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Abstract

Flash flooding is considered one of the most lethal natural hazards in the USA as measured
by the ratio of fatalities to people affected. However, the occurrence of injuries and fatali-
ties during flash flooding was found to be rare (about 2% occurrence rate) based on our
analysis of 6,065 flash flood events that occurred in Texas over a 15-year period (2005 to
2019). This article identifies climatic, environmental, and situational factors that affect the
occurrence of fatalities and injuries in flash flood events and provides a predictive model
to estimate the likelihood of these occurrences. Due to the highly imbalanced dataset, three
forms of logit models were investigated to achieve unbiased estimations of the model coef-
ficients. The rare event logistic regression (Relogit) model was found to be the most suit-
able model. The model considers ten independent situational, climatic, and environmental
variables that could affect human safety in flash flood events. Vehicle-related activities dur-
ing flash flooding exhibited the greatest effect on the probability of human harm occur-
rence, followed by the event’s time (daytime vs. nighttime), precipitation amount, location
with respect to the flash flood alley, median age of structures in the community, low water
crossing density, and event duration. The application of the developed model as a simula-
tion tool for informing flash flood mitigation planning was demonstrated in two study cases
in Texas.
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1 Introduction
1.1 Background

Flash flooding, usually triggered by heavy rainfall associated with severe thunderstorms,
hurricanes or tropical storms, is considered one of the most lethal natural hazards in USA
(Ahmadalipour and Moradkhani 2019; Terti et al. 2017; Kelsch et al. 2001) define flash
flooding as a phenomenon in which the rainfall-runoff hydrologic processes occur on the
same temporal and spatial scales as the triggering intense precipitation. Rainfall-induced
flash floods are characterized by their rapid onset (usually under 6 h) and small spatial
scale (Terti et al. 2015; Ahmadalipour and Moradkhani 2019) found that the average dura-
tion of flash floods between 1996 and 2017 was about 3.5 h, but in rare cases, they lasted
for two days. The fact that they hit with little lead time for warning and are of such velocity
and force makes flash floods one of the most unsafe types of natural hazard when measured
by the ratio of fatalities to people affected. Over the past two decades, data reported by
the National Weather Service (NWS) indicate that approximately 72% of all flood-related
fatalities, 72% of all flood-related injuries, and 52% of flood-related economic losses in the
USA are attributed to flash flooding (NWS 2019). Figure 1 indicates that the number of
fatalities from flash floods largely exceeded that from other flood types in the USA during
the period 2000-2019.

Texas has the highest number of flash flood fatalities among all states. From 1959 to
2008, there were 840 flood fatalities reported in Texas, 442 of which occurred in flash
flood events (52.6%) (Shah et al. 2017). These flash flood fatalities occurred largely in Cen-
tral Texas “Hill Country” along the Balcones Escarpment, which lies between the Edwards
Plateau and the coastal plain (Sharif et al. 2012, 2015). This region (known as “the Flash
Flood Alley) contains 44 counties and is characterized by steep terrain, shallow soil, and
high rainfall rates (Baker 1975; Caran and Baker 1986).

Although rainfall patterns are complex and difficult to predict, climate models suggest
that precipitation will likely occur more frequently and with greater intensity in the future
in many regions around the globe (Wang and Zhang 2008; Sharif et al. 2012; Wobus et al.
2014). Since 1991, extreme rainfall events in the USA, defined as the heaviest 1% of daily
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Fig. 1 Number of flood fatalities in the USA (2000-2019)
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events, have increased in both frequency and magnitude (Walsh et al. 2014). Urbanization,
which causes changes to land use, removal of vegetation and soil, grading of land sur-
face, and construction of drainage networks, affect flood peak discharge and volume, and
consequently human safety (Anderson 1970; Bailey 1989; Konrad 2002). In this study, we
analyze the role that rainfall patterns and built and social environment characteristics play
in predicting the occurrence of fatalities and injuries during flash flood events. This work
informs hazard mitigation planning to reduce impacts from flash flooding (Masterson et al.
2014).

1.2 Prior work and knowledge gaps

Prior studies suggest that flash flood human fatalities and injuries are influenced by behav-
ioral factors, the surrounding natural and built environments, and storm characteristics.
Next, we discuss these groups of factors and identify the knowledge gaps that this paper
addresses.

Behavioral factors refer to actions willingly taken by individuals, leading to injury
or death in flash flood events. These actions are often rooted in beliefs that flash flood-
ing would pose no or little risk to human life (Benight et al. 2007; Hamilton et al. 2016).
Almost half of people driving vehicles on roadways who enter floodwater reported that
they did not think it was unsafe to do so (Ruin et al. 2007). A study conducted by Sharif
et al. (2015) revealed that of 616 flood fatalities in Texas, 471 (76%) were vehicle-related,
such as people driving over what may have seemed like a low-water crossing. About 16.5%
(102 individuals) died after walking into flood waters to cross an area that was flooded. In
a separate study, Terti et al. (2017) found that more than 60% of the reported flash flood
fatalities were related to vehicles and involved men. Ashley and Ashley (2008) found that
the age of those who die in flash flooding is either between 10 and 29 years or above 60
years. Similar findings about human behavior around floodwaters have been reported in
various parts of the world, such as Greece (Diakakis 2020) and Australia (Hamilton et al.
2016). The identification of these social and behavioral factors provides guidance for non-
structural interventions (such as public awareness campaigns) to curb risky behaviors dur-
ing flood situations (Lindell and Perry 1992).

Environmental and situational factor—(the focus of this study)—refer to the character-
istics of the flood area and community, human interaction with vehicles, and the triggering
natural hazard. Understanding these factors is important for planning flash flood mitigation
and safety strategies.

Zahran et al. (2008) and Terti et al. (2019) developed flood casualty predictive models
at the county scale. Zahran et al. (2008) developed a zero-inflated negative binomial model
to predict the odds of a flood casualty (considering all flood types combined) from the
impacts of hurricanes, tropical storms, and tornados. Terti et al. (2019) trained a random
forest model to predict the likelihood of vehicle-related fatal incidents in flash flood events
at the county scale using data from Texas and Oklahoma. Both of these models indicate
an association between the odds of flood casualty occurrence and the event precipitation
amount, event duration, unit peak discharge, population density, and social vulnerability.
Zahran et al. (2008) model considers all flood types combined, its applicability to flash
flooding may be limited. Terti et al. (2019) county-based model has the advantage of being
specific to flash flooding and therefore could be used in decision-making around flash flood
threats at the county level or larger scales (e.g., NWS flash flood warnings).
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To address these limitations, we provide a new model for identifying climatic, environ-
mental, and situational factors that affect the occurrence of human fatalities and injuries in
flash flood events at a finer spatial resolution. The model uses these influencing factors to
predict the probability that a flash flood event will lead to at least one fatality or injury at
the census tract scale. Key advantages of the proposed model compared to existing models
include:

e The model uses a spatial scale consistent with the local nature of flash floods. We use
the census tract as the analysis unit to capture temporal and spatial complexities at the
scene of the incident. The census tract (delineated by the US Census Bureau) is a rel-
atively permanent subdivision of a county with a population size between 1200 and
8000 people (the optimum size is 4000 people) (U.S. Census 2022). In urban areas,
census tracts are relatively small geographic areas, although in rural areas they can be
larger. Census tracts are commonly used as a proxy for neighborhood in many studies.
Since much hazard planning is completed at the county scale, intracounty geographic
scales like census tracts allow practitioners to address vulnerabilities within their juris-
diction (Lindell et al. 2006).

e The model accounts for the rare occurrence of flash flood fatalities and injuries. As
it will be shown later in this paper, flash flood events that resulted in human fatali-
ties or injuries are rare compared to the number of events that did not result in human
harm (i.e., the data are highly imbalanced). It is difficult to obtain unbiased statistical
inferences from these data using conventional statistical methods. Therefore, we use a
“rare-event” modeling technique, commonly used in economics, social anthropology,
and natural hazard and earth sciences (Sanders et al. 2002; Clauset and Woodard 2013;
King and Zeng 2001a, b; Guns and Vanacker 2012).

1.3 Research objective

The objective of this study is twofold: (a) identify the climatic, environmental and situ-
ational factors that affect the occurrence of human harm (fatalities and injuries) in flash
flood events, and (b) develop a predictive model to estimate the likelihood of human harm
occurrence in flash flood events. The developed model has the potential to enhance public
safety by informing the planning of structural and non-structural flood mitigation and risk
reduction projects at the local community scale (e.g., neighborhood, town, sub-city).

1.4 Paper organization

The remainder of this paper is organized into six sections. Section 2 describes the data used
in the study and the process of assembling these data from disparate sources. Section 3
describes the modeling methodology and philosophy of a binary logistic model applied to
rare events. The logit model evaluation methods and the results of different logistic models
are discussed in Sect. 4. The interpretation of the final model coefficient and model per-
formance evaluation are summarized in Sect. 5. Section 6 provides two case studies where
the model is used to predict the likelihood of human harm occurrence in hypothetical flash
flood events. Section 7 discusses the key advantages, contributions, and the limitations of
the proposed model and provides explanations for the factors that influence human safety
during flash flooding. Section 8 summarizes the study conclusions and recommendations.
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2 Data
2.1 Flash flood event data

A total of 6065 flash flood events that occurred in Texas over a 15-year period (2005-2019)
are included in this study. These events were obtained from the National Oceanic and
Atmospheric Administration (NOAA) Storm Events database (NWS 2022). The Storm
Events database contains spatial and temporal information about natural storm hazards
(including flash flooding) that have sufficient intensity to cause loss of life, injuries, signifi-
cant property damage, and/or disruption to commerce.

Human injury or death, called “human harm” in this study, occurred in 128 out of 6065
flash flood events. Therefore, the occurrence rate of human harm is only about 2%. Fig-
ure 2 shows the number of flash flood events in each Texas county and the relative number
of fatalities and injuries. The blue dots represent events that resulted in human harm. The
size of dot represents the relative number of human fatalities and injuries. The larger the
size of the blue dot, the greater the number of human fatalities and injuries during that
flash flood event. It can be seen that human harm was not only found in areas where flash
flooding is more common (dark red counties), but also could happen in areas with occa-
sional or infrequent flash flooding.

2.2 Factors influencing human safety during flash flood events

Based on previous studies of environmental and situational factors associated with human
fatalities and injuries in flash flood events, we identified 15 candidate factors as model pre-
dictors. These factors, their data sources, and the rationale for considering them in this
study are provided in Table 1. Collectively, these factors represent the external stimuli that
could influence the likelihood of human harm occurrence during flash flood events.

The data on these factors were acquired from different publicly available datasets
and platforms, which have diverse formats and structures. Therefore, it was necessary to
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Fig.3 Assembling of the study dataset

integrate these disparate data based on geographical coordinates (latitude and longitude),
census tract, and year of the flash flood event. Google Earth Engine Python Application
Programming Interface (API) and ESRI’s ArcGIS software were used to implement data
integration and geoprocessing. The final dataset used in this study included flash flood
events and potential influencing factors at the census tract scale. The census tract is used to
capture the characteristics of the natural, built, and social environments of the area affected
by the flash flood event. The assembling of the study dataset is illustrated in Fig. 3.

3 Modeling approach

In this section, we present the theoretical basis of our rare-event modeling approach for
predicting and explaining the occurrence of human harm in flash flood events. We adopted
a logistic modeling approach over other more sophisticated modeling techniques (e.g.,
machine learning models) due to their enhanced transparency and interpretability. Logistic
models allow the model users (including both practitioners and scientists) to contextual-
ize the model’s inputs and outputs and understand the mechanism of flash flooding safety
through relatively simple mathematical formulas.

Logistic regression model (logit model) is a commonly used statistical method for pre-
dicting the probability of a binary outcome. However, conventional logistic regression can
grossly underestimate the probability of rare events (Imbens 1992; Cosslett 1981; Lancas-
ter and Imbens 1996; King and Zeng 2001a, b). Thus, appropriate statistical corrections
must be applied carefully. This is a challenging problem because conventional logistic
models do not always lead to a robust inference of controlling factors, as the results can be
strongly sample dependent (Guns and Vanacker 2012).

3.1 Conventional logistic regression
In a logit model, a single outcome variable Y;(i = 1 ... n) is used to represent harmful event

(Y; = 1) and non-harmful event (¥; = 0). It follows a Bernoulli probability function that
takes on the value 1 with probability x; and 0 with probability 1 — ;.
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Y, ~ Bern()ulli(Yi |7'5i) @)

x; varies over the observations as an inverse logistic function of a vector of influencing
factors (X;) and their coefficients (§):

_ 1
T S 2

The Bernoulli probability function is as follows:
Y, 1-Y;
P(Yi|ni) =7'|:i'(1 —Tti) (3)

Assuming independence over the observations (i.e., the occurrence of flash flood
event A has no effect on the occurrence of event B), it is common to use the maximum
likelihood to estimate the parameters of the likelihood function:

1-Y;

CIDESS | ECEE Y @
The log-likelihood function is denoted as follows:
InL(Bly) = Z{YF” ln(ﬂ'i) + Z{Y,:O} hl(l - 71,'1-)
e 1n<1 + e(]—ZYi)Xiﬁ> )

Greene (1993) suggested using maximum likelihood estimation (MLE) analysis to
find the value of f that gives the maximum value of this function, which is . The esti-
mated ﬁ is considered consistent and asymptotically efficient when observations are
randomly selected from the population. However, it is well known that MLE is only
asymptotically unbiased and its estimators may be heavily biased when many covari-
ates exist or highly correlate (Gao and Shen 2007). The bias could be exacerbated with
rare events parameter estimation when a very small number of ones (Y =1) exist in the
observations (Leitgdb 2020). Moreover, conventional logistic regression strongly under-
estimates the m; = Pr(Yi = 1|xi) in rare events data in which the “ones” are more statisti-
cally informative than the “zeros” (Imbens 1992; Cosslett 1981; Lancaster and Imbens
1996; King and Zeng 2001a, b). This can be seen by analyzing the variance of the esti-
mated ﬁ , as follows:

" -1
Var(ﬁ) = [Z m(1 - fti)x;x,] 6)
i=1
where x; = the inverse of the influencing factors vector (x;).
In models that exhibit sufficient explanatory power, the term m; is larger (and closer

to 0.5) for Y; = Ithan for ¥; = 0. Thus, additional “ones” yield a larger ni(l - Tti) and a
smaller variance than additional zeros, making the model more informative.

3.2 Bias correction

While logistic regression is a powerful tool to predict a binary output, it could lead to
strong biases in the coefficient estimates with heavily imbalanced data, like rare events
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data, and result in widely varying predictions. In order to remedy the underestimates of
probability for ones in rare events, King and Zeng (2001a, b) proposed a method of bias
correction in logistic regression with finite sample for rare events such as war, vetoes,
and epidemiological infections. The likelihood of those rare events is usually underesti-
mated by conventional predictive models, like MLE logit model.

King and Zeng (2001a, b) developed a prior correction for the logit model for the
intercept term P,, which is statistically consistent:

-ien](2)(2)

where © = the true population fraction of events. ¥ = the fraction of events in the sam-
ple. B, = uncorrected intercept term.
They also noted that the bias term can be simply subtracted from the estimated param-
eter, denoted as G,

B =B - bias(B) ®)

Based on the analytical approximations from McCullagh and Nelder (1989), bias term
in rare events can be written as,

bias(ﬁ) = (x'wx) "' x'we )
where

& =050;[(1+0,)% — o]
Q=X(X'Wx)'x’

W = diag{#,(1 - &) w;}
where w;is the weight, computed from weighted log-likelihood function as follows:

o= (1-0/(1-)

(ol=1:/)_/

; =0)1Yi+°)0(1 - Yi)

Computing this bias term involves solving a weighted least-square regression with X as
the explanatory variable and & as the dependent variable with weight W. Then, the com-
puted B, as the bias corrected coefficient estimator, is used to calculate the probability func-
tion x;, as follows:

= (10)
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This adjusted logit model with bias correction and weighting has been tested through
multiple simulations to exhibit improvement over conventional MLE, especially when lim-
ited number of observations collected and event occurrence is less than 5%. This method
of logistic regression with bias adjustment is referred as rare event logistic regression
(Relogit).

The large sample size (a total of 6065 flash flood events) and low occurrence rate of
harmful events (approximate 2%) make predicting human harm from flash flooding suit-
able for the Relogit method. In this study, Relogit is performed through the Zelig R pack-
age (Imai et al. 2008; Choirat et al. 2020).

3.3 Penalized maximum likelihood estimation

The King and Zeng (2001a, b) method is not the only statistical approach to adjust-
ing for rare events. The bias of the MLE method in estimating parameter 3 can be
expanded as:

Bias(p) = E(B) - p = 22 4 2O 4 an

The common approaches to correct the bias in MLE are to remove the term B, (f)/n
from the asymptotic bias (Cox and Hinkley 1979; Quenouille 1949, 1956). However,
these approaches rely on the existence of the MLE estimators from the sample and
then correct it afterwards. Firth (1993) noted that it is not uncommon that the MLE
estimator is infinite in some samples, especially with small to medium sample size.
This scenario is more likely to happen with linear logistic models for a binary response
(Albert and Anderson 1984; Clogg et al. 1991).

In order to solve this problem, Firth’s (1993) introduced a penalization parameter
to the likelihood function that equal to the square root of the determinant of the infor-
mation matrix |/(B)|2. This correction scheme is equivalent to the Jeffery’s invariant
prior when the parameter is the canonical parameter of an exponential family (Jeffreys
1946). The penalized likelihood function can be written as:

L) = L) - 1B (12)
By taking the natural logarithm:
¢"(B) = £(B) + 0.5log|1(B)] 13)

where () denotes Fisher’s information of the sample I(p)=X"WX), where
W = diag [ni(l - Tti)]. The information matrix also defined as the negative expected value
of the first derivative of score function U(P) = Y (yi - ni)x,-, = 0. Firth (1993) pro-
posed a modification to the score function based on simple triangular geometry shown in
Fig. 4. The first-order bias of B;(p)/n can be removed by shifting the score function by
I($)B,(p)/n, where the gradient of U(B) is given by oU(B)/0p = —1(p).
The modified score function is:

U*(p) = UP) - I(B)B,(P)/n (14)

This bias-preventive approach offers a systematic corrective procedure applied
to the score function instead of correcting it after it is estimated. When applied to a
binary logit model, this approach is known as Firth’s logistic regression or penalized
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U*(B)

Fig.4 Modification of the score function (Firth 1993)

maximum likelihood estimation (PMLE). Firth’s PMLE approach has been proven
to be consistently superior to conventional MLE for datasets with separation or
small to medium sample size (Heinze and Schemper 2002; Bull et al. 2002). In this
study, Firth’s PMLE method was implemented using the logistf R package (Heinze
et al. 2013). In the next section, we compare results of Firth’s PMLE model to that
of the conventional logistic regression model and King and Zeng’s Relogit model to
understand how the bias adjustment effects the parameter estimators (i.e., the model
coefficients).

4 Training and evaluation of alternative models
In this section, we evaluate the conventional MLE, Firth’s PMLE, and King and Zeng’s
Relogit models to determine the most robust model for predicting the likelihood of

fatality or injury occurrence in flash flood events and for explaining the factors that can
potentially affect human safety during flash flooding.

Table 2 Data splitting for training and testing

Attribute Total dataset Training dataset Testing dataset
Total number of flash flood events 6065 4549 1516

Total number of harmful events 128 99 29

Harmful event occurrence rate (%) 2.11 2.18 1.91
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4.1 Data splitting

The dataset in this study (containing 6065 flash flood events in Texas) was randomly
split into training and testing datasets at a 75:25 ratio. Table 2 shows the distribution of
harmful events for training and testing datasets. Logit models with MLE, Firth’s PLME,
and King and Zeng’s Relogit were trained on the same training dataset and evaluated on
the same validation dataset.

4.2 Performance of alternative models

The performance of the three alternative models was evaluated using the receiver operating
characteristics (ROC) curve and Precision-Recall (PR) curve.

The ROC curve describes the trade-off between the model’s sensitivity and false-pos-
itive rate (FPR) at varying probability cutoff thresholds that delineate harmful flash flood
events from non-harmful ones. The area under the ROC curve (AUROC) is suitable for
evaluating the alternative models because it is insensitive to class distribution and is thresh-
old invariant (Guns and Vanacker 2012). The PR curve describes the trade-off between the
model’s precision and recall at varying threshold values. In the context of public safety,
the positive class (i.e., flash flood events that resulted in at least one injury or fatality) is of
greater interest than the negative class (i.e., non-harmful events). In this context, the area

Table 3 Performanc.e of Model AUROC AUPRC
evaluated models using the
testing dataset MLE 0.90 0.24
PMLE 0.94 0.33
Relogit 0.94 0.41
Cut-off
3 - Best Accuracy —_— Threshold
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Fig.5 ROC curve for the Relogit model
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Fig.6 PR curve for the Relogit model

under the PR curve (AUPRC) is also a suitable performance metric because it will not be
swamped by the large proportion of true negatives in the data (Saito 2015; Sofaer et al.
2019; Pinker 2018). As shown in Table 3, all three models display a good performance
in terms of AUROC (greater than 0.90). However, the Relogit model outperforms both
the MLE and PMLE models in terms of AUPRC. The ROC and PR curves for the Relogit
model are shown in Figs. 5 and 6, respectively.

To evaluate the precision of the Relogit model, a cutoff point needs to be selected to
determine whether a flash flood event is considered harmful or not. Flash flood events with
a probability higher than the cutoff point would be classified as harmful, whereas events
with a probability lower than the cutoff point would be classified as non-harmful. For rare-
event data, however, the selection of cutoff point (called optimal threshold tuning) is a
trade-off between precision and recall. Precision is the fraction of true positives (harmful
events) among all predicted positives, whereas recall is the fraction of true positives among
all observed positives. In this study, we determined the optimal cutoff point in two ways:
(1) maximize the model’s accuracy (which is a function of the sum of the true-positive
rate and true-negative rate), and (2) maximize the F-2 score (which combines precision
and recall as a harmonic mean with additional weight on precision). These two methods
yielded a precision of 10% (at 5% optimum cutoff point) and 37% (at 14% optimum cut-
off point) (see Figs. 5 and 6). These low-precision values suggest that the Relogit model
may not be suitable as a binary classifier of flash flood events as harmful and non-harmful.
Instead, it is best suited for predicting the probability of human harm occurrence.

4.3 Monte carlo simulation for coefficient estimates
A Monte Carlo (MC) simulation was designed in this study to evaluate bias in the estima-

tion of the logit model coefficients with different sample sizes. Since the harmful events
have an occurrence rate of 2% in the study dataset, the MC simulation was designed at a

@ Springer



Natural Hazards (2023) 116:3957-3978 3971

Table 4 MC simulation results of

Model ~ Sample si
mean slope () ode ample size

50 100 200 500 1000 2000 5000

MLE 15.412% 3.228% 2.141* 2.06% 2.024 2015 2.004
PMLE 1.925 1.979 1976 1992 1998 2.006 2.001
Relogit NA NA 2.038 1.994 2.005 2.003 1.999

*The 95% confidence interval does not contain the true slope of f, = 2

2% prevalence rate for the positive class with the sample size varying from 50 to 5,000.
The setup of the MC simulation is summarized below:

Moo =@+ f*x (15)

where 7, = A logit transformed linear predictor with 2% occurrence rate; o=intercept

of linear predictor defined as a = —log((1 — p)/p); B=slope of linear predictor; x =simu-
lated variable that follows a normal distribution between [0,1]; Event probabilityp = 0.02;
Sample size =50, 100, 200, 500, 1000, 2000, 5000; True slope (coefficient) B, = 2; Num-
ber of replications = 1000.

The results of the MC simulation for the coefficient estimates for the conventional MLE,
Firth’s PMLE, and King and Zeng’s Relogit models are summarized in Table 4. Conven-
tional MLE, without bias correction, fails to include the true slope (f, = 2) within 95%
confidence interval of the estimates until the sample size exceeds 1000. In contrast, the
coefficient estimations from the PMLE and Relogit models are close to the true slope
(Byp = 2) even with a small to medium sample size. Additionally, for 5000 observations,
the PMLE and Relogit models still outperform the conventional MLE with mean value of
estimation closer to the true slope. Therefore, bias adjustment is necessary for logit models
to achieve correct statistical inferences about the occurrence of fatalities or injuries in flash
flood events.

5 Selected model
5.1 Model variables and coefficients

As discussed earlier, the Relogit model was selected as the final model due to its superior
performance over the MLE and PMLE models and unbiased estimation of model coeffi-
cients. The values of the final Relogit model coefficients are provided in Table 5. The inter-
pretation of coefficient value is different for binary and numeric independent variables. For
example, the coefficient for the binary variable Nighttime (0.6437) indicates that a flash
flood that occurs at night has %9437 = 1.90 times the odds of being harmful compared to
those that occur during the daytime. On the other hand, the coefficient for the numeric
variable median age of structures (— 0.03423) implies that an increase of one year in the
median age of structures for a census tract multiplies the odds of flash flood human harm
by 7003423 = (0.97. Some potential influencing factors (such as road density and soil type)
are removed from final Relogit model due to either the lack of statistical significance or not
contributing to the model’s predictive power.
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Table 5 Final Relogit model independent variables and coefficients

Variable Estimate Std. error Odds ratio (per unit) P value Signif. Codes®
(Intercept) —642E+00 5.79E-01 - <2.00E-16 ***
Duration (hour) 1.80E-02 5.11E-03 1.0182 4.24E-04  ***
Precipitation (inch) 1.28E-01 2.39E-02 1.1366 9.14E-08  *%*%*
Median age of structures —3.42E-02 8.45E-03 0.9663 5.14E-05  #%%*
(year)
Population density (people/  7.79E-05 7.09E-05 1.0001 2.72E-01 +
sq.mi)
Nighttime event 6.44E-01 2.55E-01 1.9035 1.17E-08  *
Flash flood alley 1.12E4+00  2.32E-01 3.0557 1.55E-06  #%%*
Vehicle involvement 295E+00 2.77E-01 19.0678 <2.00E-16 ***
Bridge density (count/sq.mi) 5.33E-02 2.46E-02 1.0547 0.030355  *
LWX density (count/sq.mi)®  2.36E-01 6.40E-02 1.2659 0.000231  H**
Ground slope (degree) 1.16E-02 7.29E-03 1.0117 0.111786  +

Signif. codes: *** < 0.001; ** < 0.01; * < 0.05., + > 0.05 but improve model’s performance
PLWX =Low water crossing

Independent variables with lower P values have greater influence on the model’s predic-
tions. Thus, the independent variables can be ranked based on their P value or odds ratio to
assess their effect on the likelihood of human injury or fatality in a flash flood event. Vehi-
cle-related activities during flash flooding exhibited the smallest P value and greatest odds
ratio (i.e., has the greatest effect on the model’s predictive power) among all independent
variables, followed by the event’s precipitation amount, location with respect to the Flash
Flood Alley (inside or outside), median age of structures, low water crossing density, and
event duration. While independent variables with a P value slightly greater than 0.05, such
as population density and ground slope, may be considered statistically insignificant, they
do enhance the model’s predictive power.

The variability of the logit model coefficient is indicated by the standard error. The
smaller the standard error, the more precise the estimate of the coefficient value. No multi-
collinearity was found in the model (variance inflation factor less than 2 for all predictors).

5.2 Predicted likelihood of human harm occurrence

The likelihood of human harm occurrence is predicted using the final Relogit model as
follows:
1

PY =1 =15 (16)
where P(Y = 1) is the probability that a flash flood event will lead to at least one fatality or
injury; B is bias adjusted coefficient estimates £, f;, ..., B, for the independent variables
coefficients and intercept from the final Relogit model and X represents input values of
Matrix x;, x,, ..., X;o from the independent variables. Values for the coefficients in the final
Relogit model are listed earlier in Table 5.
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Fig.7 Predicted probabilities of human harm occurrence for the testing dataset
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Fig. 8 Probability of non-vehicle-related human harm during flash flooding in harris county (hypothetical
event duration =72 h, hypothetical precipitation =35 inches)

Figure 7 displays the histogram of probabilities of harmful flash flood events estimated
using the final Relogit model for the testing dataset. For the majority of cases, the probabil-
ity of human harm occurrence is under 2%, which aligns with the actual occurrence rate.

6 Study cases

To demonstrate the utilization of the developed model as a tool for informing better miti-
gation planning for flash flooding, we applied the model to two study cases in Texas. The
hydrometeorological data used in these hypothetical cases are based on actual historical
storms in the study regions.
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Fig.9 Probability of human harm during flash flooding in bexar county (daytime event, hypothetical event
duration = 14 h, hypothetical precipitation =6 inches)

6.1 Study case 1: nighttime effect on flash flood safety in harris county

This study case shows the probability of human harm occurrence in a flash flood event
generated by a storm similar to Hurricane Harvey (August 2017) in Harris County,
Texas, where the city of Houston is located. This hurricane-induced flash flood event
yielded 35 inches of rainfall across the county for a total of three days and resulted
in numerous fatalities and injuries. Figure 8§ maps the probability of the occurrence
of human harm during this storm due to flash flooding in each census tract in Harris
County, during nighttime and daytime. The estimated probabilities of human harm are
presented in three equally spaced categories: low (<0.33), medium (0.33-0.66), and
high (>0.67). In this simulation, the Houston downtown area has the greatest risk of
human harm due to higher population density and greater bridge density. The probabil-
ity of human harm increases for the entire county when the simulated flash flood event
occurs at night (right side of Fig. §). For example, the probability of human harm in
census tract FIPS:48,201,543,200 (highlighted in Fig. 8 increases from 21% during day-
time to 34% during nighttime.

6.2 Study case 2: effect of vehicle activities on flash flood safety in bexar county

This study case shows the probability of human harm occurrence from a flash flood
event brought by a tropical storm similar to storm Erin (August 2007) in Bexar County,
Texas, where the city of San Antonio is located. This storm had a precipitation of 6
inches and lasted for 14 h. The probability of the occurrence of human harm during
this simulated flash flooding in Bexar County is plotted in Fig. 9. The majority of com-
munities exhibit low risk of human harm as the rainfall amount and duration remain
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low in this simulated event. However, the probability of human harm increases sub-
stantially for people exposed to vehicles during the event (both inside and outside the
vehicle). It can be observed that nearly one half of the communities in Bexar County
turn to medium risk, and some of them become high risk (i.e., high probability of fatal-
ity or injury occurrence). For example, census tract FIPS: 48,029,131,601 (highlighted
in Fig. 9) has a 3% probability of non-vehicle human harm, but that probability jumps to
38% for vehicle-related incidents.

7 Discussion

The developed Relogit model has important advantages that improve the prediction of flash
flooding safety risks. First, the data used in this model have finer spatial resolution than that
used in prior studies. Prior interdisciplinary models for predicting human harm in flood
events (Terti et al. 2019; Zahran et al. 2008) have been at the county scale. We use a finer
spatial resolution (i.e., census tract) that is more consistent with the spatial scale of flash
flooding. Second, our modeling technique accounts for the rareness of flash flood events
that resulted in fatalities or injuries (i.e., imbalanced data). Despite these advantages, the
model has limitations that stem from imperfections in the dataset, including the potential
for inaccuracies in the event location and the possibility of missing (unrecorded) events.

Our model shows that vehicle involvement has the largest impact on human safety dur-
ing flash flood events, which agrees with previous studies (e.g., Sharif et al. 2012). Quan-
titatively, our model shows that vehicles increase the odds of human harm by 19 times,
compared to human harm that does not involve vehicles (e.g., drowning without vehicle
involvement). The odds of human harm almost doubles when flash flooding occurs at
night, perhaps due to the victims limited vision affecting their assessment of the depth and
speed of floodwater. The odds of human harm are worse (three times more) if the affected
community is located in the Flash Flood Alley.

The risk of human harm increases for newer and more densely populated neighbor-
hoods. Neighborhoods with older structures exhibited less risk of human harm during
flash flood events than newer neighborhoods. This finding could be an indicator that older
neighborhoods (measured in terms of median age of structures) in Texas tend to be located
in higher elevation areas and further away from floodways compared to newer neighbor-
hoods. Densely populated communities tend to be more vulnerable to human harm dur-
ing flash flooding perhaps because of greater urbanization and human movements in these
communities.

Lastly, for all situations and geographic locations, the risk of human harm increases
with rainfall duration and intensity, steep topography, higher density of bridges, and higher
density of low water crossings.

8 Conclusions and recommendations

The occurrence of injuries and fatalities (termed “human harm” in this study) during flash
flooding was found to be a rare event (about 2% occurrence rate) based on 6,065 flash flood
events that occurred in Texas over a 15-year period (2005-2019). We found that the bias
adjusted Relogit model is the most suitable logistic model for predicting the likelihood
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of human harm occurrence (fatalities or injuries) in flash flooding. The model considers
ten independent variables that could affect human safety in flash flood events at the cen-
sus tract scale. These variables represent situational factors, storm characteristics, and the
built, natural, and social environments in which the storm occurs. The Relogit model has
a better precision-recall performance (measured as AUPRC) and similar sensitivity-FPR
performance (measured as AUROC) compared to other logistic models, invariant of the
cutoff threshold.

The utilization of the developed model as a simulation tool for informing flash flooding
mitigation and safety planning was demonstrated in two study cases: flash flooding trig-
gered by a hurricane in Harris County and flash flooding triggered by a tropical storm in
Bexar County. Future work could include: (1) further assessment of the probabilistic nature
of the trained model considering future flash flood events; (2) development of similar mod-
els for other regions in the USA using the process described here; (3) analysis of digital
elevation models (DEM) to determine if older neighborhoods tend to be located in higher
elevation areas and further away from floodways compared to newer neighborhoods; and
(4) building a simulation platform that use the Relogit model for informing the planning of
flash flood mitigation and safety strategies.

Author contributions All authors contributed to the study conception and design. Material preparation, data
collection and analysis were performed by SC and RSW. The first draft of the manuscript was written by SC
and all authors commented on previous versions of the manuscript. Dr. Nasir Gharaibeh performed review,
editing, and project administration.

Funding This material is based on work supported by the National Science Foundation (NSF) under Grant
# 1931301. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

Data availability The data and code are available at the following DesignSafe-ci.org DOI: https://doi.org/10.
17603/ds2-e91y-cv92.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

Ahmadalipour A, Moradkhani H (2019) A data-driven analysis of flash flood hazard, fatalities, and damages
over the CONUS during 1996-2017. ] Hydrol 578:124106

Albert A, Anderson JA (1984) On the existence of maximum likelihood estimates in logistic regression
models. Biometrika 71(1):1-10

Anderson DG (1970) Effects of urban development on floods in northern Virginia. US Government Printing
Office, p 22

Ashley ST, Ashley WS (2008) Flood fatalities in the United States. ] Appl Meteorol Climatol 47(3):805-818

Bailey JF (1989) Estimation of flood-frequency characteristics and the effects of urbanization for streams in
the Philadelphia, Pennsylvania area. Department of the Interior, US Geological Survey, pp 87-4194

Baker VR (1975) Flood hazards along the Balcones escarpment in central Texas; alternative approaches to
their recognition, mapping, and management. Virtual Landscapes of Texas

Benight CC, Gruntfest EC, Hayden M, Barnes L (2007) Trauma and short-fuse weather warning percep-
tions. Environ Hazards 7(3):220-226

Bull SB, Mak C, Greenwood CM (2002) A modified score function estimator for multinomial logistic
regression in small samples. Comput Stat Data Anal 39(1):57-74

@ Springer


https://doi.org/10.17603/ds2-e91y-cv92
https://doi.org/10.17603/ds2-e91y-cv92

Natural Hazards (2023) 116:3957-3978 3977

Caran SC, Baker VR (1986) Flooding along the balcones escarpment, central Texas. KIP Articles. 2088

Choirat C, Honaker J, Imai K, King G, Lau O (2020) Zelig: everyone’s statistical software. Version 5.1.7,
https://zeligproject.org/

Clauset A, Woodard R (2013) Estimating the historical and future probabilities of large terrorist events.
Annal Appl Stat 7(4):1838-1865

Clogg CC, Rubin DB, Schenker N, Schultz B, Weidman L (1991) Multiple imputation of industry and
occupation codes in census public-use samples using bayesian logistic regression. J Am Stat Assoc
86(413):68-78

Cosslett SR (1981) Maximum likelihood estimator for choice-based samples. Econom J Econom Soc
49:1289-1316

Cox DR, Hinkley DV (1979) Theoretical statistics. CRC Press, Florida

Diakakis M (2020) Types of behavior of flood victims around floodwaters. Correlation with situational
and demographic factors. Sustainability 12(11):4409

Firth D (1993) Bias reduction of maximum likelihood estimates. Biometrika 80(1):27-38

Gao S, Shen J (2007) Asymptotic properties of a double penalized maximum likelihood estimator in
logistic regression. Stat Probab Lett 77(9):925-930

Greene W (1993) Econometric analysis, 2nd edn. Macmillan, New York

Guns M, Vanacker V (2012) Logistic regression applied to natural hazards: rare event logistic regression
with replications. Nat Hazards Earth Syst Sci 12(6):1937-1947

Hamilton K, Peden AE, Pearson M, Hagger MS (2016) Stop there’s water on the road! Identifying key
beliefs guiding people’s willingness to drive through flooded waterways. Saf Sci 89:308-314.
https://doi.org/10.1016/j.ss¢i.2016.07.004

Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med
21(16):2409-2419

Heinze G, Ploner M, Dunkler D, Southworth H (2013) logistf: firth’s bias reduced logistic regression. R
package version 1.20. Available at: http://cran.r-project.org/web/packages/logistf/index.html

Imai K, King G, Lau O (2008) Toward a common framework for statistical analysis and development. J
Comput Graphical Stat 17(4):892-913

Imbens GW (1992) An efficient method of moments estimator for discrete choice models with choice-
based sampling. Econom J Econom Soc 60:1187-1214

Jeftreys H (1946) An invariant form for the prior probability in estimation problems. Proc R Soc London
Ser A Math Phys Sci 186(1007):453-461

Kelsch M, Carporali E, Lanza LG (2001) Hydrometeorology of flash floods. In: Gruntfest E, Handmer J
(eds) Coping with flash floods. Kluwer Academic Publishers, Dordrecht, pp 19-35

King G, Zeng L (2001a) Explaining rare events in international relations. Int Org 55(3):693-715

King G, Zeng L (2001b) Logistic regression in rare events data. Political Anal 9(2):137-163

Konrad CP, Booth DB (2002) Hydrologic trends associated with urban development for selected streams
in the Puget Sound Basin, Western Washington, vol 2. US Geological Survey, 4040

Lancaster T, Imbens G (1996) Case-control studies with contaminated controls. J Econ 71(1-2):145-160

Leitgob H (2020) Analysis of rare events. SAGE Publications Limited

Lindell MK, Perry RW (1992) Behavioral foundations of community emergency planning. Hemisphere
Publishing Corp

Lindell MK, Prater C, Perry RW (2006) Wiley pathways introduction to emergency management. Wiley

Masterson JH, Peacock WG, Van Zandt SS, Grover H, Schwarz LF, Cooper JT (2014) Planning for com-
munity resilience: a handbook for reducing vulnerability to disasters. Island Press

McCullagh P, Nelder JA (1989) Generalized linear models IT

NWS (2019) NWS Preliminary US Flood Fatality Statistics (2019). https://www.weather.gov/arx/usflood

NWS (2022) Storm events database. Available online: https://www.ncdc.noaa.gov/stormevents/ftp.jsp.
Accessed Novemb 11, 2022

Pinker E (2018) Reporting accuracy of rare event classifiers. NPJ Digit Med 1(1):1-2

Quenouille MH (1949) Problems in plane sampling. Ann Math Stat 20:355-375

Quenouille MH (1956) Notes on bias in estimation. Biometrika 43(3/4):353-360

Ruin I, Gaillard JC, Lutoff C (2007) How to get there? Assessing motorists’ flash flood risk perception on
daily itineraries. Environ Hazards 7(3):235-244

Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC plot when
evaluating binary classifiers on imbalanced datasets. PloS one 10(3):e0118432

Sanders DEA, Brix A, Duffy P, Forster W, Hartington T, Jones G, Wilkinson M (2002) The management
of losses arising from extreme events. Convention general insurance study group GIRO, London

Shah V, Kirsch KR, Cervantes D, Zane DF, Haywood T, Horney JA (2017) Flash flood swift water res-
cues, Texas, 2005-2014. Clim Risk Manage 17:11-20

@ Springer


https://zeligproject.org/
https://doi.org/10.1016/j.ssci.2016.07.004
http://cran.r-project.org/web/packages/logistf/index.html
https://www.weather.gov/arx/usflood
https://www.ncdc.noaa.gov/stormevents/ftp.jsp

3978 Natural Hazards (2023) 116:3957-3978

Sharif HO, Hossain MM, Jackson T, Bin-Shafique S (2012) Person-place-time analysis of vehicle fatali-
ties caused by flash floods in Texas. Geomatics Nat Hazards Risk 3(4):311-323

Sharif HO, Jackson TL, Hossain MM, Zane D (2015) Analysis of flood fatalities in Texas. Nat Hazards
Rev 16(1):04014016

Sofaer HR, Hoeting JA, Jarnevich CS (2019) The area under the precision-recall curve as a performance
metric for rare binary events. Methods Ecol Evol 10(4):565-577

Terti G, Ruin I, Anquetin S, Gourley JJ (2015) Dynamic vulnerability factors for impact-based flash flood
prediction. Nat Hazards 79(3):1481-1497

Terti G, Ruin I, Anquetin S, Gourley JJ (2017) A situation-based analysis of flash flood fatalities in the
United States. Bull Am Meteorol Soc 98(2):333-345. https://doi.org/10.1175/BAMS-D-15-00276.1

Terti G, Ruin I, Gourley JJ, Kirstetter P, Flamig Z, Blanchet J, Anquetin S (2019) Toward probabilistic pre-
diction of flash flood human impacts. Risk Anal 39(1):140-161

U.S. Census Bureau (2022) Glossary. Available online: https://www.census.gov/programs-surveys/geogr
aphy/about/glossary.html#par_textimage_13. Accessed Novemb 9, 2022

Walsh J, Wuebbles D, Hayhoe K, Kossin J, Kunkel K, Stephens G, Somerville R (2014) Our changing cli-
mate. Climate change impacts in the United States: The third national climate assessment, 19, 67

Wang J, Zhang X (2008) Downscaling and projection of winter extreme daily precipitation over North
America. J Clim 21(5):923-937

Wobus C, Lawson M, Jones R, Smith J, Martinich J (2014) Estimating monetary damages from flooding in
the United States under a changing climate. J Flood Risk Manag 7(3):217-229

Zahran S, Brody SD, Peacock WG, Vedlitz A, Grover H (2008) Social vulnerability and the natural and built
environment: a model of flood casualties in Texas. Disasters 32(4):537-560

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer


https://doi.org/10.1175/BAMS-D-15-00276.1
https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_13
https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_13

	Environmental, climatic, and situational factors influencing the probability of fatality or injury occurrence in flash flooding: a rare event logistic regression predictive model
	Abstract
	1 Introduction
	1.1 Background
	1.2 Prior work and knowledge gaps
	1.3 Research objective
	1.4 Paper organization

	2 Data
	2.1 Flash flood event data
	2.2 Factors influencing human safety during flash flood events

	3 Modeling approach
	3.1 Conventional logistic regression
	3.2 Bias correction
	3.3 Penalized maximum likelihood estimation

	4 Training and evaluation of alternative models
	4.1 Data splitting
	4.2 Performance of alternative models
	4.3 Monte carlo simulation for coefficient estimates

	5 Selected model
	5.1 Model variables and coefficients
	5.2 Predicted likelihood of human harm occurrence

	6 Study cases
	6.1 Study case 1: nighttime effect on flash flood safety in harris county
	6.2 Study case 2: effect of vehicle activities on flash flood safety in bexar county

	7 Discussion
	8 Conclusions and recommendations
	References




