l‘)

Check for
updates

SNS-Toolbox: A Tool for Efficient
Simulation of Synthetic Nervous Systems

William R. P. Nourse! ®) @, Nicholas S. Szczecinski?®, and Roger D. Quinn?

! Department of Electrical, Computer, and Systems Engineering, Case Western
Reserve University, Cleveland, OH 44106, USA
nourse@case.edu
2 Department of Mechanical and Aerospace Engineering, West Virginia University,
Morgantown, WV 26506, USA
3 Department of Mechanical and Aerospace Engineering, Case Western Reserve
University, Cleveland, OH 44106, USA

Abstract. We introduce SNS-Toolbox, a Python software package for
the design and simulation of networks of conductance-based neurons and
synapses, also called Synthetic Nervous Systems (SNS). SNS-Toolbox
implements non-spiking and spiking neurons in multiple software back-
ends, and is capable of simulating networks with thousands of neurons
in real-time. We benchmark the toolbox simulation speed across multi-
ple network sizes, characterize upper limits on network size in various
scenarios, and showcase the design of a two-layer convolutional network
inspired by circuits within the Drosophila melanogaster optic lobe. SNS-
Toolbox, as well as the code to generate all of the figures in this work,
is located at https://github.com/wnourse05/SNS-Toolbox.

Keywords: Conductance based modeling - Synthetic nervous
systems - Simulation - Neurorobotics * Neural networks

1 Introduction

In recent years, more and more research has been done on implementing control
systems for robots using networks of biologically-inspired neurons [6,11,14,20]
with an end goal of creating robots with the adaptability and generalization of
animals. One particular approach in this field is using Synthetic Nervous Sys-
tems (SNS) [21], which are networks of conductance-based neurons and synapses
connected using analytic design rules. The predominant tool used for designing
SNS controllers until now has been Animatlab [5], a visual tool that combines
neural simulation, physics simulation, and plotting within one software platform.
Robot controllers have been successfully developed using this software [11,14].
However, as the body of neuroscience knowledge increases and control networks

This work was funded by National Science Foundation (NSF) Award #1704436, as
well as by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next
Generation Networks for Neuroscience Program.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

A. Hunt et al. (Eds.): Living Machines 2022, LNAI 13548, pp. 32-43, 2022.
https://doi.org/10.1007/978-3-031-20470-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20470-8_4&domain=pdf
http://orcid.org/0000-0002-1437-026X
http://orcid.org/0000-0002-6453-6475
http://orcid.org/0000-0002-8504-7160
https://github.com/wnourse05/SNS-Toolbox
https://doi.org/10.1007/978-3-031-20470-8_4

SNS-Toolbox 33

become larger, it is becoming more difficult to maintain and develop these large
networks and simulate them in a sufficiently fast manner [19].

Simulators capable of designing conductance-based neurons have existed for
years, such as NEURON [13], NEST [15], and Brian [15]. There are also simula-
tors capable of designing large neural networks using principles of machine learn-
ing, albeit using reduced neural models, such as snnTorch [8], SpykeTorch [17],
and BindsNET [15]. Although many simulators are available, it is difficult to
interface any of these programs with hardware. Many of these were designed
around collecting data over long simulation runs, so interfacing with hardware
becomes an exercise in creative engineering [20]. There are solutions for robotic
interfacing in simulation [9], but due to the overhead associated with these pro-
grams it is not practical to execute the network in real-time. High-performance
robots have been developed which are controlled using spiking neurons [6], but
these rely on specialized neuromorphic hardware and software specially designed
for these platforms, which are not widely available [1]. As of now the best soft-
ware for implementing conductance-based networks and applying them to real
hardware is Nengo [15], but this software is primarily designed for networks
using the Neural Engineering Framework [7] and contains enough overhead to
slow down performance without the use of specialized hardware.

We present SNS-Toolbox, a Python software package for designing and simu-
lating networks of conductance-based neurons and synapses. External inputs are
processed and transformed into neural state outputs on a timestep-by-timestep
basis. These outputs can then be used with any software or external hardware
which is capable of communicating with Python code. By not interfacing with
a dedicated physics simulator and optimizing for two specific neural models,
we can simulate networks of thousands of neurons and synapses in real-time or
faster using consumer-grade computer hardware.

2 Neural Models

When designing SNS-Toolbox, we chose to focus on designing and simulating two
neural models that have often been used in previous SNS work: a non-spiking
model and a spiking model.

2.1 Non-spiking Neurons and Synapses

Non-spiking neurons are simulated as leaky integrators, the same model as those
used in continuous-time recurrent neural networks [2,21]. The membrane depo-
larization above rest, U, behaves according to the differential equation

du
Cmem% = _Gmem : U + Isyn + Ibias + Iapp; (1)

34 W. R. P. Nourse et al.

where C,er, 18 the membrane capacitance, Gy, 1S the membrane leak conduc-
tance, Ipiqs is a constant offset current, and I,,, is an external applied current.
Isyn is the current induced by incoming conductance-based synapses to the neu-
ron,

=1

Egyn is the reversal potential of the 7th incoming synapse relative to the neu-

ron’s rest potential, and Giyn is the instantaneous synaptic conductance. This

conductance is defined as a function of the pre-synaptic neuron depolarization,

, . , Upre
G;yn = max (0’ min (Ginax,non ' T? G’;nam,non (3)
anax’non is the maximum possible conductance for the synapse, and R is the

maximum desired membrane depolarization of any neuron throughout the net-
work [21]. In general, G}, ., non controls the strength of a synapse while Eq,,

determines the behavior (excitatory, inhibitory, or modulatory) [21]. Substitut-
ing Eq. 2 into Eq. 1, the full non-spiking neural model can be written as

du

E — _Gmem U + ZGZUTL . (E;yn — U) + Ibias + Iapp' (4)

i=1

Cmem

2.2 Spiking Neurons and Synapses

For the spiking model, the membrane depolarization dynamics are similar to the
non-spiking model (see Eq.4), with an additional dynamical variable for a firing

threshold 6 [22],

do
T9E=—0+00+m'U, (5)

where 7y is the threshold time constant, 6y is the initial threshold voltage, and
m is a proportionality constant describing how changes in U affect . We also
define a spiking variable §, which represents a spike and resets the membrane
state,

1, ifU>0
p=a 0 N =T (6)
0, otherwise.
if§=1,0—U. (7)

Unlike the non-spiking model, the synaptic conductance for spiking synapses
G gyn is a dynamical variable. It is reset to a maximum value G4z, spike Whenever
its corresponding pre-synaptic neuron spikes, and otherwise decays to 0 with a

time constant 7,yy,.

dGsyn
Tsyn dty = _Gsyn (8)

ifd = 1, Gmax,spike — Gsyn (9)

SNS-Toolbox 35

In order to perform more dynamic computation with spiking neurons, a mech-
anism for synaptic propagation delay can also be incorporated. If the synapse
from neuron 7 to neuron j has a delay of d timesteps, the delayed spike can be
defined as

(5j’i

delay [t] = 6J7Z[d - At] (10)

3 Software Design and Workflow

SNS-Toolbox allows for the design and implementation of synthetic nervous sys-
tems, and operates in three phases: design, compilation, and simulation.

3.1 Design Phase

When designing a network, users add neurons and populations of neurons to an
overall Network object, with defined synaptic connections between the neurons.
These connections can take on any topology desired, including feedback loops,
and can be either individual synapses or patterns of synapses (an example of
patterned synapses is given in Sect.4.3). For applying external stimulus to a
network, one-dimensional vectors can be added as input sources. To observe
neural states during simulation, output monitors can be added. These monitors
can be voltage-based or spike-based, for which the output is the direct voltage
or spiking state of the source neuron.

This Network object by itself is not capable of being simulated, it merely
acts as a defined storage container which describes the network parameters and
structure. In the compilation phase, the object is referenced as a building plan
to construct a network which can be simulated. Any network can also be used as
an element within another network. In this way, a large network can be designed
using large collections of predefined subnetworks. A collection of subnetworks
that perform simple arithmetic and dynamic functions is available within SNS-
Toolbox. For a complete explanation of these networks please refer to [21].

3.2 Compilation

Once a network is designed, it needs to be converted from a dictionary of param-
eters into an executable network. Given a Network object, SNS-Toolbox is able
to build a new object which simulates a given network in one of four software
backends: NumPy [12], PyTorch [18], a PyTorch-based sparse matrix library
(torch.sparse), and a NumPy-based iterative evaluator which evaluates each
synapse individually.

In order to improve simulation performance, the multiplication constant for
the membrane voltage, firing threshold, and synapse dynamics are pre-computed.
Instead of handling the timestep At and a time constant 7 at each step, a time

factor T is used instead where T = %.

36 W. R. P. Nourse et al.

Fig. 1. Simulation method for a small example network using SNS-Toolbox. A. Overall
network diagram generated within the toolbox. B. Diagram of the general computa-
tional flow when simulating the network.

3.3 Simulation

Commonly used high-performance frameworks focus on neural networks struc-
tured around massively connected individual layers [18], but SNS-Toolbox
focuses on smaller networks connected with multiple levels of feedback loops [2,
14] found in animal nervous systems. Since these networks are more cyclic in
nature, all networks simulated by SNS-Toolbox are unfolded through time, sim-
ilar to the method pioneered by backpropagation through time [23]. For a visual
representation of this unfolding, please see Fig. 1. At every timestep, each neuron
can receive synaptic input from any neuron at the previous timestep, including
an autapse from itself. These connections retain the same properties from step
to step, and these properties are stored in NxN matrices for a network of N
neurons. .

At a given timestep ¢, a user applies an external input vector In[t]. This
vector could come from any source (e.g., static data, real-time sensors), but
must be formatted in the dominant datatype of the software backend (either
Numpy array or Torch tensor). Within the forward pass of simulation, first the
memory states are updated as Uyqse[t] — Ut — At] and 0jq4:]t] < 0]t — At]. Next
the external input is applied to the correct neurons,

Lupplt] = Cin - Int], (11)

where Ciy, is an LeN (L is the number of input elements, N is the number of
neurons in the network) binary masking matrix which routes each input element
to its correct target neuron.

Adapting Egs. 3 and 8, the non-spiking synaptic conductance matrix Gpon
and spiking counterpart Gspike are computed as

ﬁlast [t]

Gonlt] — maz (O,min (Gmax,non TR Gmax,non))) (12)

Gspike [t] — Gspike t—1]-(1- Tsyn)) (13)

SNS-Toolbox 37

These conductances are summed to form the total synaptic conductance matrix
Gsyn[t]. The synaptic current vector follows Eq. 2, adapted to matrix form using
row-wise sums

Lonlt] = > G EY = Uu[t] © Y Gigy, (14)
J J

where ® denotes the element-wise Hadamard product. The new neural state U[t]

—

and firing threshold 6[t] are computed as

—

U[t] — ﬁlast[t] + 7:mem © (_émem O] ﬁlast[t] + fl; + fsyn + fapp)) (15)

g[t] — é'last[t] + f@[t] © (_é'last[t] + 50 + m © ﬁlast[t]) . (16)
Based on Eq. 16, the spiking states are also updated,

8[t] — sign (min (O, g — ﬁ)) . (17)

For ease of implementation, SNS-Toolbox internally represents spikes as impulses
with a magnitude of —1.

Synaptic propagation delay is accomplished using a buffer matrix puz fer
with N columns and D rows, where D is the longest delay time in timesteps
within the network. At each timestep, the rows of dpy s fer are shifted down by
1, and the first row is replaced with the spike state vector of the current timestep
5| [t]. A matrix of delayed spikes dgeiay is then generated by rearranging dpy f fer
based on the amount of delay of each spiking synapse in the network. dgeiay is

used to implement the spiking synapse reset dynamics in 9,

Gspike [t] «— max (Gspike [t]7 _5delay [t] O) Gmax,spike) . (18)

Using the spike states, the neural membrane voltage of each neuron that spiked
is reset to zero.

—

O] — Ul © (31t + 1) (19)
The vector output is then computed,

. . -

OUt[t] — Cout,voltage . U[t] + Cout7spike . 5[t] (20)

This output is a general vector, which can subsequently be formatted or dis-
tributed to external systems based on the intention of the user.

Variants. Each software backend implements the behavior of Egs. 11-20, but
also has two variants available for improved performance. When no synaptic
propagation delay is needed for any spiking synapses, one backend variant can
be used where Opy £ fer and dgeiay are never computed. The spiking state vector
5| [t] is used instead of dgeiay. Similarly, when there are no spiking neurons in
the network a variant can be used where no spiking parameters or variables are
computed and Egs. 13, 16-19 are not implemented. The performance difference
of these variants is explored in Sect. 4.2.

38 W. R. P. Nourse et al.

Average Simulation Step Time with Increasing Network Size

—— SNS_Numpy
SNS_Torch (CPU)
—— SNS_Torch (GPU)
—— SNS_Sparse (CPU)
—— SNS_Sparse (GPU)
—— SNS_Iterative

._.
<

Step Time (ms)

10! 1o? Number of Neurons 10°

Fig. 2. Comparison of average wall-clock time to simulate a network for one simulation
time-step. Solid lines represent the mean elapsed time per step over 100 steps, shaded
areas show one standard deviation from the mean.

4 Results

4.1 Backend Simulation Performance

100 networks were run in a logarithmic spacing between 10 and 5000 spiking neu-
rons, connected in the following structure: number of inputs = 8% of N, outputs
= 12% of N, number of synapses = N. This structure is derived from a previous
large-scale synthetic nervous system [14]. The mechanism for propagation delay
was enabled. Each network was run for 100 steps, and the time to compute the
forward pass was saved for each step. Results are shown in Fig. 2. SNS_Numpy
was the fastest until 158 neurons, then the CPU version of SNS_Torch until 358
neurons. Both versions of SNS_Torch are tied until 978 neurons, after which
point the GPU version is the fastest.

Real-Time Performance. If SNS-Toolbox were to be interfaced with a real-
world robotic system, a 1:1 correlation between the simulated and real step
time (or better) would be desired. For non-spiking neurons with a time constant
Tmem Of b ms, the coarsest timestep producing accurate dynamics would also be
5 ms. Looking at Fig. 2, the largest network that could be theoretically simulated
in real-time under these conditions would be 3,240 neurons, using the full GPU
SNS_Torch backend. If the non-spiking variant were used, the maximum network
size would be larger. For spiking networks, depending on the firing rate and
synaptic dynamics the coarsest timestep will be smaller. Assuming a simulation
timestep of 1 ms, the largest network which could be simulated would be 1,190
neurons. For step-times below 10 ms a relatively large variance can be observed,
potentially due to interference from other processes in the operating system.
Further benchmarking will be done on dedicated hardware systems with less
overhead than a consumer desktop system.

SNS-Toolbox 39

>

Fully Connected Networks

) oo

(s
hh
S -
2

Realistically Connected Networks

0! == Full Spiking Model
Full No Delay Model
=== Full Non Spiking Model

= Realistic Spiking Model .
Realistic No Delay Model
== Realistic Non Spiking Model

/

10t 10? 103 10t 102 10° 104
Number of Neurons Number of Neurons

U
2
Eak g
s 5 o
9

it
15}

Average Time per Step (s)
5
Average Time per Step

-
2]

Fig. 3. Average wall-clock time to simulate a network for one simulation time-step,
using three different variations of the SNS_Numpy backend. Network size was varied
from 10 neurons to 10,000 neurons. Solid lines represent the mean elapsed time per step
over 100 steps, shaded areas show one standard deviation from the mean. A. Networks
are fully connected. B. The number of synaptic connections is equal to the number of
neurons.

4.2 Backend Variant Performance

Isolating one backend family, we can examine the performance difference between
different variants of the same backend. For this experiment, we chose to analyze
SNS_Numpy. The number of neurons in a network was varied from 10 to 10,000,
and the average timestep was measured for a backend implementing the full
neural model, one without synaptic propagation delay, and one with no spik-
ing whatsoever. The data is presented in Fig. 3. For fully connected networks,
after 20 neurons the full model is consistently one order of magnitude slower
than the other models. When the network connectivity is more constrained, the
performance difference between the backends reduces. Non-spiking is always the
fastest, but for realistically connected networks the speed difference between
the full model with and without synaptic propagation delay becomes relatively
small.

4.3 Example Network Design

Using SNS-Toolbox, we implemented a network that models an anatomical cir-
cuit and performs a useful function, but would be complicated and tedious to
manually route all of the synaptic connections. In the Drosophila melanogaster
nervous system, the optic lobe contains circuits for processing motion in the
visual field [3]. The first two layers of this visual system are the retina and the
lamina, which perform two distinct visual processing operations. Retinal neu-
rons R1-R6 encode incoming photons as changing neural activity [4], and the
lamina primarily consists of two pathways: the L2 neurons have an antagonis-
tic center-surround receptive field, and L1 neurons have a traditional center-
surround receptive field [10]. Based on this structure, modeling the retina and
L1 cells results in a circuit that performs high-pass filtering of an input image.
Previous work has created a synthetic nervous system model of the Drosophila
optic lobe motion circuitry [19] using the Animatlab software [5]. This model was
constrained to one-dimensional images, in part due to the difficulty of implement-
ing the model. In this previous approach neurons and synapses had to be placed

40 W. R. P. Nourse et al.

. B. Input Image Retina Population Lamina Population
1# General network
2R = 20.0 # range of network activity (mV)
3neuron_type = NonSpikingNeuron() # generic neuron type
4net = Network(name='Visual Network') # create an empty network
5)
6# Retina

7# add a 2d population the same size as the scaled image
8net.add_population(neuron_type,shape,name='Retina"')

9# add a vector input for the flattened image
10net.add_input('Retina’, size=flat size,name='Image')
11+# add a vector output from the retina

12net.add output('Retina',name='Retina Output')

13

14# Lanina
15net.add_population(neuron_type,shape,name='Lanina’)
16

17e ex = 160.0 # excitatory reversal potential

18e in = -80.0 # inhibitory reversal potential
19k ex = 1.0 # excitatory gain
20k_in = -1.0/9.0 # inhibitory gain
214 calculate excitatory conductance
229 max_ex = (k _ex*R)/(del e ex-k ex*R)
23# calculate inhibitory conductance
249 _max_in = (k_in*R)/(del_e_in-k_in*R)
25# kernel matrix of synaptic conductances
269 max_kernel = np.array([[g max in, g max in, g max in],
27 [g_max_in, g _max_ex, g _max_in],
28 [g_max_in, g_max_in, g_max_in]])
294 kernel matrix of synaptic reversal potentials
30e_kernel = np.array([[e_in, e in, e_in],
[e in, e ex, e in],
32 [e_in, e_in, e_in]])
33# pattern connection (acts as high pass filter)
34 connection_hpf = NonSpikingPatternConnection(g_max_kernel,e_kernel)
35# connect the retina to the lamina
36net.add connection(connection hpf, ‘Retina’, ‘Lamina’,name="HPF")
37# add a vector output from the lamina
38net.add_output('Lamina’,name='Lamina Output')
9

3
40net.render_graph(view=True) # view the network diagram

Fig. 4. Using SNS-Toolbox to design a two-layer visual processing system. A. Python
code to generate the desired network. Image preprocessing and output plotting are
omitted. B. Network visual representation. An input image is converted to stimulus
current for a population of neurons, representing the insect retina. From the retina,
a 3 x 3 kernel of inhibitory (light blue) and excitatory (purple) synapses is applied to
create a high-pass filtering effect in the next layer, representing the L1 insect lamina
neurons. C. Qutput of retina and lamina neurons, respectively. Voltages are mapped
to grayscale intensities. (Color figure online)

and routed by hand, which is time-intensive and tedious to produce a simplified
model with 510 neurons and 1574 synapses for one-dimensional images [19]. To
demonstrate the effectiveness of SNS-Toolbox, we created a model of the retina
and L1 cells of the optic lobe capable of processing two-dimensional images,
consisting of 2048 neurons and 8476 synapses and generated in only 18 lines of
Python code (see Fig.4A).

We assumed that input images are grayscale. Since a single Drosophila eye
consists of around 800 ommatidia arranged in 32-34 columns [16], we also
designed for input images which are 32 x 32 pixels. After creating two 32 x 32
populations of neurons and attaching an input source, the last step was to define
the connection between the retina and the lamina. Our lamina model only con-
sists of L1 neurons, so each neuron has center-on surround-off receptive field.
Since each L1 cell receives input from the directly adjacent ommatidia, we can
implement these receptive fields as a 3 x 3 connection kernel:

kin km kzn
K= kzn kex kzn)

SNS-Toolbox 41

where k;,, and k., are the desired gains for inhibitory and excitatory synapses,
respectively. For desired behavior, these gains were chosen as k;, = —% and
ke = 1. These synaptic gains are transformed into synaptic conductances and
relative reversal potentials using the method described in [21].

The results of simulating the network are shown in Fig.4. The output of
the lamina layer correctly implements a rudimentary high-pass filter or edge-

detector, as expected.

5 Discussion and Future Work

In this work, we introduced SNS-Toolbox, a software tool for designing and
simulating recurrent networks of biologically-inspired spiking and non-spiking
neurons with conductance-based synapses. For networks with a few hundred
neurons, the CPU-based backends are the fastest simulation approach; for net-
works with more neurons, GPU-based backends are fastest.

There are existing software packages [13,15] for simulating conductance-
based neurons and synapses, but are primarily designed for offline simulation.
Methods to interface these simulators with robotic hardware are impractical [20].
Other software packages are efficient simulators, but not designed to efficiently
simulate conductance-based neurons [15,18]. Others still simulate networks of
neurons, but these packages are inherently tied to physics engines and overhead
such that it is impossible to simulate large networks in real-time or faster [5,9].
Future work will provide quantitative speed comparisons between SNS-Toolbox
and other simulation systems.

SNS-Toolbox implements two specific neural models commonly used in the
SNS literature, and aims to simulate them as fast as possible on consumer com-
puter hardware. Networks can contain both of these models, but cannot be
expanded by the user to include new models since SNS-Toolbox is a specific
accelerator for these models. Larger models could be approximated by treating
these neurons as compartments within a larger model, an approach commonly
employed with neuromorphic hardware [1], but this has not been explored at
this time. These neural models are also lacking any voltage-gated ion-specific
channels, which can be used to create pattern-generators [11]. Future work will
implement an optional voltage-gated ion channel for these oscillatory networks.

Section 4.3 details the design and simulation of an example network which
performs vision processing. While this network demonstrates some of the features
of SNS-Toolbox, the example is not the best to showcase the strengths of the
toolbox over other software. Future work will use SNS-Toolbox to implement
motor systems, an area for which SNS-Toolbox is better suited.

In this work, we focus on using SNS-Toolbox to simulate networks of neurons
in isolation. At its heart, SNS-Toolbox takes an input vector at each timestep and
generates an output vector. These inputs and outputs can be arbitrary data (as
they are in this work), but could include data streams from a robot, camera, or
any continuous source. Future work will implement interfaces for interaction with
physics simulators, as well as an interface for external robotic hardware. In its

42

W. R. P. Nourse et al.

current state the whole codebase is developed in Python for ease of maintenance
and development. In the future, the addition of a C++-based backend would
allow for additional improvements in performance.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Lava software framework (2021)

Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive
behavior. Adapt. Behav. 1, 91-122 (1992)

Borst, A.: Drosophila’s view on insect vision. Curr. Biol. 19, R36-R47 (2009)
Clark, D.A., Demb, J.B.: Parallel computations in insect and mammalian visual
motion processing. Curr Biol. 24 (20), R1062-R1072 (2016)

Cofer, D., et al.: A 3D graphics environment for neuromechanical simulations. J.
Neurosci. Methods 187, 280-288 (2010)

Cohen, G.: Gooaall!!l: Why we built a neuromorphic robot to play foosball. IEEE
Spect. 59, 44-50 (3 2022)

Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation,
and Dynamics in Neurobiological Systems. MIT Press (2003)

Eshraghian, J.K., et al.: Training spiking neural networks using lessons from deep
learning (2021)

Falotico, E., et al.: Connecting artificial brains to robots in a comprehensive sim-
ulation framework: the neurorobotics platform. Front. Neurorobot. 11, 2 (2017)
Freifeld, L., Clark, D.A., Schnitzer, M.J., Horowitz, M.A., Clandinin, T.R.: Gabaer-
gic lateral interactions tune the early stages of visual processing in drosophila.
Neuron 78, 1075-1089 (2013)

Goldsmith, C.A., Szczecinski, N.S., Quinn, R.D.: Neurodynamic modeling of the
fruit fly Drosophila melanogaster. Bioinspir. Biomimet. 15, 065003 (2020)

Harris, C.R., et al.: Array programming with numpy. Nature 585(7825), 357-362
(2020)

Hines, M.L., Carnevale, N.T.: Neuron: a tool for neuroscientists. Neuroscientist
7(2), 123-135 (2001). http://www.neu

Hunt, A., Szczecinski, N., Quinn, R.: Development and training of a neural con-
troller for hind leg walking in a dog robot. Front. Neurorobot. 11 (2017)
Kulkarni, S.R., Parsa, M., Mitchell, J.P., Schuman, C.D.: Benchmarking the per-
formance of neuromorphic and spiking neural network simulators. Neurocomputing
447, 145-160 (2021)

Kumar, J.P.: Building an ommatidium one cell at a time. Dev. Dyn. 241(1), 136-
149 (2012)

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Masquelier, T.: Spyketorch:
efficient simulation of convolutional spiking neural networks with at most one spike
per neuron. Front. Neurosci. 13 (2019)

Paszke, A., et al.: PyTorch: An Imperative style, high-performance deep learning
library. In: NIPS’19: Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Curran Associates, Inc. (2019)

Sedlackova, A., Szczecinski, N.S., Quinn, R.D.: A synthetic nervous system model
of the insect optomotor response. In: Living Machines 2020. LNCS (LNAI), vol.
12413, pp. 312-324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64313-3_30

http://www.neu
https://doi.org/10.1007/978-3-030-64313-3_30
https://doi.org/10.1007/978-3-030-64313-3_30

20.

21.

22.

23.

SNS-Toolbox 43

Strohmer, B., Manoonpong, P., Larsen, L.B.: Flexible spiking CPGs for online
manipulation during hexapod walking. Front. Neurorobot. 14 (2020)

Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to
designing synthetic nervous systems that control legged robot locomotion. Front.
Neurorobot. 11 (2017)

Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Extending the functional subnetwork
approach to a generalized linear integrate-and-fire neuron model. Front. Neuro-
robot. 14 (2020)

Werbos, P.J.: Bacpropagation through time: what it does and how to do it. In:
Proceedings of the IEEE 78 (1990)

	SNS-Toolbox: A Tool for Efficient Simulation of Synthetic Nervous Systems
	1 Introduction
	2 Neural Models
	2.1 Non-spiking Neurons and Synapses
	2.2 Spiking Neurons and Synapses

	3 Software Design and Workflow
	3.1 Design Phase
	3.2 Compilation
	3.3 Simulation

	4 Results
	4.1 Backend Simulation Performance
	4.2 Backend Variant Performance
	4.3 Example Network Design

	5 Discussion and Future Work
	References

