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Abstract. This paper details the development and analysis of a compu-
tational neuroscience model, known as a Synthetic Nervous System, for
the control of a simulated worm robot. Using a Synthetic Nervous System
controller allows for adaptability of the network with minimal changes
to the system. The worm robot kinematics are inspired by earthworm
peristalsis which relies on the hydrostatic properties of the worm’s body
to produce soft-bodied locomotion. In this paper the hydrostatic worm
body is approximated as a chain of two dimensional rhombus shaped
segments. Each segment has rigid side lengths, joints at the vertices, and
a linear actuator to control the segment geometry. The control network
is composed of non-spiking neuron and synapse models. It utilizes cen-
tral pattern generators, coupled via interneurons and sensory feedback,
to coordinate segment contractions and produce a peristaltic waveform
that propagates down the body of the robot. A direct perturbation Flo-
quet multiplier analysis was performed to analyze the stability of the
peristaltic wave’s limit cycle.

Keywords: Synthetic nervous system · Central pattern generator ·
Peristalsis · Functional subnetwork · Motor control · Worm robot

1 Introduction

Worms move via a process known as peristaltic locomotion, in which the mus-
cles contract and relax in wavelike patterns propagating down the body [16]. The
pattern of muscle activation propels the worm forward or backward depending

This work was supported by NSF PIRE Award 1743475, NIH BRAIN Initiative grant
R01 NS118606, and NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-
MRC Next Generation Networks for Neuroscience Program.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hunt et al. (Eds.): Living Machines 2022, LNAI 13548, pp. 249–261, 2022.
https://doi.org/10.1007/978-3-031-20470-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20470-8_25&domain=pdf
http://orcid.org/0000-0002-4003-0314
http://orcid.org/0000-0002-1437-026X
http://orcid.org/0000-0002-4243-2405
http://orcid.org/0000-0001-7533-6770
http://orcid.org/0000-0002-8504-7160
https://doi.org/10.1007/978-3-031-20470-8_25


250 S. Riddle et al.

on the direction of the wave, a process made possible by the hydrostatic prop-
erties of the worm body. Hydrostats maintain a constant volume due to the
incompressibility of fluids within the body. A worm body can be approximated
as a series of hydrostatic cylinders known as segments, each of which has lon-
gitudinal and circumferential muscles. When the circumferential muscles con-
tract, the segment diameter decreases, which necessitates an increase in length
to maintain the volume of the segment. Similarly, contraction of the longitudinal
muscles causes a shortening of the segment, which necessitates an expansion of
the diameter. Stringing a series of these segments together forms an analogous
worm body. Many worm-like robots have been constructed following geometric
approximations of this motion [5,8,11].

A Synthetic Nervous System (SNS) is a dynamical network composed of
biologically-inspired neuron and synapse models [13]. An SNS can be differen-
tiated from artificial neural networks by its use of conductance-based synapses,
rather than weight-based synapses, and the use of the Functional Subnetwork
Approach (FSA) [13]. The FSA is a method that allows for direct analytical
tuning of small dynamical networks so they may perform specific operations in
a larger network without resorting to global optimization methods. These func-
tional subnetworks can be made to perform such actions as addition, subtraction,
multiplication, division, differentiation, and integration of incoming signals. The
subnetworks can then be assembled to form an SNS for the control of biologically
inspired robots [2,5,6,8,14].

The wave-like nature of peristalsis implies periodic behavior in the ner-
vous system. Oscillator networks called central pattern generators (CPGs) are
believed to control rhythmic behaviors like breathing, walking, flying, and swim-
ming [9]. CPGs produce periodic outputs without requiring periodic inputs. For
peristalsis, CPGs can be used to control the muscle contraction cycles of each
segment [7]. This paper develops an SNS neural controller for peristaltic loco-
motion of a model of a worm-like robot. We hypothesize that coupled oscillators
can be used to produce peristaltic waveforms for use in worm-like locomotion.

2 Simplified Worm Robot Kinematic Model

For the purposes of this work, the worm robot segment model is simplified using
rhombuses with hinge joint vertices [8]. This model operates similarly to the
hydrostat cylinder model but in two dimensions instead of three. The worm
body segments consist of rhombuses linked corner to corner with joints at all
vertices. It is assumed that the sides of these rhombuses are rigid and that the
angle between adjacent sides can change via joints placed at each vertex. Pushing
two opposing corners together results in an outward displacement of the other
two corners in the rhombus (Fig. 1a). This is akin to the hydrostat longitudi-
nal contraction. Pulling the other two corners together similarly displaces the
first pair of vertices (Fig. 1b). This is akin to the hydrostat circumferential con-
traction. Just as in the hydrostat model these are antagonistic actions that can
propagate down a worm body in a peristaltic wave. The relationship between
rhombus height (w) and length (l) for a given side length (ls) is l2 + w2 = 4l2s .
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a) b)

Fig. 1. Rhombus segment at two states: a) fully contracted and expanding, b) fully
expanded and contracting.

The robot discussed in this paper is simulated but was loosely modelled
after an existing robot presented in [4]. The physical robot uses servo motors
connected to cords wrapped around the circumference of a cylinder composed of
flexible rhombuses. For a visual of this robot, refer to Fig. 3 of [4]. Spooling and
unwinding the cord directly changes the heights of the rhombuses resulting in
segment contraction and expansion, respectively. While the motor is only able to
provide contracting tension to the cord, longitudinally oriented springs provide
return force allowing for control of both directions of movement. The simulation
in this work models the motors as linear actuators. Each rhombus segment has
one such actuator spanning between its top and bottom vertices.

These motors use proportional control, whereby the actuator velocity (v) is
determined by the difference between the current height (wi) and target height
(wtarg). The subscript i indicates the simulation time step and wtarg is set by
the CPG neurons as detailed in Sect. 3.1. The equation governing the actuator
velocity is v = k ∗ (wtarg − wi), where k is a gain that can be tuned to achieve a
desired actuation behavior. For the purposes of this paper k was set to 0.0091.
The height updates at each time step (of size dt) following the equation wi =
wi−1 + v ∗ dt. The velocity also updates so the actuation speed decreases as the
segment height approaches wtarg. The segment length is calculated at each time
step via the geometric relationship li =

√
4l2s − w2

i . Maximum and minimum
height limits (wmax = 11cm, wmin = 6.5cm) were set to reflect the physical
limits of the robot in [4], however the limits are arbitrary so long as they do not
violate the geometry. At these limits the actuator velocity is set to zero.

3 Methods

3.1 Mathematical Models

Neurons and Synapses: As stated previously, the SNS is composed of neurons
and synapses. Non-spiking, leaky integrator neurons were chosen for this net-
work. The leaky-integrator dynamics convey ion channel gating without express-
ing action potentials generated by Hodgkin-Huxley (H-H) fast transient sodium
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and delayed rectifier potassium currents [3,13]. Omitting action potentials sim-
plifies the neuron model by removing the non-linear differential equations needed
to properly convey H-H ion channel gating. The activity of this type of neuron
is qualitatively comparable to the spiking frequency of a population of spiking
neurons, whereby increasing spiking frequency in the population correlates to
increasing membrane potential in the non-spiking neuron [15,18]. The simpler
equations and ability to model one neuron instead of a population leads to a more
computationally efficient controller. This is essential for robotic applications as
the controllers must be capable of real-time operation for practical use. The dif-
ferential equation governing the membrane potential behavior of the non-spiking
neuron model is as follows:

Cm
dV

dt
= Gm(Er − V ) +

n∑

j=1

Gsyn,j(Esyn,j − V ) + Iapp (1)

Cm is the membrane capacitance, V is the membrane potential, Gm is the
membrane conductance, and Er is the cell’s resting potential. Esyn is the synap-
tic reversal potential, n is the number of presynaptic neurons, and Iapp is
any current applied directly to the neuron. Gsyn is the synaptic conductance
through which presynaptic neuron j influences the postsynaptic neuron. Non-
spiking conductance-based synapses were chosen for this network [13]. These are
synapses which only influence the post-synaptic neuron if the presynaptic neuron
is excited. Unlike the leak term (Gm) the synaptic conductance depends on the
presynaptic neuron potential. In biological models this relationship, known as
the synaptic conductance curve, can be represented by any monotonic function
that saturates, like a sigmoid. For this SNS a piecewise linear approximation is
used [13]. This allows for precise tuning of the network (shown in Sect. 3.2) and
reduces the complexity of the math involved. The synaptic conductance curve is
defined by the following:

Gsyn,i =

⎧
⎪⎪⎨

⎪⎪⎩

0 when Vpre < Elo

gsyn,i
Vpre − Elo

Ehi − Elo
when Elo ≤ Vpre ≤ Ehi

gsyn,i when Vpre > Ehi

(2)

Ehi and Elo are the upper and lower threshold potentials of the synapse
and their difference is known as the “operating range” R (R = Ehi − Elo).
From Eq. 2 we can see that this means the synapse is essentially off when Elo is
reached and saturates at its maximum conductance (gsyn) when Ehi is reached.
To simplify this equation the actual membrane potential of the cell is normalized
to be 0mV at rest. The normalized potential is represented by the variable U
which is the neuron activation level above resting potential (U = V − Er).
Assuming the synaptic potentials stay within the operating range (0, R) we can
substitute U and R into Eq. 2 to reduce the piecewise linear relationship to
just gsyn,i

Upre
R . Since the membrane potential was normalized to U , the synaptic
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reversal potential must also be corrected (ΔEsyn = Esyn − Er). Substituting
these parameters into Eq. 1 produces the following:

Cm
dU

dt
= −GmU +

n∑

j=1

gsyn,j
U

R
(Esyn,j − U) + Iapp (3)

This ordinary differential equation can be solved using the forward Euler
numerical method of approximation. In this method the time differential com-
ponents are calculated at each time step i and build off the state of the neuron
at the previous time step i − 1. When converted into this format and solved for
U, the differential equation takes the following form:

Ui = Ui−1 +
dt

Cm
(−GmUi−1 +

n∑

j=1

gsyn,j
Ui−1

R
(Esyn,j − Ui−1) + Iapp) (4)

Central Pattern Generators: The driving components of the SNS controller
are the CPGs [10,12]. Each segment has one CPG composed of two neurons:
one encouraging segment contraction (U1), the other segment expansion (U2).
The activation levels of the CPG neurons directly control the actuator’s target
position. The target position is set by subtracting the membrane potential of
the contracting neuron from that of the expanding neuron. Each CPG neuron’s
operating range is between 0 and R, meaning the total range of values for this
operation is [−R,R]. This range is mapped to the range of heights the segments
are capable of achieving [wmin, wmax]. When the contraction neuron is more
strongly activated the actuator decreases the segment height (not exceeding
wmin). When the expansion neuron is more strongly activated the segment height
increases (not exceeding wmax).

The CPG neurons use the same non-spiking model but now incorporate
voltage-gated sodium ion channels [12]. This allows for additional temporal
dynamics that enable pattern generation. The ion channels are modeled using
fast m gates and slow h gates, like those in the H-H model [3]. The m and h
gating variable behaviors are modeled using the following functions:

h∞(U) =
1

1 + 0.5esh∗(U)
(5)

m∞(U) =
1

1 + esm∗(U−R)
(6)

τh(U)
dh

dt
= h∞(U) − h −→ τh(U) = τh,max

√
0.5esh∗(U)

h∞(U)
(7)

The s values are the slopes of the sigmoids dictating the behaviors of m and h
while τh is the time constant that determines how fast the h gates close. The m
gates are much faster than the h gates which means τm is significantly smaller
than τh. This allows us to ignore τm.

The sodium channel current presents as GNam∞(U)h(U)∗(ΔENa−U) in the
neuron model. GNa is the sodium conductance that allows the U1 CPG neuron’s
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steady state potential to be R at equilibrium when the other neuron’s potential
U2 is at 0. Analyzing the sodium conductance in this state lets us find GNa using
the following calculation instead of solving a four-dimensional system.

GNa =
GmR

m∞(R)h∞(R) ∗ (ΔENa − R)
(8)

The CPG structure is composed of two of these neurons mutually inhibiting
each other, known as the half-center model [1]. The mutual inhibition paired
with the sodium channel behavior allows the neurons to switch back and forth
between excited and inhibited states in a catch-and-release fashion. When the
excited neuron’s potential drops below the necessary threshold the inhibition
of the other neuron lets up just enough for the fast m gates to start opening.
This results in the cascading effect which quickly depolarizes the neuron and
simultaneously inhibits/ hyperpolarizes the previously excited neuron. This cycle
continues indefinitely unless halted by an outside force such as an applied current.

Sensors: Each segment is equipped with a stretch sensor oriented longitudinally
between the middle vertices of the rhombus (see Fig. 3 of [4]). The signal from
the stretch sensor is approximated as a piecewise function such that it sends
a current directly to the CPG command neuron (U3 of the SNS diagram in
Fig. 2) only when the segment reaches its minimum length/maximum height
(fully expanded state). This function is shown below.

Isens =

{
R when l ≤ lmin

0 when l ≥ lmin

(9)

The applied current value of R was chosen to keep the math simple when tuning
the network.

3.2 Functional Subnetwork Tuning

The worm robot’s Synthetic Nervous System (Fig. 2) was developed using the
neuroscientific models described in Sect. 3.1. The SNS is split up into subnet-
works corresponding to the “physical” worm segments. As such there are N
CPGs, stretch sensors, command neurons (U3), and inter-segment neurons (U4)
where N is the number of worm segments in the model (any integer of value 3
or greater works for peristalsis). The order of operations within each segment
is broken down in the flowchart in Fig. 3. Each synapse is tuned by taking the
parameter values of the relevant pre and postsynaptic neurons at a given point in
the cycle outlined in the flowchart and applying these to the following equation
(where n signifies the number of presynaptic neurons influencing the postsynap-
tic neuron).

U∗ =

n∑

j=1

gsyn,j
Uj,pre

R
Esyn,j + Iapp

Gm +
n∑

j=1

gsyn,j
Uj,pre

R

(10)
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Fig. 2. Synthetic Nervous System controller diagram for a simulated worm robot

Fig. 3. Flowchart explaining the SNS diagram operations in order

This equation is the key for direct analytical tuning of transmission synapses
via the FSA as presented in [13]. U∗ here is the desired steady state potential
of the postsynaptic neuron for a given set of presynaptic potentials. For this
network Gm = 1μS, Cm = 5nF, Er = −60 mV, and R = 20 mV or nA depend-
ing on the parameter. All inhibitory synaptic reversal potentials (Einh) were
taken to be −100 mV. All excitatory reversal potentials (Eex) were taken to be
134 mV, the reversal potential of an excitatory calcium neurotransmitter found
in some organisms [13]. Relevant earthworm nervous system data was not readily
available to use for this SNS. As such these parameters were chosen somewhat
arbitrarily but all values were kept within the realm of biological plausibility
(mV, nA, and μS scales) and follow the guidelines laid out in [13].

The tuning of the synapse between neurons U4,j−1 and U3,j (gsyn43) will be
used to demonstrate the design process. This synapse will be evaluated when
U4,j−1 is inhibiting U3,j while the sensor is still providing current (just before
the CPG restarts). At this point in time U∗

3,j = 0 mV since it is inhibited, Isens =
R = 20nA since the segment has not yet contracted, and U4,j−1 = R = 20 mV
since it is excited. When plugged into Eq. 10, the only remaining unknown is
gsyn43 which can now be solved for:
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U∗
3,j = 0 =

gsyn43
U4,j−1

R
ΔEsyn43 + Isens

1 + gsyn43
U4,j−1

R

=
gsyn43ΔEinh + R

1 + gsyn43

−→ gsyn43 =
−R

ΔEinh
=

−20nA
−100mV − (−60mV)

= 0.5μS

(11)

This process need only be repeated for each of the synapses in a single segment
since the parameters are the same for every segment. This gsyn value indicates
the maximum conductance parameter to be used in the synapse model in Eq. 2.
Finding gsyn constitutes tuning the synapse.

The tuning process for the CPG synapses (gsyn1, gsyn2) is similar but with
one caveat. The CPG neurons have sodium currents and must be able to inhibit
each other in such a way that allows their membrane potentials to oscillate back
and forth. Since transmission type synapses are used, the synaptic conductance
must be designed to make the inhibited neuron’s potential (U2) greater than
0 for it to inhibit the excited neuron (U1 = R = 20 mV). This value of U2

is denoted by δ, a bifurcation parameter explained in [12]. Substituting delta
and the persistent sodium current into Eq. 10 produces the following equation
which can then be solved for the maximum synaptic conductance gsyn. Note that
gsyn1 = gsyn2 = gsyn for the CPG synapses.

δ =
gsyn

U1

R
ΔEsyn + GNam∞(δ)h∞(δ) ∗ (ΔENa)

1 + gsyn
U1

R
+ GNam∞(δ)h∞(δ)

−→ gsyn =
−δ − GNam∞(δ)h∞(δ)(δ − ΔENa)

δ − ΔENa

(12)

ENa was set to 50 mV, a typical value for the sodium reversal potential in a
neuron, and ΔENa = ENa − Er. Other parameter values used for these calcu-
lations were τh,max = 300 ms, s = 0.05, and δ = 0.01. Using these parameters
to tune the CPG synapses results in a continuous pattern of oscillation between
the neuron potentials U1 and U2.

Since the CPG relies on the neuron potentials just barely crossing their
thresholds to induce oscillation, it is possible to halt the CPG by applying cur-
rent to the neurons. This can be done directly or through a synaptic connection
from a command neuron. By exciting the expansion CPG neuron while it is
already excited, and inhibiting the contraction CPG neuron when it is inhib-
ited, the command neuron (U3) is able to push their potentials away from the
thresholds thus halting oscillation. When the command neuron is inhibited this
influence is released allowing oscillation to resume.

3.3 Stability Analysis

For the parameters used in this work, the simulated robot with N = 6 segments
exhibits a stable limit cycle with a period T ≈ 5250ms. That is, there is a
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unique periodic orbit that attracts nearby trajectories. In order to confirm the
stability of the orbit we performed a direct Floquet multiplier analysis as follows.
There are seven variables per segment: four neuron potentials, two “h” gating
variables, and the segment height. Thus there are 42 variables for a robot with six
segments. Given a base point x0 ∈ R

42, we consider 42 different trajectories with
perturbed initial conditions xi(0) = x0 + ε ei, where ei ∈ R

42 is the ith standard
unit vector, and |ε| 	 1. We construct an approximation to the Monodromy
matrix M , defined with the ith column Mi given by

Mi = lim
ε→0

xi(T ) − x0

ε
,

where xi(T ) is the point on the perturbed trajectory after one period evolution.
The periodic orbit is linearly stable if and only if the eigenvalues of M , the
Floquet multipliers, may be ordered such that

λ1 ≡ 1 > |�(λ2)| ≥ |�(λ3)| ≥ . . . ≥ |�(λ42)|.
The Monodromy matrix M obtained depends on the choice of base point x0;
in theory the eigenvalues of M are independent of x0. For the specific base
point used here, see the code available at https://github.com/sriddle97/SNS-
Controlled-Peristalsis.git.

4 Results

4.1 SNS Simulation

Running the simulation with all the parameters set, neurons modelled, and
synapses tuned as described in Sect. 3 produced the results in Fig. 4. N was
chosen to be 3 for these plots for the purposes of legibility. N = 6 was still used
for the stability analysis.

Figure 4 shows that the SNS network does induce sequential CPG activity
from segment to segment down the worm body. As intended, the CPGs halt
when their sensor detects full re-expansion of the segment thus applying current
to the command neuron U3 which inhibits U1 and excites U2. The CPG begins
oscillating once more when the previous segment’s U4 neuron inhibits the U3

command neuron, thus removing its effect on the CPG. In this way the CPGs
are effectively coupled via the U4 inter-segment neuron and the stretch sensors.
The height plots in Fig. 4 show that this coupling allows the propagation of a
peristaltic waveform when the CPG potentials are mapped to the actuator model
to produce segment motion. Close inspection of the neuron potential and height
plots reveals that the segment height decreases when it’s corresponding CPG
neuron U1 is excited. This makes sense since U1 encourages segment contraction.
Likewise, when the expansion CPG neuron U2 is excited, the segment height
increases. Since U2 excites the inter-segment neuron U4 which then starts the
oscillation of the following segment, the wave is able to propagate down the
worm from segment to segment in a peristaltic fashion.

https://github.com/sriddle97/SNS-Controlled-Peristalsis.git
https://github.com/sriddle97/SNS-Controlled-Peristalsis.git
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Fig. 4. Plot of the CPG neuron membrane potentials and segment heights over time,
as well as a snapshot of the simulation at t=3000ms, color coded by segment. (Color
figure online)

4.2 Stability

We obtained the Monodromy matrix M via direct estimation, using a perturba-
tion of ε = 0.001. When a height variable is on the upper threshold h = hmax,
linear disturbances are automatically rejected. Thus, linear order, small per-
turbations in the height lead to no perturbation of the limit cycle when the
perturbed variable is pressed against a hard boundary. That is, the system has a
limit cycle with a sliding component [17]. The corresponding columns of M are
thus identically equal to zero, meaning that if j variables are thus constrained
at the reference point x0 anchoring the Floquet analysis, the 42 × 42 matrix
M necessarily has rank ≤ 42 − j. Consequently at least j of the multipliers are
identically zero, indicating the presence of “superstable” directions at x0. Using
the direct analysis, we obtained that the leading Floquet multipliers are

λ1 = 0.9945 ≈ 1, λ2 = 0.0081, λ3 = −0.0001,
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and the remaining multipliers are either identically zero or else negligibly small.
The nontrivial Floquet multipliers are less than 1 in magnitude, indicating that
the periodic orbit of our model is linearly stable. For the full Monodromy matrix
and list of Floquet multipliers see the code linked in Sect. 3.3.

5 Discussion and Future Work

We hypothesized that coupled oscillators can form peristaltic waves in a worm
robot model. The results in Sect. 4 indicate that it is indeed possible, thus con-
firming the hypothesis. The CPGs coupled via the inter-segment neurons U4 and
the stretch sensors are capable of propagating a signal from segment to segment.
The CPGs themselves are also effective in controlling the pattern of segment
contraction and expansion that translates this signal into peristaltic locomotion.
Thus, the SNS described in this paper is capable of controlling a simple worm-
like robot model. Direct evaluation of the Floquet multipliers for the periodic
orbit suggested that the periodic motions of the neural and mechanical elements
together indeed produce a linearly stable limit cycle.

While the simple worm-robot model described in this paper could be con-
trolled via a state machine or conventional artificial neural network (ANN), the
SNS controller has advantages. Adding complexity to the mechanical model to
make it more realistic may require a full re-design of a state machine controller.
An SNS may only require a few additional neurons or a subnetwork to account for
the changes [10,13]. Additionally, SNSs do not require large amounts of compu-
tational power or training data for global optimization methods (such as genetic
algorithms) unlike ANNs [13]. The direct analytical tuning of an SNS also makes
it tractable unlike the black box controllers produced by global optimization.

In its present state the kinematic model does not sufficiently capture the
detailed movements of a physical robot. As such, both the model and the SNS
controller designed in this paper need alteration before use in a real-world con-
text. Most of this alteration could be accomplished by re-designing the model to
include forces and compliant mechanical coupling between segments, making it
a kinetic model. This would allow the application of friction force which must be
accounted for to mitigate segment slip and to accurately portray contact with the
robot’s environment [4]. Incorporating a more complex motor controller would
also allow the motors to have a wider range of actuation patterns/behaviors
which could enable more efficient locomotion [8]. Lastly, more research on earth-
worm nervous systems could be performed. Some parts of the SNS structure, like
the back-to-front synaptic connection between segment N and segment 1, were
included to make the system functional but are not necessarily features grounded
in neuroscience literature. Further study could reveal neural architectures and
properties that could be used to make the SNS even more biologically relevant.



260 S. Riddle et al.

References

1. Brown, T.G.: On the nature of the fundamental activity of the nervous centres;
together with an analysis of the conditioning of rhythmic activity in progression,
and a theory of the evolution of function in the nervous system. J. Physiol. 48(1),
18–46 (1914)

2. Goldsmith, C.A., Szczecinski, N.S., Quinn, R.D.: Neurodynamic modeling of the
fruit fly drosophila melanogaster. Bioinspiration Biomimetics 15(6), 065003 (2020)

3. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544
(1952)

4. Horchler, A.D., et al.: Peristaltic locomotion of a modular mesh-based worm robot:
Precision, compliance, and friction. Soft Rob. 2(4), 135–145 (2015)

5. Huang, Y., Kandhari, A., Chiel, H.J., Quinn, R.D., Daltorio, K.A.: Mathematical
modeling to improve control of mesh body for peristaltic locomotion. In: Mangan,
M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.)
Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 193–203. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63537-8 17

6. Hunt, A., Szczecinski, N., Quinn, R.: Development and training of a neural con-
troller for hind leg walking in a dog robot. Front. Neurorobot. 11, 18 (2017)

7. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and
robots: a review. Neural Netw. Robot. Neurosci. 21(4), 642–653 (2008)

8. Kandhari, A., Wang, Y., Chiel, H.J., Quinn, R.D., Daltorio, K.A.: An analysis of
peristaltic locomotion for maximizing velocity or minimizing cost of transport of
earthworm-like robots. Soft Rob. 8(4), 485–505 (2021)

9. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic
movements. Curr. Biol. 11(23), 986–996 (2001)

10. Nourse, W., Quinn, R.D., Szczecinski, N.S.: An adaptive frequency central pattern
generator for synthetic nervous systems. In: Vouloutsi, V., Halloy, J., Mura, A.,
Mangan, M., Lepora, N., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines
2018. LNCS (LNAI), vol. 10928, pp. 361–364. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-95972-6 38

11. Seok, S., Onal, C.D., Cho, K.J., Wood, R.J., Rus, D., Kim, S.: Meshworm: Aa
peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME
Trans. Mechatron. 18(5), 1485–1497 (2013)

12. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic
neuromechanical models and robot controllers. Biol. Cybern. 111(1), 105–127
(2017). https://doi.org/10.1007/s00422-017-0711-4

13. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to
designing synthetic nervous systems that control legged robot locomotion. Front.
Neurorobot. 11, 37 (2017)

14. Szczecinski, N.S., Quinn, R.D.: Template for the neural control of directed stepping
generalized to all legs of MantisBot. Bioinspiration Biomimetics 12(4), 045001
(2017)

15. Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Extending the functional subnetwork
approach to a generalized linear integrate-and-fire neuron model. Front. Neuro-
robot. 14, 577804 (2020)

16. Tanaka, Y., Ito, K., Nakagaki, T., Kobayashi, R.: Mechanics of peristaltic locomo-
tion and role of anchoring. J. R. Soc. Interface 9(67), 222–233 (2012)

https://doi.org/10.1007/978-3-319-63537-8_17
https://doi.org/10.1007/978-3-319-95972-6_38
https://doi.org/10.1007/978-3-319-95972-6_38
https://doi.org/10.1007/s00422-017-0711-4


SNS Controller for Peristalsis 261

17. Wang, Y., Gill, J.P., Chiel, H.J., Thomas, P.J.: Shape versus timing: linear
responses of a limit cycle with hard boundaries under instantaneous and static
perturbation. SIAM J. Appl. Dyn. Syst. 20(2), 701–744 (2021)

18. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized pop-
ulations of model neurons. Biophys. J . 12(1), 1–24 (1972)


	A Synthetic Nervous System with Coupled Oscillators Controls Peristaltic Locomotion
	1 Introduction
	2 Simplified Worm Robot Kinematic Model
	3 Methods
	3.1 Mathematical Models
	3.2 Functional Subnetwork Tuning
	3.3 Stability Analysis

	4 Results
	4.1 SNS Simulation
	4.2 Stability

	5 Discussion and Future Work
	References




