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Polymorphic self-assembly of helical tubules is
kinetically controlled†

Huang Fang, a Botond Tyukodi,ab W. Benjamin Rogers a and
Michael F. Hagan *a

In contrast to most self-assembling synthetic materials, which undergo unbounded growth, many

biological self-assembly processes are self-limited. That is, the assembled structures have one or more

finite dimensions that are much larger than the size scale of the individual monomers. In many such

cases, the finite dimension is selected by a preferred curvature of the monomers, which leads to self-

closure of the assembly. In this article, we study an example class of self-closing assemblies: cylindrical

tubules that assemble from triangular monomers. By combining kinetic Monte Carlo simulations, free

energy calculations, and simple theoretical models, we show that a range of programmable size scales

can be targeted by controlling the intricate balance between the preferred curvature of the monomers

and their interaction strengths. However, their assembly is kinetically controlled—the tubule morphology

is essentially fixed shortly after closure, resulting in a distribution of tubule widths that is significantly

broader than the equilibrium distribution. We develop a simple kinetic model based on this observation

and the underlying free-energy landscape of assembling tubules that quantitatively describes the

distributions. Our results are consistent with recent experimental observations of tubule assembly from

triangular DNA origami monomers. The modeling framework elucidates design principles for assembling

self-limited structures from synthetic components, such as artificial microtubules that have a desired

width and chirality.

I. Introduction

Many biological functions rely upon the assembly of self-
limited structures that have well-defined finite sizes, and yet
are much larger than the size of the individual building blocks.
Examples include the assembly of protein capsomers into viral
shells with the appropriate size to encapsulate the viral nucleic
acid, assembly of tubulin into microtubules with diameters that
confer sufficient rigidity to mechanically support the cell,1,2

and, within butterfly wings, the organization of chitin into
nanostructured domains on the scale of visible light to make
the tissue iridescent.3,4 In contrast, most structures assembled
from synthetic building blocks undergo unlimited growth into
crystals or amorphous materials.5–7 The biological structures
described above are examples of ‘curvature-controlled’ assem-
blies, in which the building blocks assemble with a preferred
curvature that leads the structure to close upon itself in one or
more directions.

There has been an intense interest in mimicking such
functional biological structures by developing synthetic building
blocks that can be pre-programmed to assemble with curvatures
leading to self-closure. To this end, researchers have recently
used DNA origami (e.g.8,9) and protein design (e.g.10–12) to engi-
neer building blocks that assemble into polyhedral capsids or
tubules with designed diameters. However, due to thermal
fluctuations and kinetic effects, assembled structures typically
exhibit polymorphism in the limited dimension rather than a
single well-defined diameter.13–15 Understanding the factors that
control this size distribution is essential for achieving func-
tional self-limited assemblies. In this article, we use computer
simulations and kinetic models to understand the dynamical
pathways of helical tubule assembly, and the resulting poly-
morphic distribution of assembled tubule structures.

Curvature-controlled assemblies in biology frequently rely
on symmetry principles to maximize their ‘economy’ of assembly,
meaning the size of the structure that can be assembled for
a given number of distinct subunit species.15 For example,
icosahedral symmetry maximizes the number of identical sub-
units (60) that can be used to assemble a shell, and many
viruses assemble icosahedral capsids.16–19 In this sense, helical
tubules are even simpler than icosahedral capsids—there is an
infinite family of helical tubules with different diameters and
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pitches, each of which can be assembled from a single subunit
species with identical conformations throughout the structure.
However, because the subunit curvature changes only slightly
between different tubule structures with similar geometries
within this family, tubule assembly is highly susceptible to
polymorphism. That is, when subunits associate with imperfect
geometries during assembly, and these imperfections fail
to anneal before becoming trapped by further subunit
association, the resulting assembled structures deviate from
the ground state tubule structure. Consequently, the geometry
distribution of tubules assembled in a finite time depends on a
competition between kinetic and thermodynamic factors, and
can differ significantly from the equilibrium distribution.
Identifying these factors from experiments alone is challenging
because most intermediate structures are transient and present
at concentrations which are too low to experimentally detect or
characterize.

Computer simulations can help to understand self-limited
size distributions by revealing the dynamical pathways leading
to assembly. However, in comparison to the extensive body of
theoretical and computational modeling of icosahedral capsids
or shells (e.g.20), there has been relatively limited study of
tubule assembly (e.g.21–29). Thus, the mechanisms controlling
tubule assembly and closure have yet to be completely explored.

In this article, we perform kinetic Monte Carlo simulations
on a model of triangular subunits motivated by recent experi-
ments demonstrating the assembly of DNA origami building
blocks into helical tubules.9 By comparing the distribution of
dynamically assembled tubules with equilibrium results, we
find that the size and morphology distribution is kinetically
controlled. In particular, the structural ensemble is typically
quenched shortly after a nascent assemblage first closes upon
itself to form a cylindrical tubule. Through a combination of
dynamical simulations, free-energy calculations, and simple
analytical models, we determine how the resulting size distribution
depends on control parameters such as the bending modulus
and the pre-programmed target curvature. These results may
guide the experimental design of more efficient and accurate
self-assembling artificial tubule structures.

The remainder of the article is organized as follows: In
Section II A and B, we introduce the kinetic Monte Carlo
algorithm that we use to model tubule self-assembly. We then
discuss the predicted assembly trajectories and geometry
distribution of assembled tubules. In Section II C, we compare
simulation outcomes to observations from experiments on
tubules self-assembled from DNA origami subunits, and obtain
an estimate of the bending rigidity in the experimental system.
In Section III A–C, we present calculations of the equilibrium
tubule geometry distribution and, through comparison with
simulation results, show that the assembled geometry distribution
is kinetically controlled. In Section III D–E, we construct a kinetic
model that captures these dynamical effects, and use it to predict
the assembly behavior as a function of the control parameters.
Finally, in Section IV, we discuss implications for future experi-
ments, as well as limitations and possible extensions of
the model.

II. Simulations
A. Computational model

In our model, monomers are triangular structures composed of
three vertices connected by harmonic bonds. We choose a
triangle geometry because it closely matches the DNA origami
subunits in the motivating experiments,8,9 and similar models
based on triangular monomers have been recently developed for
elastic membranes,30 icosahedral shell self-assembly,31–35 and
geometrically frustrated finite-length tubule-like structures.36

The model and simulation algorithm can be readily extended
to other monomer geometries; for example, Mohajerani et al.37

modeled the assembly of hepatitis B virus (HBV) capsids from
protein dimer subunits.

The Hamiltonian is

H ¼
X

i2BoundEdgePairs
�EB þ 1

2
B yi � y0;i
� �2þ X

j2Edges

1

2
kS lj � l0; j
� �2

;

(1)

with EB as the monomer-monomer binding energy (set as a
positive constant); yi and y0,i as the instantaneous and pre-
ferred dihedral angle between two monomers bound at a
common edge i, B as the bending modulus; lj and l0, j as
respectively the instantaneous and stress-free lengths of an
edge j; and kS as the stretching modulus. The three monomer
edges are inequivalent, and setting y0 at each of the monomer
edges defines the ground state (target) tubule geometry (Fig. S1,
ESI†). For simplicity, we set EB and l0 to be identical among all
three edges of a monomer, and we consider only a single
monomer species. Moreover, motivated by the material proper-
ties of DNA origami subunits and proteins, we focus here on
the limit of thin sheets, in which the bending deformations are
much lower in energy than stretching. Therefore, we set
kS = 200kBT/l0

2 throughout this study so that the monomer
edges are nearly fixed in length, and we vary the bending
modulus as a control parameter (Fig. 1).

We use Monte Carlo moves to relax the structure, including
vertex moves to relax structural degrees of freedom, monomer
association and dissociation moves to model assembly and

Fig. 1 Schematic of the model. The Hamiltonian includes terms that
represent edge stretching, monomer-monomer binding, and bending.
Each of the three monomer edges is a different type, and only pairs of
edges with the same type can bind. In this work, all edge types have the
same binding energy. Each edge type i has a different preferred (‘ideal’)
dihedral angle, y(m,n)

id,i , the set of which determine the target structure (m, n).
The energetic cost of deviations from preferred edge lengths and the
dihedral angles are controlled by the stretching and bending moduli, kS
and B.
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disassembly, as well as moves to model internal rearrangement
events such as the splitting and merging of cracks within a
structure. All the moves guarantee detailed balance (see ESI†
Section IX and X for details about the algorithm and the
moves). Provided that this set of movements represents the
transitions that are relevant for actual tubule assembly, with
approximately correct relative rates for the different moves, the
Monte Carlo trajectories can be qualitatively mapped onto the
system dynamics. This mapping can be tested by comparing
simulation results against experimental observations of tubule
assembly kinetics and the structural ensemble of assembled
tubules. The edge fusion and fission moves, which respectively
bind two free edges on the structure boundary or split two
edges that are already bound, are particularly important for
closure/reopening of the tubule structure. We show below that
the rate of tubule closure relative to its growth can significantly
affect the assembly pathways. Therefore, we define a control
parameter – the edge fusion rate ffusion, as the ratio between the
attempt frequency of edge fusion/fission moves and the unit
timescale (which is set to the frequency of vertex moves).

To determine well-defined steady-state distributions, we
evolve the system in the grand canonical ensemble, in which
the assembling structure exchanges monomers with a bath at a
fixed chemical potential m. This situation approximately describes
tubule distributions at a point in a reaction with a corresponding
free monomer concentration c0 = cSSexp(m/kBT) with cSS the
standard state concentration. We set m = �3kBT throughout
this study. For the purposes of comparing our results with
the DNA origami tubule assembly experiments,9 we use the
same standard state concentration as specified in that work,
cSS E 10 mM (corresponding to approximately 100% monomer
volume fraction). This results in a bath concentration of
c0 E 500 nM. See Section II C for a discussion of how our
simulated system compares to the experiments and our ratio-
nale for parameter choices.

To model assembly from a dilute system of monomers,
for which binding between different tubules is negligible,

simulations are restricted to have only one structure within
the simulation box. The initial condition for each dynamical
assembly simulation is one monomer in the simulation box,
which then assembles (and disassembles) through association
(and dissociation) of monomers through exchanges with
the bath. Since monomers can only associate to an existing
structure, and only single monomer associaton/dissociation is
allowed, the system is guaranteed to maintain only one struc-
ture. For thermodynamic integration, the system is initialized
from, and restricted to, a closed tubule lattice (see Section III A
and VII B, ESI†).

B. Simulation results

Assembly trajectories. As expected from generic models of
tubule or filament assembly,15 assembly in our model requires
that the subunit concentration and binding affinity exceed
threshold values. Below these values, the mixing entropy of
free monomers out-competes the interactions stabilizing
tubule formation, and equilibrium is dominated by monomers.
For the subunit concentration that we focus on (determined by
m = �3kBT), we find that the critical binding affinity corre-
sponds to EB E 4.5kBT. This observation is supported by our
thermodynamic integration results (described in Section III A
and VII B, ESI†). As shown in ESI† Section VII B, with EB =
4.5kBT, the bulk energy density of an assembled tubule is about
�3kBT, and thus equal to the bath chemical potential.

Above the threshold binding affinity, the Monte Carlo tra-
jectories exhibit a rich dynamics which proceeds through a
series of stages, including nucleation, closure, and growth.
Fig. 2 shows snapshots from example simulation trajectories
at three different parameter sets. During assembly with a large
target tubule diameter (red and blue curves), after an initial
period of transient assembly and disassembly, the structure
surpasses the critical nucleus size (approximately 5 monomers
for these conditions) and grows steadily as a curved two-
dimensional sheet. Eventually, the boundary edges at opposite
sides of the curling sheet begin to touch, and the edges bind.

Fig. 2 Simulation trajectories showing the number of monomers N in a self-assembled structure as a function of elapsed time t (number of Monte Carlo
sweeps). Snapshots show the configurations at indicated times. Dashed lines in the zoomed-in snapshots label the direction of the edge that is the most
perpendicular to the longitudinal direction. The assembled tubule geometries are: (9,1) for the red trajectory, (10,0) for the blue trajectory, and (4,0) for
the yellow trajectory. The red and blue trajectories have the same target tubule geometry of (10,0) and the same binding energy of EB = 6.0kBT. The target
tubule geometry for the yellow trajectory is (5,0) and the binding energy is EB = 5.0kBT. Other simulation parameters are the same for all the trajectories:
B = 20kBT, ffusion = 10�3.

Soft Matter Paper

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
2 

A
ug

us
t 2

02
2.

 D
ow

nl
oa

de
d 

on
 5

/8
/2

02
3 

5:
17

:3
8 

PM
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sm00679k


This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 6716–6728 |  6719

We denote the first such binding event as the point of tubule
closure. After closure, the tubule geometry is highly stable and
the structure undergoes steady growth from both ends.

Even though the red and blue trajectories have the same
target structure, they assemble different tubule geometries,
denoted by different pairs of integer numbers (m, n) based on
the convention from carbon nanotubes.38 Representing a
tubule as a curled triangular lattice that closes upon itself,
the indexm gives the number of lattice sites on one turn around
the helix, while n gives the number of lattice sites in the
orthogonal direction (along the long axis of the tubule) (see
Fig. S1 for a schematic of the naming convention and Section I
A, ESI† for a detailed description of the notation). In the
trajectory with a small target width (yellow line), tubule closure
corresponds to the formation of the critical nucleus, after
which the tubule undergoes steady growth.

Tubule geometry distributions. We performed simulations
over a wide range of parameter values to learn how the tubule
morphologies arising from dynamical trajectories depend on
the relevant physical parameters, such as the bendingmodulus B,
the diameter of the target tubule geometry D0, and the fusion rate
ffusion, which influences the closure kinetics. We measured the
distribution of tubule geometries at the end of each simulation.
Simulations were performed until the length of the structure
L grew to approximately three times the tubule circumference,
since the geometry distribution is stable by this point (no
geometry fluctuations occur beyond this size). We estimated
the distributions from 1000 independent trials at each parameter
set.

We find that tubule structures with different geometries, as
well as structures that fail to close, can assemble in the dynamical
simulations under the same set of parameter values. We classify
the self-assembly outcomes into three categories: defect-free
tubules, defective tubules, and open structures. A tubule is defective
if part of the structure fails to close or multiple tubule geometries
are locally identified within the same structure (see Fig. S3 and
Section III A, ESI† for identification details). Open structures arise
when nonuniform curvature causes opposite boundary edges to
‘miss’ the opportunity to bind to each other, leading to a spiral
structure that resembles a toilet paper roll (Fig. S3, ESI†). The
fraction of defective tubules increases as the bending modulus B
decreases or the target diameter D0 increases (Fig. 3). The fraction
of defective and open structures increases with the binding
energy (Fig. S10, ESI†). To avoid conditions under which defective
structures are too prevalent, for all results in the main text we set
the binding energy to EB = 6kBT and the chemical potential to
m = � 3kBT, so that assembly is sufficiently reversible to allow
monomer detachment and annealing.39–42 With these para-
meters, the fraction of defective tubes is generally below 30%.

The geometry distributions of defect-free tubules depend on the
control parameters. Fig. 3 shows the distributions of assembled
tubules for different bending moduli, target diameters, and fusion
rates. The size and color of the circular symbols represent the
fraction of different tubule geometries within the defect-free
population. Only tubule geometries with populations Z1%
are labeled in the plot. Fig. 3(A) shows tubule geometry

distributions for two bending moduli B, with other parameters
fixed. As B increases, the fraction of the target tubule (10,0)
increases while the fraction of the off-target tubules decreases.
This is consistent with thermodynamics, since the deviations of
dihedral angles required for off-target geometries increase in
energy with B. Fig. 3(B) compares the distributions for two
different target geometries. As the diameter of the target geo-
metry D0 increases, the fraction of the target geometry decreases
while the fraction and variety of observed off-target geometries
increases. This result is also consistent with thermodynamics,
since the difference of the ideal dihedral angles between the

Fig. 3 Tubule geometry distributions fromMonte Carlo assembly trajectories
depend on the bending modulus B, target tubule geometry, and fusion
rate ffusion. The color and size of each circle indicate the fraction of the
corresponding tubule geometry within the defect-free population.
(A) Geometry distributions for B = 50kBT (left) and B = 100kBT (right) with
EB = 6kBT, ffusion = 10�3, and target tubule geometry (10,0). The fraction of
defect-free tubules is about 97% for both cases. (B) Geometry distributions
for different target geometries with B = 20kBT, EB = 6kBT, and ffusion = 10�3.
The fraction of defect-free tubules is about 88% for both cases.
(C) Geometry distributions for indicated values of ffusion with B = 20kBT,
EB = 6kBT, and target tubule geometry (10,0). As ffusion decreases from 10�2

to 10�4, the fraction of defect-free tubules decreases from 88% to 52%,
while the fraction of open structures increases from 0 to 45%. Each
distribution in (A–C) is estimated from 1000 independent simulation
trajectories.
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target state and neighboring tubule geometries is smaller for
larger D0 (Fig. S2, ESI†). Therefore, with the same extent of
dihedral angle fluctuation, the number of accessible off-target
states increases as D0 increases. Similar results were described
in ref. 43.

As shown in Fig. S10 (ESI†), the tubule geometry distribution
does not significantly change for binding energies in the range
EB A [5,6.5] kBT, suggesting that there is at most a weak
dependence on binding energies for the regime we focus on.
We discuss this result further in Section III H, ESI.†

Interestingly, even for the same Hamiltonian (in which B
and D0 are fixed), changing the edge fusion rate ffusion changes
the skew of the geometry distribution. Fig. 3(C) shows that as
ffusion increases from 10�4 to 10�2, the geometry distribution
changes from skewing above to skewing below the target
geometry (10,0). Meanwhile, the proportion of open structures
increases from 0 to around 45% as ffusion decreases from 10�2 to
10�4 (Fig. S7, ESI†). This observation reflects the fact that
decreasing the closure rate increases the chance that the two
edges ‘miss’ each other. As the two edges grow past one another,
the size of a curvature fluctuation required to enable closure
becomes increasingly unfavorable energetically, and thus more
rare. The continued growth of the structure boundary then leads
to the spiraling structure described above. See Section III D for
further discussion.

C. Comparison of simulations and experiments

We now compare the results of our dynamical assembly simu-
lations to recent experiments. We find that the morphology
distribution of simulated tubules semi-quantitatively agrees
with those observed in the experiments,9 suggesting that the
model incorporates the essential physics of the experiments.

Hayakawa et al.9 designed triangular monomers from DNA
origami that self-assemble into helical tubules (Fig. 4). The
monomers interact with each other along their edges through
shape-complementary interactions driven by blunt-end DNA
base stacking.8 The interactions are specific—each monomer
edge interacts only with the same edge type on a neighboring
subunit. The bevel angles of the edges of each monomer {y0id,i}
determine the preferred dihedral angles, which, in turn, set the
preferred curvatures of the assembly.

The data set against which we compare our simulation
results is obtained from an experimental system that resulted
in a most probable tubule geometry of (9,4). Since a key unknown
parameter from the experiments is the bending modulus B, we
performed simulations with a target geometry of (9,4) at four
values of the bending modulus: B A {5,10,15,20} kBT. All other
parameters were fixed to their default values (see Section II).
We found that assembled structures were highly defective for
B = 5kBT. For BZ 10kBT the majority of tubules were well-formed,
with distributions peaked around the target geometry of (9,4).
The width of the distribution becomes progressively narrower
with increasing B, as described in Section II B.

We found that a value of B = 10kBT resulted in a geometry
distribution of assembled tubules that closely resembles the
distribution observed in the experiments (Fig. 4(B)). To facilitate

comparison between the two distributions, Fig. 4(C) plots the
fraction of different tubule geometries against the diameter of
the tubules, where D0 is the diameter of the (9,4) tubule
geometry. Although the simulation distribution is slightly nar-
rower than the experiment, we observe that the distributions
match fairly closely, especially considering that we have not
quantitatively optimized B. Results for the other simulated
values of B are shown in Fig. S11, ESI.†

The comparison between simulations and experimental
results in Fig. 4(B) and Fig. S11 (ESI†) suggests several impor-
tant qualitative conclusions: (1) the simple model considered
here produces results which are semi-quantitatively consistent
with those observed in the experiments. As we will show below,

Fig. 4 Comparing the geometry distributions of tubules assembled
in simulations and experiments. (A) Cryogenic electron microscopy recon-
structions of a DNA origami monomer, and a transmission electron
microscopy image of an assembled tubule. The left panel shows the
monomer under different views. Two monomers bind along their edges
through shape-complementary interactions driven by blunt-end DNA
base stacking. The right panel shows an assembled (9,4) tubule. Images
in (A) were provided by authors of ref. 9. (B) Tubule geometry distributions
measured from experiments9 and simulations. The size of each circle
indicates the fraction of the corresponding tubule geometry within
the defect-free population. Each simulation data point is estimated from
1000 independent dynamical MC trajectories that are initialized from a
single monomer. (C) Comparing tubule width distributions between
experiments (blue bars) and simulations (red symbols). D0 is the diameter
of the ideal (9,4) tubule. Simulation parameters: the target geometry is
(9,4), EB = 6.0kBT, B = 10kBT, and ffusion = 10�3.
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these results can only be explained through a combination of
kinetic and thermodynamic effects, which suggests that the
highly simplified dynamics of our model captures the most
relevant physics. (2) It was not possible to directly estimate the
bending modulus within the experiments. The simulation results
suggest a bending modulus on the order of 10kBT, which is
comparable to that of a lipid bilayer membrane (B/kBT B 10–
20).44,45 This computational result could be tested in future
experiments that measure the distribution of angular fluctua-
tions between monomers. (3) Given the qualitative agreement
between the computational and experimental results, the simula-
tions can provide a predictive guide for future experiments. We
note that a definitive comparison of our simulation results to the
experiments, and a precise estimate of the experimental bending
modulus, will require additional experimental data sets. In the
subsequent sections, we use the simulations and simple models
to understand the effect of relevant control parameters on the
morphology distributions of assembled tubules.

Comparison between simulated systems and the experi-
mental conditions in ref. 9. We have chosen parameters that
ensure the simulations are qualitatively similar to the motivat-
ing experiments while maintaining computational tractability.
In particular, we focus on values that place the simulations in
the same assembly regime as observed in the experiments,
while enabling sampling a statistically significant ensemble of
assembly trajectories. We summarize these parameters and
their correspondence to the experiments here.

In Hayakawa et al.,9 the total monomer concentration is
c0 E 10 nM. If we set our standard state volume to that used in
Hayakawa et al., cSS = 1/nmonomerNA E 10 M, with vmonomer the
volume of a monomer and NA Avogadro’s number, then our
chemical potential value m = � 3kBT corresponds to a bath
concentration of c0 E 500 nM.

We use this larger concentration because it allows assembly
dynamics to occur on faster timescales compared to the experi-
mental concentration, thus making our dynamical simulations
more computationally tractable. The higher concentration causes
association to occur on shorter timescales, and, to maintain the
same assembly regime as in the experiments, the binding
energies can be somewhat smaller, making unbinding occur on
shorter timescales. In particular, for m = � 3kBT, the threshold
binding energy for assembly is EB E 4.5kBT (see Section II B and
VII B, ESI†). For our dynamical simulations to be in the experi-
mentally relevant regime, they require binding energies that are
somewhat larger than the threshold energy, so that nucleation
occurs within computationally accessible timescales (and similarly
experimentally accessible timescales), which corresponds to the
value we focus on, EB = 6.0kBT. At this binding energy, the
probability for a pair of fused edges to undergo fission becomes
sufficiently small that the closure event is nearly irreversible, but
assembly still involves a significant nucleation barrier. Both condi-
tions are consistent with experimental observations. Recall also
that our simulation algorithm enforces the dilute assembly regime
by construction, consistent with the low experimental concen-
tration. Moreover, the net bulk free energy density of assembled
tubules in the simulations, De E � 3EB/2 � m = � 6kBT is close to

the value at early stages of the experiments (before free mono-
mers are significantly depleted): with c0 = 10 M the initial
chemical potential is m E � 7kBT, while the binding energy
was estimated as EB E 9kBT, resulting in De E � 6.5kBT.

Other differences between the simulations and experiments
are as follows. The simulations are performed in the grand
canonical ensemble and thus have a constant bulk monomer
concentration. In contrast, the experiments are in the canonical
ensemble (fixed total monomer concentration). Thus, the bulk
monomer concentration is depleted as assembly occurs, so
tubules that nucleate at later times in the experiment assemble
at lower chemical potentials. Tubule morphology distributions
are measured over all times, and thus average over these
differences in bulk concentration. However, based on the
observation that the width distribution of well-formed tubules
does not depend sensitively on binding energy in this parameter
regime (Fig. S10, ESI†), we expect that it is also insensitive to the
chemical potential. In addition, the tubules in the experiments
have an exponential distribution of lengths (as expected for the
canonical ensemble). The experiments are performed for one
week, by which time the longest tubule structure is about 2 mm,
which is roughly 10 times its diameter. In the simulations, we
analyze all tubules after they have grown to a length of 10 times
the tubule diameter. However, this difference does not affect the
results, since, as we show in this work, the morphology dis-
tribution is set at the time of closure and is thus roughly
independent of tubule length.

Controlling the monomer–monomer binding affinity. The
experiments show that the monomer–monomer binding affinity
increases with increasing salt concentration,8,9 likely due to
screening of electrostatic repulsions between monomers. Our
binding affinity parameter EB thus qualitatively maps to the salt
concentration used in the experiments. However, the affinity
increases much more strongly with magnesium compared to
sodium than would be predicted by simple screening, suggest-
ing specific interactions with magnesium. Therefore, we have
not attempted a quantitative mapping between EB and experi-
mental parameters.

III. Theoretical models

To determine whether kinetic effects influence the observed
geometry distributions, we compute the equilibrium tubule
geometry distribution and compare it against those observed
in simulations. We first perform the calculation accounting for
the discrete tubule geometries allowed by the finite monomer
size, and then we simplify the calculation by adopting the
continuum limit.

A. Discrete equilibrium model

Motivated by the high rigidity of DNA origami subunits,8,9 we
focus on the regime of high stretching modulus in this work, so
that the relative edge length fluctuations are small, kBT/kSl0

2 { 1.
Thus, in the following calculation we assume that the curvature
within a tubule is uniform, and for an assembled geometry (m, n)
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all the dihedral angles are approximately equal to their ideal
value y(m,n)

id,i , with i A 1, 2, 3 as the indices of the three sides of
a subunit. We denote the ideal angles for the target geometry as
y0id,i. The free energy per monomer g(m,n)

L in a tubule geometry
(m, n) with length L is then approximately given by

g
ðm;nÞ
L ¼ 2a0g

L
� 3EB

2
þ Ts

� �
þ 1

4
B
X

i¼1;2;3

yðm;nÞ
id;i � y0id;i

� �2
(2)

in which a0 is the area of a monomer, g is the line tension
accounting for unsatisfied interactions at the two tubule bound-
aries, EB is the binding energy, B is the bending modulus, T is the
temperature, and s is the per-monomer entropy. The bending
energy term is reduced by a factor of two compared with eqn (1)
because it is shared between two neighboring monomers. The
equilibrium probability P(m,n) to assemble the tubule geometry
(m, n) with length L is given by

P(m,n)
L p exp [�bN(g(m,n)

L � m)], (3)

where N is the number of monomers in the structure and m is the
chemical potential. In the grand canonical ensemble m is equal to
the bath chemical potential, while in the canonical ensemble
(conserved total monomer concentration) m = kBT ln (c0/cSS) with
c0 the concentration of free monomers, with cSS the standard
state concentration.

We consider the large L limit, in which the contribution
from the line tension can be ignored, so the free energy per
monomer becomes independent of length and will be denoted as
g(m,n). Further, at equilibrium, the free energy permonomer of the
geometry that minimizes the free energy (in this case the target
geometry) is approximately equal to the chemical potential m.15,46

Since the bending energy of the target geometry is zero, the

equilibrium chemical potential is given by meq �o � 3EB

2
þ Ts�

� �
,

where s* is the entropy per monomer of the target structure.
Assuming the entropy is roughly independent of geometry, the
probability distribution is then dominated by the bending
energy, resulting in

Pðm;nÞ / exp �1

4
bNB

X
i¼1;2;3

yðm;nÞ
id;i � y0id;i

� �2" #
; (4)

which shows that the probability to assemble an off-target
structure decreases exponentially as the bending modulus B
increases.

To test this analysis, we used an adapted thermodynamic
integration algorithm to compute the free energy for different
tubule geometries g(m,n)

L . In brief, the algorithm evaluates the
free energy change for each geometry along a thermodynamic
pathway that gradually transforms the Hamiltonian of the
system from a reference state (an Einstein solid with the same
number of vertices) to our computation model (eqn (1)).
We find that the measured free energy difference between
different tubule geometries closely agrees with the bending
energy difference, confirming the validity of the simplifications
described above. See Fig. S17 and Section VII, ESI† for details

about free energy computations and the comparison to the
bending energy.

B. Continuum equilibrium model

To obtain an approximate analytical expression for the tubule
width distribution, we adopt the continuum limit and neglect
the presence of defects. In this limit, the bending energy as a
function of tubule diameter D is given by the Helfrich energy47

gD ¼ 2a0g
L

� 3EB

2
þ Ts

� �
þ 2 ~Ba0

1

D
� 1

D0

� �2

; (5)

with D0 as the diameter of the target structure and B̃ as the
effective bending modulus in the continuum limit. The con-
tinuum bending modulus is related to the bending modulus B

of the discrete model by ~B ¼
ffiffiffi
3

p 	
2

� �
B.30

We evaluate the equilibrium width fluctuations of the closed

tubules DD �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� hDiÞ2h i

p� �
as a function of their length L.

By performing analogous simplifications to the discrete model
(see Section II, ESI†), we obtain:

DD ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
D0

3kBT

6pBL

s
: (6)

Eqn (6) shows that the relative equilibrium width fluctua-
tions decrease with bending modulus, but increase with target
diameter as DD/D0 B D0

1/2, as found for spherical curvature-
controlled capsids.15 However, a key difference for tubules is
that the equilibrium fluctuations become negligible for tubules
with large aspect ratios L c D. Thus, the observations from
simulations and experiments of appreciable width fluctuations
in large-aspect ratio tubules indicate that kinetic effects are
important in determining the polymorphism.

C. Comparing simulation results against equilibrium width
distributions

By comparing the simulation and equilibrium computation, we
find that tubule geometry distributions from the dynamical
simulations have larger variances than predicted by the equili-
brium models. Fig. 5 compares the width fluctuations DD
measured in the simulations to the scaling law (eqn (6)) from
the equilibrium computation for different values of the bending
modulus and target geometry. In general, we see that the
distributions observed in simulations have larger variances than
the equilibrium results. Importantly, the observed DD collapse to
the equilibrium scaling with respect to the target diameter D0

and bending modulus B, but not at the tubule length at which
the geometry measurements are performed (Lend B 3p D0, black
dashed line in Fig. 5). The measured diameter fluctuations are
much larger than the equilibrium value. Instead, the fluctua-
tions are roughly consistent with the equilibrium prediction for
the smaller value of Lclose B 1.5 D0 at which the tubules closed.
Indeed, the results match the equilibrium prediction with
L = Lclose for all parameter values except DD/l0 t 0.5; below
this threshold the fluctuations are smaller than the discrete
monomer size and the continuum approximation breaks down.
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Note that similar results were observed for the same computa-
tional model in ref. 43 and were shown to be consistent
with experiments on DNA origami subunits assembling the
tubules in ref. 9. A detailed description of how we measure
the tubule diameter and the closure size is given in the ESI†
(Fig. S4 and S5).

The fact that the fluctuations are consistent with the equili-
brium prediction, but at the smaller length Lclose, indicates
that the geometry distribution is kinetically controlled. This
conclusion is consistent with the observation from simulations
that the geometry rarely changes once a tubule closes, which
can be understood from the fact that, after closure, all mono-
mers have their maximum number of bonds except those at the
two tubule ends. Rearrangement of the tubule geometry
requires breaking a significant number of bonds, and thus over-
coming a large free energy barrier. Note that the substitution of
Lclose into eqn (6) amounts to a quasi-equilibrium assumption:
because assembly occurs near equilibrium for the parameters
considered in Fig. 5, the tubule geometry distribution at the time
of closure is nearly consistent with the equilibrium distribution

at the corresponding tubule length Lclose. However, this condition
breaks down for larger values of the edge fusion rate ffusion as
discussed next.

We also compared the fraction of each tubule geometry
(m, n) predicted by the discrete model against the simulation
results, which indicated a similar trend as for the continuum
model: The distribution computed using Lclose is much closer to
the simulation results as compared with using Lend (Fig. 6), in
terms of the width distribution and the yield of the target
geometry (Inset of Fig. 5). Here, we replot the distribution in
Fig. 3(C) against the diameter of the assembled tubule geo-
metries (bars in Fig. 6). However, as ffusion increases from 10�4

to 10�2, the skewness of the tubule width distribution changes
from below to above D0. The equilibrium computation at Lclose
does not predict the change in skewness resulting from the
change in the assembly kinetics.

This result shows that the simple picture based on a quasi-
equilibriummorphology distribution at Lclose does not capture all
kinetic effects that control the tubule morphology distribution.
In Section III D we develop a model that accounts for these
additional dynamical influences.

D. Kinetic model for tubule geometry distributions

The results shown thus far suggest that factors affecting the
size and geometry of the tubule at the moment of closure are
the key determinants of the observed steady-state geometry
distribution. In this section, we develop a discrete model that
incorporates both the kinetics and thermodynamics of the
system and we show that it semi-quantitatively describes the
simulation results. We present an analogous continuum model
in Section V C, ESI.†

To simplify the analysis, we focus on parameters for which
the critical nucleus size is small compared to the closure size,
which covers most of the parameter space that we consider in
this work (see Fig. 2). Therefore, in the model we assume that
nucleation occurs well before closure, and thus the two pro-
cesses are independent. In a future work, we will extend the

Fig. 5 Comparing the tubule geometry distribution from Monte Carlo
assembly trajectories with the equilibrium theory shows that tubule closure
fixes tubule geometries out of equilibrium. Tubule width fluctuations DD
measured from simulations at different parameter sets, plotted according
to the scaling from equilibrium theory (eqn (6)). The dashed black line
shows the equilibrium result for the tubule length at the end of the
simulation (with L = Lend in eqn (6)), while the dashed red line shows the
expected result if the geometry is quenched at the point of closure (with
L = Lclose in eqn (6)). Different symbols represent different bending modulus
values B, and the color shows the first lattice numberm of the target tubule
geometry (m, n); all structures in this dataset have n= 0. The inset shows an
analogous comparison for the fraction of tubules within the defect-free
population that have the target geometry. The black asterisk symbols show
the discrete model prediction (eqn (4) with L = Lend) and the red pentagon
symbols show the discrete model prediction with L = Lclose. Other simula-
tion parameters: EB = 6kBT and ffusion = 10�3.

Fig. 6 Comparing measured tubule width distributions to the discrete
equilibrium model (eqn (4)). Bars are the simulation results with indicated
values of ffusion, while symbols represent the equilibrium results, with
tubule length at the simulation endpoint or at closure respectively. Other
simulation parameters: B = 20kBT, EB = 6kBT, and the target tubule
geometry is (10,0).
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model to account for the case when the closure and critical
nucleus sizes are comparable, and thus the two processes are
coupled.

We consider the structure before closure as a circular disk
that is bent to have the stress-free curvature of the target tubule
(see Fig. S12, ESI† for a schematic of the model). The size N of
the disc grows with a rate kgrow that is proportional to its
boundary length:

kgrowðNÞ ¼ k0grow
ffiffiffiffi
N

p
; (7)

where k0grow is a factor that depends on B and EB (see Fig. S8 and
Section III F, ESI† for details about growth rate measurements).
To simplify the model, we ignore the stochasticity in subunit
association by assuming that N increases by one subunit at
regular time intervals given by Dt = 1/kgrow.

While remaining at a size N, the open structure also
attempts to close with a rate kclose. Once the structure closes,
we assume that it does not reopen. Allowing for a finite
reopening probability is straightforward, but has a negligible
effect on the results for the parameters that we focus on
because reopening is rare and/or transient. We assume kclose
decreases exponentially with the free energy barrier to closure
DGclose, which arises primarily from the bending elastic energy
due to the difference in the curvature of the closed structure
and the stress-free structure. Section III G, ESI† presents
estimates and measurements of DGclose.

At a given size N, the rate k(m,n)
close of closing into a structure

(m, n) is then approximated by

k
ðm;nÞ
close ðNÞ ¼ k0close exp �DGðm;nÞ

close ðNÞ
kBT

 !
I
ðm;nÞ
close ðNÞ: (8)

Here k0close is the closure attempt rate (i.e. the rate in the
absence of a barrier), and I (m,n)

close is a function that indicates
whether a particular structure (m, n) is geometrically compa-
tible with closure at size N: I (m,n)

close = 1 if it is compatible and
I (m,n)
close = 0 if it is incompatible (see Section V B, ESI† for details
about the determination of I (m,n)

close (N)). Assuming that shape
fluctuations are fast in comparison to the net growth timescale,
the net closure rate k̃close for a disk with size N is then given by a
sum over all accessible geometries as

~kcloseðNÞ ¼
X
ðm;nÞ

k
ðm;nÞ
close ðNÞ: (9)

Finally, we evaluate the closure probability as a function of
time. To simplify the calculation, we assume that the structure
is larger than the critical nucleus size, and that closure is a rare
event in comparison to growth. In the absence of closure, the
time at which a structure first grows to size N is thus

tN ¼
PN�1

i¼1 1
.
kgrowðiÞ, and the probability that such a structure

stays open for an additional time dt o tN+1 � tN is

Popen(t + dt, N) = Popen(tN,N)exp [�k̃close(N)dt]. (10)

By summing over smaller sizes, we can compute the prob-
ability that a structure has stayed open until size N as

Popen tN ;Nð Þ ¼
YN�1

i¼1

exp �
~kcloseðiÞ
kgrowðiÞ

 !
: (11)

The probability for the structure to close at size N is then
given by

PcloseðNÞ ¼ Popen tN ;Nð Þ 1� exp �
~kcloseðNÞ
kgrowðNÞ

 !" #
(12)

The probability to assemble a geometry (m, n) is then
computed by summing over all sizes N that can close to (m, n)

P
ðm;nÞ
close ¼

XNmax

N¼1

PcloseðNÞk
ðm;nÞ
close ðNÞ
~kcloseðNÞ

; (13)

where the second term on the right-hand side is the conditional
probability for assembling the geometry (m, n), given that the
structure closes at size N. Eqn (13) shows that the ratio of
growth to closure rates, which is a kinetic factor, can signifi-
cantly affect the tubule geometry distribution. Next, we will
compare these predictions against the dynamical simulation
results from Section II B.

E. Testing the kinetic model predictions

The simple kinetic model predicts the tubule geometry distri-
bution and yield of the target geometry over a wide range of
parameter space of the bending modulus B and the effective
closure rate (normalized by the net growth rate, log (k0close/k

0
grow)).

We define the yield as the fraction of a specific defect-free
tubule geometry (m, n) within the entire population (including
the unclosed structures and the defective tubules), and k0close is
defined as the rate for an isotropic open structure to close and
form the target geometry. In the simulations, the effective
closure rate log(k0close/k

0
grow) is controlled by the parameter ffusion,

and we measured log(k0close/k
0
grow) from simulation trajectories as

described in Section III F and G, ESI.†
The kinetic model accurately predicts the detailed distribu-

tion of defect-free tubule geometries, as well as the fraction of
structures that fail to close in the dynamical simulations.
Comparisons between the kinetic model and the simulation
results are shown for three representative parameter sets in
Fig. 7(A). Starting from the top panel, we reduce ffusion by 100 �
at fixed B (middle panel), which does not significantly change
the spread of the distribution of closed tubules, but changes
the skew from wider than targeted to narrower than targeted.
More significantly, the yield of the target geometry decreases
from 40% to 28% while the fraction of the target geometry
within the defect-free population does not significantly change.
This observation is because the proportion of unclosed struc-
tures increases from 0 to B45% within the entire population
(Fig. S7, ESI†). The kinetic model captures this trend.

In the bottom panel, we increase B at fixed ffusion (relative to
the middle panel), which narrows the distribution considerably
and shifts the mean toward the target diameter. In particular, a
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significant fraction of tubules with sizes o D0 at B = 20kBT
shifts to the target geometry with D0 at B = 50kBT. This trend
reflects a combination of thermodynamic and kinetic effects.
Increasing B increases the thermodynamic stability of the target
geometry relative to competing structures. It also decreases the
net growth rate k0grow because monomer association incurs a
greater entropy penalty (since fewer configurations are accessible
for binding at higher B), which increases the effective closure
rate (see Fig. 7(B)) and thus favors smaller structures. However, the
thermodynamic effect dominates in this case and shifts the
distribution upward toward D0 (see Fig. S15, ESI† for details).

Fig. 7(B) shows that the yield of the target geometry also
depends on a combination of thermodynamic and kinetic
factors. The value of the bending modulus B sets an upper
limit on the yield, while the yield itself changes nonmonotoni-
cally with respect to the normalized closure rate at fixed B.
These trends reflect the fact that the bending rigidity deter-
mines the spread of the distribution, while the closure rate
mostly influences the mean of the distribution. As noted above,
a higher closure rate leads to structures that close earlier and
thus shifts the mean toward smaller structures.

The bending rigidity controls both the mean %D and the
width fluctuation DD of the distribution, while the effective
closure rate mostly influences %D. Fig. 7(C) shows the mean of
the distribution %D (top panel) and the width fluctuation DD
(bottom panel) as functions of the closure rate and the bending
modulus. We see that the mean width monotonically decreases
with increasing normalized closure rate or decreasing B. In
contrast, the fluctuations DD/ %D decrease with B but depend
only weakly on the closure rate. The latter trend is consistent
with the qualitative results from the quasi-equilibrium model
(Section III C) based on the equilibrium geometry distribution

at the time of closure. In particular, the scaling result
DD B B�1/2 still applies. However, the results for the mean
width reflect the fact that the probability for an open structure
with size N is determined by both the effective closure rate at
that size and the time for the structure to remain at size N. As
shown above, the closure rate increases with k0close and
decreases with B, while the time for the structure to remain
at a given size decreases with increasing k0grow. The irreversible
nature of tubule closure plays a key role in this trend, since the
smaller structures always have the opportunity to close before
larger sizes. Thus, increasing the closure rate or extending the
time at a given size will cause the entire distribution to shift
toward smaller widths.

Interestingly, the closure rate does not significantly influence
DD/ %D. Although the kinetic effects discussed above change the
tubule closure size Nclose, they do not significantly change the
relative prevalence of different tubule geometries at a given N.
Thus, as long as the shift of the distribution away from D0 is not
too large, the density of states around the preferred geometry at
size Nclose remains comparable to that around the target geometry.
This distribution is then essentially fixed once closure occurs.

IV. Conclusions

In summary, we have used kinetic Monte Carlo simulations and
free energy calculations to understand the dynamical assembly
of helical tubules. Our simulations reveal how assembly path-
ways and the resulting tubule morphologies depend on control
parameters. The geometry distribution of assembled tubules
predicted by the simulations semi-quantitatively matches the
distribution observed in experiments on tubules assembled

Fig. 7 The kinetic model captures the geometry distributions observed in simulations. (A) Comparison of the tubule width distribution between the
kinetic model (red symbols) and simulation results (blue bars) for three representative parameter sets. The triangle, circle, or square symbol at the top left
of each panel indicates its corresponding location in the parameter space for the plot shown in (B). The yield is defined as the fraction of a tubule
geometry assembled within the entire population of the assembled structures, including the structures that do not close. (B) Color map showing the yield
of the target tubule geometry (P(10,0)close defined in eqn (13)) predicted by the kinetic model as a function of the bending modulus B and the normalized

closure rate k0close/k
0
grow (shown on a log scale). The inset shows the fraction of closed tubules predicted by the model (

P/
i

PcloseðiÞ, Pclose (i) is defined in

eqn (12)).(C) Kinetic model predictions for the mean ( %D, top panel) and coefficient of variation (DD/ %D, bottom panel) with respect to the normalized
closure rate and bending modulus. In all cases the target geometry is (10,0).
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from DNA origami monomers,9 suggesting that the model
captures the key physics of the experimental system. Further,
we show that the simulations provide a useful tool to obtain a
first-order estimate of the physical parameters of the experi-
mental system, and can serve as a predictive guide for future
experiments.

Comparison of the simulation results with an equilibrium
calculation shows that the geometry distribution of assembled
tubules depends on a balance between thermodynamic and
kinetic effects. While the observed magnitudes of the fluctua-
tions in the tubule width DD match the equilibrium scaling

DD=D0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0=BLend

p� �
with respect to bending modulus B and

preferred diameter D0, the distribution of assembled tubules is
significantly broader and independent of length (Lend). This
behavior can be explained by the fact that the tubule geometry
becomes fixed shortly after an assembling proto-tubule closes
upon itself. Closure stabilizes monomer interactions except for
those at the two open ends of the tubule, and the topology
rearrangements required to significantly change the tubule
structure would incur a large free energy barrier. For this
reason, the observed geometry distribution fluctuations tend
to scale with the tubule length at closure, as L�1/2

close. For systems
in which closure rates are slow in comparison to growth time-
scales, the resulting tubule morphology distribution is approxi-
mately given by the equilibrium distribution at Lclose. However,
for systems with faster closure rates (relative to assembly),
additional kinetic effects shift the geometry distribution further
out of equilibrium. We developed a simple kinetic model which
captures these additional effects.

While the computational model used in this work is based
on triangular monomers motivated by the DNA origami
experiments,8,9 experimental and computational systems that
assemble tubules from other monomer geometries, such as
DNA tiles14,48 and wedge-shaped monomers,23 exhibit similar
polymorphic behaviors as in the DNA origami system. More-
over, the simple kinetic model derived in Section III D does not
assume a particular monomer geometry. The high level of
agreement between predictions of this model and the compu-
tational results suggests that kinetic control of morphology
applies generically to helical tubule self-assembly systems in
which growth rates are significantly faster than reopening,
regardless of the monomer shape.

Model limitations and outlook

While our kinetic model closely reproduces the computational
results over a wide range of parameter space, it is limited to
regimes in which tubule closure occurs above the critical
nucleus size. In particular, the model assumes a positive net
growth of the assembling tubule and thus is limited to the
forward-biased growth phase that occurs beyond the critical
nucleus size. In a future work, we plan to study the nucleation
behavior in detail, and how the assembly kinetics and geometry
distribution change when closure occurs before nucleation. In
this study we have primarily focused on parameters that lead to
well-formed tubules, with a low fraction of defective tubules.

However, the simulations provide insights into the factors
and mechanisms controlling defect formation. For example,
analysis of our simulation trajectories suggests that defective
tubules frequently arise when closure happens locally and
independently at two or more sites on the boundaries, with
geometries that are incompatible with the overall tubule geo-
metry. This mechanism results in a local crack between binding
sites, which is unable to anneal unless one of the bound edge-
pairs breaks. We expect that the probability of observing defects
through this mechanism increases as assembly and closure
become less reversible, via increasing the binding energy EB or
the intrinsic closure rate constant k0close, or decreasing the
bending modulus B. On one hand, the frequency of multiple
independent closure events, and thus the probability of obser-
ving cracks by this mechanism, increase with the effective
closure rate. As described in Section III D, the effective closure
rate increases linearly with k0close (a material property) and
exponentially with the free energy barrier to closure DGclose

(which depends both on material properties such as the bend-
ing modulus and the geometry of the tubule). On the other
hand, the probability of such a crack annealing decreases with
EB. These observations are consistent with the general princi-
ples established from other self-assembly reactions and crystal-
lization (e.g.40,42,49). When growth rates are sufficiently fast that
monomers that associate with strained interactions cannot
anneal before additional subunits assemble, defects become
locked into the growing structure.

While some potential mechanisms of defect formation
are disallowed by the simplifications of our model and simula-
tions, these mechanisms can be neglected in the DNA origami
experiments that motivate our work. In particular, the algorithm
does not allow for binding betweenmultiple partially assembled
structures, but these events are negligible under the dilute
assembly conditions with a substantial nucleation barrier that
tend to lead to productive assembly.40,42,50 Similarly, we do not
consider binding of subunits along non-complementary edges
because in the experiments,9 monomer–monomer interactions
were made highly specific using shape-complementary interac-
tions based on blunt-end DNA base stacking, and there is no
evidence of significant binding between non-complementary
edges in the experiments. Note that it would be straightforward
to extend the model to eliminate these simplifications to
describe other systems for which these mechanisms are not
negligible.

We also note that a kinetic Monte Carlo algorithm can only
be reliably mapped to real dynamics if the move set accounts
for all relevant transitions that occur in a given system, with
approximately correct relative rates for each move. In this respect
it is encouraging that the simulated tubule geometry distribution
compares well with experimental observations. However, further
comparison against additional data will be required to stringently
test the simulated dynamics, and to refine relative rates. In
particular, the simulations described here suggest that the rate
at which free edges within an assembled tubule bind to each
other is an important parameter controlling the closure rate and
defect formation.
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With the availability of additional experimental data, some
of these unknown coarse-grained parameters could be directly
estimated from experiments. At the same time, these measure-
ments would provide estimates of unknown experimental para-
meter values. For example, by optimizing simulation tubule
geometry and width distributions against experiments performed
at different parameter values (e.g. target geometry, and monomer
concentration), we could estimate the bending rigidity, as well as
the closure and growth rates. Additional experimental techniques
could enable directly estimating some coarse-grained parameters
in the model. For example, growth rates could be estimated from
dynamic light scattering experiments of tubule assembly, while
dimerization rates and free energies for specific monomer–mono-
mer edge interactions could be estimated from static light scatter-
ing experiments of subunits which each has only a single edge
activated for binding.8,9,51 Angular fluctuations of dimers mea-
sured using atomic force microscopy (AFM)52,53 or estimated from
electron density in cryo-electron microscopy experiments8,9,54

would provide an independent means of estimating the bending
rigidity.

Through combination with such experimental techniques,
our computational and theoretical study could be used to improve
the design of existing experimental platforms for tubule assembly.
Further, analysis of simulation trajectories for a validated model
will provide insights into mechanisms underlying assembly of
tubules in these systems, and potentially other related systems
with helical geometries such as microtubules,21–26,55–57 filamen-
tous viruses,58–63 and diverse other helical assemblies found in
biological systems.64 The model and computational algorithms
described in this work are broadly generalizable. They can be
readily adapted to other monomer shapes, such as rectangular
DNA tiles,14,48 wedge-shaped monomers,23 or biomolecules such
as the tubulin dimers that form microtubules,21–26,55–57 and other
assembly symmetries, such as icosahedral capsids31–35,37 and
geometrically frustrated structures.36 Such modifications require
changing the graph structure of the triangulated sheet and the
relationships among the monomer size, monomer–monomer
interaction angles, and assembly curvature; for example, ref.37
derived interactions for a model of protein dimer subunits from
atomistic simulations of HBV capsids. Thus, this modeling frame-
work can be used to provide similar insights into other assembly
geometries with different symmetries and mechanisms of self-
limitation.
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