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Abstract
Flash flooding is considered one of the most lethal natural hazards in the USA as measured 
by the ratio of fatalities to people affected. However, the occurrence of injuries and fatali-
ties during flash flooding was found to be rare (about 2% occurrence rate) based on our 
analysis of 6,065 flash flood events that occurred in Texas over a 15-year period (2005 to 
2019). This article identifies climatic, environmental, and situational factors that affect the 
occurrence of fatalities and injuries in flash flood events and provides a predictive model 
to estimate the likelihood of these occurrences. Due to the highly imbalanced dataset, three 
forms of logit models were investigated to achieve unbiased estimations of the model coef-
ficients. The rare event logistic regression (Relogit) model was found to be the most suit-
able model. The model considers ten independent situational, climatic, and environmental 
variables that could affect human safety in flash flood events. Vehicle-related activities dur-
ing flash flooding exhibited the greatest effect on the probability of human harm occur-
rence, followed by the event’s time (daytime vs. nighttime), precipitation amount, location 
with respect to the flash flood alley, median age of structures in the community, low water 
crossing density, and event duration. The application of the developed model as a simula-
tion tool for informing flash flood mitigation planning was demonstrated in two study cases 
in Texas.
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1  Introduction

1.1 � Background

Flash flooding, usually triggered by heavy rainfall associated with severe thunderstorms, 
hurricanes or tropical storms, is considered one of the most lethal natural hazards in USA 
(Ahmadalipour and Moradkhani 2019; Terti et  al. 2017; Kelsch et  al. 2001) define flash 
flooding as a phenomenon in which the rainfall-runoff hydrologic processes occur on the 
same temporal and spatial scales as the triggering intense precipitation. Rainfall-induced 
flash floods are characterized by their rapid onset (usually under 6  h) and small spatial 
scale (Terti et al. 2015; Ahmadalipour and Moradkhani 2019) found that the average dura-
tion of flash floods between 1996 and 2017 was about 3.5 h, but in rare cases, they lasted 
for two days. The fact that they hit with little lead time for warning and are of such velocity 
and force makes flash floods one of the most unsafe types of natural hazard when measured 
by the ratio of fatalities to people affected. Over the past two decades, data reported by 
the National Weather Service (NWS) indicate that approximately 72% of all flood-related 
fatalities, 72% of all flood-related injuries, and 52% of flood-related economic losses in the 
USA are attributed to flash flooding (NWS 2019). Figure 1 indicates that the number of 
fatalities from flash floods largely exceeded that from other flood types in the USA during 
the period 2000–2019.

Texas has the highest number of flash flood fatalities among all states. From 1959 to 
2008, there were 840 flood fatalities reported in Texas, 442 of which occurred in flash 
flood events (52.6%) (Shah et al. 2017). These flash flood fatalities occurred largely in Cen-
tral Texas “Hill Country” along the Balcones Escarpment, which lies between the Edwards 
Plateau and the coastal plain (Sharif et al. 2012, 2015). This region (known as “the Flash 
Flood Alley) contains 44 counties and is characterized by steep terrain, shallow soil, and 
high rainfall rates (Baker 1975; Caran and Baker 1986).

Although rainfall patterns are complex and difficult to predict, climate models suggest 
that precipitation will likely occur more frequently and with greater intensity in the future 
in many regions around the globe (Wang and Zhang 2008; Sharif et al. 2012; Wobus et al. 
2014). Since 1991, extreme rainfall events in the USA, defined as the heaviest 1% of daily 

Fig. 1   Number of flood fatalities in the USA (2000–2019)
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events, have increased in both frequency and magnitude (Walsh et al. 2014). Urbanization, 
which causes changes to land use, removal of vegetation and soil, grading of land sur-
face, and construction of drainage networks, affect flood peak discharge and volume, and 
consequently human safety (Anderson 1970; Bailey 1989; Konrad 2002). In this study, we 
analyze the role that rainfall patterns and built and social environment characteristics play 
in predicting the occurrence of fatalities and injuries during flash flood events. This work 
informs hazard mitigation planning to reduce impacts from flash flooding (Masterson et al. 
2014).

1.2 � Prior work and knowledge gaps

Prior studies suggest that flash flood human fatalities and injuries are influenced by behav-
ioral factors, the surrounding natural and built environments, and storm characteristics. 
Next, we discuss these groups of factors and identify the knowledge gaps that this paper 
addresses.

Behavioral factors refer to actions willingly taken by individuals, leading to injury 
or death in flash flood events. These actions are often rooted in beliefs that flash flood-
ing would pose no or little risk to human life (Benight et al. 2007; Hamilton et al. 2016). 
Almost half of people driving vehicles on roadways who enter floodwater reported that 
they did not think it was unsafe to do so (Ruin et al. 2007). A study conducted by Sharif 
et al. (2015) revealed that of 616 flood fatalities in Texas, 471 (76%) were vehicle-related, 
such as people driving over what may have seemed like a low-water crossing. About 16.5% 
(102 individuals) died after walking into flood waters to cross an area that was flooded. In 
a separate study, Terti et al. (2017) found that more than 60% of the reported flash flood 
fatalities were related to vehicles and involved men. Ashley and Ashley (2008) found that 
the age of those who die in flash flooding is either between 10 and 29 years or above 60 
years. Similar findings about human behavior around floodwaters have been reported in 
various parts of the world, such as Greece (Diakakis 2020) and Australia (Hamilton et al. 
2016). The identification of these social and behavioral factors provides guidance for non-
structural interventions (such as public awareness campaigns) to curb risky behaviors dur-
ing flood situations (Lindell and Perry 1992).

Environmental and situational factor—(the focus of this study)—refer to the character-
istics of the flood area and community, human interaction with vehicles, and the triggering 
natural hazard. Understanding these factors is important for planning flash flood mitigation 
and safety strategies.

Zahran et al. (2008) and Terti et al. (2019) developed flood casualty predictive models 
at the county scale. Zahran et al. (2008) developed a zero-inflated negative binomial model 
to predict the odds of a flood casualty (considering all flood types combined) from the 
impacts of hurricanes, tropical storms, and tornados. Terti et al. (2019) trained a random 
forest model to predict the likelihood of vehicle-related fatal incidents in flash flood events 
at the county scale using data from Texas and Oklahoma. Both of these models indicate 
an association between the odds of flood casualty occurrence and the event precipitation 
amount, event duration, unit peak discharge, population density, and social vulnerability. 
Zahran et  al. (2008) model considers all flood types combined, its applicability to flash 
flooding may be limited. Terti et al. (2019) county-based model has the advantage of being 
specific to flash flooding and therefore could be used in decision-making around flash flood 
threats at the county level or larger scales (e.g., NWS flash flood warnings).
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To address these limitations, we provide a new model for identifying climatic, environ-
mental, and situational factors that affect the occurrence of human fatalities and injuries in 
flash flood events at a finer spatial resolution. The model uses these influencing factors to 
predict the probability that a flash flood event will lead to at least one fatality or injury at 
the census tract scale. Key advantages of the proposed model compared to existing models 
include:

•	 The model uses a spatial scale consistent with the local nature of flash floods. We use 
the census tract as the analysis unit to capture temporal and spatial complexities at the 
scene of the incident. The census tract (delineated by the US Census Bureau) is a rel-
atively permanent subdivision of a county with a population size between 1200 and 
8000 people (the optimum size is 4000 people) (U.S. Census 2022). In urban areas, 
census tracts are relatively small geographic areas, although in rural areas they can be 
larger. Census tracts are commonly used as a proxy for neighborhood in many studies. 
Since much hazard planning is completed at the county scale, intracounty geographic 
scales like census tracts allow practitioners to address vulnerabilities within their juris-
diction (Lindell et al. 2006).

•	 The model accounts for the rare occurrence of flash flood fatalities and injuries. As 
it will be shown later in this paper, flash flood events that resulted in human fatali-
ties or injuries are rare compared to the number of events that did not result in human 
harm (i.e., the data are highly imbalanced). It is difficult to obtain unbiased statistical 
inferences from these data using conventional statistical methods. Therefore, we use a 
“rare-event” modeling technique, commonly used in economics, social anthropology, 
and natural hazard and earth sciences (Sanders et al. 2002; Clauset and Woodard 2013; 
King and Zeng 2001a, b; Guns and Vanacker 2012).

1.3 � Research objective

The objective of this study is twofold: (a) identify the climatic, environmental and situ-
ational factors that affect the occurrence of human harm (fatalities and injuries) in flash 
flood events, and (b) develop a predictive model to estimate the likelihood of human harm 
occurrence in flash flood events. The developed model has the potential to enhance public 
safety by informing the planning of structural and non-structural flood mitigation and risk 
reduction projects at the local community scale (e.g., neighborhood, town, sub-city).

1.4 � Paper organization

The remainder of this paper is organized into six sections. Section 2 describes the data used 
in the study and the process of assembling these data from disparate sources. Section 3 
describes the modeling methodology and philosophy of a binary logistic model applied to 
rare events. The logit model evaluation methods and the results of different logistic models 
are discussed in Sect. 4. The interpretation of the final model coefficient and model per-
formance evaluation are summarized in Sect. 5. Section 6 provides two case studies where 
the model is used to predict the likelihood of human harm occurrence in hypothetical flash 
flood events. Section 7 discusses the key advantages, contributions, and the limitations of 
the proposed model and provides explanations for the factors that influence human safety 
during flash flooding. Section 8 summarizes the study conclusions and recommendations.
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2 � Data

2.1 � Flash flood event data

A total of 6065 flash flood events that occurred in Texas over a 15-year period (2005–2019) 
are included in this study. These events were obtained from the National Oceanic and 
Atmospheric Administration (NOAA) Storm Events database (NWS 2022). The Storm 
Events database contains spatial and temporal information about natural storm hazards 
(including flash flooding) that have sufficient intensity to cause loss of life, injuries, signifi-
cant property damage, and/or disruption to commerce.

Human injury or death, called “human harm” in this study, occurred in 128 out of 6065 
flash flood events. Therefore, the occurrence rate of human harm is only about 2%. Fig-
ure 2 shows the number of flash flood events in each Texas county and the relative number 
of fatalities and injuries. The blue dots represent events that resulted in human harm. The 
size of dot represents the relative number of human fatalities and injuries. The larger the 
size of the blue dot, the greater the number of human fatalities and injuries during that 
flash flood event. It can be seen that human harm was not only found in areas where flash 
flooding is more common (dark red counties), but also could happen in areas with occa-
sional or infrequent flash flooding.

2.2 � Factors influencing human safety during flash flood events

Based on previous studies of environmental and situational factors associated with human 
fatalities and injuries in flash flood events, we identified 15 candidate factors as model pre-
dictors. These factors, their data sources, and the rationale for considering them in this 
study are provided in Table 1. Collectively, these factors represent the external stimuli that 
could influence the likelihood of human harm occurrence during flash flood events.

The data on these factors were acquired from different publicly available datasets 
and platforms, which have diverse formats and structures. Therefore, it was necessary to 

Fig. 2   Number of flash flood 
events and associated fatalities 
and injuries in Texas (2005–
2019). (Dot size is proportional 
to the number of fatalities and 
injuries in the flash flood event. 
Approximate boundaries of the 
flash flood alley are sketched in 
black.)

No. of Flash

Flood Events

Harmful

Events

Flash Flood Alley
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integrate these disparate data based on geographical coordinates (latitude and longitude), 
census tract, and year of the flash flood event. Google Earth Engine Python Application 
Programming Interface (API) and ESRI’s ArcGIS software were used to implement data 
integration and geoprocessing. The final dataset used in this study included flash flood 
events and potential influencing factors at the census tract scale. The census tract is used to 
capture the characteristics of the natural, built, and social environments of the area affected 
by the flash flood event. The assembling of the study dataset is illustrated in Fig. 3.

3 � Modeling approach

In this section, we present the theoretical basis of our rare-event modeling approach for 
predicting and explaining the occurrence of human harm in flash flood events. We adopted 
a logistic modeling approach over other more sophisticated modeling techniques (e.g., 
machine learning models) due to their enhanced transparency and interpretability. Logistic 
models allow the model users (including both practitioners and scientists) to contextual-
ize the model’s inputs and outputs and understand the mechanism of flash flooding safety 
through relatively simple mathematical formulas.

Logistic regression model (logit model) is a commonly used statistical method for pre-
dicting the probability of a binary outcome. However, conventional logistic regression can 
grossly underestimate the probability of rare events (Imbens 1992; Cosslett 1981; Lancas-
ter and Imbens 1996; King and Zeng 2001a, b). Thus, appropriate statistical corrections 
must be applied carefully. This is a challenging problem because conventional logistic 
models do not always lead to a robust inference of controlling factors, as the results can be 
strongly sample dependent (Guns and Vanacker 2012).

3.1 � Conventional logistic regression

In a logit model, a single outcome variable Yi(i = 1… n) is used to represent harmful event 
( Yi = 1 ) and non-harmful event ( Yi = 0 ). It follows a Bernoulli probability function that 
takes on the value 1 with probability πi and 0 with probability 1 − πi. 

Fig. 3   Assembling of the study dataset
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�i varies over the observations as an inverse logistic function of a vector of influencing 

factors ( Xi) and their coefficients ( β):

The Bernoulli probability function is as follows:

Assuming independence over the observations (i.e., the occurrence of flash flood 
event A has no effect on the occurrence of event B), it is common to use the maximum 
likelihood to estimate the parameters of the likelihood function:

The log-likelihood function is denoted as follows:

Greene (1993) suggested using maximum likelihood estimation (MLE) analysis to 
find the value of β that gives the maximum value of this function, which is β̂ . The esti-
mated �̂  is considered consistent and asymptotically efficient when observations are 
randomly selected from the population. However, it is well known that MLE is only 
asymptotically unbiased and its estimators may be heavily biased when many covari-
ates exist or highly correlate (Gao and Shen 2007). The bias could be exacerbated with 
rare events parameter estimation when a very small number of ones (Y = 1) exist in the 
observations (Leitgöb 2020). Moreover, conventional logistic regression strongly under-
estimates the πi = Pr

(
Yi = 1|xi

)
 in rare events data in which the “ones” are more statisti-

cally informative than the “zeros” (Imbens 1992; Cosslett 1981; Lancaster and Imbens 
1996; King and Zeng 2001a, b). This can be seen by analyzing the variance of the esti-
mated �̂  , as follows:

 where x′
i
   = the inverse of the influencing factors vector ( x

i
).

In models that exhibit sufficient explanatory power, the term πi is larger (and closer 
to 0.5) for Yi = 1than for Yi = 0 . Thus, additional “ones” yield a larger πi

(
1 − πi

)
 and a 

smaller variance than additional zeros, making the model more informative.

3.2 � Bias correction

While logistic regression is a powerful tool to predict a binary output, it could lead to 
strong biases in the coefficient estimates with heavily imbalanced data, like rare events 
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data, and result in widely varying predictions. In order to remedy the underestimates of 
probability for ones in rare events, King and Zeng (2001a, b) proposed a method of bias 
correction in logistic regression with finite sample for rare events such as war, vetoes, 
and epidemiological infections. The likelihood of those rare events is usually underesti-
mated by conventional predictive models, like MLE logit model.

King and Zeng (2001a, b) developed a prior correction for the logit model for the 
intercept term β0 , which is statistically consistent:

 where τ = the true population fraction of events. 
−
y = the fraction of events in the sam-

ple. β̂0 = uncorrected intercept term.
They also noted that the bias term can be simply subtracted from the estimated param-

eter, denoted as β̃,

Based on the analytical approximations from McCullagh and Nelder (1989), bias term 
in rare events can be written as,

 where

 where ωi is the weight, computed from weighted log-likelihood function as follows:

Computing this bias term involves solving a weighted least-square regression with X as 
the explanatory variable and ξ as the dependent variable with weight W . Then, the com-
puted β̃ , as the bias corrected coefficient estimator, is used to calculate the probability func-
tion πi , as follows:
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)( −
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This adjusted logit model with bias correction and weighting has been tested through 
multiple simulations to exhibit improvement over conventional MLE, especially when lim-
ited number of observations collected and event occurrence is less than 5%. This method 
of logistic regression with bias adjustment is referred as rare event logistic regression 
(Relogit).

The large sample size (a total of 6065 flash flood events) and low occurrence rate of 
harmful events (approximate 2%) make predicting human harm from flash flooding suit-
able for the Relogit method. In this study, Relogit is performed through the Zelig R pack-
age (Imai et al. 2008; Choirat et al. 2020).

3.3 � Penalized maximum likelihood estimation

The King and Zeng (2001a, b) method is not the only statistical approach to adjust-
ing for rare events. The bias of the MLE method in estimating parameter β can be 
expanded as:

The common approaches to correct the bias in MLE are to remove the term B1(β)∕n 
from the asymptotic bias (Cox and Hinkley 1979; Quenouille 1949, 1956). However, 
these approaches rely on the existence of the MLE estimators from the sample and 
then correct it afterwards. Firth (1993) noted that it is not uncommon that the MLE 
estimator is infinite in some samples, especially with small to medium sample size. 
This scenario is more likely to happen with linear logistic models for a binary response 
(Albert and Anderson 1984; Clogg et al. 1991).

In order to solve this problem, Firth’s (1993) introduced a penalization parameter 
to the likelihood function that equal to the square root of the determinant of the infor-
mation matrix |I(β)|

1

2 . This correction scheme is equivalent to the Jeffery’s invariant 
prior when the parameter is the canonical parameter of an exponential family (Jeffreys 
1946). The penalized likelihood function can be written as:

By taking the natural logarithm:

 where I(β) denotes Fisher’s information of the sample I
(
β) = X

T
WX

)
 , where 

W = diag
[
πi
(
1 − πi

)]
 . The information matrix also defined as the negative expected value 

of the first derivative of score function U(β) =
∑n

i=1

�
yi − πi

�
xir = 0 . Firth (1993) pro-

posed a modification to the score function based on simple triangular geometry shown in 
Fig. 4. The first-order bias of B1(β)∕n can be removed by shifting the score function by 
I(�)B1(�)∕n , where the gradient of U(β) is given by �U(β)∕�β = −I(β).

The modified score function is:

This bias-preventive approach offers a systematic corrective procedure applied 
to the score function instead of correcting it after it is estimated. When applied to a 
binary logit model, this approach is known as Firth’s logistic regression or penalized 
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maximum likelihood estimation (PMLE). Firth’s PMLE approach has been proven 
to be consistently superior to conventional MLE for datasets with separation or 
small to medium sample size (Heinze and Schemper 2002; Bull et  al. 2002). In this 
study, Firth’s PMLE method was implemented using the logistf R package (Heinze 
et  al. 2013). In the next section, we compare results of Firth’s PMLE model to that 
of the conventional logistic regression model and King and Zeng’s Relogit model to 
understand how the bias adjustment effects the parameter estimators (i.e., the model 
coefficients).

4 � Training and evaluation of alternative models

In this section, we evaluate the conventional MLE, Firth’s PMLE, and King and Zeng’s 
Relogit models to determine the most robust model for predicting the likelihood of 
fatality or injury occurrence in flash flood events and for explaining the factors that can 
potentially affect human safety during flash flooding.

Fig. 4   Modification of the score function (Firth 1993)

Table 2   Data splitting for training and testing

Attribute Total dataset Training dataset Testing dataset

Total number of flash flood events 6065 4549 1516
Total number of harmful events 128 99 29
Harmful event occurrence rate (%) 2.11 2.18 1.91
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4.1 � Data splitting

The dataset in this study (containing 6065 flash flood events in Texas) was randomly 
split into training and testing datasets at a 75:25 ratio. Table 2 shows the distribution of 
harmful events for training and testing datasets. Logit models with MLE, Firth’s PLME, 
and King and Zeng’s Relogit were trained on the same training dataset and evaluated on 
the same validation dataset.

4.2 � Performance of alternative models

The performance of the three alternative models was evaluated using the receiver operating 
characteristics (ROC) curve and Precision-Recall (PR) curve.

The ROC curve describes the trade-off between the model’s sensitivity and false-pos-
itive rate (FPR) at varying probability cutoff thresholds that delineate harmful flash flood 
events from non-harmful ones. The area under the ROC curve (AUROC) is suitable for 
evaluating the alternative models because it is insensitive to class distribution and is thresh-
old invariant (Guns and Vanacker 2012). The PR curve describes the trade-off between the 
model’s precision and recall at varying threshold values. In the context of public safety, 
the positive class (i.e., flash flood events that resulted in at least one injury or fatality) is of 
greater interest than the negative class (i.e., non-harmful events). In this context, the area 

Table 3   Performance of 
evaluated models using the 
testing dataset

Model AUROC AUPRC

MLE 0.90 0.24
PMLE 0.94 0.33
Relogit 0.94 0.41

Fig. 5   ROC curve for the Relogit model
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under the PR curve (AUPRC) is also a suitable performance metric because it will not be 
swamped by the large proportion of true negatives in the data (Saito 2015; Sofaer et  al. 
2019; Pinker 2018). As shown in Table 3, all three models display a good performance 
in terms of AUROC (greater than 0.90). However, the Relogit model outperforms both 
the MLE and PMLE models in terms of AUPRC. The ROC and PR curves for the Relogit 
model are shown in Figs. 5 and 6, respectively.

To evaluate the precision of the Relogit model, a cutoff point needs to be selected to 
determine whether a flash flood event is considered harmful or not. Flash flood events with 
a probability higher than the cutoff point would be classified as harmful, whereas events 
with a probability lower than the cutoff point would be classified as non-harmful. For rare-
event data, however, the selection of cutoff point (called optimal threshold tuning) is a 
trade-off between precision and recall. Precision is the fraction of true positives (harmful 
events) among all predicted positives, whereas recall is the fraction of true positives among 
all observed positives. In this study, we determined the optimal cutoff point in two ways: 
(1) maximize the model’s accuracy (which is a function of the sum of the true-positive 
rate and true-negative rate), and (2) maximize the F-2 score (which combines precision 
and recall as a harmonic mean with additional weight on precision). These two methods 
yielded a precision of 10% (at 5% optimum cutoff point) and 37% (at 14% optimum cut-
off point) (see Figs. 5 and 6). These low-precision values suggest that the Relogit model 
may not be suitable as a binary classifier of flash flood events as harmful and non-harmful. 
Instead, it is best suited for predicting the probability of human harm occurrence.

4.3 � Monte carlo simulation for coefficient estimates

A Monte Carlo (MC) simulation was designed in this study to evaluate bias in the estima-
tion of the logit model coefficients with different sample sizes. Since the harmful events 
have an occurrence rate of 2% in the study dataset, the MC simulation was designed at a 

Fig. 6   PR curve for the Relogit model
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2% prevalence rate for the positive class with the sample size varying from 50 to 5,000. 
The setup of the MC simulation is summarized below:

 where �0.02 = A logit transformed linear predictor with 2% occurrence rate; α = intercept 
of linear predictor defined as � = −log((1 − p)∕p) ; β = slope of linear predictor; x = simu-
lated variable that follows a normal distribution between [0,1]; Event probabilityp = 0.02 ; 
Sample size = 50, 100, 200, 500, 1000, 2000, 5000; True slope (coefficient) β0 = 2 ; Num-
ber of replications = 1000.

The results of the MC simulation for the coefficient estimates for the conventional MLE, 
Firth’s PMLE, and King and Zeng’s Relogit models are summarized in Table 4. Conven-
tional MLE, without bias correction, fails to include the true slope ( �0 = 2 ) within 95% 
confidence interval of the estimates until the sample size exceeds 1000. In contrast, the 
coefficient estimations from the PMLE and Relogit models are close to the true slope 
( β0 = 2 ) even with a small to medium sample size. Additionally, for 5000 observations, 
the PMLE and Relogit models still outperform the conventional MLE with mean value of 
estimation closer to the true slope. Therefore, bias adjustment is necessary for logit models 
to achieve correct statistical inferences about the occurrence of fatalities or injuries in flash 
flood events.

5 � Selected model

5.1 � Model variables and coefficients

As discussed earlier, the Relogit model was selected as the final model due to its superior 
performance over the MLE and PMLE models and unbiased estimation of model coeffi-
cients. The values of the final Relogit model coefficients are provided in Table 5. The inter-
pretation of coefficient value is different for binary and numeric independent variables. For 
example, the coefficient for the binary variable Nighttime (0.6437) indicates that a flash 
flood that occurs at night has e0.6437 = 1.90 times the odds of being harmful compared to 
those that occur during the daytime. On the other hand, the coefficient for the numeric 
variable median age of structures (− 0.03423) implies that an increase of one year in the 
median age of structures for a census tract multiplies the odds of flash flood human harm 
by e−0.03423 = 0.97 . Some potential influencing factors (such as road density and soil type) 
are removed from final Relogit model due to either the lack of statistical significance or not 
contributing to the model’s predictive power.

(15)�0.02 = � + � ∗ x

Table 4   MC simulation results of 
mean slope ( β)

*The 95% confidence interval does not contain the true slope of �
0
= 2

Model Sample size

50 100 200 500 1000 2000 5000

MLE 15.412* 3.228* 2.141* 2.06* 2.024 2.015 2.004
PMLE 1.925 1.979 1.976 1.992 1.998 2.006 2.001
Relogit NA NA 2.038 1.994 2.005 2.003 1.999
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Independent variables with lower P values have greater influence on the model’s predic-
tions. Thus, the independent variables can be ranked based on their P value or odds ratio to 
assess their effect on the likelihood of human injury or fatality in a flash flood event. Vehi-
cle-related activities during flash flooding exhibited the smallest P value and greatest odds 
ratio (i.e., has the greatest effect on the model’s predictive power) among all independent 
variables, followed by the event’s precipitation amount, location with respect to the Flash 
Flood Alley (inside or outside), median age of structures, low water crossing density, and 
event duration. While independent variables with a P value slightly greater than 0.05, such 
as population density and ground slope, may be considered statistically insignificant, they 
do enhance the model’s predictive power.

The variability of the logit model coefficient is indicated by the standard error. The 
smaller the standard error, the more precise the estimate of the coefficient value. No multi-
collinearity was found in the model (variance inflation factor less than 2 for all predictors).

5.2 � Predicted likelihood of human harm occurrence

The likelihood of human harm occurrence is predicted using the final Relogit model as 
follows:

 where P(Y = 1) is the probability that a flash flood event will lead to at least one fatality or 
injury; β̃ is bias adjusted coefficient estimates β̃0, β̃1,… , ̃β10 for the independent variables 
coefficients and intercept from the final Relogit model and X represents input values of 
Matrix x1, x2,… , x10 from the independent variables. Values for the coefficients in the final 
Relogit model are listed earlier in Table 5.

(16)P(Y = 1) =
1

1+e−Xβ̃

Table 5   Final Relogit model independent variables and coefficients

a Signif. codes: *** < 0.001; ** < 0.01; * < 0.05., + > 0.05 but improve model’s performance
b LWX = Low water crossing

Variable Estimate Std. error Odds ratio (per unit) P value Signif. Codesa

(Intercept) − 6.42E + 00 5.79E-01 – < 2.00E-16 ***
Duration (hour) 1.80E-02 5.11E-03 1.0182 4.24E-04 ***
Precipitation (inch) 1.28E-01 2.39E-02 1.1366 9.14E-08 ***
Median age of structures 

(year)
− 3.42E-02 8.45E-03 0.9663 5.14E-05 ***

Population density (people/
sq.mi)

7.79E-05 7.09E-05 1.0001 2.72E-01 +

Nighttime event 6.44E-01 2.55E-01 1.9035 1.17E-08 *
Flash flood alley 1.12E + 00 2.32E-01 3.0557 1.55E-06 ***
Vehicle involvement 2.95E + 00 2.77E-01 19.0678 < 2.00E-16 ***
Bridge density (count/sq.mi) 5.33E-02 2.46E-02 1.0547 0.030355 *
LWX density (count/sq.mi)b 2.36E-01 6.40E-02 1.2659 0.000231 ***
Ground slope (degree) 1.16E-02 7.29E-03 1.0117 0.111786 +
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Figure 7 displays the histogram of probabilities of harmful flash flood events estimated 
using the final Relogit model for the testing dataset. For the majority of cases, the probabil-
ity of human harm occurrence is under 2%, which aligns with the actual occurrence rate.

6 � Study cases

To demonstrate the utilization of the developed model as a tool for informing better miti-
gation planning for flash flooding, we applied the model to two study cases in Texas. The 
hydrometeorological data used in these hypothetical cases are based on actual historical 
storms in the study regions.

Fig. 7   Predicted probabilities of human harm occurrence for the testing dataset

Fig. 8   Probability of non-vehicle-related human harm during flash flooding in harris county (hypothetical 
event duration = 72 h, hypothetical precipitation = 35 inches)
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6.1 � Study case 1: nighttime effect on flash flood safety in harris county

This study case shows the probability of human harm occurrence in a flash flood event 
generated by a storm similar to Hurricane Harvey (August 2017) in Harris County, 
Texas, where the city of Houston is located. This hurricane-induced flash flood event 
yielded 35 inches of rainfall across the county for a total of three days and resulted 
in numerous fatalities and injuries. Figure  8 maps the probability of the occurrence 
of human harm during this storm due to flash flooding in each census tract in Harris 
County, during nighttime and daytime. The estimated probabilities of human harm are 
presented in three equally spaced categories: low (< 0.33), medium (0.33–0.66), and 
high (> 0.67). In this simulation, the Houston downtown area has the greatest risk of 
human harm due to higher population density and greater bridge density. The probabil-
ity of human harm increases for the entire county when the simulated flash flood event 
occurs at night (right side of Fig.  8). For example, the probability of human harm in 
census tract FIPS:48,201,543,200 (highlighted in Fig. 8 increases from 21% during day-
time to 34% during nighttime.

6.2 � Study case 2: effect of vehicle activities on flash flood safety in bexar county

This study case shows the probability of human harm occurrence from a flash flood 
event brought by a tropical storm similar to storm Erin (August 2007) in Bexar County, 
Texas, where the city of San Antonio is located. This storm had a precipitation of 6 
inches and lasted for 14  h. The probability of the occurrence of human harm during 
this simulated flash flooding in Bexar County is plotted in Fig. 9. The majority of com-
munities exhibit low risk of human harm as the rainfall amount and duration remain 

Fig. 9   Probability of human harm during flash flooding in bexar county (daytime event, hypothetical event 
duration = 14 h, hypothetical precipitation = 6 inches)
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low in this simulated event. However, the probability of human harm increases sub-
stantially for people exposed to vehicles during the event (both inside and outside the 
vehicle). It can be observed that nearly one half of the communities in Bexar County 
turn to medium risk, and some of them become high risk (i.e., high probability of fatal-
ity or injury occurrence). For example, census tract FIPS: 48,029,131,601 (highlighted 
in Fig. 9) has a 3% probability of non-vehicle human harm, but that probability jumps to 
38% for vehicle-related incidents.

7 � Discussion

The developed Relogit model has important advantages that improve the prediction of flash 
flooding safety risks. First, the data used in this model have finer spatial resolution than that 
used in prior studies. Prior interdisciplinary models for predicting human harm in flood 
events (Terti et al. 2019; Zahran et al. 2008) have been at the county scale. We use a finer 
spatial resolution (i.e., census tract) that is more consistent with the spatial scale of flash 
flooding. Second, our modeling technique accounts for the rareness of flash flood events 
that resulted in fatalities or injuries (i.e., imbalanced data). Despite these advantages, the 
model has limitations that stem from imperfections in the dataset, including the potential 
for inaccuracies in the event location and the possibility of missing (unrecorded) events.

Our model shows that vehicle involvement has the largest impact on human safety dur-
ing flash flood events, which agrees with previous studies (e.g., Sharif et al. 2012). Quan-
titatively, our model shows that vehicles increase the odds of human harm by 19 times, 
compared to human harm that does not involve vehicles (e.g., drowning without vehicle 
involvement). The odds of human harm almost doubles when flash flooding occurs at 
night, perhaps due to the victims limited vision affecting their assessment of the depth and 
speed of floodwater. The odds of human harm are worse (three times more) if the affected 
community is located in the Flash Flood Alley.

The risk of human harm increases for newer and more densely populated neighbor-
hoods. Neighborhoods with older structures exhibited less risk of human harm during 
flash flood events than newer neighborhoods. This finding could be an indicator that older 
neighborhoods (measured in terms of median age of structures) in Texas tend to be located 
in higher elevation areas and further away from floodways compared to newer neighbor-
hoods. Densely populated communities tend to be more vulnerable to human harm dur-
ing flash flooding perhaps because of greater urbanization and human movements in these 
communities.

Lastly, for all situations and geographic locations, the risk of human harm increases 
with rainfall duration and intensity, steep topography, higher density of bridges, and higher 
density of low water crossings.

8 � Conclusions and recommendations

The occurrence of injuries and fatalities (termed “human harm” in this study) during flash 
flooding was found to be a rare event (about 2% occurrence rate) based on 6,065 flash flood 
events that occurred in Texas over a 15-year period (2005–2019). We found that the bias 
adjusted Relogit model is the most suitable logistic model for predicting the likelihood 
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of human harm occurrence (fatalities or injuries) in flash flooding. The model considers 
ten independent variables that could affect human safety in flash flood events at the cen-
sus tract scale. These variables represent situational factors, storm characteristics, and the 
built, natural, and social environments in which the storm occurs. The Relogit model has 
a better precision-recall performance (measured as AUPRC) and similar sensitivity-FPR 
performance (measured as AUROC) compared to other logistic models, invariant of the 
cutoff threshold.

The utilization of the developed model as a simulation tool for informing flash flooding 
mitigation and safety planning was demonstrated in two study cases: flash flooding trig-
gered by a hurricane in Harris County and flash flooding triggered by a tropical storm in 
Bexar County. Future work could include: (1) further assessment of the probabilistic nature 
of the trained model considering future flash flood events; (2) development of similar mod-
els for other regions in the USA using the process described here; (3) analysis of digital 
elevation models (DEM) to determine if older neighborhoods tend to be located in higher 
elevation areas and further away from floodways compared to newer neighborhoods; and 
(4) building a simulation platform that use the Relogit model for informing the planning of 
flash flood mitigation and safety strategies.
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