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ABSTRACT
Underwater optical wireless communication techniques are promis-
ing due to a broad bandwidth with a long communication range
compared with existing expensive acoustic and RF-based underwa-
ter communication techniques. For underwater navigation assis-
tance during dive and rescue, it is more practical to adopt passive
optical tags for objects/human identification and location-based ser-
vices. However, existing optical tags (bar/QR codes) employ one/two
dimensional designs, which lack significant element/symbol dis-
tance for robust decoding and full-directional localization capa-
bilities for underwater navigation tasks. This paper investigates
opportunities to increase the element distance in passive low-order
optical tags by exploiting 3D spatial diversity. Specifically, we de-
sign U-Star, a system that consists of Underwater Optical Identifi-
cation (UOID) tags and commercial camera-based tag readers for
underwater navigation. Our UOID tags embed rich location and
guidance information. Additionally, because our UOID tags employ
a three-dimensional design, they can also determine the relative
location of a user in real-time based on the perspective principles.
We design AI based mobile algorithms for underwater denoising,
relative positioning, and robust data parsing for tag readers. Finally,
we evaluate U-Star on real UOID tag prototypes under different
underwater scenarios. Results show that our 3-order UOID tag can
embed 21 bits with a BER of 0.003 at 1m and less than 0.05 at up to
3m, which is sufficient for underwater navigation guidance with
backup database.

CCS CONCEPTS
• Networks → Mobile networks; Wireless personal area net-
works; • Human-centered computing→ Mobile devices; Ubiq-
uitous and mobile computing.

KEYWORDS
Underwater Optical Wireless Communication, Passive 3D Optical
Tag, Underwater Navigation System.

ACM Reference Format:
Xiao Zhang, Hanqing Guo, James Mariani, Li Xiao . 2022. U-Star: An Under-
water Navigation System based on Passive 3D Optical Identification Tags. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9181-8/22/10. . . $15.00
https://doi.org/10.1145/3495243.3517019

The 28th Annual International Conference OnMobile Computing And Network-
ing (ACM MobiCom ’22), October 17–21, 2022, Sydney, NSW, Australia. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3495243.3517019

1 INTRODUCTION
The ocean, other natural and man-made water areas (e.g. lakes,
rivers, ponds, pools, reservoirs, etc) account for more than 71%
of the surface area of Earth. Although sea exploration has been
undertaken throughout history, much of the underwater world re-
mains a mystery that still needs to be explored by humans[28, 29].
Nowadays, there has been a growing research interest in numer-
ous water-based applications such as climate change monitoring,
oceanic animals study, oil rigs exploration, lost treasure discovery,
unmanned operations, scuba diving, search/rescue, and underwater
navigation assistance[39]. Additionally, it is reported by Market
Reports that the Global Scuba Diving Equipment market was val-
ued at USD 1127 million in 2020 and is projected to reach USD
1503 million by 2027[26]. Most of these applications require re-
liable, flexible, and fast underwater communication to provide a
safe and comfortable experience. However, despite the rapid de-
velopment and progress of terrestrial and space communication,
high-speed underwater wireless communication (UWC) is still not
fully explored[6, 17, 24, 28].

There are significant differences between underwater and ter-
restrial scenarios, such as a harsh environment and lack of infras-
tructure deployment. When signals propagate in water, wireless
communication faces challenges: water turbulence, limited power
supply, unusable GPS, marine animal block issues, etc. Today’s most
popular UWC techniques adopt acoustic, radio frequency (RF), and
optical waves as wireless mediums. However, acoustic signals are
generated by high-power sonar (sound navigation and ranging)
equipment with a long communication range, but with the cost
of high communication latency. As for RF-based UWC techniques,
they have low latency but still face high energy consumption issues
with a minimal communication range due to severe interference of
seawater with the electromagnetic waves[14, 16, 18, 28, 39, 43].

Underwater OpticalWireless Communication (UOWC) has shown
significant potential due to its longer propagation range, lower
propagation delay, and lower power consumption compared with
acoustic and RF-based techniques[29, 36, 38, 39, 44, 47]. Moreover,
UOWC systems based on passive optical tags, which utilize natural
light sources, are more practical because they do not rely on finite
battery power in underwater scenarios where it is not feasible to
perform frequent battery replacement.

Similar to terrestrial navigation procedures, underwater navi-
gation systems need to be able to answer these two fundamental
questions: (1)Where am I now? and (2) How do I get to where I am
going? For GPS-based navigation, systems first determine the user’s
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Figure 1: U-Star based underwater navigation illustration.

current location by GPS localization and then provide terrestrial

navigation guidance based on a pre-established location database.

Another common method of terrestrial navigation guidance utilizes

signage systems such as visitor guidance boards in a museum, cam-

pus, or trail. The tour map on the board has a notation (star/dot)

to show the user’s current location, and then the user can find the

way to somewhere based on the map[22].

Because GPS is unusable underwater and other underwater

acoustic/RF-based localization methods are expensive [28], divers

traditionally navigate underwater using a portable waterproof com-

pass and location information provided by their guide before diving,

which is not smart, reliable, or flexible[13, 20, 37]. Inspired by ter-

restrial navigation, we can adopt waterproof signage systems to

show users rich location information for underwater navigation.

This, however, has many challenges, as it is hard to find and read a

finite-sized map image or messages underwater due to the harsh

optical environment.

Alternatively, we can use passive tags and a portable tag reader

for more embedded and clear navigation information. In our daily

life, passive optical tags such as barcodes and QR (Quick Response)

codes are popular[25, 41], but their short communication range

makes underwater navigation impossible because users cannot even

find the tags to scan them. A larger tag size could provide a more

extended communication range, but at a higher price and would

cause a greater disturbance to the original ecological environment.

When discussing passive tags we define a high-order tag as

containing more than five elements per dimension. For example the

barcode in the left of Figure 2 contains 16 columns, or 16 elements

in its one dimension. We also define a low-order tag as having

five or less elements per dimension. High-order tags, however, are

not feasible for underwater navigation because as the number of

elements increases the error rate also increases due to the necessity

for elements to be physically closer to each other. On the other side,

the amount of embedded data in a low-order barcode or QR code is

not rich enough for underwater navigation.

Motivation: (1) Acoustic and RF-based UWC is not feasible

because of drawbacks such as high latency, low communication

range, or need for an external power source. (2) High-order optical

tags cannot be reliably used for underwater navigation because of

their error rates and short communication range. (3) Existing optical

tags only utilize 1D/2D spatial diversity for data embedding[33].

Even the 3D versions of Bar/QR codes shown in Figure 1 have

limited element distances and ignore 3D spatial diversity. As a

result, there will be more error bits in decoding, especially in muddy

underwater scenarios. (4) Existing bar/QR codes, even in 3D, have

limited scanning angles and require the user to move to directly

face the surface of the codes, which is inconvenient for underwater

navigation activities. (5) We can use 3D spatial features to provide

underwater positioning based on the perspective principle, which

states that objects such as cubes are observed differently at different

distance and angles. This is discussed in more depth in Section 2.3.

Approach: In this paper, we design U-Star, an underwater sig-

nage system based on passive 3D optical identification tags for

underwater navigation, as illustrated in Figure 1. U-Star consists

of UOID tags and the AI-based mobile tag reader. UOID tags are

hollowed-out cubes which consist of data elements and positioning

elements. The data elements are positioned with proper non-Line-

of-Sight spacing on the UOID tag. The positioning elements are

set in different clockwise color sequences along the six faces of

the UOID. The U-Star tag reader is built on waterproof mobile de-

vices with standard, commercial cameras. The detailed navigation

procedures are illustrated in Section 3.

Our contributions can be summarized as follows:

(1) This is the first work to employ passive 3D optical identifica-

tion tags for underwater navigation. We model 3D spatial diversity

and utilize it to increase the distance of data elements in our pro-

posed UOID tags for simple and robust underwater navigation.

(2)We propose a passive 3D optical identification tag based posi-

tioning scheme for underwater navigation. Our UOID tag can help

user to determine their current orientation by the arc of clockwise

positioning elements and estimate the underwater distance due to

perspective principles.

(3)We propose AI-based mobile algorithms at the tag reader for

robust UOID decoding. We design CycleGAN based underwater

denoising, CNN-based relative positioning, and real-time data pars-

ing algorithms without significant computation overhead, latency

or energy concerns.

(4)We implement U-Star and evaluate its performance on UOID

tag prototypes in different underwater scenarios. Our experiment

results show that a 3-order UOID tag can embed 21 bits of data with

a BER of 0.003 at 1m and less than 0.05 at a distance of up to 3 m.

We also make fair comparison with existing optical tags (Bar, QR)

to show the superiority of our UOID tags in underwater navigation.

U-Star also achieves over 90% accuracy for both optical ranging at

up to 7m and orientation guidance.

The rest of the paper is organized as follows. Section 2 introduces

background and related work. Section 3 gives the U-Star system

overview. Section 4 to 6 illustrate U-Star design: passive 3D optical

tag, underwater relative positioning, and mobile AI based tag reader.

Section 7 presents U-Star implementation. Section 8 reports the

performance evaluation of U-Star. Finally, we have some discussion

in Section 9 and conclude the paper in Section 10.

2 BACKGROUND AND RELATEDWORK

2.1 Underwater Navigation

Underwater navigation is important for human-related underwater

activities, such as scuba diving and underwater accident rescue.

Natural underwater navigation requires the diver to utilize physical

contours and characteristics of dive sites and combine basic com-

pass skills to find the path to their destination[5, 11, 13]. Natural
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underwater navigation is similar to terrestrial navigation shown

in Figure 1, the diver first needs to known his/her current location

based on the site map or underwater physical features of dive sites

and then guide him/herself to their destination based on the infor-

mation on map or prior knowledge. However, natural underwater

navigation relies highly on diver’s familiarity with dive sites. If

unfamiliarity or any confusion with dive sites, it is very dangerous

for divers, to the point that many have lost their lives.

Many researchers have made efforts to improve underwater

navigation[14, 15, 19, 27]. However, these are based on acoustic

and RF techniques that incur significant drawbacks, including high

power consumption, expensive price, long latency, or short com-

munication ranges. To combat these issues, we explore setting

underwater, on-site visible signage tags to provide site location

information and navigation guidance. Our approach is inspired by

traditional terrestrial navigation techniques such as tour maps and

locationmarks in hiking trails[21, 22] and offers new and innovative

techniques for underwater navigation.

However, it is not practical to just place the signage tags under-

water in a similar fashion to terrestrial navigation. This is because

it is not as easy for users to move to directly face the tags as it is

on land, the hostile underwater optical environment, and that the

lengthy communication distance [12, 15] makes effectively read-

ing the signage impossible. The optical tags used in underwater

navigation need three features: (1) Easily observed. The color

and brightness are striking enough to be observed by users at long

distances (10m-20m) and the content on the tag should be visible

from practically every angle. (2) Enough data capacity. The data

embedded in the tags needs to be large enough to record both the

location information and guidance advice. (3) Positioning ability.

The tag needs to provide relative position information to the user.

Feature (1) is more based on material and color choice, specifically,

to suit the underwater scenario, we discuss this in Section 4.2.2. Fea-

ture (1) also relies on the hollowed-out structure of the tag design

for the real 3D passive optical tag discussed in Section 2.2. Features

(2) and (3) are in the category of optical wireless communication

and we discuss the related work below.

2.2 Optical Data Embedding

Barcodes and QR codes, as seen in Figure 2, are very popular

machine-readable optical tags used in our daily life. Barcodes repre-

sent data by parallel lines with varying widths and spacing invented

in 1951[35]. The barcode became commercially successful in su-

permarket checkout systems. Later, two-dimensional (2D) variants

(matrix codes) were developed, which can represent more data per

unit area[32, 33]. The QR (Quick Response) code is one of these

matrix codes and is common in many aspects of life, such as mo-

bile payment, social E-cards, electronic tickets, access control, etc.

High-order QR codes, such as the version 40 QR code (177x177),

can embed 23,648 bits[32]. However, in underwater navigation sce-

narios, high-order bar/QR codes are not suitable to be seen and

scanned due to their limited scanning angles, limited data element

distance, and the quality of the optical environment.

These bar/QR codes only focus on 1D and 2D spatial diversity

and ignore the potential opportunity of three-dimensional spatial

diversity in optical tag data embedding. Even with the 3D version

of Bar/QR codes (six planes of the cube are covered with the same

Figure 2: Existing optical tags and 3D spatial diversity.

bar/QR codes to ensure consistent content at various angles), the

user can record up to three repeat bar/QR codes, which does not

increase data element distances and does not fully take advantage

of 3D spatial diversity in data embedding. Our 3D optical tag design

is inspired by 3D cube-shaped chandeliers shown in Figure 2, but

improved and modified for the data and communication needs of

underwater scenarios. Each element inside of a 3D light cube can

denote bits 1 and 0 via its On and Off status, as opposed to linear

or matrix dots on a surface in a bar/QR code. Although images of

the 3D optical tag captured by our tag reader is a 2D pixel matrix,

we can restore the 3D optical tag based on perspective principles

(discussed in Section 2.3 and Section 6.3). When compared to optical

tags with the same tag size and the same amount of embedded data

(e.g., 1D, 2D codes, and surface 3D tags with 1D/2D codes attached),

our proposed 3D hollowed-out cube improves data element distance

by leveraging 3D spatial diversity in data embedding, as shown in

the right of Figure 2. In our U-Star system, we design UOID, passive

3D optical identification tags, to utilize the 3D spatial diversity to

increase the distances among data elements for robust and full-

directional underwater decoding.

2.3 Optical Positioning and Perspective

Figure 3: Perspective principle for positioning

It is very common for humans to utilize natural or human-made

luminous objects for positioning, as shown in Figure 3. For exam-

ple, we can determine orientation by observing the direction of

the shadows during the day time due to the sun’s movement and
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the direction of the Big Dipper at the night because the orienta-

tion of the Big Dipper is unchanged and always pointing to the

Earth’s North Pole[7, 8]. In addition to orientation and localization

based on natural optical objects, lighthouses are an example of

human-made optical object based positioning. The basic functions

of lighthouses are to guide ships, indicate dangerous areas and help

ships to determine their positions[30]. For underwater scenarios,

researchers have also made many efforts to design optical-based

underwater positioning mechanisms and systems. Akhoundi et al.

design RSS (Received Signal Strength) based optical positioning

systems that calculate location based on the received optical signal

frommultiple anchors[4]. In other work[40], the authors proposed a

ToA and RSS-based underwater localization system. However, these

works require a significant power supply and expensive devices

with high-accuracy sensors.

Perspective principles are traditionally used in vision and art[23,

31]. Creatively, we can utilize the perspective principles for ranging

and relative positioning. The perspective principle simply describes

the visual relationship between the observer and the observed ob-

ject: (1) increasing the distance between the observer and the object

results in a reduced size of the observed object, as shown in Figure

3 (d); (2) varying the angle from the view point to the object results

in a variable shape and observed content of the observed object, as

shown in Figure 3 (e). Our U-Star design also utilizes UOID tags as

fixed underwater beacons utilizing 3D spatial diversity for optical

ranging and orientation guidance besides its data embedding.

Compared with existing work, our UOID tags are based on pas-

sive optical wireless communication and therefore utilize natu-

ral light sources to present data and provide relative positioning

without energy consumption concerns. The tag readers are also

commercial camera-based devices instead of expensive sensors.

3 SYSTEM OVERVIEW

Our proposed underwater navigation system consists of two parts,

as shown in Figure 4: (1) 3D passive optical tags: UOID tags, and

(2) AI-based mobile tag reader.

UOID tags. UOID tags are anchored underwater with fixed

facing direction. They are made of fluorescent materials and can ab-

sorb light from natural underwater environment or users’ flashlight.

There are data elements and positioning elements in UOID tags,

which are assigned with proper spacing to eliminate LoS blockage

in the tag’s 3D spatial domain to present data.

Tag reader. The tag readers are based on commercial smart

devices such as smartphones or sports cameras. These devices can

capture images of UOID tags and perform underwater, robust, and

real-time data parsing and relative positioning by its onboard com-

putation abilities. The U-Star tag readers have three keymodules: (1)

CycleGAN denoising based pre-processing, (2) CNN based relative

positioning, (3) 3D restoring based decoding.

User operation and navigation procedure. The detailed U-

Star underwater navigation procedures are: (1) The diver, equipped

with a tag reader, looks for luminous UOID tags. (2) The diver uses

waterproof tag reader to take pictures of a specific UOID tag at

current location. (3) The tag reader performs image style transfor-

mation for denoising, then the tag reader can determine diver’s

relative position including the distance estimation and orientation

guidance. (4) The diver knows where he/she is now and can navi-

gate him/herself to new sites based on the pre-recorded data from

the backup database that the tag reader can query with the embed-

ded data from the UOID tag (which we call a query code). The user

operation is simple and quick and can be performed at different

distances with all directions in different environments and time.

Challenges. (1) LoS blockage. When capturing tag images,

some inside elements are blocked by their front elements due to

lights’ line-of-sight propagation. We address this by assigning ele-

ments with proper spacing and a machine learning based restora-

tion. (2)Harsh optical environment. The underwater environ-

ment decreases the quality of captured UOID images, and thus

makes them hard to decode. We design CycleGAN based algorithms

to transfer unclear images into clear images (Unity3D-style images)

before decoding. (3) Underwater relative positioning. The UOID

tag is expected to help determine the distance between the user and

the tag as well as user’s current orientation for relative positioning.

We propose clockwise positioning arc schemes to denote planes and

a CNN method to infer relative position. (4) 3D decoding. The tag

reader needs to restore each element to a standard 3D space from

a random 2D image during decoding. We utilize the perspective

principle to reconstruct the 3D structure for data parsing.

4 PASSIVE 3D OPTICAL TAG

4.1 3D Spatial Diversity Exploration

As shown in Figure 5, we use a 3D cube instead of a 2D matrix to

represent more bits in an optical tag. Naturally, there are two meth-

ods to embed data in a 3D cube: (1) embed data on its six surfaces,

(2) embed data on both its surfaces and inside space (i.e., hollowed-

out), which fully utilize the 3D spatial diversity. For method (1), the

tag reader can only capture the dots on 1 and up to 3 surfaces due to

the line-of-sight (LoS) characteristic of light. Method (1) cannot also

guarantee that the embedded data captured at different angles is

always the same (unless all 6 planes cover the same content) due to

Figure 4: U-Star system diagram including UOID tag, user operation, and tag reader.
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Figure 5: Surface/real 3D. Figure 6: Proper spacing to combat LoS. Figure 7: Two element types in UOID.

the potential of capturing different surfaces, which means that the

tag’s decoded data will change without consistency. Additionally,

Method (1) results in smaller data element distances and a shorter

communication range, which is verified in Section 8.3.

Thus we choose method (2) to embed data in our UOID design.

However, the LoS issue can also occur if we embed data inside of a

3D cube due to mutual blockage among elements physically near

each other. As shown in Figure 6, the 4-order (4x4x4) tag without

proper spacing will have the mutual blockage issue. Three factors

affect the blockage: (1) Tag order. As the order of tags increases

(3-order, 4-order, 5-order, etc), more and more blockage occurs. Sim-

ilarly, as the order of tags decreases, so does blockage. (2) Element

size. The smaller the element size, the less blockage. (3) Mutual

Spacing. The larger the mutual spacing of elements, the less block-

age. In this paper, we discuss a 3-order UOID tag with fixed element

size and we address the mutual blockage by extending the spacing

among nearby nodes to guarantee the tag reader can capture all

elements in most cases.

4.2 UOID Tag Design

4.2.1 Positioning and data elements.

In our UOID tag design, there are two types of elements: po-

sitioning elements and data elements, as shown in Figure 7. The

positioning elements are on six vertex points with three pairs of col-

ors. The positioning elements help determine the relative position

of the user and assist in reconstructing the 3D cube for data parsing.

The data elements make up most of the elements in a UOID tag

for data embedding. They are located at the two remaining vertex

points as well as inside of the tag itself.

Positioning elements. As shown in Figure 7, each pair of col-

ored elements are at a pair of vertex points. Thus, each plane of

the cube has three different colored positioning elements. They

can denote six surfaces based on the generated clockwise arc color

sequence (discussed in Section 5.2, Figure 10 (a)). Then the tag can

determine which surfaces the user is facing based on captured sur-

faces of the tag and determine orientation based on the perspective

principle to support underwater navigation. Furthermore, these

positioning elements can help to reconstruct the 3D structure from

captured 2D images based on the perspective principle for data

parsing. The reason for using three instead of four positioning ele-

ments to denote a plane are: (1) Three dots can already determine a

surface. Four dots will sacrifice the positions that could be used for

assigning data elements and thus decrease the embedded data. (2)

Fewer overall colors is desirable, as more colors will increase the

color detection error for decoding due to the fewer hue gaps.

Data elements. The data elements of our UOID are assigned to

various 3D spatial locations. There are three layers L1, L2, and L3.

For each layer, we assign data elements in an ‘S’ shape. If the data

element is colored green, the embedded bit is 1, if the data element

is not colored, the embedded bit is 0. As illustrated in Figure 7, L1

embeds bits ‘111010’, L2 embeds bits ‘101111101’ and L3 embeds

bits ‘011000’. This 3-order UOID tag embeds a total of 33-6=21 bits,

‘111010 101111101 011000’. We set the current angle of view to be

the standard coordinate system for data parsing.With the assistance

of positioning elements (discussed in Section 6.3, Figure 13), we

can map the tag images from any angle of view into the standard

coordination system and then conduct the mass data parsing.

4.2.2 Underwater-specific Tag Design.

Figure 8: Color choices and luminous powder.

Color Choices. Light with different wavelengths/color have

different absorption rates in water. As shown in Figure 8 (a), the

green and blue light have less absorption in deeper underwater

environments such as a depth of 20 m[28, 42]. However, consider-

ing most commercial underwater activities do not exceed depths

greater than 10 m, the color choices (red, yellow, green, and blue)

above in the UOID tag are reasonable (for deeper underwater navi-

gation, finer-grained blue and green can be chosen). As shown in

Figure 8 (b), these four colors also have sufficient hue value gap to

decrease the wrong detection of colors during decoding[45]. The

green light has the longest emission time after 5s of being shined

by a flashlight as shown in Figure 8 (c). Because data elements are

the most numerous and important elements, we set them to green.

Luminous powder. Our UOID tags are passive, without any

power supply. As illustrated in Figure 8 (d), we coat the elements in

luminous powder, which is cheap and nontoxic to marine animals.

As shown in Figure 8 (c), the luminous powder with our chosen

colors can keep emitting light more than 60 seconds (1 min) after

being shined by a flashlight for 5 seconds in our experiments. This

ensures that the UOID tags work by absorbing natural underwater

light and emitting light in specific colors, allowing us to see and

scan UOID tags at any time of day or night.
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5 UNDERWATER POSITIONING

5.1 Optical Ranging

For underwater navigation, the perception and estimation of dis-

tance is very important. Our UOID tags can give the user a rough

feeling of the distance between themselves and the tag. We use the

rough size of the captured tag to infer the current distance from

the user to the tag. The estimated relative distance has no relation

with the angle of capturing images by the user.

Figure 9: 3D spatial perspective based optical ranging.

As shown in Figure 9, We can estimate the distance based on

the captured tag size because the tag size increases when the user

is getting closer to the tag due to the spatial perspective principle.

We first collect the captured images (camera is set with fixed focal

length) at different distances and use this dataset to train the CNN

model for classification offline. Then we can use the trained CNN

model to predict and estimate the current distance from the user to

the tag in real-time.

5.2 Orientation Guidance

We map the six planes of the UOID tag onto six different clockwise

color arcs which start from the non-positioning element: Yellow(Y)-

Blue(B)-Red(R) maps to Plane 1, BRY to Plane 2, RBY to Plane 3,

YRB to Plane 4, RYB to Plane Top, and BYR to Plane Bottom as

shown in Figure 10 (a). The UOID tag is fixed underwater (i.e., a

specific plane of the UOID tag always faces in a specific direction),

and thus the user/tag reader can know his/her orientation based on

the plane of the UOID the user is currently facing. For example, as

shown in Figure 10 (b), Plane 1 is facing South. That means if the

user is facing Plane 1, the user can know his/her current orientation

is directed North.

For underwater navigation, the Plane Top and Bottom faces

do not provide value to orientation decisions. Additionally, North,

East, South, and West are not sufficiently descriptive for navigation.

Therefore, we define 8 user facing orientations: North (facing Plane

1), Northwest (facing Plane 1 & 2), West (facing Plane 2), Southwest

(facing Plane 2 & 3), South (facing Plane 3), Southeast (facing Plane

3 & 4), East (facing Plane 4), Northeast (facing Plane 4 & 1) as

shown in Figure 10 (b). Naturally, we can determine the plane the

user is facing based on the color arc detected in images. However,

due to the small size of elements in captured images, it is hard to

judge which plane the user is facing. Thus, we employ CNN models

to learn plane features offline and then predict the plane in the

captured image in real-time, similar to the AI method used in the

optical ranging procedure.

6 AI-BASED MOBILE TAG READER

6.1 CycleGAN based Denoising

CycleGAN is a popular deep learning method and is mostly used for

image style transforming which can convert images between Style

X and Style Y. For example, to generate a monet-style image from a

real world picture or vice versa[46]. We adopt a lightweight Cycle-

GAN to convert the real underwater images taken of real, physical

UOIDs created for U-Star (Style X) into clear Unity3D-style images

created in the Unity3D game engine (Style Y) for further process-

ing. The images in real underwater scenarios have a random and

different background (i.e., with noise) for UOID tags. The images in

the Unity 3D version have clear and pure backgrounds (i.e., there

is no noise from the background in these images). Thus, we can

utilize CycleGAN to convert real-world images with noise (Style

X) to Unity3D-version images without noise (Style Y) to perform

underwater denoising as shown in Figure 11.

In our CycleGAN-based denoising, instead of the typical un-

paired datasets, we create the partial-paired datasets, the Real UOID

tags (60 images) and the Virtual UOID tags (60 images), for each un-

derwater environment setting in the CycleGAN training procedure,

as shown in Figure 11 (a). Partial-paired means the positioning

elements are paired between the real UOID tag images and the

Unity3D version images of the training datasets, while the inside

data elements are not paired. Partial-paired CycleGAN denoising

guarantees mostly correct conversion of both the tag structure, data

elements and the color of positioning elements.

Figure 10: Positioning elements for the plane decision and the orientation guidance principle illustration.
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Figure 11: CycleGAN based denoising from real underwater tag images to the Unity3D version tag images.

To train the CycleGAN efficiently, we use three different types
of losses to train our Cycle-GAN. More specifically, we apply an
identity loss (L𝑖𝑑 ) for generator network, a GAN loss (L𝐺𝐴𝑁 ) for
the Discriminator, and a cycle loss (L𝑐𝑦𝑐𝑙𝑒 ) for the cycle step.

L𝐶𝑦𝑐𝑙𝑒𝐺𝐴𝑁 = L𝑖𝑑 + 𝜆1L𝐺𝐴𝑁 + 𝜆2L𝑐𝑦𝑐𝑙𝑒 (1)
Both identity loss and GAN loss are using L1 loss, while the cycle
loss is applied by aMSE loss.We summed those three losses together
with different prior assigned weights (𝜆1 and 𝜆2) to help the model
converge. The value of 𝜆1 and 𝜆2 are selected empirically, in our
case, we use 10 and 5 for 𝜆1 and 𝜆2 respectively. By integrating
the three losses together, we feed the pairwise training images to
the CycleGAN and train the generators and discriminators. The
loss curve in the training of the generator and discriminator (from
real images to Unity3D-style images) are shown in Figure 11 (b).
The varying trend of the loss curves show the conversion from the
real underwater UOID tag images to the Unity3D-style UOID tag
images converges successfully.

The original captured underwater images and the denoised im-
ages are shown in Figure 11 (c). We can see that underwater images
from both a pool and lake can be successfully denoised and con-
verted to Unity3D-style images with a mostly correct tag structure,
color, and element positioning. The CycleGAN denoising also re-
moves the physical UOID frame components to reduce the LoS
blockage. Although there are a few elements with unmatched col-
ors, we can correct them based on the original image easily. The
next steps of relative position determination and data parsing can
then be based on these converted Unity3D-style UOID tag images
to lessen the influence of harsh underwater optical environment.

6.2 CNN based Relative Positioning
We adopt CNN-based deep learning methods to determine the rela-
tive position instead of non-deep, traditional computer vision meth-
ods to simplify the task and decrease the computation overhead.

It is difficult to calculate relative distance directly with different
underwater backgrounds, which requires several steps: (1) locate
the tag in the image using AI or CV methods, (2) calculate the tag
size, and (3) utilize the distance estimation relation to calculate
the estimated distance. In comparison, we choose a CNN model
because it does not necessitate detecting the tag in the image or
calculating the tag size. Instead, we directly output the prediction
distance in different underwater environments using the trained
CNN model and captured images of UOID tags.

We create two datasets (1) optical ranging dataset (280 images
of Unity3D version and 280 images of real underwater), and (2)
orientation dataset (320 images of Unity3D version and 320 images
of real underwater) for the offline CNN training. The reason using
both real underwater tag images and Unity3D version tag images
in training is to increase the generality of the prediction model.
Then we use CycleGAN denoised tag images for real-time relative
position determination. As shown in Figure 12, our CNN models,
ORM (optical ranging model) and OM (orientation model), adapt
the ResNet-18 architecture. ResNet-18 is a neural network architec-
ture that adds a skip connection between disconnected layers, such
that the input of deep layers will not only take the output from its
preceding layer, but also from its former layers which may contain
original data. Such design effectively copes with gradient vanishing
problem in DNNs[10], and further increases the depth of network
with fewer additional parameters. ResNet has demonstrated su-
perior performance on image classification tasks [1–3], which is
particularly suitable for our goal that distinguishing relative posi-
tion both optical ranging and orientation guidance. We follow the
ResNet-18 design due to its efficiency and high accuracy on image
classification tasks. Specifically, we retain all of the convolutional
and pooling layers, and modify the output feature of the last fully
connected layer to match the number of possible options (i.e., 7 for
ORM and 8 for OM).
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Figure 13: The illustration of 3D structure restoring and data parsing is based on the perspective principle.

6.3 Data Parsing via Perspective Principle

The data elements in captured images are different when the user

is at different relative positions to the UOID tag. To decode the

embedded data in the tag, the tag reader needs to know the 3D

locations of data elements in a standard coordinate system to then

perform decoding.

Restore 3D structure. Based on three pairs of positioning el-

ements, the tag reader can restore the 3D structure of UOID tag

based on captured 2D images in six steps shown in Figure 13 (a): (1)

obtain Unity3D-style UOID image after CycleGAN based denoising,

(2) filter out three pairs of positioning elements via computer vision

tools, (3) decide which positioning element for each pair is in the

front or rear based on element size, (4) find one of the two remaining

vertices, (5) find the other remaining vertex, and (6) decide which

of remaining vertices is front or rear based on the element size of

nearby positioning elements. Finally, we can reconstruct the 3D

structure based on the total of 8 vertices of the 3D cube.

For step (4), there are two sub-steps: (4-1) Extend line Y1R2 and

R1Y2 to find the intersection point IP1(not shown in the figure).

Then connect B2 with IP1, which is the cross line of plane Y2R1B2

and Y1R2B2. (4-2) Extend line Y1B2 and B1Y2 to find the intersec-

tion point IP2. Then connect R2 with IP2, which is the cross line

of plane B2Y1R2 and B1Y2R2. Then we can find the first vertex,

which is the intersection point of B2IP1 and R2IP2. The sub-steps

for step (5) are similar to the sub-steps in step (4).

Data element location restoration. As shown in Figure 13 (b)

and (c), we can restore the location of data elements bymatching the

filtered data element and locations of each element calculated based

on the positioning elements. If the specific filtered data element

is near or at the specific calculated location from the restored 3D

structure, it signifies a match. Then we can denote that this location

has a data element as bit 1 while other vacant calculated data

element locations will be decoded as bit 0. Then the tag reader

decodes the embedded data and generates the bitstream based on

the data assignment rule illustrated in Section 4.2 and Figure 7.

7 U-STAR SYSTEM IMPLEMENTATION

7.1 UOID Tags

We implement two versions of UOID tags. One is a virtual NxNxN

UOID tag created in the Unity3D cross-platform game engine to

Figure 14: U-Star system implementation, setup and experiment scenarios in day and night.

655



U-Star: An Underwater Navigation System based on Passive 3D Optical Identification Tags ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

simulate UOID tags of various order and also different permutations
of embedded data within tags of the same order. We also implement
multiple physical 3x3x3 UOID tags for use underwater.

Virtual UOID tag. The elements in our virtual UOID tags are
translucent with fluorescent effects and are assignedwith the proper
spacing, as shown in Figure 10 and Figure 13.

Real UOID tag. As shown in Figure 14 (a), the UOID tags can be
observed well during both the day and night because they absorb
natural light and emit light, as discussed in Section 4.2.2. For the
elements of our physical UOID tags we employ soft plastic balls (𝜙 =
2cm) glazed with fluorescent powder and attach them on 3 types of
cube structure frames for exploration (sticks, black and transparent
plastic). Finally we choose the black plastic frame-based UOID tags
( edge: 19cm, weight: 14g) for evaluation in Section 8.

7.2 Tag Reader
There are many commercial smart devices that can be adopted
for use in our U-Star system. Some of these include underwater
sports cameras and smartphone with transparent, waterproof cases,
as shown in Figure 14 (b). These commercial camera devices are
popular and cheap. In our experiment, we use the Campark sport
camera, which costs less than $50 and set it at a fixed focal length.

7.3 Setup
Different underwater environment. Figure 14 (c) shows four

underwater environment (indoor big tank, outdoor small pond,
swimming pool, and big lake) and captured images of UOID tags.

Tag fixation and flashlight. As discussed in Section 5.2, we fix
the UOID tags at the bottom of a body of water, i.e., a specific UOID
plane always faces a specific direction. We use iron and connection
pole to sink and fix the UOID tag underwater, as shown with Figure
14 (d) and Figure 18. As discussed in Section 4.2.2, during the night,
the user can use a flashlight for underwater lighting to activate the
UOID tags, as shown in Figure 14 (c), (d) and (e).

8 PERFORMANCE EVALUATION
In this section, we evaluate three performance aspects of our U-Star
system: (1) relative positioning, (2) data parsing, (3) comparison
with existing optical tags. In addition, we conduct an underwater
navigation case study in a 4m x 10m indoor pool with 4 UOID tags.
Finally, we evaluate other aspects such as cost/price, computing
overhead, and latency.
8.1 Accurate Relative Positioning.
We evaluate the relative positioning performance in three aspects:
optical ranging accuracy, orientation guidance accuracy (both at
100𝑡ℎ epoch), and their training loss in [5, 200] epochs.

Optical ranging. We have 7 different distance settings: 1m,
2m, 3m, 4m, 5m, 6m, and 7m. As shown in Figure 15 (a), due to

the considerable tag size difference, the ranging accuracy of 1m
and 7m distance settings are 100% for both with and without Cycle-
GAN denoising. After CycleGAN denoising, the ranging accuracy
improves significantly and reaches nearly 100% for other distance
settings. The results show that the trained CNN model for optical
ranging performs well to estimate the distance from the user to
the tag with CycleGAN denoising. The results show our current
U-Star prototypes can provide up to 7 meters of optical ranging
with average accuracy nearly 100%.

Orientation guidance. We provide eight recognized orien-
tations for underwater navigation: North(N), North West(NW),
West(W), South West(SW), South(S), South East(SE), East(E), and
North East(NE). As shown in Figure 15 (b), no matter what was
the user is facing (any of the eight recognized orientations) the
accuracy of our orientation classification is always 100% when per-
forming orientation guidance with CycleGAN based denoising. We
also present orientation guidance performance without CycleGAN
based denoising for comparison. The results show that the perfor-
mance with CycleGAN denoising is better than without CycleGAN
denoising. This shows that the CycleGAN based denoising helps the
CNN model to improve the orientation guidance performance by
decreasing the impact of harsh water conditions. The results show
that our U-Star system can provide accurate orientation guidance
amongst all eight orientations.

Training loss. For relative positioning, we also measure the loss
in CNN based training for optical ranging and orientation guidance
separately. As shown in Figure 15 (c), the optical ranging training
loss curves both with/without denoising are above the orientation
training loss curves during the training process. This means that
features (tag size) in the optical ranging dataset are not as rich as
the features (positioning elements and their various permutations)
in the orientation dataset. The curves with CycleGAN denoising
are beneath those without CycleGAN denoising during the entire
training process no matter the optical ranging training or orienta-
tion training. That means that using the CycleGAN denoising can
help decrease training loss more quickly and limit the impact of
harsh underwater optical conditions for relative positioning.

8.2 Robust Data Parsing
We use our tag reader to capture images of four real UOID tags A1,
A2, B1, B2 with random capturing poses in different distances, water
conditions, and time of day to evaluate the decoding performance
of U-Star. A1 and B1 embed raw bits without error correction codes.
A2 has 3, 5, and 3 common data bits with A1 in layers 1, 2, and 3
respectively. A2 also has 3, 4, and 3 Hamming ECC parity bits in
layers 1, 2, and 3. B2 has 3, 5, and 3 common data bits with B1 in
layers 1, 2, and 3 respectively, and also has 3, 4, and 3 Hamming
ECC parity bits in layers 1, 2, and 3. Hamming ECC[9] can correct
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Figure 16: Decoding performance with different communication distance, water condition, and time (day/night).
1 error bit per bitstream, thus, for a total of 3 error bits correction
capability for a tag. The bits in A1, A2, B1, B2 are shown in Table 1.

Tag stbits in 1  layer ndbits in 2  layer rdbits in 3  layer

A1

A2

B1

B2

101101 110010001 001011
10 11 01 11 1 11 100 1 01 10 01
001101 100111010 101001
01 10 01 10 1 11 001 1 10 11 01

Hamming ECC parity bit Valid data bitdata bits without ECCcommon data bits of A1 & A2 or B1 & B2

Table 1: Embedded bits in 4 UOID tags: A1, A2, B1 and B2.
We define the BER as the average bit error ratio of the entire

embedded valid data bits in two UOID tags with different data
embedding (i.e., two tags: A1 and B1 or two tags: A2 and B2). Each
BER value is calculated using 30 captured images and we use it
as a metric to evaluate the decoding performance of our U-Star
system. Besides the difference between UOID tags with and without
Hamming ECC codes[34], we also compare BER performance with
and without CycleGAN based denoising as comparison.

In different communication distances. We adjust the dis-
tance of the tag to the tag reader to be 1m, 1.5m, 2m, 2.5m, and 3m
in clean water (pool) during the daytime. As shown in Figure 16 (a),
the BER remains low, consistently less than 0.09 after CycleGAN
denoising in all distance settings. We found that the best data pars-
ing distance for current U-Star prototypes is 1m, as the BER is 0.
The BER performance without CycleGAN denoising is significantly
worse than with CycleGAN denoising at 3m. This confirms that
the CycleGAN denoising works well, especially at longer distances.
Both with and without CycleGAN denoising, the BER with ECCs is
lower than for without ECCs. The BER is 0.003 at 1m and continues
to be less than 0.05 up to 3m with Hamming ECC and CycleGAN
denoising simultaneously.

In different water conditions. We explore four water condi-
tions during the day in experiments: indoor tank with clean water,
small pond, swimming pool, and big lake, as shown in Figure 14
(c). We conduct experiments at a distance of 1m (the best capturing
distance for data parsing of the current U-Star prototype mentioned
above). As shown in Figure 16 (b), without CycleGAN denoising,
our data parsing performs best in the pool and worst in the pond.
This is because the pool is clean enough for data parsing without
the denoising process and the small pond makes the color of the
elements change too much. After CycleGAN based denoising, the
BER decreased significantly in all four water conditions. The Ham-
ming ECC codes decreased the BER even further, resulting in a BER
lower than 0.07 for all four water conditions. Notably, the tank,
pool, and lake situations show a BER approaching 0. The average
BER decreases from 0.16 to 0.03 after CycleGAN denoising and
Hamming error correction. In summary, the BER in four different
water conditions is all low enough with CycleGAN based denoising
and Hamming error correction for robust data parsing.

In different times of the day. We conduct experiments during
both day and night at a distance of 1m in the swimming pool and
lake. As shown in Figure 16 (c), the BER in the daytime is lower than
in the night for both the pool and lake. Evenwith a flashlight shining
to activate the UOID tag, the current UOID tag only has luminous
powder covering the element surface, which is not as bright as in
the day time. Moreover, at night, the BER without denoising in
the lake is worse than the clean pool, because the emitted light
from the UOID tag is too weak to go through more muddy water
in the lake. After CycleGAN based denoising and Hamming error
correction, the BER in all four settings decreased significantly and
is lower than 0.03. The results show that the current U-Star system
performs data parsing well with CycleGAN based denoising and
Hamming error correction both day and night.
8.3 Comparison with Existing Optical Tags
We implement the 3D version of existing Bar/QR codes with the
same 21 embedded data bits (101101 110010001 001011) and the same
tag size (cube edge: 19cm) as our UOID tag for a fair comparison
across various aspects. The data alignment, implemented tags and
the comparison experiment scenarios are shown in Figure 17 (a).
We conduct experiments and make comparisons in the five aspects
below to demonstrate the superiority and necessity of our designed
UOID tags over existing optical tags for underwater navigation.

(1) Same tag order with more embedded bits. Despite the
fact that the user can capture the information of one and up to
three surface planes of a 3D version of existing Bar/QR codes in
N-order, the decoded bits are the same as the bits in one plane. The
embedded bits in an N-order barcode are roughly 𝑁 . The embedded
bits in an NxN QR code are roughly 𝑁 2-4 bits. The embedded bits
in an NxNxN UOID tag are 𝑁 3-6 bits. As shown in Figure 17 (b),
the amount of embedded bits in a UOID tag increases exponentially
compared to the same order 1D/2D optical tags. Even their 3D
versions cannot compare to the UOID tags (e.g., 3-order UOID
embeds 7x and 4.2x bits of the same order Bar and QR code).

(2) Same tag size & data with larger element distance. The
larger the average element distance and the broader the distribution
of element distances (shown in the right of Figure 2), the better
the detection performance and the less the error bits. We measure
distances between all 21 data elements in 3D versions of the Bar/QR,
and UOID tag that have the same embedded bits and tag size (edge
is 19cm). As shown in Figure 17 (a) and (c), data element distances
in Bar and QR codes are all smaller than 20cm, however the data
element distances in UOID tags are completely distributed in a
greater range of [5, 30] cm.

(3) Same tag size & data with longer communication range.
We also investigate the goodput performance of three tags men-
tioned above in two different underwater scenarios: clean creek and
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Figure 17: Comparison between UOID tags with existing optical tags. (a) Experiment scenarios, (b) Data improvement, (c)

Broader element distance, (d) Better goodput performance, and (e) Full-directional scanning.

muddy river at varying distances from 1m to 3m. In clean creek, all

three tags perform well and produce more than 17 bits of goodput

at up to 3m, as illustrated in Figure 17 (a) and (d). However, in the

muddy river, the goodput of Bar and QR codes in the 3D version

drops dramatically after 1.5m, whereas the UOID tag maintains its

high goodput until 2.5m.

(4) Same tag size & data with broader scanning angles.

Furthermore, for all three of the aforementioned tags, we evaluate

the goodput performance with varying scanning angles at 0.5m

under the clean creek and muddy river. As shown in Figure 17 (a)

and (e), the usage view range of the existing optical tags has also

been increased from less than 120◦ to 360◦ of UOID tags for both

clean creek and muddy river.

(5) Other benefits of UOID design. When compared to the

2D plane (the version of 1D Bar and 2D QR codes in our daily life,

shown in the left middle of Figure17 (a)) and confined 3D cube

(3D version of Bar/QR) to maintain tag’s location and orientation

in flowing water or current (i.e., creek, river, tide and etc.), the

hollowed-out UOID can lessen influence of water current to allow

it to flow through the tags and maintain stabilization.

8.4 Case Study with Multiple UOID tags

The usage of our U-Star signage system is similar to barcode/ QR

code adopted in auto-supermarket systems. The data embedded in

codes are the query codes used for searching a backup database

with records for all offered goods. Due to the large enough storage

ability on the mobile device, the ability to embed more query codes

will result in better navigation. Our 3-order UOID tag can embed

23𝑥3𝑥3−6 = 2,097,152 possible query codes. Even with Hamming

ECC parity bits that sacrifice 10 (3+4+3=10) bits, there are still 11

data bits available for embedding 211 = 2,048 query codes. As shown

in Figure 18, we implement four UOID tags with Hamming error

correction codes in the case study, and their 11 valid data bits match

to distinct query codes in range of [0, 2047] in the backup database.

The database stores the current absolute location information, the

guidance information, and risk warnings such as "shark near" which

can queried via the related query codes. Our demo in a 4m x 10m

indoor pool, the user dives at the start site of B and plan to go to

the destination site of C and then back.

When the user scans Tag B at the start location, the user will be

given the current absolute location (i.e., facing North and at (2m,

0.5m) in the coordinate system) as well as information about its

nearby nodes (i.e., D is the nearest tag with 4.5m relative distance

to B’s NorthEast direction, A is 5.3m away from B to B’s EastSouth

direction, and C is 9m away from B to B’s East direction) to help

navigate himself to other spots.

The user intends to visit Tag D first. He looks for a bright dot

around 4.5m away (the optical ranging of UOID provides him a

sense of underwater distance) at the NorthEast direction of Tag B.

If he cannot find his way, he will travel to another nearby node

such as Tag A.

Figure 18: Underwater navigation case study of U-Star in a 4mx10m indoor pool with 4 UOID tags and backup database.

658



ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Xiao Zhang, Hanqing Guo, James Mariani, Li Xiao

After confirmation of D’s existence, he moves to Tag D and
repeats the similar procedure to go to Tag A first (compared with
8.2m to C, the distance to A is 5m and A is the nearest uncovered
node to D). And next, from A, he finally reaches at destination C.

His path (locally optimal) is B-D-A-C and return path is C-D-B
(effective path) while globally optimal path C-B may not work due
to he may not confirm B’s existence from C. By following the
procedures above, he achieves self-guided underwater navigation
easily and effectively, regardless of the start and destination tags.

8.5 Other Concerns
Cost and price. As shown in Figure 19, the main cost of the U-

Star system is the tag reader, while the UOID tag is very cheap (less
than $3 for each). For practicality, the tag reader can be replaced
with the user’s own smartphones covered with a waterproof case,
which is less than $4. Considering multiple UOID tags deployed
underwater, the U-Star system with 20 UOID tags costs less than
$100 for an underwater site with an area of 1𝑘𝑚2 (7𝑚 x 7𝑚 x 20).

Device Cost ($)

element balls

luminous powder

hot melt glue  

sport camera 

U-Star with 20 tags 

<   1 

< 0.5  

< 0.5  

smart phone self-contained

30 (basic)

< 100

double-side tap

Material

One

3x3x3

UOID

tag

stick / plastic < 0.5 

One

tag reader
waterproof case 3.5 (Amazon)

< 0.5  

Total for a tag ≈ 3 

Figure 19: Cost & price.
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Figure 20: Overhead.

Computation overhead. For underwater situations, battery is
limited and not easy to replace. The tag reader should not conduct
complex computations that consume energy too fast. The training
processes are offline, the real-time tasks are denoising, optical rang-
ing, orientation guidance, and decoding. As shown in Figure 20,
the denoising requires the most memory resources and decoding
required the fewest memory resources. For all four tasks, they re-
quire a combined 430 MiB of memory and is not a computational
burden for a commercial smart device.

Latency. For underwater navigation tasks, time can be impor-
tant to improve the user experience and even save people’s lives.
Compared with state-of-art underwater navigation systems, includ-
ing audio-based systems, U-Star has nearly no time delay in signal
propagation due to the fast propagation of light. Thus we only
consider the computational latency. As shown in Figure 20, optical
ranging and orientation guidance have the lowest running time of
0.002 s, while decoding has the longest running time at 1.25 s. All
four tasks consume 1.59 s total, which is still quick enough for a
good user experience.

9 DISCUSSION
Usage instruction of scanning UOID. Even with appropriate

spacing between data elements in UOID tags, there is some LoS
blockage at certain scanning angles. However, by slightly adjusting
capturing poses without moving the user’s location, it is simple to
avoid blockages and capture all data elements.

The number of guidance directions. Our current U-Star pro-
totype can provide user orientation guidance in 8 directions, which
is sufficient for practical underwater navigation as illustrated in

Section 8.4. U-Star, however, may be updated to finer-grained ori-
entation guidance using a same CNN training with more directions
(e.g., 16 directions).

UOID deployment. Because GPS is unusable for underwater
scenarios, the positions of deployed UOID tags are identified and
saved in a backup database on shore at a one-time deployment
cost. We can use spring installation techniques to fix UOID tags
on the underwater floor with little regard for location and orien-
tation fluctuation caused by tide and flow. They can make the tag
flexible when subjected to tide power and automatically resume
its suspected position when it becomes static, much like how tall
building dampers maintain stability and extend tag usage lifetime.

System robustness and potential side-effect on marine
animals. (1) moss/scum removing: Because moss grows slowly,
we can periodically (e.g., every month) remove the accumulated
moss and maintain UOID tags as part of underwater infrastructure
maintenance. We can utilize an ultrasonic technique to remove
moss touchlessly while causing no harm to the UOID tags or other
marine life. (2) luminous powder: To prevent pollution and harm to
marine life, we apply non-toxic, non-radioactive, and long-lifespan
(more than 15 years) luminous powder wrapping with waterproof
glues. (3) marine debris: We can use integrated molding technology
and 3D printing techniques in the future to produce recycled, solid
and not easily damaged UOID tags to avoid marine debris.

Applications benefited by U-Star. (1) Recreation scuba diving
as illustrated in Section 1. (2) Underwater rescuing. In addition to
using fixed UOID tags as infrastructure for safe underwater activ-
ities, we can attach smaller size UOID tags (which store people’s
identifying information) on top of underwater helmets as mobile
UOID tags for persons participating in underwater activities. As
a result, rescuers can scan UOID tags to identify people and learn
about on-site situation (how many people and who are in danger or
need rescue). The trapped people, on the other hand, can scan larger
UOID tags on rescuers to actively seek help and instructions from
rescuers. (3) Future directions combined with Augmented Reality.
We can update the tag reader side from current sport camera/smart
phone to AR goggles to show guidance info in more direct and
visual manner instead of small display on smartphone for user
experience of WYSIWYG, “see UOID, see INFO”.

10 CONCLUSION
In this paper, we implement the U-Star system for simple and robust
underwater navigation. We investigate 3D spatial diversity for data
embedding with wider element distances and additionally use it for
relative positioning. We address challenges in system design and
implementation, e.g, combating harsh underwater environments
and 3D structure restoration for data parsing. Finally, we conduct
experiments based on virtual and real UOID tags in multiple under-
water scenarios. Our 3-order UIOD prototype can embed 21 bits
and achieves a BER of 0.003 at 1m and less than 0.05 at up to 3 m
with approaching 100% relative positioning precision.
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