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ABSTRACT 1 INTRODUCTION

(Sender-)Deniable encryption provides a very strong privacy guar-
antee: a sender who is coerced by an attacker into “opening” their
ciphertext after-the-fact is able to generate “fake” local random
choices that are consistent with any plaintext of their choice. The
only known fully-efficient constructions of public-key deniable
encryption rely on indistinguishability obfuscation (i0) (which cur-
rently can only be based on sub-exponential hardness assumptions).

In this work, we study (sender-)deniable encryption in a setting
where the encryption procedure is a quantum algorithm, but the
ciphertext is classical. First, we propose a quantum analog of the
classical definition in this setting. We give a fully efficient construc-
tion satisfying this definition, assuming the quantum hardness of
the Learning with Errors (LWE) problem.

Second, we show that quantum computation unlocks a funda-
mentally stronger form of deniable encryption, which we call perfect
unexplainability. The primitive at the heart of unexplainability is a
quantum computation for which there is provably no efficient way,
such as exhibiting the “history of the computation,' to establish
that the output was indeed the result of the computation. We give a
construction which is secure in the random oracle model, assuming
the quantum hardness of LWE. Crucially, this notion implies a form
of protection against coercion “before-the-fact”, a property that is
impossible to achieve classically.
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This work is motivated by the following overarching question:
do local quantum computations alone provide an advantage in
cryptography? In other words, is there any quantum advantage
in the setting where honest parties can perform local quantum
computations but are restricted to sending and storing classical
information?

While many examples of quantum advantage are known which
leverage quantum communication (or shared entanglement), e.g.
key distribution [6, 16] and oblivious transfer [4, 14], or that rely
on storing quantum information, e.g. quantum money [22], copy-
protection [1], and various other unclonable primitives [5, 10, 13],
quantum advantage that results purely from local quantum compu-
tations is essentially restricted to certifiable randomness [7].

Here, we study the notion of deniable encryption in the setting
where honest parties have access to a quantum computer, but no
quantum communication. Deniable encryption was introduced by
Canetti et al. [11]. In a deniable encryption scheme, honest parties
are able to generate a “fake” secret key (in the case of receiver
deniability) and “fake” randomness (in the case of sender deniability)
to claim that the public communication is consistent with any
plaintext of their choice. This allows them to preserve the privacy
of the true plaintext even if an adversary coerces them after-the-fact
into disclosing their private information.

We restrict our attention to non-interactive public-key schemes,
and we focus on sender-deniable encryption, namely the setting in
which we only protect the sender against coercion by an attacker.

A bit more formally, a public-key encryption scheme is sender-
deniable if there exists a “faking” algorithm that takes as input a pair
of messages my, m1, an encryption ¢ = Enc(my, r), and the random-
ness r used in the encryption, and outputs some “fake” randomness
r’, which should look consistent with a genuine encryption of m;.
More precisely, the view of an attacker who receives mj, c, and the
fake randomness r’, should be computationally indistinguishable
from the view of an attacker who receives m1, along with a genuine
encryption of my, and the true randomness used.

In their original paper [11], Canetti et al. gave a construction
of a deniable encryption scheme where the real and fake views
are computationally indistinguishable up to inverse polynomial
distinguishing advantage - we will call the distinguishing advantage
the “faking probability”. More generally, they show that the size of
the ciphertext grows with the inverse of the faking probability.

In a breakthrough work [20], Sahai and Waters gave the first
construction with negligible faking probability and compact (i.e
polynomial-size) ciphertexts under the assumption that secure in-
distinguishability obfuscation (iO) exists. Recently, a breakthrough
of Jain, Lin and Sahai [18], showed how to construct iO from a few
concrete computational hardness assumptions. However, the latter
assumptions require sub-exponential hardness of the underlying


https://doi.org/10.1145/3519935.3520019
https://doi.org/10.1145/3519935.3520019
https://doi.org/10.1145/3519935.3520019
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519935.3520019&domain=pdf&date_stamp=2022-06-10

STOC ’22, June 20-24, 2022, Rome, Italy

problems. Moreover, the constructions from [18] are not quantum-
secure due to their use of bilinear maps. Other constructions that
are based on “LWE-like” assumptions [8, 15, 17, 21] also require
sub-exponential hardness for a fundamental reason: they rely on
compilers from weaker objects (like functional encryption) to iO,
which seem to inherently introduce sub-exponential hardness. Fi-
nally, a recent work [3] achieves deniable encryption with compact
ciphertexts and negligible faking probability based on polynomial-
time hardness of LWE. However, the running time of the encryption
algorithm is non-polynomial, growing with the inverse of the fak-
ing probability. In sum, no constructions of deniable encryption
from polynomial-time hardness assumptions achieve negligible fak-
ing probability and are fully efficient - namely, achieve compact
ciphertexts and polynomial-time encryption and decryption. Thus,
the following is an outstanding open question:

Can fully efficient deniable encryption be based on polynomial-time
hardness assumptions?

In this work, we provide an affirmative answer to this question in
the setting where encryption is a quantum algorithm, but the cipher-
text is classical. For simplicity, we will refer to this as the quantum
setting. Our constructions illustrate that quantum computation pro-
vides a fundamentally new kind of advantage for deniability: while
classical deniability can only handle coercion after-the-fact (i.e. the
attacker approaches the sender after she has sent her ciphertext),
quantum computation can also protect against coercion before-the-
fact (i.e. the attacker approaches the sender before she sends her
ciphertext).

1.1 Our Contributions

We propose two notions of deniability in the quantum setting,
namely quantum deniability and unexplainability, and we provide
a construction for each. In this section, we give an overview of
the two notions and the corresponding constructions. Our second
construction satisfies a strong form of unexplainability that we
call perfect unexplainability. The latter notion implies a form of
protection against coercion before-the-fact.

Quantum Deniability. Recall that the classical definition of de-
niability is centered around the notion of input randomness. Un-
fortunately, the latter is not well-defined for a quantum algorithm,
since randomness can be intrinsically the result of a measurement,
and depends on the basis in which the measurement is carried
out. Instead, the correct analog of randomness is the unmeasured
quantum state of the encryption algorithm.

Now;, the strongest definition of quantum deniability that one
could imagine would require that revealing the final quantum state
of the encryption algorithm (right before measurement) to an at-
tacker does not compromise the secrecy of the plaintext. However,
this definition is clearly impossible to achieve, since one can rewind
the computation to recover the input state, and hence the plaintext.
Instead, in the case where the plaintext is a single bit, our definition
of quantum deniability allows the sender to measure a single qubit
of the final quantum state of the encryption algorithm (correspond-
ing to one bit of the ciphertext), and requires that revealing all
the other qubits to the attacker does not compromise the secrecy
of the plaintext. One might expect that such a definition is still
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impossible to achieve. However, remarkably, there is a construction
that achieves it.

The setting is somewhat subtle, so let us be a little more precise.
The encryption of a single bit b can be thought of as a pair (z, aux),
where z € {0,1} and aux € {0,1}" for some n (recall that the
ciphertext is entirely classical). The recipient (who has the secret
key) can efficiently recover b from z using aux!, while an adversary
who only sees (z, aux) has negligible advantage in guessing b. For
deniability, we require that if the sender’s quantum encryption
algorithm were to only measure the qubit register corresponding
to z, then the remaining final quantum state of the encryption
algorithm (which includes aux in superposition) still does not reveal
any non-negligible information about b to the adversary. Note that,
in practice, encryption requires the honest sender to measure both z
and aux. The definition of quantum deniability is designed to show
that even if the sender were to preserve a coherent state over as
many qubits as possible — i.e. all but the single qubit corresponding
to z — this still does not reveal any information about the plaintext
b to the attacker.

THEOREM 1. There exists a deniable encryption scheme (in the
sense of the above definition), assuming the quantum hardness of
LWE.

The scheme that makes the theorem true is simple, and is inspired
by the use of trapdoor claw-free functions in [7, 19].

In essence, in our encryption scheme, the public key is a choice
of trapdoor claw-free function pair (fi o, f,1)- The encryption of
a single bit b is a pair (z, aux) where aux = (d,y) such that z =
b@®d- (xo ® x1), where xp, x1 are the pre-images of y. In other
words, the bit d - (xo @ x1) is used as a one-time pad. CPA security
then follows straightforwardly from the fact thatd - (xo ® x1) is a
hardcore bit, i.e. that it is computationally hard to guess d - (xo ®x1)
for uniformly random d and y.

To prove deniability, we establish that the final quantum state of
all registers conditioned on the classical outcome z still does not
leak any information about b.

The intuition for why quantum information is well-suited for
deniable encryption is the following: the honest execution of the
quantum encryption algorithm does not have any input random-
ness, instead the algorithm must be precisely such that all registers
delicately interfere in the right way to result in a valid equation
(where the randomness in the equation comes from the final mea-
surement), leaving no other trace of the plaintext in the leftover
workspace.

We point out that the scheme that makes Theorem 1 true can
be instantiated with any 2-to-1 (noisy) trapdoor claw-free function
pair, satisfying the injective invariance property from [19], which
in turn can be constructed from the hardness of LWE.

Remark: One might wonder whether it is possible to formulate a
definition of quantum deniability more closely aligned with the
classical definition. There are two basic obstacles to this:

e Not only can quantum algorithms sample randomness by
making measurements, but they can also “cover their tracks”

!In the scheme that we propose, z is special in the sense that toggling it (and leaving
aux unchanged) toggles the plaintext, while aux plays the role of auxillary information
that specifies the mapping between z and the plaintext.
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by repeatedly performing measurements in an incompati-
ble basis. As an example, consider a possibly more natural
definition of deniability in which the attacker is only re-
vealed the remaining quantum state after both z and aux are
measured (i.e. whatever remains after the quantum encryp-
tion algorithm has produced the entire classical ciphertext).
Unfortunately, such a definition would be trivial to satisfy
by slightly modifying any classical encryption algorithm,
and running it on a quantum computer: one can simply pre-
scribe that the honest quantum encryption algorithm runs
the classical encryption algorithm, using a register to sample
the randomness, then measures this register in an incom-
patible basis, and finally appends the classical outcome of
this measurement to the ciphertext as part of aux (decryp-
tion then ignores this part of the ciphertext). What this has
accomplished is that the leftover quantum state is now es-
sentially garbage, and trivially does not reveal anything to
the attacker.

The notion of a transcript of a computation is not well-
defined for a quantum algorithm, in the sense that observing
the computation at any step in general disturbs the compu-
tation.

It is somewhat fortunate that a stronger definition of quantum
deniability, which does not appeal to the inner workings of the
encryption algorithm, is achieved by a concrete scheme.

Unexplainable encryption. The second notion that we propose,
unexplainability, takes a different viewpoint on the concept of input
randomness: in the classical setting, input randomness is simply
a proxy for a “proof” that the ciphertext is a valid encryption of
a certain plaintext. The notion of unexplainability formalizes this
notion of a proof, and achieves a single definition that provides a
natural common view of deniability in the classical and quantum
setting.

In an unexplainable encryption scheme, it is simply impossible,
except with negligible probability, for an efficient sender to “prove”
after-the-fact that they encrypted a particular plaintext (thus an
attacker has simply no reason to bother coercing a sender into
opening their ciphertext in the first place). The crux in formaliz-
ing this definition is to formalize what it means for a sender to
“prove” that they encrypted a particular plaintext. We argue that
the appropriate notion of a proof is akin to that of an argument.

DEFINITION 1 (EXPLAINABILITY (INFORMAL)). A public-key en-
cryption scheme is explainable if there exists an efficient verification
procedure Verify, taking as input a tuple of public key, ciphertext, mes-
sage, and alleged proof (pk, ¢, m, w), such that Verify(pk, c,m,w) =0
if the triple (pk, ¢, m) is inconsistent. Moreover, Verify should satisfy
the following:

e Completeness: there exists an efficient procedure that, on input
m, pk, generates c,w such that Verify(pk, ¢, m, w) outputs 1
with high probability.

e Soundness: no efficient procedure, on input pk, m,m’ with
m # m’, can generate ¢, w,w’ such that Verify(pk, c, m, w)
and Verify(pk, ¢, m’, w’) both output 1, except with negligible
probability.
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By contrapositive, a scheme is unexplainable if, for any such
Verify, one of completeness or soundness fails. Thus, the sense in
which a classical deniable scheme is unexplainable is that a sender
can never convincingly “prove” to an attacker that they encrypted
a particular plaintext (even if the sender wishes to do so honestly):
this is precisely because, by definition of deniability, it is always
possible for a sender to efficiently generate randomness consistent
with any plaintext of their choice. In other words, a classical de-
niable encryption scheme is unexplainable because the soundness
condition above fails when one takes Verify to be the procedure
that interprets w as the randomness used in the encryption, and
simply checks that ¢ = Enc(pk, m; w).

The notion of unexplainability can be thought of as a rephrasing
of deniability from a different perspective. In fact, we show that
the appropriate variation on the definition of unexplainability is
equivalent to deniability (we refer the reader to the full version for
details). However, unlike deniability, the notion of unexplainability
has a very natural extension to the quantum setting, as it is not
centered around randomness, but rather, more abstractly, around
the notion of a proof: without modifications, the definition above
makes sense even in the quantum setting (where one may choose
to allow the “proof” w to be a quantum state).

Notice that for an encryption scheme with perfect decryption (i.e.
one in which there is a unique plaintext consistent with a given ci-
phertext), the notion of a proof described above coincides with that
of an NP (or QMA) proof: since we require that Verify(pk, ¢, m, w) =
0 if the triple (pk, ¢, m) is inconsistent, then Verify is precisely an
NP-relation (or QMA-relation) for the language

L ={x = (m,c,pk) : cis a valid encryption of m under pk} .

The definition then has the additional requirement of complete-
ness, which asks that there is an efficient procedure that takes as
input pk, m, and generates valid c, w.

Notice that, for encryption schemes with perfect decryption, un-
explainability is impossible to achieve classically. First notice, that
for a scheme with perfect decryption, the soundness condition in
Definition 1 is trivially satisfied. Thus, the scheme is unexplainable
if and only if for all Verify (as in Definition 1) the completeness
condition fails. However, the latter is contradicted by the following.
Consider the NP-relation Verify ((m, ¢, pk), w) where the witness
is the randomness used to encrypt, i.e. Verify ((m, c, pk), w) = 1 if
Enc(pk, m; w) = ¢, and Verify ((m, ¢, pk), w) = 0 otherwise. Then,
simply consider the efficient procedure which encrypts honestly,
and outputs the randomness as the witness.

In this work, we show the following.

THEOREM 2 (INFORMAL). There exists an unexplainable public-key
encryption scheme with perfect decryption, with security in the quan-
tum random oracle model (QROM), assuming the quantum hardness
of LWE.

The scheme that makes the theorem true is a variation on the
previous one, and is inspired by the follow-up work [9] to [7], which
makes use of a random oracle.

Again, the public key is a choice of trapdoor claw-free function
pair (fi 0, fk.1)- The encryption of a single bit b is a triple (z,d, y)
such thatz =b & d - (xo ® x1) ® H(xp) ® H(x1), where xg, x1 are
the pre-images of y. In other words, now the pad is the bit d - (xp @
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x1) ® H(x9) ® H(x1). The need for a random oracle stems from
the need to obtain a more rigid characterization of the structure of
algorithms that produce valid encryptions (we discuss at the end
why obtaining a scheme from just LWE may be difficult).

We show that our scheme is unexplainable in the strongest sense:
it is simply impossible, except with negligible probability, for an
efficient quantum algorithm to produce both a valid encryption and
a proof of its validity. We emphasize that the latter guarantee holds
for any efficient quantum algorithm that attempts to produce both a
valid encryption and a proof, not just for algorithms that run honest
encryption. Using the terminology introduced earlier, we show that
for any verification procedure Verify such that Verify(pk, ¢, m, w) =
0 if the triple (pk, c, m) is inconsistent, the completeness condition
fails. We call this perfect unexplainability.

Notice that perfect unexplainability is impossible to achieve
classically, since one can always take Verify to be the procedure
that interprets w as the randomness in the encryption, and runs
encryption forward to check consistency.

We find this behaviour to be quite striking, beyond its implica-
tions for deniable encryption, and we believe that it has the potential
to find applications in other settings.

As a first example, our encryption scheme provides protection
against coercion before-the-fact, in the following sense. In the clas-
sical world, a coercer who approaches a sender prior to sending an
encrypted message can dictate which randomness shall be used by
the sender when computing the encryption (and which plaintext
shall be encrypted). In this way, the coercer can, at a later stage,
check that the ciphertext submitted by the sender corresponds to
an encryption of the desired plaintext with the prescribed random-
ness. This holds true even if the public key (or some other public
information to be used in the encryption) is revealed after coercion.
This type of coercion is a major concern for electronic elections
with online encrypted votes. Our unexplainable encryption scheme
prevents coercion before-the-fact since the randomness cannot be
controlled, even by the sender themselves: it is instead the result
of a carefully chosen measurement. Thus, in a scenario where the
public key (or some other public information to be used in the
encryption) is revealed after the coercion stage, a before-the-fact
coercer would not be able to succeed. In particular, there is simply
no way for an attacker to prescribe to the sender how to encrypt
in a way that it can later verify, because this would immediately
violate perfect unexplainability: it would imply that there exists
some quantum algorithm that outputs ciphertexts and proofs of
their validity. We discuss coercion before-the-fact in more detail
in Section 5.2. As a further practical motivation, the fact that it is
not possible for a sender, even if they wanted to, to prove that their
ciphertext is a valid encryption of their plaintext provides a way to
protect against “vote-selling”.

Lastly, efficiently checkable proofs have been at the center of
the stage in complexity and cryptography in the past four decades:
proofs with a variety of surprising properties have been discov-
ered and have been the object of intense study (e.g. PCPs, zero-
knowledge, succinct). Our work provides a new perspective on the
notion of proofs in a quantum world by formalizing the notion
of “inability to prove”: this is captured by a computational prob-
lem that can be solved efficiently, but for which it is impossible to
concurrently provide an efficiently checkable proof of correctness.
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Classically, the transcript of a computation serves as an efficiently
checkable proof that the output is correctly reported. At the heart of
the new property is the fact that quantum computations, in general,
lack the notion of a transcript or a “trajectory” of the computation.
In this work, we identify a computational problem for which it is
provably intractable to find a solution while concurrently extracting
any meaningful proof that the solution is correct. Using the termi-
nology introduced earlier, a proof is a witness to an appropriate NP
(or QMA)-relation Verify.

The analysis in our security proof uses Zhandry’s compressed
oracle technique [23], and relies on two novel technical contribu-
tions.

(i) The first key step in the security proof is establishing that a
strategy which produces valid encryptions must be close to
a strategy that queries the oracle at a uniform superposition
of the two pre-images (in a sense made more precise in the
main text). In a bit more detail, let H : {0,1}"" — {0,1} be
a uniformly random function, and let xo, x; € {0,1}". We
prove a technical lemma that characterizes the structure of
strategies that are successful at guessing H(xo) ® H(x1). We
use this lemma to derive a corresponding “rigidity” theorem
for strategies that produce valid encryptions (equivalently,
valid “equations” in the terminology of [7]). This rigidity
theorem may find applications elsewhere, and may be of
independent interest.

The second technical contribution is an online extraction
argument which allows to extract a claw from any prover
that produces a valid equation and a proof of its validity,
with non-negligible probability. The extraction is online in
the sense that no rewinding is required.

(ii)

We point out that the scheme that makes Theorem 5 true can
be instantiated with any 2-to-1 (noisy) trapdoor claw-free function
pair (the injective invariance property is not needed here). We also
remark that for both of our constructions (in Theorems 1 and 5) we
do not require an adaptive hardcore bit property.

One final remark is in order. Although a perfectly unexplainable
encryption scheme based solely on, say hardness of LWE with-
out the use of a random oracles is desirable, we point out that it
is unlikely that such a result can be achieved without any addi-
tional assumption. The reason is that it would imply a single-round
message-response proof of quantumness protocol [7]. The follow-
ing is the protocol:

e The verifier samples (pk, sk) as in the encryption scheme,
together with a message m (say uniformly at random). The
verifier sends pk and m to the prover.

e The prover returns an encryption ¢ of m under public key
pk.

o The verifier checks that c decrypts to m.

Since perfect unexplainability is impossible to achieve classically, it
must be that the encryption algorithm is quantum, and in particular
that it cannot be replaced by a classical algorithm (otherwise there
would be a way to “explain” by providing the input randomness).
Now, as originally pointed out in [9], a single-round proof of
quantumness immediately implies a separation of the sampling
classes BPP and BQP. Such a separation does not seem to be implied



Deniable Encryption in a Quantum World

by the hardness of LWE, as the current state-of-the-art suggests that
LWE is equally intractable for classical and quantum computers.

1.2 Related Work and Concepts

In the classical setting, receiver-deniable encryption has also been
studied. In the latter, an attacker coerces the receiver after-the-
fact into revealing their secret key. While non-interactive receiver-
deniable encryption is impossible classically, there exists a generic

transformation that compiles any sender-deniable encryption scheme

into a receiver-deniable one, at the cost of one additional message
[11]. While we do not formalize this explicitly, such a transforma-
tion also applies to the quantum setting.

In an interactive setting, one can also consider the notion of
bideniable encryption, i.e. an encryption scheme that is simulta-
neously sender and receiver-deniable. Classically, this setting has
been considered by Canetti, Park and Poburinnaya [12], who show
that bideniable encryption can be realized from iO. We leave it
as an open question to improve this result (i.e. realize bideniable
encryption from weaker assumptions) in the quantum setting using
classical communication.

Although we do not formalize this, we remark that, if one al-
lows for quantum communication, deniable encryption (including
bideniable) becomes immediate in the interactive setting (with
information-theoretic security!). The reason is that sender and re-
ceiver can share an information-theoretically secure key by running
a quantum key distribution protocol, and then use this key as a
one-time pad. If the attacker approaches the parties before the key
distribution protocol is completed, then the parties can trivially
deny since no information about the message has been revealed
yet. If the attacker approaches the parties after the key distribution
protocol is completed, then the key is information-theoretically
hidden from the attacker, and the parties can trivially find a key
that is consistent with any message of their choice.

2 TECHNICAL OVERVIEW

We introduced two notions of deniability in the quantum setting
along with two constructions. The first construction, which achieves
the notion of quantum deniability is relatively straightforward to ex-
plain in full detail, along with a proof of security, and this is carried
out in Section 4. The second construction, which achieves the no-
tion of unexplainability, and its proof of security are more involved.
In this section, we give an overview of the latter construction, and
the proof of security.

2.1 Notation

In this overview, we let {(fx.o. fx.1) }x be a family of trapdoor claw-
free function pairs. We assume that fi o, fx; are injective with
identical range, and that they map n-bit strings to m-bit strings. In
our actual scheme, we will instead use noisy trapdoor claw-free
functions, since these can be constructed from LWE. However, this
distinction is immaterial for the purpose of this overview.

2.2 An Unexplainable Encryption Scheme

The construction is simple, and is inspired by the “proof of quan-
tumness” construction in [9]. To obtain an encryption scheme, the
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idea is to use the “hardcore” bit in their construction as a one-time
pad.

In more detail, the public key in the encryption scheme is a
choice of trapdoor claw-free function k, and the secret key is a
trapdoor .

o Encryption: To encrypt a bit m, under public key k, Compute
a triple (z,d,y), where d € {0,1}" and y € Y, and z
d- (xoy &} xly) &} H(xoy) ® H(xly). This can be done as follows:
— Create the uniform superposition over n + 1 qubits

1b) |x) -

be{0,1},xe{0,1}"

Then, compute f; ¢ and fj. ; in superposition, controlled
on the first qubit. The resulting state is

Db fip () -
be{0,1},xeX
— Measure the image register, and let y be the outcome. As
a result, the state has collapsed to:
1
—2(|0> o) +11) x})) -

\/_

— Query the phase oracle for H, to obtain:
1
V2
— Apply the Hadamard gate to all n+1 registers, and measure.
Parse the measurement outcome as z||d where z € {0, 1}
and d € {0,1}".
The ciphertextisc = (m @ z,d,y).

e Decryption: On input ¢ = (Z,d,y), use the trapdoor t; to
compute the pre-images x?, xiy. Output z2& d - (xoy ® xf) ®
H(x]) ® H(x}).

The actual scheme will be a parallel repetition of this, i.e. the
plaintext m is encrypted many times using the single-shot scheme
described here. However, for the purpose of this overview, we will
just consider the single-shot scheme.

(=1)HE) 10y [x0) + (=)D 1) |x1)) .

2.3 Security

It is straightforward to see that the scheme satisfies CPA security.
This essentially follows from a regular “hardcore bit” property,
satisfied by the trapdoor claw-free function family (more details in
Section 4.3) In this overview, we focus on outlining how the scheme
satisfies (a strong version of) unexplainability.

Our main result is that this scheme has the property that, al-
though it is possible to encrypt, it is not possible to simultaneously
produce both a valid encryption of a desired plaintext m and a
“proof” or a “certificate” w that the ciphertext indeed is an encryp-
tion of m. We refer to this as perfect unexplainability.

More precisely, we show that, for any efficient algorithm Verify
taking as input a tuple (pk, ¢, m, w), such that Verify(pk, c,m,w) = 0
if the triple (pk, ¢, m) is inconsistent, the following holds: for any
efficient algorithm P, for any m,

(1)
Notice that perfect unexplainability is impossible to achieve with

a classical encryption scheme, because one can always have w play
the role of the randomness in the encryption, and have Verify be

Pr[Verify(pk,c,m,w) = 1: (¢, w) < P(pk,m)] = negl(n).
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the algorithm that simply outputs 1 if Enc(pk, m;w) = ¢, and 0
otherwise.

A consequence of this observation is that perfect unexplainabil-
ity is an even stronger property than a “proof of quantumness”: if an
encryption scheme is unexplainable, then it must be that producing
valid encryptions (with high enough probability) is something that
only a quantum computer can do (otherwise, there would exist a
classical algorithm Enc that encrypts successfully, and, just like
before, we can set Verify to be the procedure that interprets w as
randomness, runs Enc with this randomness, and checks consis-
tency with the ciphertext).

For simplicity, in the rest of this discussion, we will take the
plaintext to be m = 0, so that producing a valid ciphertext is equiv-
alent to producing a triple (z,d, y), such that z = d - (xoy o xf) ®
H (xg YO H (xly ), which is referred to as a valid “equation” in [7, 9].

So, what is the intuition for why the property above holds for
our scheme? At a high level, the intuition is that in order to produce
a valid equation, one has to query the oracle on a superposition of
the two pre-images, and have the two branches interfere in just
the right way, so as to produce z,d which satisfy the equation.
This delicate process of interference between the two branches
essentially requires that nothing is “left behind” in the workspace.

The difficulty with formalizing this intuition is that it assumes
a global view of the entire computation. Whereas unlike in the
classical setting, we cannot in general define the trajectory which
in this case corresponds to the sequence of oracle queries that led to
a particular configuration. To do so, we make use of Zhandry’s com-
pressed oracle technique, which leverages properties of uniformly
random oracles. It turns out that the cryptographic assumptions
interact very cleanly with the compressed oracle formalism. This
provides a way of carrying key quantities from our classical intu-
ition over into natural formalizations in the quantum context.

This reduction involves two broad steps:

(i) We establish a rigidity theorem which formalizes the intu-
ition that an algorithm P which is successful at producing
valid equations must query the oracle on a superposition of
both pre-images, in a sense that we will make more precise
below. Concisely, we appeal to Zhandry’s compressed oracle
technique for “recording queries” [23], which formalizes the
idea that, when the oracle is uniformly random, there is a
meaningful way to record the queries made by the algorithm
efficiently, in a way that is well-defined and does not disrupt
the run of the algorithm. In a compressed oracle simulation,
the quantum state of the algorithm at any point is in a super-
position over databases of queried inputs. What we establish
is that, if P produces a valid equation with high probability,
then the quantum state of P right before measurement of
the equation must be close to a uniform superposition (with
the appropriate phase) of two branches: one on which the
first pre-image was queried, and one in which the second
was queried.

(if) We leverage (i) to construct an algorithm that extracts a
claw. One crucial observation here is that, since Verify never
accepts an inconsistent tuple (pk, ¢, m), then it must be the
case that whenever Verify accepts, it must itself have queried
at a superposition of both pre-images, in the same sense as in

1383

Andrea Coladangelo, Shafi Goldwasser, and Umesh Vazirani

the rigidity theorem in point (i). At a high level, the extraction

algorithm will eventually be the following:

— Run P, followed by a measurement to obtain z, d, y, and an
appropriate measurement of the database register, hoping
to find a pre-image of y;

— Then, run Verify on the leftover state, and conditioned on
“accept”, measure the database register, hoping to find the
other pre-image of y.

It is not a priori clear that this leads to successfully recovering

a claw (in particular the measurement of the database right

after running P, may disrupt things in a way that Verify no

longer accepts). What we show is that if, to begin with, Verify
accepts with high enough probability, then this extraction
strategy works.

In the rest of the section, we discuss the elements of the security
proof in a bit more detail.

2.3.1 Zhandry’s compressed oracle technique. In this subsection,
we give an exposition of Zhandry’s compressed oracle technique,
both because it is a building block in our proof of security, and also
to encourage its broader use. A reader who is familiar with the
technique should feel free to skip this subsection.

Let H : {0,1}" — {0, 1} be a fixed function. For simplicity, in this
overview we restrict ourselves to considering boolean functions
(since this is also the relevant case for our scheme).

While classically it is always possible to record the queries of
the algorithm, in a way that is undetectable to the algorithm itself,
this is not possible in general in the quantum case. The issue arises
because the quantum algorithm can query in superposition. We
illustrate this with an example.

Consider an algorithm that prepares the state Lz (Jxo) +1x1)) ly),

and then makes an oracle query to H. The state after the query is:
1
'

Suppose we additionally “record” the query made, i.e. we copy
the queried input into a third register. Then the state becomes:

o) |y ® H(x0)) + — x1) |y © H(x1)) 2)
Vi

1 1
— |x0) ly ® H(x0)) |x0) + — Ix1) [y ® H(x1)) [x1)  (3)
Now, suppose that H(xp) = H(x1), then it is easy to see that, in
the case where we didn’t record queries, the state of the first register
after the query is exactly \%ﬂxo) + |x1)). On the other hand, if we

recorded the query, then the third register is now entangled with
the first, and as a result the state of the first register is no longer

\/Li (|x0) +|x1)) (it is instead a mixed state). Thus, recording queries

is not possible in general without disturbing the state of the oracle
algorithm.

Does this mean that all hope of recording queries is lost in the
quantum setting? It turns out, perhaps surprisingly, that there is a
way to record queries when H is a uniformly random oracle.

When thinking of an algorithm that queries a uniformly random
oracle, it is useful to purify the quantum state of the algorithm via
an oracle register (which keeps track of the function that is being
queried). An oracle query is then a unitary that acts in the following
way on a standard basis element of the query register (where we
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omit writing normalizing constants):

) Ly D IH) > 1) [y @ H(x)) [H) -
H H

It is well-known that, up to applying a Hadamard gate on the y
register before and after a query, this oracle is equivalent to a “phase
oracle”, which acts in the following way:

) ly) D 1H) = > ()Y ) ) ) @
H H

Now, to get a better sense of what is happening with each query,
let’s be more concrete about how we represent H using the qubits
in the oracle register.

A natural way to represent H is to use 2" qubits, with each
qubit representing the output of the oracle at one input, where
we take the inputs to be ordered lexicographically. In other words,
if |[H) = |t), where t € {0,1}%", then this means that H(x;) = t;,
where x; is the i-th n-bit string in lexicographic order. Using this
representation, notice that

l Z ®2n
— ) H) =+
T 4
Now, notice that we can write the RHS of (4) as

) Iy D ()Y )
H

i.e. we can equivalently think of the phase in a phase oracle query
as being applied to the oracle register.

Thus, when a phase oracle query is made on a standard basis
vector of the query register |x) |y), all that happens is:

DY B Y () ¥H) |y
H H

Notice that, using the representation for H that we chose above,
the latter transformation is:

e When y =0, |+)®zn — |+)®2" .

e Wheny = 1, 9% o [+) |4y )i [F)iy o [4)
where i is such that x is the i-th string in lexicographic
order.

In words, the query does not have any effect when y = 0, and the
query flips the appropriate |+) to a |-) when y = 1. Then, when we
query on a general state . , axy |x) [y), the state after the query
can be written as:

D@y 1%} 1) IDxy)

Y
where Dy is the all |+) state, except for a |-) corresponding to x
ify=1.

The crucial observation now is that all of these branches are
orthogonal, and thus it makes sense to talk about "the branch on
which a particular query was made": the state of the oracle register
reveals exactly the query that has been made on that branch. More
generally, after q queries, the state will be in a superposition of
branches on which at most g of the |+)’s have been flipped to |-)’s.
These locations correspond exactly to the queries that have been
made.

Moreover, the good news is that there is a way to keep track of
the recorded queries efficiently: one does not need to store all of the
(exponentially many) |+)’s, but it suffices to keep track only of the
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locations that have flipped to |-) (which is at most g). If we know
that the oracle algorithm makes at most g queries, then we need
merely n - g qubits to store the points that have been queried. We
will refer to the set of queried points as the database. Formally, there
is a well-defined isometry that maps a state on 2" qubits where
q of them are in the |-) state, and the rest are |+), to a state on
n - q qubits, which stores the g points corresponding to the |-)’s in
lexicographic order.

Let D denote an empty database of queried points. Then a query
to a uniformly random oracle can be thought of as acting in the
following way:

) ly) ID) = |x) ly) ID) , ify =0
%) [y) ID) = |x) [y) ID U {x}) , ify=1.

Such a way of implementing a uniformly random oracle is re-
ferred to as a compressed phase oracle simulation [23]. Formally, the
fact that the original and the compressed oracle simulations are
identical from the point of view of the oracle algorithm (which does
not have access to the oracle register) is because at any point in
the execution of the algorithm, the states in the two simulations
are both purifications of the same mixed state on the algorithm’s
registers.

We point out that there are two properties of a uniformly random
oracle that make a compressed oracle simulation possible:

o The query outputs at each point are independently distributed,
which means that the state of the oracle register is always a
product state across all of the 2" qubits.

e Each query output is uniformly distributed. This is important
because in general a [0)+f 1) L  |0)—f |1) unless || = |f].

Notice that the above compressed oracle simulation does not
explicitly keep track of the value of the function at the queried
points (i.e. a database is just a set of queried points). In the following
slight variation on the compressed oracle simulation, also from [23],
a database is instead a set of pairs (x, w) representing a queried
point and the value of the function at that point. This variation will
be more useful for our analysis.

Here D is a database of pairs (x,v), which is initially empty. A
query acts as follows on a standard basis element |x) |y) |D):

e If y = 0, do nothing.

e Ify = 1, check if D contains a pair of the form (x, v) for some
v.

— If it does not, add (x, |-)) to the database, where by this
we formally mean: D — 3, (-1)? |D U (x,0))

- If it does, apply the unitary that removes (x, |—)) from the
database.

One way to understand this compressed simulation is that our
database representation only keeps track of pairs (x, |-)) (corre-
sponding to the queried points), and it does not keep track of the
other unqueried points, which in a fully explicit simulation would
correspond to |+)’s. One can think of the outputs at the unqueried
points as being “compressed” in this succinct representation.

It is easy to see that the map above can be extended to a well-
defined unitary. In the rest of this overview, we will take this to be
our compressed phase oracle. For an oracle algorithm A, we will
denote by ACPhO the algorithm A run with a compressed phase
oracle.
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2.3.2  The structure of strategies that produce valid equations. Let P
be an efficient prover, which takes as input a choice k of claw-free
function pair, and outputs an equation (z, d, y). Suppose P outputs
a valid equation, i.e.z =d - (xoy ) xly) @ H(xoy) ® H(xly), with high
probability. Suppose we run a compressed phase oracle simulation
PCPhO we argue that the state of pCPho right before measurement,
conditioned on output (z, d,y), must be such that:

o Almost all the weight is on databases containing exactly one
of the two pre-images of y.

o Up to a phase, the weights on databases containing xé/ and

y
1

In this subsection, we provide some intuition as to why this is true.
pCePho right before mea-

x] are approximately symmetrical.

In general, we can write the state of
surement of the output as:

D1 aywn |2 1d) |y) [w) D),

z,d,y,w,D

for some a; g 4w p, Where the z,d, y registers correspond to the
output equation, the w register is a work register (which includes
the query registers), and the D register is the database register. Here
D is a database of pairs (x,v).

This expression can be simplified in a couple of ways. First, up to
negligible weight, no database can contain both pre-images, since
otherwise this would yield an efficient algorithm to extract a claw.
Hence, we can write the state as a superposition over z,d, y and
over databases that either: do not contain any pre-image y, they
contain only xoy , or they contain only xly :

2

z,d,y,w
y_y
Déx0 X1

+ D Gaaywpiladyw) Y ()P DU (xf,01)

zd,y,w 1
Diéxoy ,xly

+ > PBudywplzdy,w) D)

z,d,y,w
D;éxé’,xly

Uy |54 Y w) D (=)™ [D U (x5, 00))
o

®)

for some a; g,y w.D,b> Bz,d,y,w, D> Where we have made the notation
a little more compact. Recall that the reason for the presence of the
phases (=1)% and (—1)? is that, by definition of the compressed
oracle simulation, the output at each queried point in the database
isin a |—) state.

Second, we expect intuitively that P should not be able to pro-
duce valid equations if it does not query any pre-image at all. Thus,
we expect that if P produces a valid equation with high probability,
then there should be only a small weight on the third branch in
expression (5), i.e. the §, 4, ., p coefficients should be small. In
our security proof, we formalize this intuition, and we show that
any weight on the third branch contributes precisely 1/2 to the
probability of producing a valid equation, i.e. any weight on the
third branch amounts to guessing an equation uniformly at random.
Note that it is not a priori clear that this is true, and a more delicate
analysis is required to establish that, when calculating the probabil-
ity of outputting a valid equation, there is no interference between
the branches that do not contain any pre-image, and the ones that
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contain one. We refer the reader to the full proof in Section 6 for
more details.

So, suppose now for simplicity that P produces a valid equation
with probability 1, then, from what we have discussed, up to neg-
ligible weight, the state just before measurement of the output is
in a superposition of branches that contain exactly one of the two
pre-images:

D Gagwpolzdyw) D (D™ IDU(x),00))

z,d,y,w ve{0,1}

D#xy x

£ Gaagwpaladyw) Y (=D DU o)) (6)
z,d,y,w 01€{0,1}

Déxoy,xly

Finally, we wish to argue that the coefficients on the two branches
are uniform, i.e. [&t; g,y w0l = |@z,d,y,w,p,1|forall z.d,y, w, D. For
this, we again appeal to the fact that P produces a valid equation
with probability 1.

What does this probability correspond to in terms of expression
(6)? In order to calculate this probability, we need to first decompress
the database at both pre-images. What we mean by decompressing
at x is the following:

o If the database already contains x, then do nothing.
e If the database does not contain x, then add (x, |+)) to it.

The reason why this makes sense is the following. Recall that
points that are not present in the compressed database correspond
to |+)’s in the fully explicit “uncompressed” database. Since the
condition for a valid equation depends on the value at both pre-
images, we need to keep track of these values, and uncompress at
the two pre-images in order to talk about the probability of a valid
equation.

The state after decompressing at xg/ and xly is:

D Fdywpolzdyw) Y (=D DU G 00) U (xf,01)

zd,yw [

D#x) x!

+ D taaywpalmd g w) Y (=D DU (xf,00) U (x],01))
zd,y,w Yo, 01

Déxé’,xiy

™)

Now, by the equivalence of the regular and compressed oracle

simulations, we have that the probability that P outputs a valid
equation is equal to:

Pr(z=d- (xoyeaxf)eavo@vl]

In order for this probability to be close to 1, it must be that, for
any z,d, y, w, D, the amplitudes of the two branches a, 4 4,1, p 0 and
0z d,y,w,D,1 interfere precisely constructively whenz = d - (xé’ )
xly ) ® vo ® v1 and interfere destructively otherwise. Hence, they
have to be equal up to an appropriate phase.

2.3.3 Extracting a claw. We now provide some intuition about how
the structure that we derived in the previous subsection can be
leveraged to extract a claw.

Throughout this subsection, let P be such that, on input a choice
of trapdoor claw-free function pair k, it simultaneously produces
valid equations and proofs which are accepted with high probability,
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i.e. it outputs (z, d, y, w) such that Verify(k, z,d, y, w) = 1 with high
probability. For concreteness we take this probability to be 9/10 in
this overview.

The first key observation is that, because by definition Verify
never accepts an invalid equation (or except with negligible prob-
ability), then it must be the case that whenever Verify accepts, it
must itself have queried at a superposition of both pre-images in
the following more precise sense.

For a choice of claw-free functions k, denote by Verify, the
algorithm Verify where we fix the choice of claw-free functions to
be k. Let A be any efficient oracle algorithm that, on input a choice
of claw-free functions, outputs tuples (z, d, y, w). Suppose we run a
compressed oracle simulation of A, followed by Verify, i.e. we run
(Verify; o A(k))CPhO_ Let the state right before measurement of
Verify’s output be:

[0) |¢o) + £ (1) [41)

where the first qubit is the output qubit of Verify, and |¢o), |$1)
are some states on the remaining registers (including the database
register). Then, except with negligible probability over the choice of
k, the following holds: if 8 is non-negligible, then |¢;) has weight
only on databases containing either xoy or xly , and moreover, the
weights for each pre-image are approximately equal. Such struc-
ture on the action of Verify follows from a similar argument as in
the previous subsection, combined with the fact that Verify never
accepts an invalid equation.

Even with this observation in hand, it is not a priori clear how
we can extract a claw: ideally, we would like to say that, because
of the observation above, if we were to run (Verify; o P(k))CPho
twice and measure the database register, there would be a noticeable
chance of obtaining distinct pre-images of some y. However, the
issue is that if we run the computation twice, nothing guarantees
that we will obtain the same y both times. In fact, if one thinks
about the honest strategy for producing valid equations, each y has
only an exponentially small probability of being the outcome.

To overcome this issue, the key observation is that, if P is suc-
cessful with high enough probability, then there is a way to extract
a claw with noticeable probability in a single run! The extraction
algorithm is the following:

(i) Run PCPhO (k), and measure the output registers to obtain
z,d,y. Moreover, check if the database register at this point

contains a pre-image of y. If so, measure it. Denote this by
y
b
(ii) Run Verify,(c:Pho on the leftover state from the previous step,

X

and measure the output register. Conditioned on “accept”,
measure the database register. If the database contains xl;y,
0 %)

The idea behind this algorithm is that, thanks to the first obser-
vation, the state conditioned on obtaining “accept” in step (ii) has
weight only on databases containing either xé’ or xiy ,
the weights for each pre-image are approximately equal. This im-
plies that, conditioned on observing “accept” in step (ii), the final
measurement of the algorithm is guaranteed to produce one of the
two pre-images approximately uniformly at random.

Now, notice that the algorithm already has a constant probability

of obtaining one of the two pre-images in step (i) (assuming P

output the claw (x,

and moreover,
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succeeds with probability %). To see this, notice that if this weren’t
the case, then P would be producing valid equations at most with
probability close to % (since this is the probability of producing
a valid equation when the database register does not contain any
of the two pre-images), and therefore the probability that Verify
accepts P’s output would also be at most close to % (instead of being
%). Thus, what is left to show is that the probability of obtaining
“accept” in step (ii) conditioned on finding a pre-image in step (i) is
still noticeable.

It is not a priori clear that this is the case. However, what we
show is that if, to begin with, Verify accepts P’s output with high
enough probability (in fact any probability non-negligibly higher
than 1/2), then this extraction strategy works.

We remark that for our actual construction, we will want that,
for any efficient P, the probability of simultaneously producing a
valid equation and a proof is negligible (not just smaller than %+
negligible). Thus, our encryption scheme will be a parallel repetition
of the single-shot encryption scheme described in this overview,
i.e. the encryption of a single bit will consist of many single-shot
encryptions of that bit.

3 PRELIMINARIES

3.1 Notation

We use the acronyms PPT and QPT for probabilistic polynomial
time and quantum polynomial time respectively.

For a classical probabilistic algorithm A, we write A(x;r) to
denote running A on input x, with input randomness r.

For a finite set S, we use x « S to denote uniform sampling
of x from the set S. We denote [n] = {1,2,---,n}. We denote by
Bool(n) the set of functions from n bits to 1.

3.2 Deniable Encryption

We recall the classical notion of sender-deniable encryption.

DEFINITION 2. A public-key encryption scheme (Gen, Enc, Dec)
is said to be deniable if there exists a PPT algorithm Fake such that,
for any messages mg, mq:

(pk, Enc(pk, my;r), m1,r) =¢ (pk, Enc(pk, mo;r), my, r’)

where r is uniformly random, pk is sampled according to Gen, and
r’ « Fake(pk, c, mg, m1,r).

3.3 Noisy Trapdoor Claw-Free Functions

In this section we introduce the notion of noisy trapdoor claw-
free functions (NTCFs). This section is taken almost verbatim from
[9]. Let X, Y be finite sets and K a set of keys. For each k € K
there should exist two (efficiently computable) injective functions
fie0s fien that map X to Y, together with a trapdoor f; that allows
efficient inversion from (b, y) € {0,1} X Y to fk_li (yyeXu{L}
For security, we require that for a randomly chosen key k, no
polynomial time adversary can efficiently compute x¢, x; € X such
that fi o(x0) = fi.1(x1) (such a pair (xo, x1) is called a claw).
Unfortunately, we do not know how to construct such ‘clean’
trapdoor claw-free functions. Hence, as in the previous works [7, 9,
19], we will use ‘noisy’ version of the above notion. For each k € K,
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there exist two functions fi o, fx ; that map X to a distribution over

Y.

DEFINITION 3 (NTCF FAMILY). Let A be a security parameter. Let
X and Y be finite sets. Let K¢ be a finite set of keys. A family of

functions

F = {fib : X = Dybreac peion)
is called a noisy trapdoor claw free (NTCF) family if the following
conditions hold:

(1) Efficient Function Generation. There exists an efficient
probabilistic algorithm GENg which generates a key k € Ky
together with a trapdoor ty.:

(k, tx) — Geng(1%) .

(2) Trapdoor Injective Pair.
(a) Trapdoor: There exists an efficient deterministic algorithm
INVg such that with overwhelming probability over the
choice of (k, ty) « GENT(lA), the following holds:

forallb € {0,1},x € X and y € SupP(fi p(x)), INV&(ty, b, y) = x.

(b) Injective pair: For all keys k € K, there exists a perfect
matching Ry € X X X such that fi. o (x0) = fi1(x1) if and
only if (x0, x1) € Rp.

(3) Efficient Range Superposition. For all keys k € K¢ and
b € {0,1} there exists a function fk,b : X = Dy such that
the following hold.

(a) Forall(xp,x1) € Ry andy € SUPP(fk’b(xb)),INVT(tk, b,y) =
xp and INVgE(t, b & 1,y) = Xpg;. )

(b) There exists an efficient deterministic procedure CHK ¢ that,
on inputk, b € {0,1}, x € X andy € Y, returns 1 if
ye SUPP(fk"b (x)) and 0 otherwise. Note that CHK is not
provided the trapdoor ty.

(c) For everyk andb € {0,1},

Exe X[ H(fip (), f, ()] < p(2).

for some negligible function y. Here H? is the Hellinger
distance. Moreover, there exists an efficient procedure SAMP¢
that on input k and b € {0, 1} prepares the state

1
— D I - ®)
X xeX,yelY
(4) Claw-Free Property. For any PPT adversary A, there exists a
negligible function negl(-) such that the following holds:

Pr[(x0,x1) € Ry : (k, tx) — GENg(17), (x0,x1) — A(K)] < negl(A)

In our security analysis, we will make use of the following addi-
tional concepts from [19], which we recall informally here (we refer
to [19] or the full version of this paper for the details). A trapdoor
injective function family

G = {gkp: X — Dy}be{(},l},ke?(g

satisfies the properties of “efficient function generation” and “effi-
cient range superposition”. However, crucially, gi ¢ and g ; have
disjoint range. Moreover, an NTCF family ¥ (as in Definition 3)
satisfies the injective-invariance property, if there exists a trapdoor
injective function family G such that functions sampled from ¥
and G are computationally indistinguishable.
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LeEmMA 1 ([7], [19]). Assuming the quantum hardness of LWE,
there exists an injective invariant NTCF family.

4 QUANTUM DENIABILITY
4.1 Definition

We assume without loss of generality that the (quantum) encryption
algorithm Enc consists of an efficiently implementable isometry Enc
from register M, consisting of m(A) qubits, to register N, consisting
of n(A) qubits, followed by a standard basis measurement of the
output ciphertext register C (consisting of a subset of the qubits in

DEFINITION 4 (QUANTUM DENIABILITY). Letl: N — N be poly-
nomially bounded. A public-key encryption scheme (Gen, Enc, Dec)
is I-deniable if the following holds. There exists a QPT algorithm
Fake, and a sub-register R of C consisting of [(A) qubits, such that
the following holds for any mg, my:

(pk, my, (Measg ® Ic\r ® Fakenyc) ErTc(pk, mo)) 9)

zc(pk, my, (Measg ® Iy\r) Eﬁz(pk, ml))

where MeasR is the quantum channel that corresponds to a standard
basis measurement of register R, and pk is sampled according to Gen.

To keep the definition general, we included a faking algorithm
Fake which is allowed to act on the leftover quantum state of the
encryption algorithm. This more naturally parallels the classical
definition of deniability. However, we will see that our scheme
satisfies an even stronger notion of deniability, whereby the leftover
state does not need any additional processing (before it gets handed
to the attacker) i.e. Fake can be taken to be the identity.

4.2 Construction

We describe encryption of a single bit. This can, of course, be ex-
tended in parallel to encryptions of any number of bits.

Let X, Y, K be finite sets.Let ¥ = {fi : X — Dy}ke‘l(,he{o,l}
be a family of noisy trapdoor claw-free functions (which exists as-
suming the quantum hardness of LWE [7]). Let fk,,b X - Y
be functions satisfying the efficient range superposition property of
Definition 3. For x € X, denote by BitDecomp(x) its bit decompo-
sition.

CONSTRUCTION 1.
. Gen(lA) — (pk, sk):
- Run (k, t) < Geng(11). Output (pk, sk) = (k, tg).
e Enc(m, pk) — c:
— On input m € {0,1}, and pk = k, run Sampg(k,-) on a
uniform superposition of b’s, to obtain the state

1
—-— V@) 10) [x) ly)
\{ 1X] be{o%:,xex kb

where we assume that x and y are represented by their bit
decomposition. We assume without loss of generality that

SAmPg that any auxiliary register is returned to the |0) state.
2

2Since the output of SAMPg# on the output registers is a pure state, one can always have
Samp# coherently “uncompute” on all registers except does containing the output.
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— Measure the image register, and let y be the outcome. As a

result, the state has collapsed to:
1
V2
where xo, x1 € X are the unique elements such that y is in
the support of f;'  (xp).

— Let n be the leng’th of BitDecomp(xo). Apply a Hadamard
gate to all of the remaining registers, and measure. Parse
the measurement outcome as z||d where z € {0,1} and
de{0,1}"

- Outputc = (z,d,y).

e Dec(c, t) — m:

- Letc = (2, d, y). Forb € {0,1}, run INVg(ty, b, y) to obtain
pre-images xo and x1.

— Outputm =2z’ & d - (BitDecomp(xp) & BitDecomp(x1)).

o Fake(m’,aux): Given as input m’ (the desired plaintext to be
claimed), and a quantum state aux (the leftover workspace after
encryption), output (m’, aux), i.e. output the leftover workspace
unchanged.

(10) [x0) + 1) |x1)) ,

THEOREM 3. Assuming the quantum hardness of LWE, the scheme
of construction 1 is CPA-secure and 1-deniable (as in Definition 4).

Correctness of the encryption scheme is straightforward to verify.
Hence, we focus on security in the next section.

4.3 Security

From now on, for ease of notation, when referring to the bit-
decomposition of x, we simply write x instead BitDecomp(x) when
the context is clear. We denote by xoy and xly the two pre-images of
y.

CPA security. CPA security follows straightforwardly from the
following “hardcore bit” property satisfied by ¥, which says that
any quantum polynomial-time adversary A has negligible advan-
tage in the following game between a challenger and A:

o The challenger samples k, and runs SAMP#(k, -) on a uniform
superposition of b’s to obtain the state
1

— S @@ 1) 9)1y)
\/m beg Z k,b

0,1},xeX

e Measures the last register to get y.

o Then, applies a Hadamard gate on the first two registers to
get z,d such that z = d - (xo ® x1), where xp and x; are the
pre-images of y. Sends y, d to A.

e A returns z’.

A wins if z =2’

To see that this “hardcore bit” property holds, suppose for a con-
tradiction that there was a quantum polynomial time A breaking
this property. Then the following algorithm A’ recovers a claw. We
use the notation A(y, d) to denote the output of A on input y, d.

e On input k, run Samp4(k, -) on a uniform superposition of
b’s to obtain the state

= %

0,1},x€X

VIXT e Sp(X) @) 1b) 1) [y)
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e Measure the last two registers to obtain x,y where y €
SUPP(f}(/’b(x)) for some b € {0, 1}.

e Run the “quantum Goldreich-Levin” extraction algorithm
using A(y,-) as an oracle [2]. Recall that the “quantum
Goldreich-Levin” extraction algorithm makes a single query
to A(y, ). Let s be the output of this extraction algorithm.

e Output (x,x @ s) as the claw.

Since A(y,d) guesses d - (xo ® x1) with non-negligible advan-
tage, the “quantum Goldreich-Levin” extraction algorithm outputs
s = xo ® x; with non-negligible probability, which results in A’
outputting a claw with non-negligible probability.

Note that the reduction works even if A is non-uniform with
quantum advice, since A’ makes a single query to A, so there is
no issue with rewinding.

With this hardcore bit property in hand, CPA security is immedi-
ate: notice that the distribution (pk, Enc(pk, 0)) is simply (k, z,d, ),
such thatz =d- (xoy EBxf ), where k, d, z, y are sampled exactly from
the distribution of the hardcore bit property. On the other hand, the
distribution (pk, Enc(pk, 1)) is (k, z,d, y), such that z # d- (xé/EBxly),
where k, z, d, y have the same distribution as before, except that z
is flipped. Clearly, distinguishing the two distributions is precisely
equivalent to guessing the value of d - (xoy ® xly ), which is the
hardcore bit game above.

Deniability. We will now show that Construction 1 satisfies deni-
ability, according to Definition 4. In particular, we will show that, for
Construction 1, one can take the algorithm Fake to be the identity.

Using the notation of Definition 4, the output of the encryption
algorithm Enc, before measurement of the output, is a state on
register N, a sub-register of which, C, is eventually measured to
produce the classical ciphertext. Notice that for Enc as defined in
Construction 1, all qubits in N \ C are eventually returned to the
state |0). Thus, in order to prove 1-deniability, all that is left to show
is that there is a subset R, of size 1, of the qubits of C, such that for
any mg, m; € {0, 1},

(pk, m1, Measg ® IC\R([E;E(T"O)]C))

~e (pkomi. Measg ® Leg ([Enc(mp)lc)) . (10

where recall that Enc denotes Enc excluding the final measure-
ment, and we are denoting by [Enc(m)]c the restriction of the
state Enc(m) to the register C.

We take R to be the qubit corresponding to the first bit of the
ciphertext. Then, up to replacing fi , with fk’ » (which affects the
distribution at most negligibly - see Lemma 2.0.1 in [9] relating
Hellinger distance to trace distance), conditioned on the outcome
of the measurement being z, the LHS and the RHS of (10) are
respectively,

k,my, z,

N o () (@) |d) 1y)

)=z®my

Zy

xd,y:d- (xoyeax1

and

by

x,d,y:d- (xéjeaxly):z@ml

N o)) (W) 1d) 1y)

k,my,z,
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where xoy and xly denote the pre-images of y (and we omit writing
BitDecomp when it is clear from the context). Then, it is easy to see
that the two distributions are computationally indistinguishable if
and only if:

k. D (fio () @) 1d) Iy (11)
x,d,y:d~(x0y$x1y):0
ek ) U@ DIy |.  (2)

d,y:d-(xoyﬂaxly):l

where we omit normalization constants.

To argue that these two states are indistinguishable, we appeal
to the injective invariance property. Recall that by the latter, there
exists a trapdoor injective family

G = {gp: X > Dy}keWg,be{O,l}
such that
(i) Cuxg = CHKg and SAMP& = SAMPg.
(ii) Itis computationally hard to distinguish whether k « GEN#
or k « GENg.

Now, suppose for a contradiction that there was a distinguisher
D for the two (families of) states in (12). Then, there exists a distin-
guisher D’ that breaks property (ii) of injective invariance:

e D’ receives k as input.

e D’ runs Eﬁz(pk, 0) with pk = k, and then measures the
first qubit. Let z be the outcome. (note that this step is well-
defined since SAMP# = SAMPg).

e D’ gives k and the leftover state to D, which returns a guess
z’. If 2’ = z (i.e. the distinguisher for the two states suc-
ceeded), D’ guesses that k was sampled from GEN¢. Other-
wise, it guesses that it was sampled from GENg.

The reason why D’ has non-negligible advantage is the following.
In the case that k « GENg, the leftover states conditioned on z = 0
and z = 1 are (up to the negligible error incurred by replacing fk’ b
with f ;) those on the LHS and the RHS of (12) respectively. On
the other hand, when k < GENg, it is easy to see that the state
that results from applying Er?é(pk, 0) and measuring the first qubit
is independent of the outcome z. In particular, the leftover state is

simply
2. 2

x,d,ybe{0,1}

(Grp () (@) 1d) ly) -

So the probability that D guesses z correctly is exactly %
We refer the reader to the full version of the paper for the details
of the proof.

5 UNEXPLAINABLE ENCRYPTION

In this section, we formally introduce the notions of unexplain-
able encryption, and perfectly unexplainable encryption. In 5.2, we
discuss the notion of coercion before-the-fact in more detail, and
its relationship to perfect unexplainability. We refer to the full
version of the paper for a discussion of the relationship between
unexplainable encryption and the standard definition of deniable
encryption.
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5.1 Definition

In the following definition, Explain takes as input a public key pk, a
message m, and outputs a ciphertext ¢ and a witness w; Verify takes
as input a public key pk, a ciphertext ¢, a message m, a witness w,
and outputs a bit; FakeExplain takes as input a public key pk, a pair
of messages m, m’, and outputs a ciphertext ¢, and two witnesses

w, w’. In the rest of the section, we use the notation PIE to mean
p

that the probability is over sampling a pk from the the generation

algorithm Gen(1%) (where the security parameter A is omitted from

the notation).

DEFINITION 5 (UNEXPLAINABLE ENCRYPTION). We say that a
public-key encryption scheme (Gen, Enc, Dec) is unexplainable if
the following holds. Let Verify and Explain be any (non-uniform)
QPT algorithms such that, for all pk, ¢, m, w, Verify(pk, ¢, m, w) =0,
except with exponentially small probability, if ¢ is not in the support
of the distribution of Enc(pk, m).

Suppose Verify, Explain satisfy the following completeness condi-
tion: there exists a non-negligible function y, such that, for any m, for
all A,

P{[Verify(pk, ¢,m,w) =1: (c,w) « Explain(pk,m)] = y(4).
P

Then, there exist a polynomial-time algorithm FakeExplain and a
non-negligible function negl, such that, for any distinct messages
m,m’, for all :

PIE[Verify (pk,c,m,w) =1:c,w « Explain(pk, m)]
P

—PIE[Verify (pk, c,m’, w') =1:c,w « Explain(pk, m),
P

w’ « FakeExplain(pk, m,m’,c, w)]
= negl(1) (13)

We believe that this definition naturally captures the ideal of
privacy desired in a deniable setting. Moreover, since this definition
does not explicitly refer to input randomness, it applies naturally
to the setting of a quantum encryption algorithm (with classical
ciphertexts). w and w’ can also be taken to be (possibly entangled)
quantum states.

The following is a special case of unexplainable encryption. In
words, an encryption scheme is perfectly unexplainable if there does
not exist any pair of efficient algorithms Verify and Explain (where
Verify(pk, ¢, m, w) = 0, except with exponentially small probability,
if ¢ is not in the range of Enc(pk, m)), for which the completeness
condition holds.

DEFINITION 6 (PERFECTLY UNEXPLAINABLE ENCRYPTION). A public-
key encryption scheme (Gen, Enc, Dec) is said to be perfectly un-
explainable if the following holds. Let Explain and Verify be any
(non-uniform) pair of QPT algorithms such that, for all pk,c, m, w,
Verify(pk, ¢, m, w) = 0, except with exponentially small probability,
if ¢ is not in the support of the distribution of Enc(pk, m). Then, for
any m, there exists a negligible function negl, such that for any A,

PE[Verify(pk, c,mw) =1: (c,w) « Explain(pk,m)] = negl(1).
P
(14)
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At first glance, perfect unexplainability seems unattainable. In
fact, it is clear that a classical encryption scheme cannot be perfectly
unexplainable: one can always take Explain to be the algorithm
that encrypts honestly and outputs the ciphertext together with
the randomness used (i.e. the witness is the randomness), and take
Verify to be the algorithm that runs encryption forward and checks
consistency. In contrast, the quantum encryption scheme that we
will describe in Section 6 will be perfectly unexplainable.

5.2 Coercion Before-the-Fact

While protecting against coercion before-the-fact is very desirable
in practice, to the best of our knowledge, a corresponding notion
has not been previously formalized (most likely due to the fact that
protecting against coercion before-the-fact is impossible to achieve
classically in the plain model). Here, we propose a formal definition,
and we observe that this is essentially equivalent to the notion of
perfect unexplainability from Definition 6.

In a coercion before-the-fact scenario, an attacker, who has in
mind a message m, wishes to prescribe to the sender how she should
encrypt later in a way that:

o The resulting ciphertext decrypts to m with overwhelming
probability.

o There is an efficient procedure for the attacker to verify that
the sender’s ciphertext (which the attacker obtains by inter-
cepting) will decrypt to m with overwhelming probability.

First, notice that there is no hope of protecting against coercion
before-the-fact in a model where the attacker can approach the
sender before she sends her ciphertext, and knows all of the infor-
mation that will be available to the sender at the time of encryption
(e.g. the public key). In fact, in such a model, the attacker can sim-
ply generate a genuine encryption ¢ of the desired message m, and
prescribe that the sender’s ciphertext later be exactly c. So, instead
we consider the scenario where the public key is not known to the
attacker at the time when he approaches the sender. Such a model
captures an online election where citizens are required to encrypt
their votes before sending them to the government using a public
key encryption scheme, and the public key is announced publicly
only on election day. The attacker is allowed to approach the sender
any time before election day, i.e. any time before the public key is
announced (more generally, one can consider a model where some
additional information - not necessarily the public key - is revealed
to the sender just before she encrypts).

We first formally define the notion of a coercion before-the-
fact attack. An encryption scheme then protects against coercion
before-the-fact if no such attack exists.

DEFINITION 7 (COERCION BEFORE-THE-FACT ATTACK). Let
(Gen, Enc, Dec) be a public-key encryption scheme with classical ci-
phertexts (where Dec is a classical deterministic algorithm). A coercion
before-the-fact attack is a pair (Enc’, Verify) where:

e Enc’(pk,m) — ¢ is a non-uniform QPT algorithm
o Verify(c,m) — accept/reject is a non-uniform QPT algo-
rithm
They satisfy:
o (Completeness of verification) For any m, A,

Pr[Verify(Enc’ (pk, m), m) = accept : (sk, pk) « Gen(1})] = 1.
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o (Soundness of verification) There exists C > 0, such that the
following holds for all c, m, A:

Pr[Dec(sk,c) # m A Verify(pk, ¢, m) = accept :
(sk, pk) « Gen(lA)] < 2= 3

DEFINITION 8. We say that an encryption scheme protects against
coercion before-the-fact if no coercion before-the-fact attacks exists.

It is straightforward to see that a perfectly unexplainable en-
cryption scheme protects against coercion before-the-fact. This is
because a coercion before-the-fact attack gives a way to encrypt in
a way that can be later verified.

THEOREM 4. A perfectly unexplainable encryption scheme protects
against coercion before-the-fact.

Proor. Let (Gen, Enc, Dec) be a perfectly unexplainable encryp-
tion scheme (satisfying the non-uniform version of Definition 6).
Suppose for a contradiction that a coercion before-the-fact attack
(Enc’, Verify) existed.

Define Verify’ to be the non-uniform algorithm that on input
pk, ¢, m, w, runs Verify(pk, ¢, m) and ignores w. Let Explain be the
non-uniform algorithm that, on input pk, m, runs ¢ « Enc’(pk, m),
and outputs ¢, w*, for some fixed w*. By the completeness and
soundness of the coercion before-the-fact attack, it follows that the

pair (Explain, Verify”) contradicts perfect unexplainability. O

Definition 7 only considers attacks where Enc” and Verify are
non-uniform with classical advice. More generally, one could also
consider attacks where Enc’ and Verify have quantum advice. In
particular, this advice could be in the form of an entangled state
over two registers corresponding to the advice of Enc’ and Verify
respectively. This captures the scenario where an attacker coerces
the sender before-the-fact by giving to the sender half of some
entangled state, and prescribing what the encryption operation
should be, i.e. Enc’. The verification of the sender’s intercepted
ciphertext then makes use of the other half of the entangled state.
It is not difficult to see that a slightly more general version of the
definition of perfect unexplainability, where Explain and Verify
are allowed to be non-uniform with entangled quantum advice,
implies this more general notion of protection against coercion
before-the-fact. Our constructions satisfies such a notion of perfect
unexplainability assuming the quantum hardness of LWE against
QPT algorithms with polynomial quantum advice. Our security
proof (contained in the full version) goes through unchanged (since
our extraction algorithm does not involve any rewinding).

6 A PERFECTLY UNEXPLAINABLE
ENCRYPTION SCHEME

In this section, we describe a public-key encryption scheme that is
perfectly unexplainable (as in Definition 6).

6.1 Construction

Let X, Y, K be finite sets. Let ¥ = {fg : X — Dy}ke‘K,be{O,l}
be a family of noisy trapdoor claw-free functions (which exists
assuming LWE [7]). Let fk/,b : X — Y be functions satisfying the
efficient range superposition property of Definition 3.
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The scheme that we describe in this section is a parallel repeated
version of the scheme described in the technical overview (Section
2.3.1). Here, by parallel repetition we mean that the same plaintext
m is encrypted L times (with the same public key), where L is
polynomial in the security parameter. Without parallel repetition,
we are only able to show that the LHS of Equation (14) is upper
bounded by % + negl. With parallel repetition, we will be able to
improve this to negl.

CONSTRUCTION 2.
e Gen(1}) - (pk, sk):
- Run (k, t) « GEng(11). Output (pk, sk) = (k, tg).
e Enc(m, pk) — c:
— Fori € [L], do the following:
* On input m € {0,1}, and pk = k, run Samp#(k,-) on a
uniform superposition of b’s, to obtain the state

- L@@ ) [0 1)

‘/m be{o%:,xex
where we assume that x and y are represented by their
bit decomposition. We assume without loss of generality
that SAMP¢ that any auxiliary register is returned to the
[0) state. *
Measure the image register, and let y; € Y be the out-
come. As a result, the state has collapsed to: \/ii(|0) |x0) +

Parameters: L = poly(A).

[1) |x1)), where xo, x1 € X are the unique elements such
that y; is in the support Offk’,b (xp)-
Query the phase oracle for H, to obtain:
1
V2
L _ 1\H(BitDecomp(x1))
+\/§( 1) [1) [x1) -
Let n be the length of BitDecomp(xy). Apply a Hadamard
gate to all of the remaining registers, and measure. Parse
the measurement outcome as z;||d; where z; € {0,1} and
di € {0,1}". Letz] = z; & m.
— Letz/ = zi...zi,d di...dr,y = y1...yp. Output
c=(z,d,y).
e Dec(c, ty) — m:
- Letc=(z', d, y). Parsez’ asz’ = z{ ...z . Similarly ford
and y.
- Forie [L]:
* Forb € {0,1}, run INvg(ty, b, y;) to obtain pre-images
xé’i
* Letm; = z]® di'(BitDecomp(xgi)eaBitDecomp(xfi))GB
H(BitDecomp(x(]yi)) ® H(BitDecomp(xfi)).
- Ifmy = ... = mg, output my, otherwise output L.

(_1)H(BitDecomp(x0)) 10 |x0)

andxfi.

THEOREM 5. The scheme of Construction 2 is a CPA-secure perfectly
unexplainable encryption scheme in the quantum random oracle
model (QROM), assuming the quantum hardness of LWE.

We refer to the technical overview for a high-level picture of the
proof, and to the full version of the paper for all the details.

4Since the output of SAMP# on the output registers is a pure state, one can always have
Sampy# coherently “uncompute” on all registers except does containing the output.
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