
encoded in internal states of the ions, and distributed bosonic
degrees of freedom, encoded in quantized motional modes
of ion motion. In the following, we briefly review the build-
ing blocks of quantum simulation using trapped ions, with a
particular focus on the physics and achievable Hamiltonian
models that are relevant to our setting. We focus on linear
ions chains of Ca+ ions for concreteness, although neither is
an important restriction. We emphasize that this is a narrow
review and refer the reader to Refs. [14,28,29] for more com-
prehensive treatments.

We encode the ground state and optically connected ex-
cited state of pointlike absorbers (e.g., atoms, molecules) in
two Zeeman sublevels of a Ca+ ion. In particular, a commonly
used sublevel encoding is |g〉 → |S1/2(mJ = 1

2 )〉 and |e〉 →
|D5/2(mJ = 1

2 )〉, that uses states in the stable S1/2 orbital and
the metastable D5/2 orbital [18]. These states will form the
eigenbasis for localized degrees of freedom and in the follow-
ing, when we write Pauli operators acting on localized degrees
of freedom, they will be with respect to this basis. Note that it
is possible to consider pointlike absorbers with more than one
excited state by encoding into other states in Zeeman sublevels
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of the ion, but we will restrict attention to single excited states
here.

An ion chain with n ions has 3n quantized motional modes
(corresponding to collective motions of the n ions under
the influence of the overall trap potential and their mutual
Coulomb repulsion) that can serve as modes of the elec-
tromagnetic field. This is less than the continuum required
to accurately model electromagnetic (EM) fields but in the
following we will construct a scheme for overcoming this ob-
stacle. All of the motional modes can in principle be coupled
to the internal degrees of freedom of the ions through laser-
induced interactions. The basic interaction that enables most
of trapped ion quantum simulation is given by the following
Hamiltonian that describes a single ion interacting with a laser
field nearly resonant with the energy difference of the |e〉
and |g〉 states of the ion (h̄ = 1 here and in the rest of the
paper) [30]:

HSI(t ) = �σ̂+e−i(�t−ϕ) exp(iη[âe−iωTt + â†eiωTt ]) + H.c.,

where � is the detuning of the laser from the atomic tran-
sition, ϕ is the phase of the laser with respect to the atomic
polarization, � is the amplitude of the laser field (expressed
in terms of the Rabi frequency), ωT is the trap frequency. σ̂+ is
the raising operator for the internal degrees of freedom, and â
is the annihilation operator for the quantized motion of the ion
around its equilibrium position along, for example, the z axis.

η ≡ kz
√

1
2mωT

is the Lamb-Dicke parameter, with kz being the

projection of the laser’s wave vector along the z direction. In
the Lamb-Dicke limit, which describes the regime of small
light-induced changes in momenta, or η

√
〈(â + â†)2〉 � 1,

this Hamiltonian can be approximated as [30]

HSI(t ) ≈ �(σ̂+e−i(�t−ϕ) + σ̂−ei(�t−ϕ) )

+ iη�(σ̂+ei(�t−ϕ)−σ̂−ei(�t−ϕ) )(âe−iωTt + â†eiωTt).

(1)

Then, through choices of � and ϕ one can engineer a wide
variety of ion-mode interactions. The above description of
the dynamics of a single ion generalizes easily to multiple
ions, with the motion now being interpreted as modes of the
collective motion of the ion chain.

In addition to the ion-mode interactions, we can also me-
diate interactions between the internal states of ions through
their common interaction with motional modes. There are a
few schemes for engineering such interactions, and the com-
monly used Mølmer-Sørenson scheme—which illuminates
two ions with a bichromatic laser with frequencies ω0 ± (ν +
δ), where ω0 is the energy difference between |g〉 and |e〉,
ν is the frequency of a vibrational mode (usually an axial
mode), and δ is a detuning—generates an effective interaction
between two ions of the form σ̂ x

1 σ̂ x
2 .

Putting these ingredients together we write the family of
Hamiltonians that can be engineered with trapped ions—
which we denote with the superscript TI—as

ĤTI = ĤTI
a + ĤTI

m + ĤTI
I , with (2)

ĤTI
a =

n∑
j=1

ω
j
0σ̂

z
j +

∑
〈i, j〉

Ji j σ̂
x
i σ̂ x

j , (3)

ĤTI
m =

m∑
k=1

νkâk
†âk, (4)

ĤTI
I =

∑
α

κα (σ̂+
jα
âkα

+ σ̂−
jα
â†

kα
) +

∑
α

λασ̂ z
jα

(âkα
+ â†

kα
).

(5)

Here, ĤTI
a is the Hamiltonian for the internal states of the

n ions, representing localized degrees of freedom. ω
j
0 is the

local transition energy and can be tuned by AC Stark shifting
the magnetic sublevels of each ion with laser beams that
locally address the ions. The second term represents coupling
between some subset of ions and are implemented via the
Mølmer-Sørenson interaction as mentioned above. By tun-
ing the Mølmer-Sørenson interaction this coupling between
ions can be tuned to the rotating wave version where only
the terms σ̂+

i σ̂−
j + σ̂−

i σ̂+
j contribute. The magnitude of the

couplings, Ji j , can be tuned via the intensities and detunings
of the laser beams implementing these interactions. We note
that engineering fully tunable Ji j interaction terms through the
Mølmer-Sørenson (MS) interaction requires coupling to one
motional mode per interaction term, which must be accounted
for when accounting for quantum simulation resources. ĤTI

m
is the Hamiltonian representing the m � 3n motional modes
used in the simulation. The harmonic frequencies ν j are set
by the trapping potential and number of ions in the trap but
the effective mode frequencies that the ions interact with can
often be tuned via how the interactions are engineered [18].
ĤTI
I represents the interactions between the ions and motional

modes, and accounts for two types of interactions. The first
sum represents a coherent exchange of energy and is imple-
mented via the interaction discussed in Eq. (1) (by setting
� = −ωT, or a red sideband drive). The second represents a
shift in the energy of the ions that depends on the position of
the motional mode and can be implemented via a bichromatic
local addressing of the ion involved [18]. The index α in these
sums represent the number of interactions, and jα , kα index
the ions and modes involved in an interaction. The interac-
tions parameters, κα and λα , can be tuned by adjusting the
intensity of the local addressing laser beams. Importantly, one
ion cannot participate in both types of interactions. We note
that other types of Hamiltonian terms are also possible but the
family of Hamiltonians described above will be sufficient for
our purposes.

Having described the types of Hamiltonians that can be
engineered on the trapped-ion platform we will now sum-
marize the other two requirements for a quantum simulation,
state preparation and measurement. There are a variety of
mechanisms in trapped ion platforms for extracting entropy
and preparing desired states of the internal and motional de-
grees of freedom with high fidelity. The internal states of the
ions can be prepared in the |g〉 state through optical pumping
[31]. The states of the motional modes can be prepared in
thermal states, including very low temperature thermal states,
through a variety of cooling mechanisms. The most common
such cooling mechanism, resolved sideband cooling, proceeds
by coupling a mode to an ion using the same interaction as
shown in Eq. (1) and cooling the mode by dumping excess
energy into the ion, which emits into an optical mode usually

013027-3



YOUNG, HÄFFNER, AND SAROVAR PHYSICAL REVIEW RESEARCH 5, 013027 (2023)

controlled by coupling the long-lived excited state of the ion
to a fast decaying excited state [31]. Each mode that is used
in the simulation can be cooled sequentially. If many modes
need to be initialized, then cooling via electromagnetically
induced transparency might be an attractive alternative. We
note that other cooling mechanisms (e.g., Doppler cooling)
must first be applied to the ion chain before the ion motion is
sufficiently cold for resolved sideband cooling to be effective.
Measurement of the ion internal degrees of freedom is accom-
plished via the electron shelving technique, which selectively
excites one of the encoding states (usually |e〉) to a short-lived
higher lying state whose emission is monitored.

In the following sections we will develop a scheme for sim-
ulating light-matter interactions using the quantum simulation
building blocks discussed above.

III. INTERACTION OF MATTERWITHWEAK FIELDS

Matter interacting with light must be considered as inter-
acting with all modes allowed by the confining geometry, so
that the Hamiltonian of an arbitrary system in the rotating-
wave approximation can be written as

Ĥ = ĤM + ĤF + ĤM−F ,

Ĥ = ĤM +
∑
j

ω j â j
†â j +

∑
j

i(L̂â j
† − L̂†â j ),

where ĤM is an arbitrary Hamiltonian for the matter sub-
system, â j is the annihilation operator for allowed mode j,
and L̂ describes the action of the light-matter interaction on
the matter system (e.g., promoting a two-level system from
the ground state to an excited state and vice versa, in which
case L = σ̂−). In the event that the geometry of the space
containing the matter is unconfined; i.e., the matter exists in
free-space in at least one direction, then the allowed modes
form a continuum. For the one-dimensional (1D) case (for
simplicity and clarity) modes in this continuum can be rep-
resented by their frequency ω and we can write

Ĥ = ĤM +
∫

dωωâ(ω)†â(ω) +
∫

dωi[L̂â(ω)† − L̂†â(ω)].

(6)

Solution of this Hamiltonian using a Markov approximation
results in the emergence of the phenomenon of spontaneous
emission, as first identified by Wigner and Weisskopf, as a
direct consequence of the availability of a continuum of emis-
sion channels.

Consequently, this Hamiltonian cannot be straightfor-
wardly described by one, or even a few, bosonic modes, as in
the case of ion trap system of Sec. II. Nonetheless, as we will
now show, it is possible to use the ion trap system to simulate
light-matter interactions of the former kind.

IV. SIMULATION THROUGH RESPONSE FUNCTIONS

First, we will rewrite Eq. (6) according to the quantum
noise formalism. This can be done by constructing new field

operators. With the field only in the interaction picture,

d̂Bt ≈ dt
∫

dωe−i(ω−ω0 )t â(ω),

ĤM−F (t )dt = i(eiω0t L̂d̂Bt
† − e−iω0t L̂†d̂Bt ),

where ω0 represents a frequency that will be associated with
the incoming pulse. The new operators behave like noise
operators, and obey the same statistics, such that [32]

[d̂Bt , ˆdBt ′
†] = δt,t ′dt,

d̂Bt ˆdB†
t = O(dt ). (7)

A monochromatic single photon pulse with frequency ω0

traversing the matter system with a broad temporal profile ε(t )
is constructed as

|1ε〉 =
∫

ε(t )d̂Bt
†|0〉, (8)

where |0〉 is the field vacuum.
The form of the transformed Hamiltonian, ĤM−F (t ), makes

it seem like the system is only coupled to a single field mode.
However, the behavior of the d̂Bt operators will result in
different dynamics. In particular, due to Eq. (7) the interaction
Hamiltonian provides an additional, nonunitary term at linear
order that must be included when propagating the dynamics;
to see this explicitly, note that the time evolution operator for
a short interval is

ϒ̂ (dt ) = e−iĤdt = 1 − iĤdt − Ĥ2dt2/2 + . . .

= 1−i(ĤM + ĤM−F )dt− 1
2

[
Ĥ2
Mdt

2 + ĤM (ĤM−Fdt )dt

+ (ĤM−Fdt )ĤMdt + (HM−Fdt )
2
] + ...

= 1 − iĤMdt − iĤM−F (t )dt − L̂†L̂/2dt + O(dt ˆdBt ).

Due to the nonunitary contribution we will write the evolution
in terms of the density matrix

ρ̂(t + dt ) =ϒ̂ (dt )ρ̂(t )ϒ̂†(dt )

=ρ̂(t ) − (
i[ĤM + ĤM−F , ρ̂(t )] + 1

2 {L̂†L̂, ρ̂(t )})dt
+ L̂d̂Bt

†ρ̂(t )L̂†d̂Bt + O(dt d̂Bt ). (9)

We note that incoherent processes (e.g., due to cou-
plings to environments other than the EM field) can be
included as additional terms, e.g., of the Lindblad form
D[X̂ ](ρ̂) = X̂ ρ̂X̂ † − 1

2 {X̂ †X̂ , ρ̂}; however, we will omit these
presently for clarity. We will also “vectorize” the density ma-
trix, performing the transformations ρ̂i j = ρi j |i〉〈 j| → ρ̄(i j) =
ρi j |i〉 ⊗ | j〉∗ and X̂ ρ̂Ŷ † → X̂ ⊗ Ŷ T ρ̄ ≡ �X̂ |Ŷ �ρ̄. This allows
us to express superoperators acting on ρ̂, such as commutation
and the Linbladian D, as linear operators acting on ρ̄. We can
now integrate Eq. (9) directly. Let

Ḡ0(t ) = e(−i(�ĤM |1̂�−�1̂|ĤM�)− 1
2 (�L̂†L̂|1̂�+�1̂|L̂†L̂�))t ,

F̄d̂B(t ) = �L̂ ˆdBt
†
∣∣L̂d̂Bt

†� − i(�ĤM−F (t )dt
∣∣1̂�

− �1̂
∣∣ĤM−F (t )dt�). (10)
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Then

ρ̄(t ) = Ḡ(t − t0)ρ̄(t0),

Ḡ(t ) = Ḡ0(t ) +
∫ t

t0

Ḡ0(t − t ′)F̄ ˆdB(t ′)Ḡ0(t ′)

+
∫ t

t0

Ḡ0(t − t ′)F̄ ˆdB(t ′)
∫ t ′

t0

Ḡ0(t ′ − t ′′)

× F̄ ˆdB(t ′′)Ḡ0(t ′′) + . . .

Here, the interaction between the system and field [repre-
sented by F̄ ˆdB(t )] is treated perturbatively and each term
in this expansion corresponds to an interaction of a cer-
tain order. For a system with the matter subsystem initially
in the ground state and the field in a single photon state,

i.e., ρ̄(t0) = [|0M, 1ε〉 ⊗ |0M, 1ε〉∗], this series truncates and
we get

ρ̄(t ) = ρ̄(t0) −
∫ t

t0

dt ′L̄+(t, t ′)[|0M, 0ε〉 ⊗ |0M , 1ε〉∗]

+
∫ t

t0

dt
∫ t ′

t0

dt ′′L̄+(t, t ′)L̄†+(t ′, t ′′)

× [|0M , 0ε〉 ⊗ |0M, 0ε〉∗]

+
∫ t

t0

dt ′
∫ t ′

t0

dt ′′
∫ t ′′

t0

dt ′′′�L̂|L̂�L̄+(t ′, t ′′)L̄†+(t ′′, t ′′′)

× [|0M , 0ε〉 ⊗ |0M, 0ε〉∗] + H.c., (11)

with L̄+(t, t ′) = Ḡ0(t − t ′)ε(t ′)e−iω0t ′ �L̂†|1̂� for compact-
ness to emphasize the structure (note that by construction
�L̂†|1̂�† = �1̂|L̂†�). The reason for the early truncation of this
series is that once an absorbed photon is re-emitted into the
continuum field it cannot interact with the matter system
again; i.e., dB̂t

†|0ε〉 
= |1ε〉.1 This is the essence of sponta-
neous emission, given by the third term of the sum.

We consider now the case where the system interacts with a
single stationary bosonic-mode as in the trapped-ion context.

1We use the ε subscript on the vacuum state for uniformity.

The Hamiltonian, in an interaction picture with respect to the
mode’s free Hamiltonian, is

Ĥ sm = ĤM + γ (t )H sm
M−F , (12)

Ĥ sm = ĤM + iγ (t )(eiω0t L̂â† − e−iω0t L̂†â), (13)

where the superscript “sm” on this quantity and subse-
quent quantities indicates that a single mode is modeling the
EM field. This is simply related to the general trapped ion
Hamiltonian described in Eq. (2); ĤM is the matter Hamilto-
nian engineered through ĤTI

a in Eq. (2), we have restricted to
one mode, so kα is the same for all α, and L̂ = ∑

α κασ̂
jα

− is the
engineered interaction between the matter subsystem (mod-
eled by the ions) and the mode. Finally, we have set λα = 0.
In addition, for reasons that will become clear shortly, we will
include a Markovian decoherence term to the dynamics of the
form D[Ŷ ], where Ŷ is an operator on the internal states of the
matter subsystem.

Given this setup the unitary contribution to the infinitesi-
mal time evolution is governed by

Û sm(dt ) = 1 − i[ĤM + iγ (t )(L̂â†e−iω0t

− L̂†âeiω0t )]dt + O(dt2).

Then, with the dissipative contribution included,

Ḡsm
0 (t ) = e(−i(�ĤM |1̂�−�1̂|ĤM�)− 1

2 (�Ŷ †Ŷ |1̂�+�1̂|Ŷ †Ŷ �))t ,

F̄â(t ) = −iγ (t )
(⌈
H sm
M−F

∣∣1̂⌋ − ⌈
1̂
∣∣H sm

M−F

⌋) + �Ŷ |Ŷ �, (14)

and

ρ̄sm(t ) = Ḡsm(t − t0)ρ̄sm(t0),

Ḡsm(t ) = Ḡsm
0 (t ) +

∫ t

0
dt ′Ḡsm

0 (t − t ′)F̄â(t ′)Ḡsm
0 (t ′)

+
∫ t

0
dt ′Ḡsm

0 (t − t ′)F̄â(t ′)
∫ t ′

0
dt ′′Ḡsm

0 (t ′ − t ′′)

× F̄â(t ′′)Ḡsm
0 (t ′′) + ...,

so that the dynamics can be expanded in the light-matter

interaction for ρ̄(t0) = [|0M, 1F 〉 ⊗ |0M, 1F 〉∗] as

ρ̄sm(t ) = ρ̄sm(t0) −
∫ t

t0

dt ′L̄sm
+ (t, t ′)[|0M , 0F 〉 ⊗ |0M, 1F 〉∗]

+
∫ t

t0

dt ′
∫ t ′

t0

dt ′′L̄sm
+ (t, t ′)L̄†sm

+ (t ′, t ′′)[|0M, 0F 〉 ⊗ |0M , 0F 〉∗]

+
∫ t

t0

dt ′
∫ t ′

t0

dt ′′
∫ t ′′

t0

dt ′′′
⌈
Ŷ

∣∣Ŷ ⌋
L̄sm

+ (t ′, t ′′)L̄†sm
+ (t ′′, t ′′′)[|0M , 0F 〉 ⊗ |0M, 0F 〉∗]

−
∫ t

t0

dt ′
∫ t ′

t0

dt ′′L̄sm
− (t, t ′)L̄sm

+ (t ′, t ′′)[|0M , 1F 〉 ⊗ |0M, 1F 〉∗]

+
∫ t

t0

dt ′
∫ t ′

t0

dt ′′
∫ t ′′

t0

dt ′′′L̄sm
− (t, t ′)L̄sm

+ (t ′, t ′′)L̄†sm
+ (t ′′, t ′′′)[|0M, 1F 〉 ⊗ |0M , 0F 〉∗] + H.c. + . . . , (15)
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with L̄ expressions defined similarly to the continuum mode
case (e.g., L̄sm

− (t, t ′) = Ḡsm
0 (t − t ′)γ (t ′)eiω0t ′ �L̂|1̂�). We can

now compare Eqs. (11) and (15), and we find two essential
differences. First, the series in the continuum mode case,
Eq. (11), cuts off after (spontaneous) emission, but continues
with an infinite number of coherent absorption/emission cy-
cles in the single mode case, Eq. (15). Unlike in the continuum
case, an excitation emitted into the stationary mode can be re-
absorbed by the matter system. A second, related, difference is
that in the continuum case, the light-matter interaction leads to
a decoherent effect captured by the real terms in the argument
of Ḡ0 and the second term in the definition of F̄ ˆdB(t ), whereas
in the single mode case decoherent effects are generated by
the added term Ŷ .

Thus, to reproduce the continuum mode case with the
single mode system, we must suppress the additional terms of
Eq. (15) and set Ŷ = L̂. Unfortunately, neither of these tasks
is straightforward to carry out. For the first, the absorption/re-
emission dynamics of the single mode case are inherent in
the system. For the second, since Ŷ is engineered via an
off-resonant drive between the relevant internal states of the
ions and higher lying state(s) with short lifetimes, or through
other dissipative mechanisms [33], it must be a local operator,
unlike L̂, which couples multiple ions to the field. We shall
deal with both of these issues in turn, and show how simu-
lation of relevant continuum dynamics can still be achieved
with the single mode system.

A. Moving to response functions

A way to overcome the difficulty of not having a contin-
uum of modes and the resulting phenomenon of spontaneous
emission is to take advantage of the time dependence of the

coupling, γ (t ), in Eq. (14) and move to a response function
framework.

First we note that, the population of an excited matter state
iM at time t , which is often the quantity of interest, is given
by the second term of Eq. (11) after tracing over the field
state:

PM (t ) ≡ 〈iM |TrF [ρ̂(t )]|iM〉

=
∫ t

t0

dt ′
∫ t ′

t0

dt ′′ε(t ′)ε(t ′′)GiM (t − t ′, t ′ − t ′′), (16)

where

GiM (t1, t2) ≡ [〈iM | ⊗ 〈iM |∗]e−iω0t2Ḡ0(t1)�L̂†|1̂�Ḡ0(t2)�1̂|L̂†�
× [|0M〉 ⊗ |0M〉∗] + c.c., (17)

so that the dynamical properties are captured by this two-
time Green’s function. We write such Green’s functions as
GiM (t1, t2), where the subscript i denotes the state whose pop-
ulation is being measured. If this quantity is known, then the
dynamics in response to any wavepacket profile shape ε(t ) can
be determined. The problem can then be reduced to finding the
response to δ-like inputs.

To simulate the δ function response with just a single
stationary mode, we can consider modulating the field cou-
pling to be nonzero only briefly and at given times. Consider
a square “pulse” of width tγ and area nγ , so that γ (t ) =
nγ

tγ
[θ (t1 − tγ /2) − θ (t1 + tγ /2)]. We note that these pulses do

not need to be strictly square in shape; we assume as such
for illustrative purposes. When Ḡ0(t ) can be approximated as
constant over the interval tγ , we obtain for a pair of pulses at
t ′ and t ′′

PM
sm(t − t ′, t ′ − t ′′) ≡ 〈iM |TrF [ρ̂sm(t )]|iM〉

= n2
γ eiω0(t ′′−t ′ )[〈iM | ⊗ 〈iM |∗]Ḡsm

0 (t − t ′)�L̂†
∣∣1̂�Ḡsm

0 (t ′ − t ′′)�1̂|L̂†�[|0M〉 ⊗ |0M〉∗] + H.c.

+ n2
γ [〈iM | ⊗ 〈iM |∗](Ḡsm

0 (t − t ′) + Ḡsm
0 (t − t ′′))�L̂†

∣∣L̂†�[|0M〉 ⊗ |0M〉∗] + O
([||L̂||2n2

γ

]4)
.

We can see that when ||L̂||2n2
γ � 1 the terms to linear order dominate. Setting Ŷ = L̂ for now, and comparing to Eq. (17), letting

tm ≡ t − t ′ and tint ≡ t ′ − t ′′ we find that

PM
sm(tm, tint ) ≈ n2

γ

[
GiM (tm, tint ) + GiM (tm, 0) + GiM (tm + tint, 0)

4

]
. (18)

Therefore, the Green’s function relevant to the multimode case, Eq. (17), can be extracted from the single mode system. We note
that GiM (tm, 0) can be found by using a single pulse. Thus by choosing a proper dissipative process (Ŷ ) and appropriately short
pulses, we can reconstruct GiM and simulate the matter response from the continuum mode case.

B. Sampling error

In practice PM
sm must be estimated from multiple trials resulting in a measurement of state i, which will either be populated or

not. Thus, the statistics governing the measured PM
sm will be that of a binomial distribution and the sampling error in the estimate

of PM
sm is given by

σsm(tm, tint ) =
√
PM

sm(tm, tint )
[
1 − PM

sm(tm, tint )
]

N
,

where N is the number of trials.
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Then the sampling error in Gi is

σG (tm, 0) = 2

n2
γ

√
PM

sm(tm, 0)
[
1 − PM

sm(tm, 0)
]

N
,

σG (tm, tint ) =
√

1

n4
γ

PM
sm(tm, tint )

[
1 − PM

sm(tm, tint )
]

N
+ σG (tm, 0)2 + σG (tm + tint, 0)2

16
. (19)

Note that the impact of larger nγ is to reduce the sampling error estimates σG by an overall factor of approximately 1/nγ ; this
must be weighed against the error present in the underlying PM

sm (and any additional experimental sources of error), with the
optimal value being case dependent. We will return to this point later on when considering example systems.

Further, we can develop an error bound on the population estimates by discretizing the integral in Eq. (16). Consider the
response to a particular wavepacket with temporal profile ε(t ), the overall error in the simulated population is

σ 2
P (t ) = E [PM (t )2] − E [PM (t )]2

≈
∑
i jkl

�t4ε(ti )ε(t j )ε(tk )ε(tl )
{
E [GiM (t − ti, ti − t j )GiM (t − tk, tk − tl )]

− E [GiM (t − ti, ti − t j )]E [GiM (t − tk, tk − tl )]}
≈

∑
i jkl

�t4ε(ti )ε(t j )ε(tk )ε(tl )cov[GiM (t − ti, ti − t j ),GiM (t − tk, tk − tl )]

≈
∑
i j

�t4ε(ti )
2ε(t j )

2σ 2
G (t − ti, ti − t j ),

where ti are times spaced �t apart, and the first step above
assumes that �t is small enough that the integral in Eq. (16) is
well approximated by the discrete sum. It is worth examining
the case where the error in GiM (tm, tint ) can be taken as roughly
the same for all tm, tint; i.e., σG (tm, tint ) ≈ σG . In that case, the
normalization of the wavepacket means that

σP(t ) ≈ �tσG . (20)

Since �t ∝ 1/nint and σG ∝ 1/
√
N , the total number of ex-

periments needed to obtain a given error in the wavepacket
response can be actually be minimized in principle by taking
a larger number of intervals and rather than a larger number
of samples per interval.

C. Simulating dissipation

In the previous subsection, we showed that the response of
the matter system to single photon pulses could be recovered
with a trapped ion simulator with a modulated ion-vibration
coupling, and where a vibrational mode simulates a temporal
mode of the photon field. However, to do this we had to intro-
duce an additional Markovian dissipative process D[Ŷ ] acting
on the ion internal states, and set Ŷ = L̂. We now examine
challenges posed by this term.

As described above, additional dissipative processes can be
introduced into a trapped ion platform (e.g., through optical
pumping), but these act locally and independently on each
ion. However, the L̂ operator is nonlocal operator acting on
all excited states in the model and thus, in a correlated manner
on several ions—i.e., if the optically coupled levels in ĤM are
encoded in the excited states of N ions, then L̂ = ∑N

j l j σ̂
−
j .

This mismatch makes setting Ŷ = L̂ nontrivial. The most
straightforward solution is to transform the basis so that L̂
is local, however, operators associated with any additional

decoherence processes will also be transformed, and may
become nonlocal. In the general case there will not be a basis
in which all operators are local; additionally, the state to be
measured may become a superposition of several ionic states,
compounding the difficulty. To overcome these difficulties,
we develop a method for simulating nonlocal decay-type pro-
cesses of the same form as L̂ using tailored couplings to an
auxiliary ion that undergoes a local, fast decay.

We introduce an auxiliary ion and isolate two internal states
within it governed by a two-level system with Hamiltonian
Ĥaux = ωaux

2 (1̂ − σ̂ z
aux). Then we assume that the excited state

is subject to a fast decay process: D[X̂ ], with X̂ = χσ̂−
aux.

This could be engineered through optical pumping to a higher
lying state, for example [33]. In the Appendix we show that
by coherently coupling the system ions to this fast decaying
auxiliary ion with a Hamiltonian of the form

ĤM−aux = Ĵσ̂+
aux + h.c. =

∑
i

Jiσ̂
−
i σ̂+

aux + H.c., (21)

and adiabatically eliminating the auxiliary ion results in a
Markovian dissipative process on the system ions that takes
the form D[ 2Ĵ

χ
]. Therefore, we can engineer the nonlocal de-

cay terms necessary to model the dissipative effect of coupling
to a continuum of modes by tuning the coherent couplings in
Ĵ such that 2Ĵ

χ
= L̂. Thus, using a single bosonic mode and an

auxiliary ion, we can simulate the response to a single-photon
traversing the system in a free-field setting.

A graphical representation of the actual and simulated pro-
cess is depicted in Fig. 2.

In practice, this engineered nonlocal dissipation, which
is the “desired” relaxation dynamics, will be in competi-
tion with local, single qubit relaxation processes. For trapped
ions intrinsic relaxation occurs on very long timescales and
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(a) (b) (c)

FIG. 2. (a) Example pulse/measurement schedules (top) and a sketch of their inclusion in the response reconstruction (bottom). The pulse
profiles γ (t ) (red) are chosen with spacing tint and measurements are performed at tm after the second pulse, allowing for the generation of
samples of GiM according to Eq. (18). For an arbitrary wavepacket profile ε(t ), the response at a time t is simulated by multiplying GiM (tm, tint )
by ε(t − tm − tint )ε(t − tm ) and summing over relevant tm, tint [Eq. (16)]. (b) A depiction of a system interacting with a field characterized
by a continuum with a single-photon wavepacket (red oscillatory lineshape), traversing the system. At early times the matter system (black
circle), represented here as a two-level system with a decay mode (red lines), interacts only with the vacuum and remains in the ground state.
At some point during the traversal of the wavepacket the matter system may absorb the photon and enter the excited state, leaving the field in
the vacuum state. Later, the matter system may emit a photon back into the field, decaying to the ground state; afterwards the photon is not
present at the matter system and may not be reabsorbed. (c) A system comprising a single mode for the field (red circle) whose coupling can
be rapidly adjusted with time and a highly incoherent bath (dashed line circle) coherently coupled (gray double arrow) to the matter system
(black circle). Initially the boson mode is in the first excited state and uncoupled to the matter system. At some time the interaction (red double
arrow) is rapidly turned on and off, allowing for possible transfer of the excitation. At some point later this population will be transferred to the
bath and almost immediately decay, mimicking a spontaneous emission event. Shown is the response for a single coupling pulse; as discussed
in the text, in general multiple pulses are necessary to capture the impact of interference between excited matter states created by interaction
with an external field at different times.

therefore ||L̂|| is likely to be a much faster rate than local
relaxation rates. However, in the unlikely event that single
qubit relaxation rates dominate the nonlocal desired relaxation
prescribed by L̂, then all simulation parameters should be
scaled up such that the slowest rate is faster than single qubit
relaxation and dephasing rates.

D. Experimental protocol

Putting together the ingredients from the previous subsec-
tions, we can specify an experimental protocol to follow to
measure the response functions to weak fields and estimate
the response to an arbitrary wavepacket using a quantum
simulator [Fig. 2(a)]:

(1) Initialize “matter” system in its ground state, the aux-
iliary system in the ground state, and the bosonic mode in the
first excited state with the coupling set to zero.

(2) Modulate coupling with the profile γ (t ), providing a
“pulse” at time −tint.

(3) At time 0 modulate the coupling again to provide a
second “pulse.”

(4) At time tm measure the relevant population ρii of the
matter system’s state to obtain a sample of PM

sm(tm, tint ).
(5) Perform 1-4 for different tint, tm, repeat N times [as

needed for the desired statistical error on the estimates, see
Eq. (19)], to generate the Green’s function Gi(tm, tint ).

(6) Estimate the simulated response to a wavepacket with
profile ε(t ) using Eq. (16).
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(a)Simulated (b)Experimental

FIG. 3. Schematic for the example illustrated in Sec. V. (a) The physical scenario being simulated. Two chromophores represented by
black circles are excited by a weak-field wavepacket. Each chromophore has a ground state, corresponding to a lowest unoccupied molecular
orbital (LUMO), and an excited state, corresponding to the highest occupied molecular orbital (HOMO); these are drawn in red and cyan
to indicate optical coupling and are shown with wavy arrows to indicate the optically mediated decay process. (b) Schematic of trapped ion
simulator capable of simulating the physical setup in panel (a). The internal states of each chromophore are encoded into states of distinct ions
(indicated by the dashed circles). The excited states no longer have internal decay processes, but are instead coherently coupled to an auxiliary
ion that is damped. In addition, each of ions encoding chromophore states is coupled to a vibrational mode representing the field (red circle).
The monitored state of the red chromophore, encoded in the top ion, is the shown attached to an output channel that represents measurement.

This protocol is resolving the two-dimensional function
Gi(tm, tint ), and the total number of experiments required is a
function of the resolution required in tm and tint. The maximum
required resolution is set by the fastest timescale in the sys-
tem evolution (R ≡ 1

max(||ĤM ||,||Ŷ ||,|γ |) ), which sets the required
sampling resolution and discretization of tm and tint, while the
optical decay rate (|γ |), sets the maximum time interval over
which there is interesting dynamics. These are conservative
estimates, especially the temporal resolution of 1/R, since the
timescale of system evolution is typically much slower than
R. We will see an example of this in Sec. V.

E. Multiple photons

For the case of n photons, the above scheme can be easily
(if tediously) generalized by considering an initial bosonic
mode in its nth excited state with coupling pulses at 2n differ-
ent times, leading to a 2n-time Green’s function. To isolate the
desired Green’s function, a similar expression to Eq. (18) must
be used so that “duplicate” same-time terms can be subtracted
out. For n = 2

Psm(tm, tint, t
′
int, t

′′
int ) ≈ n4

γ

[
GiM (tm, tint, t

′
int, t

′′
int ) + GiM (tm, 0, 0, 0) + GiM (tm + tint, 0, 0, 0) + GiM (tm + tint + t ′int, 0, 0, 0)

16

+ GiM (tm + tint + t ′int + t ′′int, 0, 0, 0)

16
+ . . .

]
,

where the . . . indicate the additional same-time terms [e.g.,
GiM (tm, 0, t ′int, 0)] omitted for brevity; in general there will be
(2n)! − 1 of these.

The remaining unknowns are the settings of simulation
parameters—the shape of pulse profiles, parameters of the
auxiliary system, and sampling of time intervals—required to
reach the necessary limits for desired accuracy. We will now
consider a small example system to analyze the dependence
on these parameters, as well as a larger example system akin
to the kind this method is intended for.

V. ILLUSTRATIONS

A. Example 1: Coupled chromophores

To illustrate the ideas presented in the previous sec-
tions and gain intuition, we consider the simplest example

of a composite matter system interacting with a weak-field
wavepacket. Consider two chromophores, each with optically
active excited states interacting with a single-photon Gaussian
wavepacket; see Fig. 3(a). The Hamiltonian and L̂ operator for
this example is given by

ĤM =
⎡
⎣0 0 0

0 ω1 0
0 0 ω2

⎤
⎦, L̂ =

⎡
⎣0 l1 l2

0 0 0
0 0 0

⎤
⎦,

where the states are ordered as the common ground (HOMO)
state of both molecules with zero energy, the excited (LUMO)
states of molecule 1 with energy ω1, and the excited state of
molecule 2 with energy ω2. Note that we have assumed there
is no direct Coulomb coupling between the molecules for
simplicity. We also restrict the above operators to the single
excitation manifold since that is all that is needed to model the
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(a) (b)

FIG. 4. (a) The population of the excited state of 1 in response to two δ pulses spaced tint = 250 apart (gray) along with the independent
contributions from each pulse (dashed line) and G1(t, 250) (blue), the latter of which captures the interference between coherent excitations
due to the pulses. (b) shows the impact of nγ and χ 2 on the simulated value of G1(50, 250) in the limit of δ pulses (tγ = 1). The dashed line
marks the exact value. χ 2 = 5 for the nγ sweep, and nγ = 0.25 for the χ2 sweep.

interaction with a single photon. In the multiphoton case we
would need to model the multiexcitation energy states also.

Suppose we want to determine the population of state 1 in
response to single photon pulses at the resonance frequency
ω1. The two-time Green’s function in Eq. (17) for this system
can be written

G1(tm, tint ) = [〈1| ⊗ 〈1|∗]�ĝ†(tm)|ĝ(tm)�(�eiω1tint ĝ†(tint )|1̂�
+ �1̂|e−iω1tint ĝ(tint )�)�L̂†|L̂†�[|0〉 ⊗ |0〉∗],

with

ĝ(t ) = exp

(
i

[
ω1 + il2

1 +il1l2

+il2l1 ω2 + il2
2

]
t

)
. (22)

We construct a trapped ion simulation of this two chro-
mophore system with two ions, each with the following
Hamiltonian and L̂ operators:

Ĥ1 =
[

0 0
0 ω1

]
⊗ 1̂, L̂1 =

[
0 l1
0 0

]
⊗ 1̂,

Ĥ2 = 1̂ ⊗
[

0 0
0 ω2

]
, L̂2 = 1̂ ⊗

[
0 l2
0 0

]
,

ĤM = Ĥ1 + Ĥ2,

L̂ = L̂1 + L̂2,

and bosonic mode and auxiliary qubit for the field are de-
scribed by

ĤF = ω1â
†â,

Ĥaux =
[

0 0
0 ω1

]
.

The couplings are

Ĥ sm
M−F = L̂â† + H.c.,

ĤM−aux = χ

2
L̂σ̂+

aux + H.c.

There are three parameters that must be adjusted to ensure
that the simulation operates in the appropriate limit for simu-
lating G1: nγ , χ , and tγ . Additionally, the times tm and tint for
which G1 are simulated must be chosen from a sufficiently

dense grid to ensure the pulse profiles of interest can be
accurately reconstructed. In Fig. 4 we show the dynamics for
exact and simulation systems, given ω1 = 1.0, l2

1 = 0.0036,
ω2 = 0.8, and l2

2 = 0.0064, as well as the impact of nγ , and
χ on the population response to two pulses used to generate
G1(tm, 250). Figure 4(a) shows the exact result for a single
tint. The main features are the step changes at the pulse times,
the long decay due to spontaneous emission, and oscillations
at frequency ω1 − ω2 due to the different energies of states
1 and 2. We emphasize that, as given by Eq. (18), to obtain
G1(t, 250) we must subtract out the tint = 0 from the overall
response to the two pulses. Shown in Fig. 4(b), in this case the
necessary parameter values required to reach the asymptotic
limit. χ2 must essentially be about two to three orders of
magnitude faster than the rates l2

i (which are relatively small).
To understand the impact of nγ , recall that this parameter
corresponds to the area of the pulses of coupling between
the ions and the mode. Therefore, larger nγ means greater
population exchange between the mode and internal states of
the ion, and thus increased reabsorption. This explains the
deviation of the computed response and true response with
increasing nγ . nγ ∼ 1 [resulting in the expected population
shown in Fig. 4(a)] is sufficient for most purposes. The impact
of different choices of tγ is more nuanced. While a larger
tγ , which results in wider pulses, might seem to result in a
poor approximation of a δ impulse (which is what the pulse
mimics), the fact that the Green’s function is convolved with a
smooth wavepacket profile results in considerable tolerance to
the value of tγ . To demonstrate this, consider Fig. 5(a), which
shows the G1 computed for different pulse widths. For narrow
pulses, oscillations due to the difference ω1 − ω2 are quite
pronounced, while for wider pulses these are substantially
reduced. However, since according to Eq. (17) these computed
Green’s function are further convolved with the wavepacket
profile, if the wavepacket is slowly varying in time the impact
on the final result of larger tγ is minimal until it begins to
exceed the wavepacket’s temporal width. This is demonstrated
in Fig. 5(b) for a Gaussian wavepacket with σt = 100. The
inset shows the exact response PM (t ), while the contour plot
shows the deviation from the exact value for PM (200) for dif-
ferent values of tγ and sampling interval �t of tm and tint. The
computed response is robust to fairly large tγ ; in fact, larger
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(a) (b)

FIG. 5. (a) A plot of G1(200, t ) for different tγ . (b) The population of excited state 1 in response to a single photon with a Gaussian-shaped
temporal profile. The top panel shows the exact response PM (t ) with the simulated time of measurement marked by a vertical dashed line.
The gray shaded area shows the profile shape of the intensity of the photon pulse. The contour plot in the bottom panel shows the relationship
between the error (computed population less the exact value indicated in the top panel) in the simulated population at t = 200 for different
values of tγ and sampling intervals �t of tm and tint , for nγ = 1 and χ 2 = 5.

values are somewhat preferable if one wishes to minimize the
impact of choice of the �t sampling interval, which exhibits
pathologies at particular values. These are at multiples of
2π/(ω1 − ω2) = 31.412 and are due aliasing from sampling
intervals that align with the period of oscillation of G1.

Note that the timescale of system evolution in this exam-
ple is 2π/(ω1 − ω2), which is significantly larger than 1

||HM ||
since the coherent dynamics is only between the excited states
in the system, and the optical decay rate is much slower
than the coherent timescales. This means that the resolution
required of the two-dimensional function G1(tm, tint ) is naïvely
�t < 2π/(ω1 − ω2), and indeed, the error in Fig. 5(b) (for
constant tγ ) is smallest for �t in this range. However, note
that the error is also small for larger �t values as long as the
aforementioned pathological values are avoided. This small
error at larger �t values results from a cancellation of errors
due to the integral in Eq. (16); i.e., the fast oscillations of G1

and slow variation of ε(t ) imply that the integral evaluates to
almost zero, even if G1 is coarsely sampled. This is specific to
this system, and not generically expected.

B. Example 2: Energy transfer with
non-Markovian environment

The system considered in the last section is of course
trivial to simulate conventionally. Even in more com-

plicated cases, single photon response can often be ef-
ficiently simulated by restricting the calculation to an
energetically accessible subspace. However, this is not
always especially helpful, as in many systems—especially
those featuring many body interactions—the single (or few)
photon accessible manifold can nonetheless be quite large and
involve subsystems where multiple energy states must neces-
sarily be included. For example, an important consideration
and phenomenon of interest is the dynamics and behavior
of such systems under the influence of non-Markovian (e.g.,
1/ f ) noise due to impurities such as charge traps at inter-
faces. These can be modeled by adding auxiliary—frequently
two-level—systems driven by Markovian noise coupled to
the main system of interest. Scaling due to these additional
degrees of freedom added by considering explicitly structured
noise sources cannot be reduced, quickly rendering conven-
tional simulation intractable. The present scheme, however, is
not impacted by such considerations; as long as the necessary
elements can be incorporated into the experimental setup, the
number of samples required experiences constant scaling.

To illustrate this, we now consider a model that is rep-
resentative of the kind of complex material whose response
one might want to calculate with our approach. We model
an optically active molecule or quantum dot that is Coulomb
coupled to several optically inactive molecules/dots. The sys-
tem is also coupled to environmental fluctuators that cause
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(a) (b)

(c) (d)

FIG. 6. (a) Schematic of the Example 2. This model has one optically active element, e.g., a quantum dot, that couples to a chain of
optically inactive (dark) elements, which could be other quantum dots. We are interested in the transfer of a photoexcitation down the chain
to a state ( f ) in the final dark element. Note that the two-headed arrows indicate coherent coupling between elements and the single-headed
arrow indicate incoherent transfer. Making this transfer difficult to model is that one of the intermediate dark elements (2) is coupled to
classical fluctuators (shaded circles), which induce non-Markovian stochastic dynamics in the remainder of the system. (b) The trapped ion
simulation is setup similarly to the small system. Again, we model the internal states of each of the quantum dots with internal states of ions
(shown in dashed circles). The coherent coupling between quantum dots and fluctuators are implemented through Hamiltonian engineering
(see main text). Ion 3 encodes both states in quantum dot 3 and also the f state. The incoherent coupling to state f is implemented through
optical pumping via an intermediate state (similar to ion readout). (c) The measured population of the end state for different nγ as a function
of tγ = 2�tint . (d) The G f (∞, t ) that describes the response of the system to input pulses of varying width. In both cases, ω0 = ω1 = 1.0,
ω2 = 0.8, ω3 = 0.9, ω f = 0.5, ωα = ωβ = 0.1, J12 = 0.096, J23 = 0.1, J2α = J2β = 0.02, l = 0.01, �2

f = 0.4, �2
α = 0.25, �2

β = 0.5, nγ = 1,
and χ 2 = 5.

non-Markovian decoherence of the system. We are interested
in the energy transfer dynamics induced by single photon illu-
mination in such a system and thus monitor the population at
a optically inactive site. Due to the non-Markovian dynamics,
simple reduced treatments of the optically activated dynamics
are not possible. This minimal model is representative of the
structures found in biochemical molecular complexes or quan-
tum dot nanostructures. In Fig. 6(a) we depict such a system:
an optically active subsystem on the left, coherently coupled
to two dark systems with an incoherent decay to a stable
state at the end, mimicking an electron transport pathway.
The middle state of the coherent chain is coupled to a pair
two-level fluctuators acting as a non-Markovian noise source.

The matter Hamiltonian for this example is given by

ĤM =
∑
i

Ĥi +
∑
〈i, j〉

Ĥi j +
∑
j

Ĥ2 j, (23)

Ĥi = ωiσ̂
+
i σ̂−

i , i ∈ 1, 2, 3, f , α, β, (24)

Ĥi j = Ji j σ̂
+
i σ̂−

j , i, j ∈ 1, 2, 3, (25)

Ĥ2 j = J2 j σ̂
+
2 σ̂−

2 σ̂+
j σ̂−

j , j ∈ α, β, (26)

where 1, 2, 3, f index the quantum dot subsystems and α

and β are the two fluctuators. Ĥi represent local energies of
the quantum dot excited states and fluctuator energies, Ĥi j

represent the coherent Coulomb coupling between the quan-
tum dots with 〈i, j〉 indexing the dots that are coupled [see
double headed arrows in Fig. 6(a)], and Ĥ2 j representing the
coupling between the quantum dot excited states and fluctua-
tor states.

The field coupling is only to the bright dot and therefore,

L̂ = l σ̂−
1 . (27)

Additionally, the system is driven by two incoherent pro-
cesses, generated by Lindblad terms D[Ẑ], with the following
generators:

Ẑ f = � f σ̂
−
3 σ̂+

f , (28)

Ẑi = �iσ̂
x
i , i ∈ α, β. (29)
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The first of these represents the incoherent transfer from
the third (dark) dot to a final stable state f on the last dot
in the chain (which is monitored by the electron transfer
pathway/measurement), and the second represents the inco-
herent flipping of the fluctuator state. The reduced dynamics
of the quantum dots is non-Markovian and complex due to the
coupling to the fluctuators and the EM field.

This system is simulated with the trapped-ion platform
using the scheme shown in Fig. 6(b). Individual ions repre-
sent the active and dark quantum dots and the fluctuators.
In addition, a vibrational mode represents the EM field and
we introduce an auxiliary ion to model the field damping as
described above. The terms in the matter Hamiltonian ĤM

are simulated using either local Stark shifts to ion energies
or through Mølmer-Sørenson interactions in the rotating wave
regime [for the coherent interactions in Ĥi j (Eq. (25)]. The
coupling between the quantum dot 2 and the fluctuators, Ĥ2 j

in Eq. (26), is not of any of the standard forms discussed
in Sec. II. It describes a shift in energy of ion 2, that de-
pends on the state of the fluctuators. This type of interaction,
although not as popular in trapped-ion quantum computing
as the Mølmer-Sørenson interaction, can be engineered and
has been demonstrated [34,35]. Therefore, this example also
requires such σ z ⊗ σ z interactions between ion 2 and the ions
modeling the fluctuators.

The incoherent dynamics generated by Eq. (29) are gen-
erated by driving each of the fluctuator ions with microwave
fields superimposed with broadband noise [36]. Finally, the
incoherent coupling to the stable state f , generated by
Eq. (28), is achieved by encoding this state as a metastable
hyperfine state of ion 3. Then, by optically pumping the ex-
cited state of ion 3 to a high-lying state that decays into the
state f, we achieve incoherent coupling desired. The strength
of the coupling can be tuned by the detuning of the optical
pump.

As with Example 1, the spontaneous emission (decay) from
the optically active quantum dot is modeled through a cou-
pling to an auxiliary ion that is damped. The coupling between
the ion 1 and this auxiliary ion, and the vibrational mode that
models the optical field, and the internal Hamiltonians for
both of these systems take the form

ĤF = ω1â
†â,

Ĥaux =
[

0 0
0 ω1

]
,

Ĥ sm
M−F = L̂â† + H.c.,

ĤM−aux = χ

2
L̂σ̂+

aux + H.c.,

where L̂, as in Eq. (27), is a local operator acting on ion 1. As
described in previous sections, the auxiliary ion is optically
pumped to simulate dissipation.

In Figs. 6(c) and 6(d) we show the response characteristics
for a measurement of the stable state f following the pas-
sage of a Gaussian photon pulse of the same kind considered
above. In Fig. 6(d) the function G f (∞, tint ) is plotted. The
decay processes result in a sharper response with respect to
the interval, reducing the overall window over which G f is
significant and must be computed. In Fig. 6(c) we show the

expected population after the simulated pulse has passed and
the population of f has stabilized for varying tγ and nγ . As
before, the final result is robust for rather large choices of tγ
and �tint. Interestingly, the longer pulse widths act to mitigate
this error; by spreading out the excitation over a longer period,
the incoherent process are given more time to damp out the
excitation, limiting accumulation in the 1 state that can be
coherently transferred back to the bosonic mode, resulting in
less error as nγ is increased.

Finally, we consider the number of trials N necessary to
estimate G. For both cases the values of PM

sm are around 0.01.
This suggests that, to obtain σG < 0.001 one should take
N ∼ 104 samples. If we consider a sampling interval for tm, tint

of �t = 10 for a total time domain of 1000, then according
to Eq. (20) an error of 0.01 in the population corresponds
to around one million experiments. As mentioned previously,
depending on the experiment objectives and the system in
question, there is some freedom to “reallocate” trials from
the sampling of G to the sampling of tm and tint, reducing the
overall number of experimental runs needed.

VI. SCALING CONSIDERATIONS

Now we address the scalability of the proposed approach
to quantum simulation of weak-field light-matter interactions.
Ultimately, the goal is to simulate interactions with mate-
rial systems with hundreds or thousands of localized degrees
of freedom (e.g., atoms). This corresponds to hundred or
thousands of qubits since each localized degree of freedom
requires at least one qubit to model. Furthermore, one requires
a constant number of auxiliary qubits (or other degrees-of-
freedom) to capture the effects of spontaneous emission.
While it is an engineering and technical challenge to scale
the trapped-ion (or any other quantum computing) platform
to such sizes, it is within the roadmap of the technology. The
aspect of the simulation protocol that requires more thought is
the scalability of engineering all the interactions necessary for
the general model, given by the Hamiltonian (in the rotating
frame with respect to mode â’s frequency ω0):

Ĥ = ĤM + ĤM−F + HM−aux, with

ĤM =
n∑
j=1

ω
j
0σ̂

z
j +

∑
〈i, j〉

Ji j σ̂
x
i σ̂ x

j ,

ĤM−F = iγ (t )(eiω0t L̂â† − e−iω0t L̂†â),

ĤM−aux = χ

2
(Lσ̂+

aux + L†σ̂−
aux), (30)

where we have assumed the matter Hamiltonian HM to be of
the form that can be engineered in trapped ions [i.e., Ha in
Eq. (3)]. In addition to this Hamiltonian, fast dissipation at
rate χ2 must be engineered on the auxiliary qubits.

In the following, we discuss the primary concerns when
implementing this model at scale on the trapped ion platform.

(1) We begin with the need to engineer a fast decay pro-
cess on one or several auxiliary ions. As mentioned above,
this can be accomplished by optical pumping of an ion, i.e.,
driving the ions coherently with laser light followed by a
spontaneous decay. The spontaneous decay process, however,
generates a recoil, i.e., there is a probability of η2

α (nα + 1)
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that a phonon in mode α is generated. While this probability
is small for small motional mode occupations nα and typcial
Lamb-Dicke parameters ηα of a few percent. Still if a large
number of spontaneous emission process needs to be simu-
lated, this heating process needs to be countered. Probably
the most promising avenue to accomplish this is to employ
another ion species or isotope which allows cooling using
light not resonant with any of the transitions of the primary
ion species. Thus, the temperature of the ion crystal can be
controlled while preserving the coherence of the ions.

(2) As mentioned in Sec. II, one also must be careful about
accounting for the number of motional modes required. Not
only do we need a mode for the electromagnetic field (with
annihilation operator â), but each qubit-qubit interaction must
be mediated by a separate motional mode. While the most
general model can contain n(n − 1)/2 nonzero Ji j coupling
values, in physically relevant models, the coupling structure
is more sparse. For example, if these couplings arise from
screened Coulomb interactions, as is common in biochemical
models, the coupling values decay rapidly with separation
distance and consequently, in a complex of many constituents
(e.g., molecules) only the couplings between the closest ones
have to be taken into account to get an accurate picture of the
dynamics. Suppose there are m < n(n − 1)/2 such nonzero
coupling terms. Finally, implementing all the qubit-qubit in-
teractions in HM−aux requires p modes, where p is the number
of optically active subsystems in the model (the number of
subsystems/qubits that enter the definition of the optical cou-
pling L̂). Therefore, in sum, we need m + p+ 1 motional
modes to implement this model. A chain of n ions has 3n
total vibrational modes, and the allocation of these modes
to mediate the interactions in a model will be a complex
optimization that depends on hardware and trap constraints
and the model. However, the minimum necessary condition
that we need to satisfy is m + p+ 1 � 3n.

(3) If the number of motional modes required by the
model is feasible, then the next concern is the complexity
of having all interactions turned on at once to implement
the model. Even assuming the technical challenges of having
so many addressing laser beams can be met, one could be
worried about interference or crosstalk effects between terms.
Not only do many ion-mode interactions have to be on at once,
but the same ion needs to interact with multiple modes at once.
The main concern is that light coupling a particular ion to
a particular mode with strength κ will also couple this very
same ion off-resonantly to other motional modes α detuned by
�α with strength nα (κ/�α )2. Anticipating a typical coupling
strength of order kHz and aiming at a coupling of less than
1 % at nearby modes, we require �α � nα × 10 kHz. To
mitigate crosstalk from strongly coupled modes to weakly
coupled ones, it will be advisable to group them such that
weakly coupled modes have large frequency differences to
the strongly coupled ones. Typical motional frequencies of
the transverse modes of an ion strings are of order 5 MHz
spanning about 1 MHz. Shaping the axial potential such that
those mode frequencies are uniformly spread, there is room to
control the coupling to close to 100 modes. If less crosstalk
should be desired or the ion crystal is not near the motional
ground state, then all interaction strengths could be reduced
to slow down the simulation at the expense becoming more

sensitive to decoherence such as motional heating and qubit
decoherence, both of which can be larger than 100 ms.

The ultimate path forward to scaling this approach might
be to go beyond analog simulation and instead use a digi-
tized model that performs Trotterization of the above model.
This would enable one to implement each interaction between
subsystems/qubits separately, thereby allowing one to recycle
the modes and thus reducing the required number. Although
digital simulation offers many advantages, especially for scal-
ing up the approach, it is important to realize that digitized
evolution can take longer, and thus require a platform with
better operation fidelities and coherence times.

VII. APPLYING THE RESPONSE FUNCTION APPROACH
TO OTHER PHYSICAL SETTINGS

The utility of the described scheme is not limited to simula-
tion of light-matter interactions. First we note that the scheme
can be straightforwardly applied to the study of interac-
tion with phononic wavepackets, as the quantum mechanical
description is almost identical. A fully quantum mechan-
ical description of phonon wavepackets and interactions
is increasingly necessary as novel technologies exploiting
phonons for quantum information processes emerge [37–40].
Second, the wavepacket aspect is not essential; the Green’s
function approach and ability to treat nonlocally interact-
ing baths is generally useful for simulating and analyzing
open quantum systems in regimes where statistical treatments
are insufficient. In particular, the 2n-time Green’s function
described here contains information about the dynamics of
coherence in the nth-excited state manifolds, and can be
used to probe the behavior of systems coupled to complex
baths that are difficult to simulate conventionally. Our scheme
can be adapted to simulate the response of a many-body
system to mesoscopic, structured environments with long-
lived coherent, bosonic degrees of freedom. Such mesoscopic
environments are increasingly common in engineered nanos-
tructures [41,42].

VIII. CONCLUSION

We have presented an approach to simulating light-matter
interactions using analog quantum simulators with access to
controllable bosonic modes. Our approach relies on extrac-
tion of time-dependent response functions through dynamic
modulation of the coupling between the bosonic mode(s) and
other degrees of freedom modeling the matter subsystem. We
analyzed through calculations and numerical examples the pa-
rameter regimes in which the quantum simulations produces
accurate predictions. As demonstrated through examples in
Sec. V, our simulation scheme is fairly robust to choice of ex-
perimental parameters—although we are computing Green’s
functions, because these quantities are convolved with smooth
wavepacket profiles the represent the electromagnetic field,
the computed response is remarkably stable to errors in the
measured Green’s functions. This motivates investigation of
the noise robustness of our approach and its suitability for
implementation on noisy intermediate scale quantum (NISQ)
quantum computers and simulators. For the examples pre-
sented in this manuscript, the degree of freedom encoding the
electromagnetic field did not have be bosonic since we only
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considered one photon states; such simulations could be per-
formed solely by encoding in internal state of ions. However,
for multiphoton interactions, the bosonic/harmonic nature of
the vibrational modes becomes essential. In this work we
have focused on the trapped-ion platform for concreteness.
However, any quantum simulation platform with controllable
bosonic modes with tunable coupling to other localized (e.g.,
qubit) degrees of freedom could implement our scheme.
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APPENDIX: DERIVATION OF ANCILLA-ASSISTED
DISSIPATION

To engineer the correlated dissipation induced by coupling
of the degrees of freedom in the matter subsystem to a broad-
band EM field, we introduce an auxiliary ion and isolate two
internal states within it governed by a two-level system with
Hamiltonian Ĥaux = ωaux

2 (1̂ − σ̂ z
aux). Then we assume that the

excited state is subject to a fast decay process: D[X̂ ], with X̂ =
χσ̂−

aux. This could be engineered through optical pumping to a
higher lying state, for example [33], which is a generally use-
ful entropy reduction resource in quantum simulation [43,44].

Then, consider the combined system governed by the model:

ḠM (t ) = e−i(�ĤM |1̂�−�1̂|ĤM�)t ,

Ḡaux(t ) = e(−i(�Ĥaux|1̂�−�1̂|Ĥaux�)− 1
2 (�X̂ †X̂ |1̂�+�1̂|X̂ †X̂�))t ,

Ḡ0(t ) = ḠM (t ) ⊗ Ḡaux(t ),

ĤM−aux = Ĵσ̂+
aux + h.c. =

∑
i

Jiσ̂
−
i σ̂+

aux + H.c.,

F̄M−aux = −i(�ĤM−aux|1̂� − �1̂|ĤM−aux�) + �X̂ |X̂�. (A1)

Here, the term ĤM,aux describes the coherent coupling between
the optically active states in the matter subsystem and the
auxiliary ion’s internal states, which are engineered using the
Mølmer-Sørenson interaction, as in Eq. (2). Since we want to
understand the effects of coupling to the auxilliary ion we do
not include the mode coupling and any additional decoherence
terms on the matter subsystem in the above for simplicity. The
intuition here is that this coherent coupling to a fast decaying
level will allow the matter states to “inherit” some amount
of dissipative decay dynamics, and this amount can be tuned
by choice of the coupling parameters Ji for each excited state
in the matter subsystem indexed by i. The coupling terms are
assumed to be small, and thus in the following, we will expand
perturbatively in their magnitude:

Ḡ(t ) = Ḡ0(t ) +
∫ t

0
dt ′Ḡ0(t − t ′)F̄M−auxḠ0(t ′)

+
∫ t

0
dt ′Ḡ0(t − t ′)F̄M−aux

∫ t ′

0
dt ′′Ḡ0(t ′ − t ′′)

× F̄M−auxḠ0(t ′′) + ...

If we are only interested in the impact on the matter subsystem
states, then we keep only relevant terms that describe transfer
both to and from the auxiliary state in this expansion. For an
initial state where the auxilliary system is in its ground state,

[〈0aux| ⊗ 〈0aux|∗]Ḡ(t )[|0aux〉 ⊗ |0aux〉∗]

= ḠM (t ) −
∫ t

0
dt ′

∫ t ′

0
dt ′′L̄+(t, t ′)L̄−(t ′, t ′′)ḠM (t ′′)

+
∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ t ′′

0
dt ′′′�X̂ |X̂�L̄†−(t ′, t ′′)L̄−(t ′′, t ′′′)ḠM (t ′′′)

+
∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ t ′′

0
dt ′′′

∫ t ′′′

0
dt ′′′′L̄†+(t, t ′)L̄+(t ′, t ′′)L̄†−(t ′′, t ′′′)L̄−(t ′′′, t ′′′′)ḠM (t ′′′′) + H.c. + . . .

= ḠM (t ) −
∫ t

0
dt ′

∫ t ′

0
dt ′′ḠM (t − t ′)�Ĵ†|1̂�

× ḠM (t ′ − t ′′)�Ĵ|1̂�e− χ2

2 (t ′−t ′′ )ḠM (t ′′) +
∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ t ′′

0
dt ′′′χ2e−χ2(t ′−t ′′ )�1̂|Ĵ�ḠM (t ′′ − t ′′′)e− χ2

2 (t ′′−t ′′′ )�Ĵ|1̂�ḠM (t ′′′)

+
∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ t ′′

0
dt ′′′

∫ t ′′′

0
dt ′′′′ḠM (t − t ′)�1̂|Ĵ†�ḠM (t ′ − t ′′)e− χ2

2 (t ′−t ′′ )�Ĵ†|1̂�

× e−χ2(t ′′−t ′′′ )�1̂|Ĵ�ḠM (t ′′′ − t ′′′′)e− χ2

2 (t ′′′−t ′′′′ )�Ĵ|1̂�ḠM (t ′′′′) + H.c. + . . . ,
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with L̄+(t, t ′) = Ḡ0(t − t ′)�Ĵ †
σ̂−

aux|1̂� and L̄−(t, t ′) = Ḡ0(t −
t ′)�Ĵσ̂+

aux|1̂�. If we assume χ is large compared to the other
processes in the system, then we find that there are three
effective first order terms

[〈0aux| ⊗ 〈0aux|∗]Ḡ(t )[|0aux〉 ⊗ |0aux〉∗]

≈ ḠM (t ) − 2

χ2

∫ t

0
dt ′ḠM (t − t ′)�Ĵ†Ĵ|1̂�ḠM (t ′)

+ 2

χ2

∫ t

0
dt ′�Ĵ|Ĵ�ḠM (t ′)

+ 4

χ6

∫ t

0
dt ′ḠM (t − t ′)�Ĵ†Ĵ|Ĵ†Ĵ�ḠM (t ′) + H.c. + . . .

(A2)

The contribution of the last term vanishes in the large χ limit.
The above then becomes

[〈0aux| ⊗ 〈0aux|∗]Ḡ(t )[|0aux〉 ⊗ |0aux〉∗]

≈ e
(
−iH̄M+ 4

χ2 [�Ĵ|Ĵ�− 1
2 (�Ĵ† Ĵ|1̂�+�1̂|Ĵ† Ĵ�)]

)
t
.

We see that the impact of the auxiliary state dynamics on
the system is equivalent to a decay process for the system
that would enter the master equation as D[ 2Ĵ

χ
]. Therefore,

we can engineer the nonlocal decay terms necessary to
model the dissipative effect of coupling to a continuum
of modes by tuning the coherent couplings in Ĵ such that
2Ĵ
χ

= L̂.
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