
A Synthetic Nervous System Controls
a Biomechanical Model of Aplysia Feeding

Yanjun Li1(B) , Victoria A. Webster-Wood2 , Jeffrey P. Gill3 ,
Gregory P. Sutton4 , Hillel J. Chiel3 , and Roger D. Quinn1

1 Department of Mechanical and Aerospace Engineering, Case Western Reserve University,
Cleveland, OH 44106-7222, USA
{yxl2259,rdq}@case.edu

2 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213,
USA

vwebster@andrew.cmu.edu
3 Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA

{jeff.gill,hjc}@case.edu
4 Department of Life Sciences, University of Lincoln, Lincoln, UK

gsutton@lincoln.ac.uk

Abstract. Building an accurate computationalmodel can clarify the basis of feed-
ing behaviors in Aplysia californica. We introduce a specific circuitry model that
emphasizes feedback integration. The circuitry uses a Synthetic Nervous System,
a biologically plausible neural model, with motor neurons and buccal ganglion
interneurons organized into 9 subnetworks realizing functions essential to feeding
control during the protraction and retraction phases of feeding. These subnetworks
are combined with a cerebral ganglion layer that controls transitions between
feeding behaviors. This Synthetic Nervous System is connected to a simplified
biomechanical model of Aplysia and afferent pathways provide proprioceptive
and exteroceptive feedback to the controller. The feedback allows the model to
coordinate and control its behaviors in response to the external environment. We
find that the model can qualitatively reproduce multifunctional feeding behaviors.
The kinematic and dynamic responses of the model also share similar features
with experimental data. The results suggest that this neuromechanical model has
predictive ability and could be used for generating or testing hypotheses about
Aplysia feeding control.

Keywords: Multifunctionality · Computational neuroscience · Aplysia ·
Control · Synthetic nervous systems

1 Introduction

As a basic motor control task, feeding is extensively studied in animals [1]. Aplysia
californica, a species of sea slug, is a good model system for studying feeding for
a number of reasons. It generates multifunctional feeding behaviors including biting,
swallowing and rejection [2]. It uses a relatively small neural network to achieve complex
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feeding control: its neural circuitry involved in feeding control contains about 2000
neurons. Additionally, the neurons can be uniquely identified across animals. With large
and electrically compact soma, it is also possible to record or control neural activities
through intracellular microelectrodes [3]. Fully understanding Aplysia feeding control
could have significant impacts across various fields. For instance, it may be possible to
discover how animals use a relatively small neural system to generate various behaviors
adaptable to changes in environmental inputs and robust despite unpredictable variations
in input, a critical capability for animals to survive in a changing environment [4].
Furthermore, the knowledge ofAplysia feeding control can be transferred to engineering,
and could be used to design and control soft robotic graspers [5].

A computational model can enhance the understanding of Aplysia feeding control by
providing a controlled platform to test hypotheses. Although the relatively small number
and large size of neurons in Aplysia’s nervous system facilitate cell-level physiological
studies, it is still difficult to experimentally test all neuronal biophysical properties and
synaptic connections. For instance, both feedback pathways and pattern generators can
be observed in the ganglia of Aplysia [2, 6], but the specific contributions of these
mechanisms to feeding control remain unclear. Are pattern generators alone sufficient
to generate multifunctional and robust feeding behaviors? Is the integration of feed-
back pathways into a small circuit sufficient for Aplysia feeding control? It is possible
to address these questions using a computational model by running numerical simula-
tions and comparing the results with animal data. Furthermore, predictions generated by
models can lead to new hypotheses guiding future experiments [2].

Existing computational models of Aplysia feeding either lack essential neurome-
chanical elements or have limited biological plausibility. The model developed in [7]
incorporates Hodgkin-Huxley-type neurons and complex synaptic dynamics to model
key neurons in the buccal ganglion and CBI-2, a critical cerebral-buccal interneuron in
the cerebral ganglion. It can generate ingestive-like motor patterns observed in isolated
ganglia, but the lack of other cerebral-buccal interneurons (CBIs) prevents switching
between different motor patterns. Moreover, the model does not consider the peripheral
mechanics, so it cannot yet be used to study the effects of sensory feedback on neural
activity and behavior. The complexity of Hodgkin-Huxley-type models also makes this
approach challenging to scale to larger circuits. By employing a demand-driven app-
roach, a neuromechanical model of Aplysia feeding was built in [2] using a Boolean
neuron model. In this model, motor neurons and buccal interneurons are driven by pro-
prioceptive feedback, and interneurons CBI-2, CBI-3, CBI-4 are responsible for coordi-
nating biting, swallowing, and rejection based on exteroceptive feedback. The Boolean
model can run several orders of magnitude faster than real-time, but its neurons only
operate through logic operations, making the model less biologically plausible.

To meet the need for a scalable computational model to generate Aplysia-like kine-
matics, dynamics, and neural activities for multifunctional feeding behaviors, we devel-
oped an Aplysia neuromechanical model using a Synthetic Nervous Systems (SNSs)
[8]. Like Hodgkin-Huxley-type neurons, the computational capability of an SNS comes
from conductance-based mechanisms. SNSs can achieve a low computational complex-
ity by locating all conductance within a single compartment and abstracting the spiking
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activity of individual neurons using a rate model. Our neuromechanical model general-
izes the model in [2] with the Boolean circuits replaced with SNS circuits. In particular,
the motor neurons and buccal interneurons receiving proprioceptive feedback are orga-
nized in nine subnetworks to control Aplysia feeding behavior in silico. In addition,
three cerebral-buccal interneurons (CBIs) coordinate feeding behaviors according to
exteroceptive feedback. The CBIs generate behavioral transitions by flexibly coordinat-
ing different subnetworks. We find that the SNS neural circuitry can generate different
feeding behaviors, including biting, swallowing, and rejection. Comparisons between the
model output and experimental data provides further support for themodel’s plausibility.
These results support the hypothesis that integrating feedback and a relatively small neu-
ral network can control a model of Aplysia biomechanics and generate multifunctional
and robust feeding behaviors in simulation.

2 Methods

Wedeveloped anAplysia californica feedingmodel extending a previous Booleanmodel
of the Aplysia neural system [2] to a Synthetic Nervous System with additional neurons
and more biologically plausible neural dynamics. The SNS model is organized into nine
functional subnetworks and a cerebral ganglion layer coordinating the feeding behaviors
based on known neural circuitry reported in the literature.

2.1 Biomechanical Model

The biomechanical model receives motor commands from the neural circuity model and
returns proprioceptive feedback. This work adopts a simplified biomechanical model
described in [2]. Theperipheralmechanics represents a simplifiedAplysia feeding system
with two components connected by two translational degrees of freedom (DOFs) and
actuated by four muscles. The components include the head and the grasper that are
the main constituents of the feeding apparatus, also known as the buccal mass. Three
muscle units, including the I2 protractor muscle, the I3 retractor muscle, and the hinge
retractor muscle, actuate the head-grasper component. The remaining muscle unit, the
I4 muscle, and the anterior portion of the I3 jaw muscle are responsible for grasper and
jaw closure, respectively.

2.2 Synthetic Nervous System

The SNS is a rate model. A monotonically increasing activation function ϕi is used to
represent the relationship between the activity yi and the membrane potential Ui of the
ith neuron yi = ϕi(Ui). A standard selection of ϕi is a piecewise linear function mapping
the membrane potential to [0, 1]. Intuitively, yi is an indicator of the temporal firing
frequency of the corresponding neuron.

The dynamics of neurons in the SNS can be described as

Icap,i = Ileak,i + Iion,i + Isyn,i + Iapp,i, (1)
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where Icap,i = Cm,i dUi/dt and I leak,i = Gm,i (Er,i - Ui) are the capacitance current and
leak current, respectively. Cm,i is the membrane capacitance,Gm,i is the membrane con-
ductance, and Er,i is the neuron’s resting potential. I ion,i represents the currents flowing
through other voltage-gated ion channels responsible for strong nonlinear phenomena
like plateau potentials and post-inhibitory rebound:

Iion,i =
r∑

j=1

gp,jA
pj
j Bj(Ep,j − Ui). (2)

For the jth ion channel, gp,j is the maximal conductance, Ep,j is its reversal potential,
and Aj and Bj are the activation and inactivation variables, respectively. pj, the activation
exponent, is an integer parameter typically from the set {1, 2, 3, 4}. The transient
responses of Aj and Bj are modeled as

dAj

dt
= A∞,j − Aj

τAj

dBj

dt
= B∞,j − Bj

τBj
,

(3)

where A(B)∞,j and τA(B)j denote the membrane-potential-dependent steady-state and
relaxation time of A(B).

In Eq. (1), Iapp,i defines an optional applied external stimulus current. For example,
feedback signals can be expressed as

Iapp =
m∑

l=1

ξl max(εl(xl − Sl)σl, 0), (4)

with ξ l and Sl representing the feedback gain and the threshold of the lth feedback input
xl. σ l ∈ {-1, 1} indicates the corresponding direction of the feedback, while εl ∈ {-1, 1}
is the feedback polarization (excitatory if εl = 1, inhibitory if εl = -1). The remaining
term, Isyn,i, encompasses currents through both chemical and electrical synapses:

Isyn,i =
n∑

j=1

Gs,ij
(
Es,ij − Ui

) +
m∑

k=1

Ge,ik
(
Upre,k − Ui

)
. (5)

For the kth electrical synapse,Upre,k is themembrane potential of the presynaptic neuron
and Ge,ik is the electrotonic coupling conductance. For the jth chemical synapse, Es,ij
is the reversal potential. In the SNS, the synaptic conductance Gs,ij is written as Gs,ij =
gs,ij rij, where gs,ij is the maximal conductance. Rij, the activation of the synapse in [0,
1], can be expressed as a cascade connection of two first-order linear systems:

dsij
dt

= ypre,j − sij
τsyn,ij1

.

drij
dt

= sij − rij
τsyn,ij2

(6)

In the above synaptic dynamics, ypre,j is the activity of the jth presynaptic neuron,
while sij represents the activation of presynaptic transmitter release of the jth synapse.
τ syn,ij1 and τ syn,ij2 are two characteristic activation time constants.
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2.3 Neural Control Circuitry

Using the SNS framework, we developed a neural circuitry model of Aplysia feeding
control based on known synaptic connections while taking into account the feedback
signals from the peripheral biomechanics (Fig. 1).

Motor Control Layer. The motor control layer consists of 5 known motor neurons
innervating key musculature: B31 innervates the I2 Protractor muscle for protracting
the grasper [9]; B6 innervates the I3 retractor muscle for retracting the grasper [10]; B8
innervates the I4 muscle for closing the grasper [10]; b38 innervates the anterior portion
of the I3 muscle for pinching the jaws to hold onto food during the protraction phase of
swallowing [11]; B7 innervates the hinge muscle for facilitating initial retraction [12].
Activations of the fivemotor neurons aremediated by the higher buccal interneuron layer
and sensory feedback (B38 and B7 receive proprioceptive feedback on the position of
the grasper within the head, xgh [2]).

Buccal Ganglion Layer. IN the buccal ganglion layer model, we organized nine buccal
interneurons into five subnetworks (B63/B31, B64/B52, B34/B40, B65/B30, B20/B4)
based on their known functional roles in biting, swallowing, or rejection (Fig. 2). A
subnetwork can accomplish its function by stimulating a specific set of motor neurons.
To coordinate the behaviors, subnetworks receive commands from the higher layer,
while some buccal interneurons also receive proprioceptive feedback on the grasper
position, xgh. In addition, activation of a subnetwork can modulate activations of other
subnetworks to achieve appropriate functional timing.

SubnetworkB63/B31 (Fig. 2A) realizes grasper protraction through strong excitatory
synaptic connections between B63 and motor neuron B31 [13]. Because B63 and B31
can be viewed as a single functional unit [14], we assignmotor neuron B31 and interneu-
ron B63 to the same subnetwork. In contrast, subnetwork B64/B52 (Fig. 2A) enables
grasper retraction by a monosynaptic connection between B64 and the motor neuron B6
[15]. Due to the intrinsic slowly activating sodium channel and the slowly inactivating
potassium channel, B64 can spontaneously generate a plateau potential some time after
its activation [7]. Proprioceptive feedback to B64 can extend the duration of retraction,
enabling feeding to adapt to external load [2]. B52 can demonstrate a post-inhibitory
rebound (PIR) phenomenon due to a low threshold sodium channel [6]. PIR, together
with the mutual inhibitory connections, ensures the termination of the retraction phase.
The transition from the protraction phase to the retraction phase is realized by a slow
excitatory synapse from B63 to B64 [7].

Subnetwork B34/B40 (Fig. 2B) and B65/B30 (Fig. 2C) are responsible for medi-
ating variations in protraction durations and closing the grasper during the retraction
phase. Their activation is in phase with protraction since both subnetworks are driven by
B63/B31 and inhibited by B64 [16]. B34 and B40 make monosynaptic inhibitory con-
nections with B64 [7], postponing the onset of B64 and promoting a longer protraction
duration [17]. In contrast, B65 and B30make fast inhibitory and slow excitatory connec-
tions with B64 [16], thus activating an earlier plateau potential in B64 and promoting a
shorter protraction duration [17]. In addition, both B40 and B30 promote grasper closure
during the retraction phase by slow excitatory synapses to B8 [16].
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Fig. 1. Schematic of the neural circuitry model. In the motor control layer and buccal ganglion
layer, we divided the neurons into nine subnetworks according to their functions. Neurons in
the same subnetwork are indicated by the same color. The cerebral ganglion layer contains cere-
bral interneurons for behavior switching and coordination. Cross-layer synaptic connections are
shown as bold black arrows. Dashed black lines represent intra-layer connections. Sensory sig-
nals, including proprioceptive and exteroceptive feedback, may be provided by additional sensory
neurons or interneurons in the neural circuitry of the animal.

The last subnetworkmodeled in this layer, B20/B4 (Fig. 2D), triggers grasper closure
during the protraction phase and grasper relaxation during the retraction phase. B20 is
excited by other protraction interneurons, indicating that it is activated in this phase
[18]. Therefore, the excitatory synapse from B20 to B8 makes the grasper close during
protraction. In addition, through the inhibitory synapse to B8, the hyperpolarization
elicited by B4 can overcome the excitation produced by B40 or B30 during retraction.

Cerebral Ganglion Layer. The cerebral ganglion layer contains command-like neu-
rons whose activation patterns encode which feeding behavior to generate. In this layer,
the model incorporates the three critical cerebral-buccal interneurons, namely CBI-2,
CBI-3, and CBI-4. CBI-3 strongly inhibits the B20/B4 subnetwork [18]. Thus, its acti-
vation determines the timing of grasper closure and differentiates between ingestive and
egestive behaviors. CBI-2 and CBI-4 play a similar role in the rejection because they
activate the protraction phase by exciting B63. However, their activations have different
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A. Subnetwork B63/B31 and B64/B52 B. Subnetwork B34/B40

C. Subnetwork B65/B30

D. Subnetwork B20/B4

Fig. 2. Schematic of the buccal ganglion layer. This layer contains five subnetworks critical for
multifunctional feeding control of Aplysia. A. Pathways of subnetworks B63/B31 and B64/B52.
B. Pathways of subnetwork B34/B40. C. Pathways of subnetwork B65/B30. D. Pathways of
B20/B4.Neurons in different subnetworks are highlighted in different colors, and each subnetwork
is enclosed by a dashed and color-coded rectangle. The synaptic connections are color-coded
according to their presynaptic neurons, with the exception that those within each subnetwork are
black.

implications in terms of biting and swallowing. CBI-2 excites the B34/B40 subnetwork
but inhibits B65 [17], leading to a longer protraction and biting-like pattern. CBI-4, by
contrast, shortens the protraction phase by exciting B30 [16], making the pattern more
like swallowing. The activations of CBIs are determined by the same feedback pathways
in [2] so that they can coordinate behavioral switching based on exteroceptive stimuli.
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2.4 Model Implementation

We implemented the neuromechanicalmodel in theMATLABSimulink/Multibody envi-
ronment (R2021b). The parameters of the biomechanical model were taken from [2].
We referred to [7] to set the parameters governing the intrinsic dynamics of the neurons.
We hand-tuned parameters to obtain realistic responses for those neurons that do not
exist in [2] and for all chemical synapses. The simulation runs approximately two times
faster than in real-time in accelerator mode on a 3.0 GHz CPU machine.

3 Results

3.1 Multifunctional Feeding Control

The model qualitatively generates multifunctional feeding behaviors of Aplysia cali-
fornica, including biting, swallowing, and rejection (Fig. 3). Rhythmic biting patterns
mediated by the SNS controller possess similar protraction duration and retraction dura-
tion, with weak grasper closure in-phase with retraction. As in the previously reported
biomechanical model by Webster-Wood et al. [2], we neglect the interactions between
the muscles and the environment during biting, so no force is experienced by the sea-
weed (Fig. 3A). The protraction duration is slightly shorter than the retraction duration
during swallowing (Fig. 3B), as observed during swallowing behavior in the animal. A
large positive (ingestive) force is exerted on the seaweed during retraction. The feedback
pathways enable the model to adjust its retraction according to the external load, such
that the period of high-load swallowing is longer than that of no-load biting (see below).
The model can also successfully generate rejection-like behaviors (Fig. 3C). The period
of rejection is much longer than ingestive patterns, and the force on the seaweed is neg-
ative (egestive) during the protraction phase, which is again similar to what is observed
in the animal.

Fig. 3. The integration of the SNS model and simplified periphery is capable of producing kine-
matics (for biting) and both kinematics and kinetics (for swallowing and rejection) that are similar
to those observed experimentally: A. Biting. B. Swallowing. C. Rejection. Shaded backgrounds
indicate the protraction phase.
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3.2 Comparison of Simulated Ingestive Behaviors with Animal Data

Wequantitatively compared themodel’s behaviors to reportedAplysia experimental data
(Fig. 4). The first data set is selected from [19] and compares ingestive motor pattern
variability in intact animals (with sensory feedback) with variability in isolated ganglia
(without sensory feedback) (Fig. 4A). In vivo, durations of biting are relatively short (4.26
± 0.95 s), with similar mean values and variations (standard deviation) of the protraction
phase (2.03± 0.62 s) and the retraction phase (2.17± 0.60 s). In contrast, the behavioral
durations greatly increase when sensory feedback is removed (15.66± 7.34 s) (Fig. 4B).
This increase in duration occurs mainly in protraction duration (10.40 ± 5.78 s), with
a lesser increase in retraction duration (4.99 ± 3.28 s). The SNS model can generate
similar biting behaviorswith andwithout proprioceptive feedback (Fig. 4A,B).When the
feedback signal of the grasper position (xgh) is included, the duration of biting is 4.44 s.
As in the animal data, the difference between the protraction duration (2.15 s) and the
retraction duration (2.29 s) is minimal. When the proprioceptive feedback is removed in
the model, the protraction duration significantly increases to 12.04 s, while the retraction
duration (5.77 s) only experiences a moderate prolongation. The contrast between the
durations with and without feedback illustrates the critical role proprioceptive pathways
could play in normal biting behavior.

The seconddataset from [20] compared the swallowingdurations under different load
conditions (Fig. 4C, D). When animals feed on unloaded seaweed (unloaded swallow-
ing), the total cycle duration is 5.46 ± 0.76 s. When they attempt to ingest unbreakable
seaweed (loaded swallowing), the addition of load slows down the behavior, increasing
the total duration by about 30% (7.11 ± 0.9 s). In simulations, the unloaded condition
can be implemented by removing the joint connecting the seaweed to the ground. When
the joint is removed, the duration of swallowing generated by the model is 5.25 s, with a
slightly shorter protraction duration (2.59 s) than the retraction duration (2.66 s) (Fig. 4C,

Fig. 4. Comparison of behavioral durations between the animal data and the model. The model
was validated based on four experiments: A. in vivo biting [19]. B. Ingestive patterns generated by
isolated ganglia [19]. C. Swallowing unloaded seaweed [20]. D. Swallowing unbreakable seaweed
[20]. Error bars indicate standard deviations.
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D). The restoration of the seaweed constraint increases the total duration by about 23%
(6.45 s). Thus, the model data also follows the trend observed in the animal data that the
increase of load results in longer ingestive durations.

4 Conclusions and Future Directions

We presented a Synthetic Nervous System that controls Aplysia feeding behaviors in
simulation. The circuitry in themotor control layer and buccal ganglion layer is organized
into nine subnetworks that generate activity patterns needed for biting, swallowing, and
rejection. CBIs in the cerebral ganglion can coordinate feeding behaviors by modulating
these subnetworks.

We then implemented the neural circuitry model in a simplified Aplysia biomechan-
ical model. We found in simulations that this neuromechanical model is qualitatively
sufficient to generate the three key feeding behaviors biting, swallowing, and rejection.
Furthermore, by comparing the model’s output with animal data, we demonstrated that
the model produces similar outputs for Aplysia feeding behaviors under four different
conditions (biting with feedback, biting without feedback, unloaded swallowing, loaded
swallowing). Specifically, the integration of proprioceptive pathways considerably short-
ens the protraction phase during biting. Such variation in the protraction duration is due
to the protraction-triggered excitatory feedback to B64 considered in our model. When
the protraction of the grasper is strong enough (xgh higher than a threshold), it tends to
excite B64. The strength of the feedback is proportional to the difference between xgh
and the threshold in our model. Thus, incorporating it accelerates the termination of the
protraction phase. If the feedback pathways are removed, the earlier onset of B64 also
disappears. The intrinsic pattern generator will then produce a biting pattern featured
with a long protraction phase. The feedback pathways influencing the termination of the
B64 firing also exist in our model (retraction-triggered inhibitory feedback), indicating
that a strong retraction of the grasper (xgh lower than a threshold) tends to inhibit B64
and accelerates the termination of the retraction phase. However, the threshold of the
pathways is set relatively low so that xgh will not become much lower than the threshold
before the termination of the retraction phase, while it can become much higher than
the threshold before the termination of the protraction phase. Therefore, the retraction-
triggered inhibitory feedback is generally weaker than protraction-triggered excitatory
feedback in our model, and the variation in the retraction duration with and without
feedback is less obvious than in the protraction phase. These results highlight the role of
proprioceptive feedback in coordinating movements, and they suggest experimentally
testable pathways by which robust responses to load are produced in the animal.

To further verify the predictive ability of the proposed model, we will compare its
response with more animal data at both neural and behavioral levels. According to these
results, we can tune the unknown parameters and determine whether it is necessary
to include additional identified neurons and synaptic connections in the model. A good
neural circuitrymodel should also generate robust control with uncertainties in themodel
parameters. Performing sensitivity analysis is critical to evaluate howmuch the variation
in certain parameters will contribute to the variation in the model output.



364 Y. Li et al.

Because the proposed computational model is rooted in neurobiology, it could serve
as a guide in the experimental study of Aplysia feeding or as a platform for hypothe-
sis testing. Furthermore, it is also possible to generalize the model for robotic control
because the single-compartment and non-spiking neuron models in the SNS reduce the
computational complexity and allows real-time implementation.

Acknowledgements. This work was supported by NSF DBI 2015317 as part of the
NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program and
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