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Abstract— This paper presents a novel distributed state-
estimation framework for satellite formations. Existing
consensus-based distributed filters have high communication re-
quirements that make them unsuitable for resource-constrained
small-spacecraft formations. We present a low-communication
distributed filtering scheme targeted at small-satellite forma-
tions that are limited by inter-satellite communication chan-
nel capacity. We assume a chief-deputy topology, similar to
the proposed NASA Helioswarm mission. Our novel state-
estimation framework is based on decoupling the chief state
estimation filter from the deputies and using two separate filter
architectures: one chief-specific that accounts for intermittent
access to inertial position measurements, and a second deputy-
specific one that only incorporates relative range measurements
between the spacecraft, having the chief state as an external
model input. We introduce a consider-covariance technique to
account for the chief’s state uncertainty in the deputy’s filter.
We demonstrate that the proposed distributed filter architecture
requires significantly less communication than prior consensus-
based methods in the literature while achieving comparable
accuracy.
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1. INTRODUCTION

Multi-agent systems have attracted great attention across
fields such as physics, robotics, and aerospace engineering
in recent years [1], [2]. The ability to allow multiple entities,
using only local processing, to collaborate toward achieving
the same global objective can result in numerous benefits,

978-1-6654-9032-0/23/$31.00 ©2023 IEEE

including more efficient scalability and greater robustness to
individual failures [3], [4].

A prominent area of research in multi-agent systems within
the aerospace community in recent years has been distributed
localization of spacecraft formations or swarms. As the
trend toward reducing the overall size, mass, and cost of
individual spacecraft continues [5], [6], combining larger
numbers of smaller spacecraft into formations to achieve
complex missions with lower overall costs has become in-
creasingly attractive [7], [8]. Often, such formations have
a hub spacecraft, referred to as the chief, with more robust
power, sensing, and communication capabilities, and multiple
smaller deputy spacecraft. This is the case in several upcom-
ing missions, such as the National Aeronautics and Space
Administration (NASA) Helioswarm mission [9] and other
international missions from European Space Agency (ESA)
and the Canadian Space Agency (CSA) [10], [11], [12].
For many of these missions, even though the computational
capabilities of small satellites may be limited, the limits on
inter-satellite communications are often more severe.

Only a few efforts applying distributed state-estimation tech-
niques to multi-spacecraft systems exist in the literature:
Wang [13] developed a consensus-based Extended Kalman
Filter (EKF) for a network of spacecraft with both relative
range-only and angle-only measurements that referenced the
problem of limited communication resources, and developed
a sub-optimal consensus-based EKF that relies on approxi-
mations of the covariance update rules, initially introduced
by Olfati-Saber [14]. Dumitriu [15] proposed a distributed
navigation system based on covariance intersection, while
Battistelli [16] suggested that these procedures can be re-
duced to the consensus-based procedures with a single con-
sensus step for Gaussian PDFs. However, the multistep con-
sensus algorithm [17] relies on continuous communications
between agents through multiple consensus rounds, where
large amounts of data, generally corresponding to informa-
tion pairs, are passed concurrently. This places a heavy
burden on the communication network, both in relation to the
amount of data sent between agents, and also in terms of the
number and frequency of communication events.

This paper tackles the distributed multi-agent localization
problem for small-spacecraft formations. Such formations
have limited computational and communication capabilities,
making previously developed consensus-based distributed
filters ill-suited. We propose a novel low-communication
approach to distributed state estimation, specific for small-
satellite formations with both restrictions on computational
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performance and communication capacity. Our solution is
based on decoupling the estimator according to the standard
Chief/Deputy formation setting into two separate filters with
sensor-selection utility functions based on the Crámer-Rao
Lower Bound (CRLB) [18], [19] to minimize communica-
tion. This new filter architecture for each agent accounts for
cross-correlations using a consider covariance strategy that
allows one to assess the impact of neglecting unknown or
possibly poorly modeled parameters on the accuracy of the
state estimate. Finally, we intend to evaluate the proposed
state-estimation framework on a future mission where the
code will be flight-tested. Our contributions include:

• A novel low-communication state estimation framework tar-
geted for small-satellite formations with limited computa-
tional power and communication capacity

• A set of event-triggered conditions that perform sensor selec-
tion based on the CRLB to minimize communications while
achieving a desired level of accuracy

• Comparisons of accuracy and communication efficiency of
the proposed low-communication framework against state-
of-the-art consensus-based distributed estimators for small-
satellite formations.

The paper proceeds as follows: We first introduce nota-
tion, detail the dynamics and measurement models used for
each spacecraft and introduce introductory concepts to event-
triggering in section 2. Next, the problem formulation regard-
ing low-communication distributed frameworks is discussed
in section 3, followed by the development of our proposed
consider covariance solution in section 4 and the extension
of the proposed algorithm with event triggering procedures in
sections 5 and 6. Finally, we present simulation experiments
in section 7 to validate our proposed algorithm, followed by
a summary of our conclusions and future work in section 8.

2. PRELIMINARIES

Non-linear State Estimation

The filtering problem in the presence of non-linearities in the
dynamics and measurement models is commonly solved with
the implementation of an Extended Kalman Filter [20].

Firstly, with no loss of generality, a system with no external
inputs will be considered for the purposes of a simpler algo-
rithm deduction, where the non-linear dynamics

xk+1 = fk(xk) + wk (1)

yk = hk(xk) + vk (2)

have two components of independent, zero-mean white Gaus-
sian noise and covariance matrix described by

E[vkv
T
k ] = Rk E[wke

T
k ] = Qk (3)

and x0 being the system initial condition that is considered to
be a Gaussian random vector, x0 = N (x0,Σ0).

Assuming Y k
1 = {y1, ..., yk} to be a set of system measure-

ments, the goal of the filter is to obtain a refined estimate of
the system’s state based on fusing these measurements with
the dynamic propagation of the state vector.

Contrary to the normal Kalman Filter (KF) that evaluates the

condition mean of the pdf of xk given Y k
1 , with non-linear

dynamics, these conditional probability density functions are
no longer Gaussian, which represents a heavy computational
burden to propagate the entire pdf. The EKF, as a solution
to this problem, provides an approximation of the optimal
estimate, where the non-linearities of the system’s dynamics
are approximated by a linearized version around the last state
estimate, as seen in algorithm 1.

Algorithm 1: Extended Kalman Filter

1. Prediction:
x̂k+1|k = f(xk, wk);

Pk+1|k = FkPkF
T
k +Qk;

2. Update:

Kk+1 = Pk+1|kH
T
k+1 · [Hk+1Pk+1|kH

T
k+1 +Rk+1]

−1;

Pk = (I −Kk+1Hk+1) · Pk+1|k;

x̂k+1 = x̂k+1|k +Kk+1 · [z − h(xk+1|k, vk+1)];

In algorithm 1, Pk+1|k and Pk corresponds to the a priori

and a posteriori covariance matrices [21], respectively, while
Fk = ∂f/∂x and Hk = ∂h/∂x correspond to the dynamics
and measurement model jacobians, respectively.

Distributed Consensus-Based Extended Kalman Filter

An initial distributed framework can be implemented using
a consensus filter [17][13]. The distributed consensus-based
framework is based on each spacecraft having its individual
model and recursively communicating with its neighbours to
reach a consensus average on a given state. This allows each
satellite to improve the overall accuracy of their filter with the
information from the agents in the formation.

In terms of the distributed architecture, The communication
will be determined based only on an undirected commu-
nication graph network described by G = (N,A), where
N= [1, .., N ] is the set of spacecraft in the formation and
A is the set of edges, such that if (i, j) is in A, there is a
communication link between the i-th and the j-th spacecraft.

At each iteration, the first procedure is the local consensus
state estimate. As explained previously, this corresponds to
the information matrix and vector of the state. Thus at instant
k, each spacecraft j ∈ N from the novel measurement set

y
(i)
k , determines

• The Novel Information Pair (δΩ
(i)
k|k−1, δq

(i)
k|k−1), where

δΩ
(i)
k|k−1 = (H

(i)
k )TV

(i)
k H

(i)
k and δq

(i)
k|k−1 = (H

(i)
k )TV

(i)
k y

(i)
k .

The term V
(i)
k is a positive definite matrix, where the com-

monly used choice corresponds to the estimate of the inverse
covariance of the process disturbance regarding the measure-
ment noise vk.

After each satellite determines its information pair from the
novel measurements, the next step corresponds to finding
the formation consensus state estimate by performing a con-
sensus algorithm iterated L times and performing at each
time a regional average of this pair from the communications
between neighboring satellites. The consensus rounds can be
seen in eq. (4), they include a set of consensus weights that
correspond to the importance given to the information of each
satellite.
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δΩ
(i)
k (l + 1) =

�

j∈Nℶ

πijδΩ
(j)
k (l) (4)

δq
(i)
k (l + 1) =

�

j∈Nℶ

πijδq
(j)
k (l) (5)

In the end, the state estimate is refined with the correction

of the information pair (information matrix Ω
(i)
k and vector

q
(i)
k ) that results from the consensus rounds. After this, the

next iteration state is estimated through the propagation of
the dynamic equations, followed by a new estimate of the
information vector and matrix for the next iteration, as seen
in algorithm 2.

Algorithm 2: Distributed Consensus-based Extended
Kalman Filter

Initialisation: a priori values

for g ∈ N do

1. Compute the local correction terms

δq
(g)
k , δΩ

(g)
k :

H
(g)
k = ∂hg

∂x
(x

(g)
k|k−1)

y
(g)
k = y

(g)
k − hg(xg

k|k−1) +H
(g)
k xg

k|k−1

δΩ
(g)
k = (H

(g)
k )TV

(g)
k H

(g)
k

δq
(g)
k = (H

(g)
k )TV

(g)
k y

(g)
k

2. Consensus Rounds:

δq
(i)
k (0)← δq

(i)
k

δΩ
(i)
k (0)← δΩ

(i)
k

for l = 0, ..., L do

δΩ
(i)
k (l + 1) =

!

j∈Nℶ
πijδΩ

(j)
k (l)

δq
(i)
k (l + 1) =

!

j∈Nℶ
πijδq

(j)
k (l)

3. Perform the Estimation for each Sat.:

for i ∈ N do

4. Consensus Correction:

q
(i)
k|k = q

(i)
k|k−1 + γ

(i)
k δq

(i)
k (L)

Ω
(i)
k|k = Ω

(i)
k|k−1 + γ

(i)
k δΩ

(i)
k (L)

x̂
(i)
k|k = (Ω

(i)
k|k)

−1q
(i)
k|k

5. Prediction Step:

x̂
(i)
k+1|k = f(x̂

(i)
k|k), and F

(i)
k = δf

δx
x̂
(i)
k|k

Ω
(i)
k+1|k =

W −WF
(i)
k (Ω

(i)
k|k + (F

(i)
k )TWF

(i)
k )(−1)(F

(i)
k )TW

q
(i)
k+1|k = Ω

(i)
k+1|kx̂

(i)
k+1|k

Consider Extended Kalman Filter

Consider covariance [22] analysis is a technique to assess
the impact of neglecting these unknown or possibly poorly
modeled parameters on the accuracy of the state estimate,
thus providing a realistic estimate of the achievable accuracy
of the system without the extra computational requirements
of considering these parameters in the state model.

By applying the consider covariance technique to the pre-
viously mentioned EKF along with a priori information on
specific consider parameters, c , it is possible to improve
the filter divergence characteristics due to a more accurate
representation of the errors in the dynamic and measurement
models.

In order to formulate the architecture of this procedure, the
first step corresponds to understanding the new dynamic and
measurement model functions that now have the consider
parameters as an input variable,

�

xk+1 = f(xk, c) +wk

yk = h(xk, c) + vk

(6)

as a result the new covariance can be modeled by

Pck = E[(x̃)(x̃)T ] (7)

where
x̃ = Fxx(x̂k − xk) + Fxc(c− c) (8)

which leads to

Pc = E[(Fxx(x̂k − xk)

+ Fxc(c− c))(Fxx(x̂k − xk) + Fxc(c− c))T]

= FxxPaF
T
xx + FxxPxcF

T
xc

+ FxcPxcF
T
xx + FxcPccF

′
xc.

(9)

Where Fxc corresponds to the jacobians of the state dynamics
model with respect to the consider parameters. There are
two new covariance matrices, Pxc and Pcc that correspond
to the correlations between state and consider parameters in
addition to their associated covariance estimate, respectively.
As a consequence, in this design tool, it is assumed that the
consider parameters are constant throughout one iteration and
that their a priori estimated and associated covariance matrix
is known.

Spacecraft Dynamics Model

Throughout this work, we consider a set of N spacecraft in
Low Earth Orbit (LEO) with positions ri, velocities vi, and
state vectors xi = [ri; vi] expressed in the Earth Centered
Inertial (ECI) reference frame [23].

The dynamics model used for simulation accounts for the
gravitational acceleration of the Earth up to and including the
J2 term, as well as atmospheric drag. The dynamic equations
can be expressed in continuous time as,

ṙi = vi, (10)

and
v̇i = gi + di, (11)

where gi includes gravitational terms up to J2 and di corre-
sponds to the drag.
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craft in a formation. Tolerance values δc and δd can be
selected to trade off the energy costs associated with mea-
surements and communication events against state estimation
accuracy.

In fig. 3, the different stages of the event-trigger filtering
for a formation flying are illustrated, where the indepen-
dent sensor activations are displayed, including the stage
where if no sensing is performed, the graph turns into com-
munication nodes, with no measurements being exchanged
between spacecraft, only non-sensing communications are
being performed. The event-triggered conditions for both
measurement sets is based exclusively on achieving adequate
uncertainty levels for each individual filter and can be trig-
gered independently. This improves upon existing consensus-
based distributed event-triggered architectures that attempt to
decrease the number of communication events by only trans-
mitting local information when this is considered significant
[30]. This constitutes a significant accuracy disadvantage
since it relies on the ability to differentiate between relevant
and irrelevant information, while our procedure is based on a
lower bound on estimator uncertainty.

The main advantages of our Consider Covariance (CC) ap-
proach include:

• The ability to decouple the full formation filter into
two smaller filter architectures corresponding to chief and
deputies, with independent measurement models

• The ability to perform measurement updates independently
on the chief and deputies using different event-triggering
schemes, as discussed in the next section

6. PROPOSED LOW-COMMUNICATION

DISTRIBUTED STATE-ESTIMATION

FRAMEWORK

Taking into account the initially developed distributed state-
estimation framework that guarantees deputy-chief correla-
tions via consider covariance with the proposed event-trigger
procedures, it is possible to formulate the filter algorithm that
is summarized in algorithms 3 and 4.

The event-trigger procedures dictate when the update stage of
the EKF occurs, deciding when to activate the sensors to im-
prove the filter estimate. Otherwise, the filter only propagates
the state by applying the spacecraft dynamic model equations,

i.e P j
k+1 = P j

k+1|k and x̂j
k+1 = x̂j

k+1|k. This corresponds to

a sensor selection process that defines the instants when to
perform each measurement set. The decoupled event-trigger
scheme allows to optimize differently each measurement set,
GPS and relative-range measurements, by not performing the
update stage when the conditions are not met. Furthermore,
these conditions are based on a mathematical estimation
lower bound, the Crámer-Rao Lower Bound (CRLB), there-
fore the conditions maintain their consistency through any
formation setting, without the need to manually adjust any
threshold. These include a set of tolerance values that are
adjusted based on the energy requirements of the mission and
are not affected by the formation architecture.

The proposed model leads to a drastic reduction in terms of
communications, as the chief and deputy have separate filter
architectures that only transmit either individual measure-
ments between deputies or the chief estimate and covariance
matrix for the consider covariance strategy. In addition, with

Algorithm 3: Proposed Low-Communication Distributed
State-Estimation Framework - Chief Filter Architecture

for i ∈ C do

1. Prediction Step:
x̂i
k+1|k = f(xi

k, w
i
k);

P i
k+1|k = F i

kP
i
k(F

i
k)

T +Qi
k;

2. Event-Trigger Condition:
if βc then

3. Update Step:

Ki
k+1 = P i

k+1|k(H
i
k+1)

T ·

[Hi
k+1P

i
k+1|k(H

i
k+1)

T +Ri
k+1]

−1;

P i
k+1 = (I −Ki

k+1H
i
k+1) · P

i
k+1|k;

x̂i
k+1 = x̂i

k+1|k +Ki
k+1 · [z

i − h(x̂i
k+1|k, v

i
k+1)];

4. Crámer-Rao Lower Bound:
J i
k+1 =

((F i
k)

−1)TJ i
k((F

i
k)

−1) + (Hi
k+1)

T (Ri
k+1)

−1Hi
k+1;

(P ∗
k+1)

(i) = (J i
k+1)

−1

the event-trigger conditions, the communications are reduced
even further, by selecting the best instants to activate the
sensors. The main advantages of this approach include:

• The ability to decouple the full formation filter into
two smaller filter architectures corresponding to chief and
deputies, with independent measurement models;

• The ability to perform measurement updates independently
on the chief and deputies using different event-triggering
schemes. This opens the possibility for sensor selection pro-
cedures that decide the best instants to activate the spacecraft
sensors;

• An event-triggered framework that is based on the sequential
CRLB and independent from the formation architecture or
problem setting. It includes tolerance levels that balance
between estimation accuracy and communication efficiency.

7. SIMULATION EXPERIMENTS

Mission Specifications

Our experiments target a four-satellite CubeSat formation
base on the recent NASA V-R3x mission [24]. The initial
positions are approximately the same for all satellites, with a
semi-major axis of 6903 km, inclination of 97◦, and eccen-
tricity of 0.0012, but with different relative linear and angular
velocities that make the spacecraft diverge along the orbit to
a maximum relative distance of approximately 10 km.

State-Estimation Parameters

In this implementation, the state uncertainty for the chief ,
wk1

, was modeled as a zero-mean Gaussian with a standard
deviation of 10 cm for position, rw1

, and 1 cm/s for the
velocity, vw1

, as a result the state process noise matrix can

be defined as Q1 = I6×6 · [13×1 · r
2
w1

; 13×1 · v
2
w1

](km/s)2.
In regards to the deputies, the state uncertainty for the filter
was modeled higher, as a zero-mean Gaussian with a standard
deviation of 1 m for the position, rwj

, and 1 cm/s for the ve-
locity, vwj

. In this case, the state process noise matrix can be

defined as Qj = I6×6 ·[13×1 ·r
2
wj

; 13×1 ·v
2
wj

](km/s)2, ∀ j =
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Algorithm 4: Proposed Low-Communication Distributed
State-Estimation Framework - Deputy Filter Architecture

for j ∈ D do

1. Prediction Step:

x̂j

k+1|k = f(xj
k, w

j
k);

P j

k+1|k = F j
kP

j
k (F

j
k )

T +Qj
k;

P j
x = F j

kP
j
xc;

2. Event-Trigger Condition:

if βd then

3. Relative-Range Measurements Exchange
w/ Deputies:
if l ∈ D then

zj ←(zl), where zl corresponds to the local
measurements of satellite l;

4. Consider Parameters - Communicate w/
Chiefs:
for i ∈ C do

Communicate w/ each Chief Filter i from
algorithm 3, to get consider variables
xChief (i) and PChief (i);

5. Update Step:

Kj
k+1 ← Output from eq. (22);

x̂j
k+1 =

x̂j

k+1|k +Kj
k+1 · [z − h(x̂j

k+1|k, v
j
k+1,xChief )];

P j
k+1 ← Output from eq. (24);

P j
xc = P j

xc −Kj
kH

j
kP

j
xc −Kj

k+1H
j
cPChief ;

6. Crámer-Rao Lower Bound:
Jj
k+1 =

((F j
k )

−1)TJj
k((F

j
k )

−1) + (Hj
k+1)

T (Rj
k+1)

−1Hj
k+1;

(P ∗
k+1)

(j) = (Jj
k+1)

−1

In the case of the distributed filters, both the consensus-based
and the decoupled filters had a better convergence speed
that can be explained by the effects of poorly observable
measurements not affecting directly the information for the
GPS measurements to the system. However, through time,
once the relative-range measurements start providing more
information to the system, the fully centralized unit converges
to better position error results than the distributed filters,
as it combines all the cross-correlations from the spacecraft
measurement models in the same system.

Communication Network Optimization

The initially proposed decoupled event-triggered consider
EKF has considerable benefits in optimizing the communi-
cation network of a small-satellite formation. As the event
triggered condition tackles the sensor selection schedule, by
defining the instants that each measurement set, either the
GPS or relative-range, are activated, the first part of the anal-
ysis includes the proportion, with respect to the non-event-
triggered proposed distributed framework, that the inclusion
of the event triggered conditions saves in sensor activations.

The fig. 5, illustrates, that by applying the proposed event-
triggered conditions it is possible to have on-par accuracy
levels while reducing the GPS measurements by ≈ 50% and
the range measurements by 43%. This corresponds exactly
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Figure 4. Monte-Carlo simulation for averaged absolute
position error through time of different filters for the

deputies with standard uncertainty conditions for the V-R3x
mission setting.
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Distributed Low-Communication Scheme

Event-Triggered Distributed Low-Communication Scheme

Figure 5. Bar chart illustrating the sensor activation
proportion when comparing the event-triggered consider

framework with the fully centralized filter as the baseline for
the V-R3x mission setting.

to an optimized system for the V-R3x mission requirements
that could only be reached by having a set of event triggered
conditions that can be optimized by modifying the confidence
level applied to each filter to have the same accuracy levels
while relying more on relative-range measurements and min-
imizing drastically the expensive GPS measurements.

One of the most important points to make from these results
is that the benefits of using the proposed event-triggered
conditions depend on the specifications for each mission,
in this case, an emphasis was made on maintaining the
accuracy levels and diminishing the use of expensive GPS
measurements, by relying more on the relative-range mea-
surements. This was achieved by modifying accordingly the
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Table 1. Simulation Results for the V-R3x Mission

Filter Abs. Error S/C 1 [m] Abs. Error S/C 2 [m] Abs. Error S/C 3 [m] Abs. Error S/C 4 [m]
Fully Centralized 0.157 11.4 12.2 18.5

Consensus-Based Distributed Scheme 0.168 13.4 15.1 18.1
Naive Distributed Scheme 0.168 13.1 14.6 19.3

Proposed Dist. Low-Comm. Framework 0.168 13.1 14.3 18.5
Event-Trigger Dist. Low-Comm. Framework 0.327 15.1 16.1 18.8
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Figure 6. Analysis of the communication burdens between
the distributed consensus-based scheme and the

event-triggered consider a version with the proposed
low-communications framework as baseline.

confidence levels that multiply with the filter lower-bound,
if we increased them for a specific filter, it would mean that
we have higher confidence in the sensing set, and desire to
minimize the usage of these measurements.

A decoupled architecture such as the proposed low-
communication framework relies, in the case of the deputies,
on exchanging the independent measurements between
spacecraft to perform the correction step of the EKF, as
each deputy measurement model includes all the independent
relative-range measurements of the formation. As a conse-
quence, minimizing the sensing schedule of the formation
will also result in minimizing the total number of commu-
nications in the formation.

As it can be seen in fig. 6, the consensus-based distributed
filter has 5 times more communications than our distributed
low-comm. scheme. This is due to the number of iterations
in the consensus rounds being L = 5 in the simulations
performed, as this is considered to be the common value
for the formation size [25]. The difference between the two
methods comes from the proposed framework not using the
consensus rounds, which rely on constant communication
and exchange of information between the different spacecraft
through L consensus steps, in order to reach a consensus av-
erage for the formation. The proposed scheme does not need
to continuously exchange measurements, as it maintains the
distributed scheme by each spacecraft having its independent
filter with a decoupled architecture from deputies and chief,
while exchanging directly the measurements between space-
craft with the same measurement model, and using the con-
sider covariance strategy to introduce the cross-correlations

from other satellites with a different measurement set.

In the case of the improvements when adding the event
triggered conditions to the consider filter, the implementa-
tion of sensor selection procedures improves the total num-
ber of communications by 43% from the proposed low-
communications network. This difference can be explained
by the saved relative sensing activation’s of ≈ 43% seen in
fig. 5, as the measurement model in the update stage of the
EKF requires the communication with remaining spacecraft
in the formation, in this case, three other satellites, where in
the case of the deputies the measurements are exchanged and
in the case of the chief, the covariance matrix and position
estimate of its filter are exchanged.

It is also important to remark that the communication effi-
ciency, i.e. the number of communications saved in com-
parison with the standard consider covariance filter could be
further enhanced depending on the mission specifications, by
increasing the confidence value regarding the relative-range
measurements. However, this is not the intention of the
mission, as we desire to maintain the same accuracy levels
and focus on minimizing the expensive GPS measurements,
which as a result does not allow us to minimize even more
the communications in the network, since the update step of
the chief filter does not require extra communications while
in the case of the deputies, that use relative-range, to perform
the update stage the communications between all the satellites
is required.

In regards to the final evaluation criteria for the communica-
tion network efficiency, the total memory transferred between
all the satellites in the formation for the entire simulation
can be seen in fig. 7. In this case, the results show that in
the proposed low-communication framework with the imple-
mentation of the event triggered conditions over ≈ 4 orbits,
the total memory transferred for the formation is 1000 times
bigger if the formation uses a localization procedure based on
consensus filtering than the proposed algorithm.

The memory calculations for a given time instant are de-
tailed for both the proposed event-triggering distributed low-
communication framework and the distributed consensus-
based framework in table 2. In this representation, it is pos-
sible to understand the memory requirements for each frame-
work by comparing the transferred variable in each filter for
a given time instant, and the final calculations correspond to
the total memory requirements for the formation flying. The
consensus-based procedures continuously exchange matrices

(δΩ(i); δq(i)), that correspond to the (unique) elements of
the (symmetric) novel information matrix and vector, where
the state includes all the spacecraft in the formation, in
this case for a four satellite formation, corresponds to 24
equations, over multiple consensus rounds. However, the
proposed architecture only exchanges between spacecraft a
small covariance matrix and a chief state with 6 dynamics
equations and individual values corresponding to the inde-
pendent measurements.
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Table 2. Memory Analysis per iteration for a four spacecraft formation with Chief/Deputy setting.

Filter Framework Transferred Variable Memory Requirements

Chief Filter Proposed Low-Communications xchief ;Pchief

!

D

i=1 8 · 6 + 8 · (6 · 6) = 1008 bytes

Chief Filter Consensus-Based δΩ(i); δq(i)
!L

l=1 8 · (24 · 24) + 8 · (24 · 1) = 19.2 Kbytes

Deputy Filter Proposed Low-Communications y
(i)
pq , where p ̸= j, ∀{p, q} ≠ i

!

D

i=1 8 · 3 = 72 bytes

Deputy Filter Consensus-Based δΩ(j); δq(j)
!L

l=1 8 · (24 · 24) + 8 · (24 · 1) = 19.2 Kbytes
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Figure 7. Data volume transmitted between spacecraft in the formation for the proposed framework (blue) and the distributed
consensus-based filter of Battistelli [17] (red).

8. CONCLUSIONS

This paper presented a novel distributed low-communications
framework that is able to provide the following benefits
compared to previous consensus-based filtering algorithms:

• An event-triggered procedure for sensor selection in which
the trigger conditions include user-defined confidence levels
specific for each sensor type that are proportional to the
CRLB and allow the designer to explicitly trade-off accuracy
and communication;

• Similar accuracy with a 43% reduction in communication
events in the V-R3x mission scenario;

• Reduction in data volume transferred between spacecraft by
a factor of 1000;

The proposed distributed low-communication framework
shows great potential as a viable and innovative solution for
on-board satellite formation localization systems that follow
the chief/deputy formation architecture. In future work, we
will pursue:

• The minimization of relative orbit ambiguities in measure-
ment models that have relative-range sensing[31]. This could
be reached through increasing the dynamic model for higher-
order terms or in the control segment through selective con-
trol inputs based on their information matrix;

• The development of an extension of the event-triggered con-
ditions that can take full advantage of the consider covariance
strategy as a tool to measure the impact of neglecting the ex-
ternal input uncertainties in the model, in this case, the chief
estimate uncertainty, when compared to the naive covariance
matrix;

• The study of the optimization of the tolerance levels that

dictate the proportion of sensor activations. The tolerance,
depends not only on the mission specifications, if there are
heavy communications constraints or if there are only com-
puting power limits, but they also depend on the information
levels the sensors can reach. For example, to minimize
the GPS communications to 50% you only need a small
tolerance, as these are very strong measurements, whereas
relative-range in a very ambiguous environment, this term
needs to be much higher to reach the same amount of sensor
activation gains;
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