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Structured databases on flash flood (FF) events have limited information and lack emerging data (e.g., visual
media). The web is rich with information that can bridge this gap. However, search engines return long lists of
webpages cluttered with commercial and irrelevant information. To address this challenge, we developed a FF
information retrieval (IR) system (FF-IR). The system uses machine learning (ML) models in novel ways to
automate and enhance this IR process. FF-IR consists of three steps: (1) creates event-specific search queries from
the publicly available Storm Events dataset and directs them to Google to collect candidate webpages; (2)

transforms the candidate webpages to relevance features; and (3) classifies each candidate webpage as relevant
or non-relevant using our ML models. FF-IR outperforms direct Google searches by over 100%, measured by the
F2-score. Natural hazard researchers and practitioners can use FF-IR to facilitate FF risk assessments and miti-

gation planning.

1. Introduction

Information on past flash flood (FF) events can enhance under-
standing of the causes and impacts of these events through the devel-
opment of predictive models, case studies, and lessons learned; and
consequently, facilitate better risk assessments and more effective pre-
paredness and mitigation strategies (Sarker et al., 2020; Terti et al.,
2019; Yu et al., 2018). While existing structured databases contain
valuable information on these events, they lack emerging data forms (e.
g., visual media) and details (e.g., post-flood illnesses and health risks,
disruptions to infrastructure services, human injury types). In this paper,
we suggest that the web can be leveraged to bridge this information gap
(Illingworth, 2001; Tanner et al., 2009). However, conventional search
engines (such as Google) are not optimized for domain-specific searches,
owing to the Internet’s growing size and the commercial aspects of the
search engines (Google Interference, 2019; Lewandowski, 2012). In
studying hurricane recovery information, Zheng et al. (2013) found that
new technologies are needed for extracting information from the web
and delivering that information without redundancy and irrelevance.

To help address this bottleneck, we developed a flash flood infor-
mation retrieval (FF-IR) system to automate and improve the process of
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retrieving webpages that contain relevant information about FF events.
IR is broadly defined as the process through which computer systems
lead users to information sources (webpages, documents) that enable
them to fulfill their information needs (Manning et al., 2012). In con-
ventional IR systems (e.g., web search engines), the query entered by the
user is the information need, and the ranked webpage list returned by
the IR is the information retrieved. A traditional IR system typically
operates in three steps (Manning et al., 2012): crawling, indexing, and
ranking. Crawling is the process of discovering webpages that exist on
the web. Indexing is the process of adding new webpages to the IR
system’s index (i.e., a database of webpages already crawled by the IR
system). Conventional IR systems (such as Google’s search engine)
typically maintain an index of trillions of publicly accessible webpages
and return a subset of webpages from the index upon receiving a query
(Lashkari et al., 2017). Ranking is the process of ranking the webpages in
the index as per their relevance to a user’s query. Different search en-
gines employ different ranking algorithms to identify webpages satis-
fying the information need (Google Search 2019). Previous IR studies
have used Machine Learning (ML) in different ways. For example,
Dehghani et al., (2017) and Pang et al., (2017) leveraged neural net-
works’ abilities to learn abstract representation from data to rank
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documents that are likely to be relevant to a user’s query, Guo et al.,
(2022) and Wu et al., (2022) employ pre-training of webpage document
object model tree structures and webpage hyperlinks, respectively to
enhance retrieval performances, and Lin (2021) use ML to learn scoring
functions to maximize the similarity scores between queries and rele-
vant documents. FF-IR, on the other hand, uses ML to enhance the
delineation between relevant and non-relevant search results.

Unlike conventional IR steps, FF-IR (described in this paper) in-
tegrates publicly available and regularly updated National Oceanic and
Atmospheric Administration Storm Events (SE) data and ML models to
retrieve webpages containing relevant information about FF events
specifically. Upon receiving past FF event(s) of interest as user input, FF-
IR constructs event-specific search queries using information from the
SE data. FF-IR then directs these targeted search queries to a conven-
tional search engine (e.g., Google) to collect candidate webpages and
transforms these webpages into numerical features. Then, it employs a
trained ML algorithm to classify the candidate webpages into two cat-
egories (relevant and non-relevant). After the classification, FF-IR out-
puts the webpages containing relevant information for the FF event of
interest (e.g., news stories and published reports, among others). The
term ‘relevant’ is used here to mean information specifically related to
the event(s) of interest, covering diverse topics such as physical dam-
ages, economic losses, human harm, rescue operations, hydrometeo-
rology, federal or state declarations, community resilience, public health
notices, and mitigation measures, among others. The novelty of the FF-
IR is threefold:

(1) The FF-IR fills a gap in the literature about harvesting informa-
tion from the internet (webpages and web-documents) about
flash flood events, and more broadly natural hazard events.
Previous studies have focused on retrieving information from
social media platforms to establish better communication chan-
nels between stakeholders during active disaster situations and to
gain insights from social media posts (Romero and Becker, 2019;
Ullah et al., 2021; Zheng et al., 2013). The FF-IR is not limited to
social media content. Instead, we harvest relevant information
about FF events from webpages and web-documents available in
newspaper websites, blogs, governmental websites, academic
websites, and other types of websites.
It uses the SE data to form targeted search queries. This approach
is advantageous because (a) it eliminates the crawling, indexing,
and ranking processes used in conventional IR systems, which are
time-consuming and memory-intensive (Dean, 2009), and (b) it
increases the accuracy of the search through better search
queries. The SE data is publicly available and is regularly updated
by NOAA (typically on monthly basis) to add new flash flood
events.

(3) It advances the application of ML in the natural hazard and
disaster domain by providing a newly constructed ML model to
retrieve webpages containing relevant information about FF
events. ML has been usually used in the past within the context of
natural hazards and disasters in primarily four ways: (1) predic-
tion of future events and their impacts (e.g., Hosseini et al., 2020;
Khanmohammadi et al., 2022), (2) damage assessment (e.g.,
Khajwal et al., 2022; Hao and Wang, 2021), (3) mapping the
susceptibilities of regions to natural hazards and disasters (e.g.,
Gudiyangada Nachappa et al., 2020 and Zhao et al., 2019), and
(4) extraction of real-time actionable information from social
media tweets (e.g., Barker and Macleod, 2019 and Donratanapat
et al., 2020).

2

—

We focus on FF events because they occur frequently, and therefore
are widely reported in the web. Furthermore, flash flooding is among the
most lethal and destructive natural disasters (Ashley and Ashley, 2008).
During 2000-2019, the National Weather Service (NWS) records show
that FFs have resulted in approximately 70%, 72%, and 72% of all
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flood-related fatalities, injuries, and damages in the USA, respectively
(NOAA Storm Events Database, 2021). Increasing urbanization and
climate change are likely to result in worse flash flooding in the future
(Milly et al., 2002). Despite the safety and economic risks associated
with FF, detailed information on past events is scarce in structured da-
tabases. Terti et al. (2019) called for data “with more details and at finer
resolutions to better capture local temporal and spatial complexities
associated with human losses from flash flooding.” These observations
highlight the need to harness the full potential of the web to improve
access to information that can inform FF mitigation and preparedness
planning (Ogie and Verstaevel, 2020). FF-IR responds to these calls.

As a result, researchers and practitioners can use FF-IR to conve-
niently retrieve detailed information regarding past FF events. The
retrieved information can then be used to conduct various analyses, such
as risk assessment (Sarker et al., 2020), causal modeling (Ramanan and
Natarajan, 2020), identifying vulnerable communities (Kontokosta and
Malik, 2018), and predicting future events (Anbarasan et al., 2020).

The rest of the paper is organized as follows. Section 2 provides the
literature review for this study. Section 3 discusses the public-domain
seed data (SE data). Section 4 discusses FF-IR’s architecture and
design. Section 5 presents the experimental results to select the best-
performing ML model for the IR system and compares conventional
search engines and FF-IR. Section 6 provides a summary and conclu-
sions. Finally, section 7 identifies ongoing and future works.

2. Literature review
2.1. Challenges in web information retrieval

Recognizing the limitations of conventional web search processes,
the IR community has used ML to improve the ranking process of
retrieved webpages. Traditional models like the Boolean model
[Hiemstra, 2009], Vector Space Model [Hiemstra, 2009], BM25 [Rob-
ertson and Zaragoza, 2009], and PageRank [Brin and Page, 1998] did
not use ML. However, with advances in ML modeling techniques,
increased data availability, and improved computing power, recent
studies have applied ML and deep learning techniques to build more
effective ranking systems. The influential study “Learning-to-Rank”
[Liu, 2010] sparked interest in the community to use ML. For instance,
Yilmaz et al., (2019) applied the then state-of-the-art language model, i.
e., Bidirectional Encoder Representation from Transformers (BERT), to
enhance the ranking results of retrieved short social media posts and
newspaper articles. Nogueira et al., (2019) developed a multi-stage
ranking model using BERT to ensure document quality in the ranking
process while providing comparable results. Esteva et al., (2021) also
used BERT in a multi-stage ranking system for a domain-specific search
engine built to retrieve relevant COVID-19-related documents.
Furthermore, Chekalina & Panchenko [2022] combined decision trees
and BERT to establish a new baseline for ranking performance in
comparative argument retrieval.

Despite the advances in the ranking process, the sheer amount of
information on the web presents a challenge for IR systems, as the
ranked lists of webpages often contain non-relevant results. This is
especially concerning for domain-specific IR systems, where the users
expect the retrieved webpages to be highly relevant to their search
query. To address this issue, IR researchers have explored combining
webpage ranking with classification as an additional step to filter out
non-relevant webpages [Hashemi, 2020]. For example, in the domain of
biomedicine, Liu et al., (2021) developed an advanced IR system that
included a bidirectional gated recurrent unit-attention model for clas-
sifying webpages in the ranked list returned by search engines and
further re-ranking the classified webpages. Similarly, in legal case
retrieval tasks, Hudzina et al., (2021) and Shao et al., (2020) used
ML-based binary classification models to improve the ranking perfor-
mance of retrieving legal cases. Wang et al., (2021) improved the ac-
curacy of a question-answering task (a subfield of IR) by re-ranking
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retrieved results using BERT. In this study, we take a more practical
approach to filtering out non-relevant webpages. We implement a
classification task over the candidate webpages (obtained from Google
search) and do not re-rank them.

2.2. Current web IR systems for disaster management

Web IR systems in the context of disaster management have focused
on retrieving information from social media. For instance, Barker and
Macleod, 2019 and Donratanapat et al., (2020) developed ML pipelines
to extract data from Twitter, enabling the identification of vulnerable
communities and infrastructure systems in flood-prone areas. Ullah
et al., (2021) and Loynes et al., (2022) focused on retrieving relevant
tweets to support emergency officials in rescue operations during di-
sasters. These IR systems primarily aim to retrieve real-time information
and establish effective communication channels among stakeholders in
active disaster situations. In contrast, FF-IR is centered around retrieving
webpages containing information relevant to past FF events of interest
more rapidly and accurately than currently possible using conventional
internet search methods.

3. SE data

This section describes NOAA’s public-domain SE data, which is used
in this study as seed data for FF-IR. The SE data contain information on
reported weather/storm events (floods, hurricanes, tornadoes, among
others) from January 1950 to the present. In total, the SE data contains
information on approximately 37,500 FF events from 2010 to 2019. The
SE data is available in the public domain and is maintained by NOAA’s
National Weather Service (NWS). It is updated monthly; however, the
published data lags 90-120 days behind the current date. NOAA curates
the information in the SE data from multiple sources, including NWS,
media, law enforcement, government agencies, emergency managers,
private businesses, and individuals (NOAA Storm Events Database,
2021). Information recorded in the SE data about these events is limited
to the following:

a) Event date and approximate location of the affected area,

b) Impact: number of human injuries, number of human fatalities, and
cost estimates of damage to crops and property,

c) Episode narrative: a brief text description of the event meteorology,
and

d) Event narrative: a brief text description of the event’s impact and the
surrounding conditions, such as road conditions.

In this study, we use the above information as seed for retrieving
additional types of information from the web, including:

a) Detailed impacts, such as flood-related illnesses and health risks,
details about infrastructure damage, disruptions to infrastructure
service, human injury types and locations

b) Meteorological conditions, such as rainfall intensity

c) Physical characteristics of affected sites, such as land cover, soil to-
pology, and built environment

d) Socioeconomic and demographic characteristics of affected com-
munities, population density, income, race, and ethnicity

e) Geographic information, such as affected census tracts and census
block

f) Visual information, such as videos and photos

The relevant webpages (e.g., news stories and published reports)
retrieved from FF-IR can be used to extract this information, which is
essential for understanding the flash flooding phenomena and miti-
gating its impacts.
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4. FF-IR architecture and design

FF-IR’s architecture consists of five major components, as shown in
Fig. 1. The first component, “Information Need”, takes the flash flood
event(s) of interest from the user as input. The “Targeted Search Query
Formation” component uses the SE seed data to form targeted search
queries about the event of interest. The “Candidate Webpage Collection™
component collects candidate webpages for each formed targeted search
query. The “Relevance Feature Generation” component generates rele-
vance features for each candidate webpage for the event of interest.
Finally, the “Classification” component uses the generated relevance
features as the input for a trained Binary Classification Machine
Learning (BCML) model to classify each candidate webpage as either
relevant or non-relevant. The BCML model was trained and tested on a
domain-specific dataset explicitly developed for this study. The
following subsections describe each component in detail.

4.1. Component 1: information need

A conventional IR system requires an information need as input
provided by the user (e.g. query in Google search). In this FF-IR, the
information need is a past flash flood event. The user specifies the
location of interest (county and state), then FF-IR identifies all flash
flood events that occurred in the entered county and state, as per the SE
data. The user can select any event(s) identified by FF-IR.

4.2. Components 2 & 3: Targeted Search Query Formation and Candidate
Webpage Collection

FF-IR forms targeted search queries by extracting informative sen-
tences from the episode and event narratives in the SE data. This system
identifies the informative sentences using two criteria: sentences con-
taining (1) keywords and (2) capitalized words (except the first word in
a sentence) indicating proper nouns. The keywords are used to identify
informative sentences specific to flash flooding (Table 1). These sen-
tences may contain information such as the rainfall intensity and loca-
tion of fatalities. The system also extracts sentences containing
capitalized words because such words may indicate the names of roads,
neighborhoods, landmarks, yielding specific information about the
subject flash flood event.

Fig. 2 contains an example showing how sentences are extracted
from SE narratives to form search queries for a FF event. The underlined
and bold words in Fig. 2 are the keywords used to extract informative
sentences from the event and episode narratives for the particular FF
event. The targeted queries were formed using a rolling window of one,
two, and three sentences. Therefore, the number of targeted queries is a
function of the number of sentences in the SE narratives. A search query
length of two sentences resulted in the highest number of relevant
webpages returned by Google. For a 2-sentence query, the number of
targeted queries formed is N-1, where N is the number of sentences in
the SE narratives. For example, nine targeted queries are formed for a
narrative that has 10 sentences. The extracted sentences are used
collectively with the event’s county, state, and date to form the targeted
search queries. FF-IR forms an additional generic query based on the
date, state, and county information because all SE data records do not
contain narrative descriptions. Thus, in the example presented in Fig. 2,
the last query in the “Constructed queries” box is the generic query. FF-
IR directs each formed query to the Google Search Engine (using the
Python-based library “googlesearch™).

For each formed query, FF-IR collects the top 10 ranked webpages.
Fetching the top 10 ranked webpages for each search query was deter-
mined using a trial and error process. It was found that for most FF
events, the relevant webpages were within the top ten results returned
by Google. For FF events that have little internet coverage, this choice
was intuitive. However, it may not be intuitive for events that have
extensive internet coverage. We found that these events tend to have
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User enters the location of
interest (State and County)

FF-IR fetches event dates for the User selects FF event of
location of interest in NOAA SE Data interest

FF-IR extracts informative sentences
: . from narratives in NOAA SE data to
Episode Narrative form targeted search queries

Event Narrative

FF-IR collects top 10 search
results (webpages) for each
targeted search query

Features Heatuses FF-IR generates scaled

: dynamic and static features
Static Features | for each candidate webpage

FF-IR feeds the features to the Binary RELEVANT

Classification Machine Learning
(BCML) model to classify each

candidate webpage as either NON-RELEVANT

Fig. 1. FF-IR architecture.

longer SE narratives as well. Therefore, for these events, FF-IR forms system collects 40 webpages in total for the four constructed queries.
more targeted queries with greater content heterogeneity among them. After removing duplicate webpages (if any), the unique list formed is the
This content heterogeneity helps concentrate the relevant webpages in candidate webpage list for the subject event. The selection of the top 10
the top 10 results from Google. Hence, for the example in Fig. 2, this results as a threshold was determined based on two considerations: (a)
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Table 1
Keywords used to extract informative sentences from narratives in the SE
dataset.

Issue of Interest Keywords

Injury injury, injuries, injured, injuring, hospital, rescue, trapped,
hypothermia, evacuated, accident, bruises
Fatality deadly, died, drowned, drown, drowning(s), fatality,

submerged, swept, dead, killed, perished, deceased, body,
recovered, lives, life, fatalities, accident, hypothermia, lost

Rainfall amount/ feet, inch
intensity

Damage damage

Flood type flash

relevant webpages were rarely found outside the top 10 results, and (b)
computational complexity needed to be maintained at a manageable
level.

4.3. Component 4: relevance feature generation

FF-IR transforms each candidate webpage into numerical values,
called relevance features. These features are similarity scores for the
candidate webpages, computed by comparing the webpage content to
the existing information regarding the event(s) of interest in the SE data.
We can broadly classify these features into two categories:

a) Dynamic features: these are similarity scores for a webpage relative
to the other candidate webpages for the same flash flood event.

b) Static features: these are similarity scores for a webpage independent
of the other candidate webpages for the same flash flood event.

Wilkho et al. (2023) contain pseudocodes for dynamic and static
relevance feature generation.

4.3.1. Dynamic features

Dynamic features are quantitative values representing the degree of
similarity between the webpage text and the narratives in the SE data. In
addition to the similarity between the entire webpage text and the SE
narratives, the dynamic features also include similarity scores between
the individual text passages within the candidate webpage and the SE

SE Episode Narrative:

A warm front and a dry line combined to produce another
round of severe weather across the region. Three tornadoes
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narratives. These similarity scores are computed using different natural
language processing (NLP) techniques, such as latent semantic analysis
(LSA) (Landauer et al., 1998) and word embeddings (word2vec (Miko-
lov et al., 2013) and doc2vec (Le and Mikolov, 2014)).

For retrieving the most relevant passage(s) from webpage text, FF-IR
considers a webpage to be a set of passages (Equation (1)).

wp ={p1,p2,P3, ... Pn} @

where wp = webpage,

pi = passage i in webpage wp. A passage is a contiguous section of the
text in the webpage.

And for each candidate webpage, the system constructs summaries
by extracting the passages most similar to the SE narratives (i.e., those
having the highest similarity score with the SE narrative under consid-
eration).

summarized wp ={p,,ps} : sim(p,, N) & sim(py,N) > sim(p;, N)Vi=11ton,i

#a,b
(2)

where summarized wp = webpage summary,

Do Pb = passages having the highest cosine similarity score among all
the passages p;, (i = 1 to n) of a webpage wp when computed against the
SE narratives,

N = SE narrative under consideration,

n = Total number of passages in the webpage under consideration,

sim (a, b) = Cosine similarity as per Fig. 3.

In order to compute the dynamic features, this system transforms the
webpage texts/summaries/passages and the SE narratives into numeri-
cal vectors (vectors a and b) and calculates the cosine similarity (sim(a,
b)) (Fig. 3). The cosine similarity ranges from —1 to +1, where —1 de-
notes no similarity and +1 denotes the highest similarity. The system
considers the maximum among the two similarity scores for events
having both narratives in the SE data (i.e., the event and episode
narratives).

Table 2 contains the complete list of dynamic features used in this
study. Each score serves a different purpose in this methodology, as
follows:

occurred on April 29th producing relatively minor damage
equivalent to EF-0 damage. The big story during this
period was the 6 flash flood fatalities in the Palestine area
in Anderson County on the night of the 29th.

SE Event Narrative:

Extracted sentences:

* Three tornadoes occurred on April 29th producing
relatively minor damage equivalent to EF-0 damage.

* The big story during this period was the 6 flash flood
fatalities in the Palestine area in Anderson County on
the night of the 29th.

A 30-year-old male died in flood waters on Anderson

County Road 370.

oA 30-year-old male died in flood waters on Anderson

Extracted sentences:

County Road 370.

Constructed Queries:

County Texas April 2016.

* Flash Flood or Heavy Rain Anderson County Texas April 2016.

* Three tornadoes occurred on April 29th producing relatively minor damage equivalent to EF-0 damage. The big story during this period was
the 6 flash flood fatalities in the Palestine area in Anderson County on the night of the 29th. Anderson County Texas April 2016.
* The big story during this period was the 6 flash flood fatalities in the Palestine area in Anderson County on the night of the 29th. Anderson

* A 30-year-old male died in flood waters on Anderson County Road 370. Anderson County Texas April 2016.

Fig. 2. Example showing the formation of a targeted query for a flash flood event from the SE data.
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sim (a,b) = cos(0) =d.b/ (14l|. ||B||)

No Similarity

-1.0

Cosine Similarity Score

High Similarity

1.0

Fig. 3. Cosine similarity score for two vectors.

Table 2
List of dynamic features computed to represent a webpage.

Feature Similarity computed between Text-to-vector transformation
Name method
Lsa-sim Entire webpage and SE Latent semantic analysis
narratives
Passage-1- Webpage summary and SE For webpage passages - word2vec
y-X narratives network
For webpage summaries — latent
semantic analysis
Passage-2- Webpage summary and SE For webpage passages - doc2vec
y-X narratives network
For webpage summaries — Latent
semantic analysis
Passage-3- Webpage individual passages Latent semantic analysis
y and SE narratives

Note: y = number of words in a passage (250, 350 or 450), and x = webpage
length based on number of passages (1, 25, 35, 45). x = 1 indicates summary
length is one passage. And, x = 25, 35, and 45 indicate summary length is 25%,
35%, and 45% of the total number of passages in the webpage.

a) The Lsa-simfeature is used as the similarity measure between the
entire webpage text and SE narratives.

b) The Passage-1-y-x and Passage-2-y-x features are used as the simi-
larity measures between the webpage summary and SE narratives.
However, Passage-1-y-x employs the word2vec network, whereas
Passage-2-y-x employs the doc2vec network to construct the sum-
maries. We trained both word2vec and doc2vec models on the
webpage texts. The final Passage-1-y-x and Passage-2-y-xscores are
the similarity measures between the constructed summaries and the
SE narratives.

The Passage-3-y feature is used as the similarity measure between the
webpage’s individual passages and the SE narratives, where Passage-
3-yis the maximum score across all passages in the webpage.

C

=

The y and x in Passage-1-y-x, Passage-2-y-x, and Passage-3-y repre-
sents the number of words used to form a passage and the webpage
summary length, respectively. We could not arrive at optimal values for
summary length and passage length that apply to all kinds of webpages.
This is because some webpages contain very long descriptions of mul-
tiple events, whereas some might contain small descriptions (such as an
emergency declaration statement). The webpages in the first category
will require a small passage to be relevant to the FF event of interest. In
contrast, for webpages in the second category, we would need a large
passage to capture its relevance to the FF event. Therefore, the summary
length parameter in FF-IR is varied as one passage, 25%, 35%, and 45%
of the total number of passages in the webpage under evaluation.
Similarly, the passage length is varied as 250, 350, and 450 words. FF-IR
uses these values every time it evaluates a webpage.

After generating the dynamic features, the system converts them to a

0-1 scale, as follows:

dynamic,fealure,‘, = (dynamic,feature,» — dynamic,feature,,,m) 3)

/ (dynamic,featurem — dynamic,featuremm)

where.

dynamic_featuremq, is the maximum value of the dynamic feature
among all ‘num’ candidate webpages,

dynamic_featuren;, is the minimum value of the dynamic feature
among all ‘num’ candidate webpages,

dynamic_feature; is the dynamic feature value for ith webpage, where i
ranges from 1 to num,

dynamic_feature; is the scaled dynamic feature value for ith webpage,
where i ranges from 1 to num,

num = number of candidate webpages for a flash flood event of
interest.

4.3.2. Static features

Static features are qualitative and quantitative values, indicating the
similarity between the webpage and the event information in the SE
data, as follows:

a) Check-date, Check-county, and Check-loc are qualitative static features
(binary-0/1). Check-date is used as a similarity measure between the
webpage publishing date and the event date. Check-county and
Check-loc are used as similarity measures between the location in-
formation in the webpage and event location.

b) BERT-title, USE-title, Narrative-keyword-count, and Narrative-word-avg
are the quantitative static features (numerical values on a continuous
scale). BERT-title and USE-title are used as similarity measures be-
tween webpage titles and individual SE narrative sentences. We
considered the maximum similarity score as the ultimate value.
Narrative-keyword-count and Narrative-word-avg are used as simi-
larity measures between the number of common keywords (capi-
talized words) and words in SE narratives, webpage texts, and titles,
respectively.

Table 3 contains a complete list of the static features used in this
study.

4.4. Component 5: classification - BCML model

4.4.1. Training-testing dataset

For training and testing (TT) the BCML model, we developed a TT
dataset by forming customized search queries, directing them to Google
search, collecting the top 10 ranked webpages (i.e., candidate web-
pages), and generating the relevance features (as described in the pre-
vious sub-section) for the candidate webpages. The TT dataset was
generated for 500 flash flood events that occurred in the US between
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Table 3
List of static features computed for each candidate webpage.

Feature Name Similarity computed Possible Values

between

Check-date Webpage publishing

date and event date

1 if the webpage was published in the
same month or the next month and
same year as the event date,

0 otherwise

1 if the webpage text contains the
county’s name where the event
occurred, 0 otherwise

Check-county Webpage text and

event county

Check-loc Webpage text and 1 if the webpage text contains the
event county & state county and state names where the
event occurred, 0 otherwise
BERT-title Webpage title and SE Cosine similarity between webpage
narrative sentences title vector and narrative sentence
vectors. Text-to-vector transformed by
BERT Sentence Transformer (Reimers
and Gurevych, 2020).
USE-title Webpage title and SE Cosine similarity between webpage
narrative sentences title vector and narrative sentence
vectors. Text-to-vector transformed by
Universal Sentence Encoder (Cer et al.,
2018).
Narrative- Webpage text & title Log of the keywords count from SE
keyword- and SE narrative narratives in the webpage text and

count keywords title.
Narrative- Webpage text & title The ratio of the number of narrative
word-avg and SE narrative words ~ words in the webpage text and title to
the total number of words in the
webpage text and title.

2010 and 2019. This sample of events was chosen to (1) optimize the
time and effort in manually annotating candidate webpages, and (2)
keep the sample size sufficiently large to avoid over-fitting (Roh et al.,
2018). The 500 events were selected using stratified random sampling to
ensure that: (1) the TT dataset is not dominated by events that did not
result in human harm, (2) the TT dataset included FF events from all
states in the US, and (3) the TT dataset contains events across all years in
the study period. The final TT dataset contained 325 events that did not
result in human harm and 175 that did.

The TT dataset contained 14,420 webpages (for 500 events). The
elements of this dataset are:

a) Rows: each row represents a webpage; the dataset contained 14,420
rows (i.e., 14,420 webpages collected for 500 events).

b) Columns: each column (except the first two) is a relevance feature
representing a webpage; the BCML model classifies a webpage based
on these features. In total, the TT dataset contained 35 relevance
features.

¢) Label: manual annotation representing each webpage as relevant (1)
or non-relevant (0). Domain experts visited all the 14,420 webpages,
read them and then annotated them as either containing relevant
information for the event(s) of interest (1) or not (0).

Table 4 shows an abridged example of the developed TT dataset.
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Wilkho et al. (2022) contains the full TT dataset.

4.4.2. Imbalanced dataset and evaluation metric

The TT dataset contained 14,420 webpages, composed of 1564
relevant and 12,856 non-relevant webpages (i.e., a relevant to non-
relevant ratio of approximately 1:8). This class imbalance ratio is
typical in IR applications (Nallapati, 2004). However, this class imbal-
ance necessitates applying data-sampling (DS) techniques, such as the
synthetic minority oversampling technique (SMOTE) (Chawla et al.,
2002), edited nearest neighbors (ENN) (Wilson, 1972), among others, to
train the ML models.

Because the TT dataset is imbalanced and recall (i.e., the proportion
of relevant webpages classified as relevant) is more critical for the
current study than precision (i.e., the proportion of relevant webpages in
those classified as relevant), we use the F2-score as the guiding metric
for evaluating the performance of the ML models (Fig. 4). Previous
studies suggest that the F2 score is most suitable for cases such as the
present (Gu et al., 2009). To perform a comprehensive evaluation, we
also assess the final model performance based on accuracy, precision,
and recall scores. All metrics (accuracy, precision, recall, and F2 score)
range from O to 1, where a higher value indicates a better performance.

4.4.3. BCML model selection

We analyzed the performance of multiple tree-based ML techniques
(Decision Tree (Breiman 2017), AdaBoost (Freund and Schapire, 1996),
Gradient Boost (Friedman, 2001) and Random Forest (Breiman 2017))
and DS techniques (SMOTE (Chawla et al., 2002), Borderline SMOTE
(Han et al., 2005), SVM-SMOTE (Nguyen et al., 2011), ADASYN (He
et al., 2008), TomekLinks (Tomek, 1976), ENN (Wilson, 1972), CNN
(Hart, 1968), SMOTETomek (Batista et al., 2004), SMOTEENN (Batista
et al., 2003)) combinations in this study. We considered only tree-based
techniques for this study because they are: (1) easier to interpret and
visualize than other ML models, (2) do not require scaling or normali-
zation of features, (3) can handle mixed feature types (qualitative and
quantitative, like in this study), and (4) have lower computational
complexity (Gatnar, 2002). These traits are not requirements; however,
they are advantageous for the usability and scalability of FF-IR.

To determine the feature subset most informative of the labels for
each ML technique, we performed feature selection using recursive
feature elimination with cross-validation (RFECV) (Guyon et al., 2013).

The steps followed in choosing the best performing ML model and DS
technique combination are outlined below (and illustrated in Fig. 5):

a) Dataset Division: We experimented with three split ratios (i.e.,
70:30, 75:25, and 80:20) to divide the TT dataset into training and
testing sets by a random stratified split while maintaining the same
class imbalance as in the TT dataset.

b) Hyperparameter Tuning: For each split ratio, we used the ran-
domized search algorithm for hyperparameter tuning of different ML
and DS model combinations. To avoid over-fitting, we selected the
hyperparameter-tuned model combinations which gave the
maximum average 10-fold cross-validation F2-scores.

Table 4

Abridged example of the TT dataset.
Webpage Label LSA-sim Passage-1-500-01 Passage-2-300-45 Passage-3-25 Check-Date Check-loc Check-county BERT-title
1 1 0.804 0.7680 0.7319 0.5383 0 0 0 0.7372
2 0 0.738 0.3648 0.7057 0.0520 0 0 0 0.4813
3 0 0.974 0.8339 0.9788 0.8224 0 0 0 0.8494
4 1 0.804 0.7680 0.7319 0.5383 0 0 0 0.7477
5 0 0.962 0.6965 0.9508 0.7621 0 0 0 0.6088
6 0 0.963 0.5751 0.9668 0.7810 0 0 0 0.8291
7 0 0.963 0.7000 0.9720 0.7288 0 0 0 0.7677
8 0 0.943 0.8056 0.9577 0.7289 0 0 0 0.7140
9 0 0.914 0.7585 0.9277 0.6620 0 0 0 0.7744
10 1 0.957 0.8412 0.9547 0.8733 1 0 0 0.8641
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Accuracy = (TP + TN)/(TP + FP + FN + TN)
Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

F2 = ((1 + 22) = Precision = Recall)/(22 * Precision + Recall)

Fig. 4. BCML model evaluation metrics.
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Fig. 5. BCML model selection procedure (We follow the same procedure for the other two splits).

¢) Final Testing: Then, for each split ratio, we trained the selected
model combinations initialized their tuned hyperparameter config-
urations over the entire training set and observed the F2-scores for
the testing set. Finally, we selected the model with the best F2-score
for the testing set.

While performing the cross-validation, we performed DS only on the
training folds; and for the last step, we performed DS only on the training
set. To ensure accurate results, we did not perform DS on the testing set/
folds. We also maintained the same class imbalance ratio across the
different stages.

5. Results
5.1. BCML model selection

We use a baseline model to put the performance of the ML models in

perspective. This baseline model represents the unfiltered top 10 Google
search results. For both the ML models and the baseline model, each
performance metric (in Tables 5 and 6) is computed considering mul-
tiple search queries and multiple FF locations in the validation and
testing sets.

Table 5 compares the average 10-fold cross-validation F2-scores for
the different hyperparameter-tuned model combinations considered in
this study. For brevity, we show only the average 10-fold cross-
validation F2-scores for the 80:20 split. We follow the same procedure
for the other two split ratios.

As shown in Table 5, the Gradient Boost + SVMSMOTE, Random
Forest + SVMSMOTE, Random Forest + ENN, and Random Forest +
SMOTETomek combinations outperform other combinations based on
the average 10-fold cross-validation F2-scores. Therefore, we selected
these combinations for the final testing (Step b in Fig. 5). Table 5 also
highlights that the DS techniques help improve the performance of all
ML models considered in this study. The average 10-fold cross-
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Table 5
Average 10-fold cross-validation F2-scores (0-1 range) for different hyperparameter-tuned model combinations for the 80:20 split ratio.
DS Technique Nm Minority Class Oversampling (Min-O) Majority Class Undersampling (Maj-U) Min-O + Maj-U
SM B-SM SVM-SM A-SYN TL ENN CNN NM SM+T SM + ENN
Baseline 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
RF 0.69 0.73 0.73 0.74 0.73 0.70 0.74 0.72 0.70 0.74 0.73
GB 0.68 0.72 0.71 0.74 0.71 0.73 0.71 0.71 0.67 0.72 0.71
DT 0.61 0.65 0.63 0.67 0.64 0.63 0.72 0.56 0.48 0.65 0.64
AB 0.60 0.70 0.69 0.71 0.68 0.62 0.72 0.63 0.56 0.70 0.68

Note: Abbreviations - (Rows) RF: Random Forest; GB: Gradient Boost; DT: Decision Tree; AB: Adaboost; (Columns) Nm: normal (without any data sampling); SM:
Synthetic Minority Oversampling Technique (SMOTE); B-SM: Borderline SMOTE; SVM-SM: Support Vector Machine SMOTE; A-SYN: Adaptive Synthetic Sampling; TL:
Tomek Links; ENN: Edited Nearest Neighbors; CNN: Condensed Nearest Neighbors; SM + T: SMOTE + Tomek Links; SM + ENN: Smote + ENN.

Table 6
BCML model selection.

Split Model Combination Accuracy  Precision  Recall  F2-

Ratio Score

- Baseline 0.108 0.108 1.000 0.377

80:20 Random Forest + 0.928 0.627 0.824 0.775
SVMSMOTE

70:30 Random Forest + 0.921 0.600 0.833 0.773
SVMSMOTE

70:30 Random Forest + 0.928 0.628 0.819 0.772
SMOTEENN

75:25 Random Forest + 0.928 0.629 0.817 0.770
SMOTE

75:25 Random Forest + 0.931 0.642 0.811 0.770
SMOTEENN

Note: For the definition of these metrics, refer to Fig. 4. All metrics are expressed
in a 0-1 range.

validation F2-scores for a particular ML model with any DS technique is
higher than the corresponding F2-score for the same model without DS
(column ‘Nm’ in Table 5).

Table 6 contains the final results of the BCML model selection. We
compared the performances of model combinations selected from the
average 10-fold cross-validation F2-scores comparisons (Table 5) for all
split ratios when trained over the entire training set and tested over the
testing set. For brevity, we show only the top 5 performing model
combinations.

As evident from Table 6, we selected the Random Forest -+
SVMSMOTE combination when trained over an 80:20 training:testing
split as the BCML model since it performed the best per the F2-score
(0.775) over the testing set. The ’Baseline’ achieved an F2-score of

Table 7
FF-IR performance statistics.

0.377; hence, the proposed method improved the performance by
105.57%. While FF-IR outperforms conventional search engines, the F2-
score may not be viewed as exceptionally high. We attribute this to the
fact that not all events have the same amount of information available in
the web. This gives rise to circumstances where webpages returned for
customized queries by Google search (for events with less information
available) may not be relevant to the event of interest but be relevant to
some other event. Such situations give rise to exceptions where FF-IR
may need to classify a webpage as relevant for one flash flood event
but non-relevant for all other events. Improved feature engineering that
better captures the semantic relationship between events and their
relevant webpages can help overcome this limitation.

5.2. Comparing Google Search and FF-IR results

Table 7 describes FF-IR’s performance for ten FF events chosen
randomly from events outside of the TT dataset. Out of the ten events,
six caused no human harm (first six rows in Table 7), and the remaining
four did (fatality or injury). We can draw two key observations from
Table 7. First, FF-IR correctly identified most relevant webpages. This is
evident by comparing columns 5 and 6 of Table 7 (No. of relevant
webpages vs. No. of relevant webpages returned by FF-IR). Second, FF-
IR filtered out the vast majority of non-relevant webpages returned by
Google. This is evident in column 7 of Table 7 (No. of non-relevant
webpages returned by FF-IR). The exception was an event that
occurred on August 14, 2018 in Cochise County, Arizona. In this case,
FF-IR retrieved four non-relevant webpages because they contain in-
formation about another FF event that occurred in the same county in
the same month and year. This incorrect prediction is likely caused by
the static feature “check_date”. Overall, these results demonstrate FF-
IR’s ability to filter out non-relevant webpages and its utility in

County State  Date No. of google returned No. of relevant No. of relevant webpages returned by ~ No. of non-relevant webpages returned
webpages webpages FF-IR by FF-IR
Angelina AZ 10.08.2018 31 3 3 0
Christian MO 07/05/ 21 3 1 0
2015
Venango PA 07/19/ 16 1 1 0
2019
Rowan KY 08/31/ 13 0 0 0
2013
Sunflower ~ MS 03/31/ 46 7 5 0
2016
Tioga NY 07/25/ 30 1 0 0
2018
Cochise AZ 08/14/ 37 7 7 4
2018
Faulkner AR 05/01/ 80 2 1 1
2011
Grant NM 09/30/ 53 2 2 0
2017
Riverside CA 02/14/ 61 21 15 0

2019
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enhancing internet search.

FF-IR is designed to retrieve webpages containing relevant infor-
mation about past flash flood (FF) events. Compared to conventional
search engines, FF-IR system offers several advantages. First, it auto-
mates the retrieval process, which is crucial considering the large
number of FF events reported in the USA every year. A manual search of
webpages for all these events using conventional search engines is
impractical, making the FF-IR’s automated approach more efficient.
Second, the system employs targeted search queries generated from a
trusted database, reducing the user’s effort in forming precise queries.
Third, the IR system enhances the segregation of search results by
verifying the relevance of webpages returned by Google search. This
improved segregation is supported by FF-IR’s higher F2-score and ac-
curacy. Fourth, FF-IR does not require constant index updates as it uses
Google’s maintained index. Consequently, it reduces the effort needed to
provide up-to-date search results. Collectively, these features demon-
strate the effectiveness of the proposed IR system compared to tradi-
tional internet search engines in the flash flooding domain.

6. Summary and conclusions

This paper describes the development, verification, and utility of a
domain-specific IR system for flash flood events in the United States. FF-
IR incorporates a newly constructed ML model and automated search
queries to enhance the retrieval of information about past flash flood
events from webpages and web-documents. The emergence of artificial
intelligence (AI)-based systems for internet search (like ChatGPT)
highlights the importance of developing better internet search capabil-
ities. FF-IR is a step forward toward Al-based search engines for the
natural hazards and disasters domain. It uses a publicly available dataset
(the SE data) to form targeted search queries in an automated manner,
eliminating the trial and error searches used in conventional search
engines. The targeted search queries are directed to Google to collect
candidate webpages, avoiding further crawling, indexing, and ranking.
A new BCML model was trained to classify each candidate webpage as
either relevant or non-relevant. The BCML model was trained and tested
on a domain-specific dataset explicitly developed for this study. FF-IR
outperforms direct Google searches about FF events by over 100%,
measured by the F2-score.

The main limitation of FF-IR lies in its reliance on the SE data to
create customized search queries. A possible way to overcome this
limitation could be to incorporate additional public data from different
sources and levels (e.g., national, state, county, town/city) into this IR
system to make it less dependent on the SE data. Another limitation is
the use of a single search engine (Google) to fetch candidate webpages.
Collecting candidate webpages from additional search engines like
Microsoft Bing and DuckDuckGo, among others, can help address this
limitation. Despite these limitations, FF-IR’s multiple advantages make
it a breakthrough in retrieving relevant information from the internet
about past disaster events.

7. Ongoing and future work

Our ongoing work includes the dissemination of FF-IR to the public
through a user-friendly web application. The users of the web applica-
tion would be researchers and practitioners in the natural hazards
community, as well as members of the general public who are interested
in finding information about past FF events in the US. Future works
could focus on addressing the limitations of FF-IR (identified earlier) and
improve its performance. First, future studies could examine the
computation time required by FF-IR and compare it to that required by
existing conventional search engines. Such comparisons should take into
consideration the differences in hardware systems that host conven-
tional search engines and those that host FF-IR. Second, future work
could explore the possibility of incorporating additional publicly avail-
able data, beyond the SE data, and sourcing candidate webpages from
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additional conventional search engines (such as Bing and DuckDuckGo).
Third, FF-IR could be extended to include other natural hazards and
disasters, such as earthquakes, heatwaves, and wildfires. Fourth, the
current user-interface (under development) allows for search based on
location (i.e., county and state) and keywords in the SE narratives. This
search capability can be enhanced in future works to retrieve informa-
tion on events with certain characteristics, without specifying locations.
Finally, future studies could investigate new deep learning, NLP, and IR
techniques as they emerge in the future to enhance FF-IR’s performance
continuously. However, these improvements will warrant the develop-
ment of a new and more comprehensive TT dataset.
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