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Abstract. This work focuses on creating a controller for the hip joint of
a rat using a canonical motor microcircuit. It is thought that this circuit
acts to modulate motor neuron activity at the output stage. We first
created a simplified biomechanical model of a rat hindlimb along with
a neural model of the circuit in a software tool called Animatlab. The
canonical motor microcircuit controller was then tuned such that the
trajectory of the hip joint was similar to that of a rat during locomotion.
This work describes a successful method for hand-tuning the various
synaptic parameters and the influence of Ia feedback on motor neuron
activity. The neuromechanical model will allow for further analysis of
the circuit, specifically, the function and significance of Ia feedback and
Renshaw cells.
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1 Introduction

The neural circuit used for locomotion in mammals continues to be a topic of
research. A prevailing theory is that central pattern generators (CPG’s) drive
the motor neurons to produce the repetitive, rhythmic joint motion for walking
[11]. In addition to these CPG’s, there are a variety of lower-level circuits which
act to modulate motor neuron activity and include muscle feedback. An example
of one of these was introduced by Hultborn et al. [5]. We have created a model
which we call the Canonical Motor Microcircuit (CMM), which loosely resembles
the Hultborn circuit but does not include gamma motoneurons for the sake of
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simplicity [5]. The CMM is present in numerous models for mammalian locomo-
tion but is typically driven by a CPG [8,12,16]. The current model of the CMM
is meant to be a starting point, additional pathways will be added as the model
expands. While the exact role of the CMM is unknown, it is replicated along the
spinal cord and is thought to play a role in muscle control during locomotion.
This circuit contains three types of neurons: alpha motor neurons, Ia inhibitory
neurons, and Renshaw Cells and relies strongly on Ia feedback from the muscle
spindles.

A study was conducted to examine the activity of a CMM in cats during
fictive locomotion, showing that each of these three types of neurons are active
during locomotion [14]. In addition, this study showed that the activity and tim-
ing of the Ia inhibitory neurons and Renshaw cells is directly tied to the alpha
motor neurons. Although experiments such as these have been done to exam-
ine the CMM in animals, the function of this circuit, specifically the Renshaw
cells, remains unclear. Due to the topology of the circuit, it can be seen that the
Renshaw cells act to suppress excessive output from the motor neurons. Other
theories include that the recurrent circuitry of the Renshaw cells acts as a vari-
able gain regulator for the motor neurons [5]. However, the existence of some of
these synaptic connections is controversial in itself.

2 Methods

2.1 Modeling

In order to examine the functionality of the CMM as well as the Renshaw cells
and their connectivity, we created a model of a rat hindlimb and tuned a CMM to
control a pair of flexor-extensor muscles for the hip joint. The hip joint was chosen
as a starting point for this work, as the knee and ankle positions during walking
are dependent on the position of the hip. Figure 1 shows a simplified model of
a rat hindlimb created in Animatlab, which was adapted from Deng et al. [3,4].
The biomechanical model was simplified to only the pelvis, femurs, shins, feet
and flexor-extensor muscle pairs modeled with a linear-Hill muscle model. Other
models exist in the full musculoskeletal complexity of the rat hindlimb, this
is a reduced biomechanical model used to evaluate the CMM [2,17]. For these
experiments, the pelvis was fixed in place and the model performed air stepping.

The joint and muscle placement was modeled using data on rat hindlimbs [4,
7,10]. Figure 2 shows the CMM created in Animatlab which controls the muscles
for one of the hip joints of the biomechanical model. The model shown in Fig. 2
was constructed using non-spiking leaky-integrator neural models:
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Fig. 1. Animatlab Biomechanical Model. Red: pelvis. Blue: femurs. Yellow: Shins. Pink:
Feet. Black: Flexor and Extensor muscles. The flexor muscle pulls the leg forward while
the extensor muscle pulls the leg backward. (Color figure online)
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Fig. 2. CMM Neural Model in Animatlab. Ia: Ta inhibitory neuron. MN: alpha motor
neuron. RC: Renshaw cell. LH: Left Hip. SR: stretch receptors for Ia type feedback.
Grey Blocks: first order polynomial gains. (Color figure online)

where C is the membrane capacitance, V is the membrane voltage, Iy, is an
external applied current, Ijcqx is the membrane leak current, and gy, are the
synaptic currents. The inputs from the muscle stretch receptors were modeled
as applied currents amplified by their respective gains, as implemented in Ani-
matlab [3]:

Tapp, = Sim; +b; (2)
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where S; is the discharge rate of the stretch receptor, and m; and b; are slope
and intercept of polynomial curve which amplifies the signal. Note that based
on the values for these parameters as shown in Table2, the neurons receive
tonic input from the stretch receptors. The tonic input a function of both the
resting discharge rate of the stretch receptor and the corresponding parameters
in Table 2. The discharge rate of the stretch receptor is given by the equation [3]:

aTl
Ksg

Si=alr —x) = (3)
where a is the active tension applied by stimulation of the membrane potential,
x is the length of the muscle, x is the length of the serial spring in the muscle, T
is the muscle tension, and Kgg is the serial spring constants. The muscle tension
is given by the differential equation [15]:

_ Ksg

; (KPEAx(t) + bir(t) — (1 + ?;’ j) T(t) + a> (4)

T
where Kgg is the stiffness of the serial elastic component, K pg is the stiffness
of the parallel elastic component, b is the linear damping coefficient, Ax is the
change in muscle length relative to its resting length, and & is the rate of change
of the length off the muscle. The muscle properties used in the model were taken
from Hunt et al. [7]. Further explanation for the muscle model can be found in
Rubeo et al. [15]. The leak current in this generalized equation aims to model
the net effect of sodium, potassium, and chloride channels with a net membrane
conductance G and reversal potential Eg:

Licak = G - (V(t) — ER) . (5)
Synaptic currents can be modeled as:
Lsyn, = Goyn, - (Esym - V() (6)

where E,,, is the synaptic reversal potential, and Gy, is the synaptic conduc-
tance. The synaptic conductance is a function of the maximum conductance,
9maz,;, the membrane potential of the pre-synaptic neuron, V.., and saturation
and threshold parameters, Ep;, and Ej,,, which are properties of the pre-synaptic

neuron: V E
Gun, = s, min (mox ( =20) 1), 7)

The advantage of using the non-spiking leaky-integrator model is that each neu-
ron models the average activity of a population of spiking neurons [19]. These
generalized equations were applied to each of the neurons in the CMM. For exam-
ple, the equation for the motor neuron controlling the flexor muscle included a
leak current term, an applied current modeling the input from the stretch recep-
tor, and two synaptic current terms. This can be visualized by looking at the
gold dashed lines attached to the flexor motor neuron in Fig. 2.
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2.2 Tuning

The goal was to tune the parameters in the CMM such that the simulated hip
angle resembles that of a rat walking. We used rat walking data to compare the
outputs of the Animatlab simulation. This data for the hip trajectory of a rat
walking on a treadmill was collected as described in Alessandro et al. and is not
the focus of this work [1]. We predicted that the CMM network could be tuned
to generate muscle activity for the hip joint of the rat hindlimb biomechanical
model such that the angle of the hip joint in the simulation approximates that
of a rat walking. We were confident in our ability to do so because of the abun-
dance of inhibition in the network, which loosely resembles an oscillator. After
successfully tuning the model, we then evaluated the relative strengths of the
synaptic conductance’s, specifically, the reciprocal inhibition between Renshaw
cells.

We used two methods to tune the CMM. The first was done in a qualitative
manner and aimed to produce oscillations in the network. The second method
was a more quantitative approach, evaluating the oscillations in terms of a cost
function comparing the simulated data to the animal data. There are a total of
72 parameters to tune in this network. These include synaptic properties, neural
properties, and gain factors to and from muscles. We reduced the number of
parameters by applying symmetry to the model. For example, on both the flexor
and extensor side of the CMM there is a synapse going from the motor neuron to
the Renshaw cell. Under this assumption, these synapses have the same reversal
potential, saturation voltage, and threshold voltage, but may differ in terms
of maximum synaptic conductance. Resting potentials for the motor neurons,
Ta inhibitory neurons, and Renshaw cells were set to -62 mV, -60 mV, and -
50.5 mV, respectively [9,13,20]. Lastly, in the experiments done on cats during
fictive locomotion, it was found that Ia neurons were most active in phase with
the motor neurons, while the Renshaw cells became excited after motor neurons
and were maximally excited in the latter phases of motor neuron excitement [14].
While this may not provide a quantifiable value for any of the neural parameters,
it does indicate that the time constants for the motor neurons and Ia inhibitory
neurons are similar while the Renshaw cells have a significantly larger time
constant. Time constants for the model neurons are functions of the membrane
capacitance and conductance: 7 = C'//G. Based on the modeling in Animatlab, we
give each neuron a conductance of one microsiemen and membrane capacitance’s
of 5, 30, and 130 nanofarads milliseconds for the motor neurons, Ia inhibitory
neurons, and Renshaw cells, respectively [3]. After applying these assumptions
and incorporating biological data, the number of parameters to be tuned was
decreased from 72 to 37.

In order to properly evaluate the simulation as it compares to the animal
data, we first needed to find a set of parameters which induces oscillations in
the hip joint. As previously stated, this was done in a qualitative sense which
primarily consisted of evaluating the outputs of the motor neurons for a give
simulation. For example, Fig. 3 shows the results of a simulation whose parameter
set does not result in oscillation of the hip joint. In the motor neuron plots in fig.
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3 there is an initial phase of oscillatory behavior, however, this quickly dies out
as the flexor motor neuron is not able to escape and overcome the extensor motor
neuron. Based on these results the strengths of the synapses were adjusted to
decrease the inhibition to the flexor motor neuron. This was done by decreasing
the maximum synaptic conductance for the synapse coming from the extensor
Ta inhibitory neuron to the flexor motor neuron.
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Fig. 3. Simulation results for a system with no oscillations. Top: Motor Neuron activity.
Bottom: Hip joint activity.

Once a set of parameters was found which produced oscillatory behavior
of the hip joint for the biomechanical model of the rat hindlimb, the tuning
method switched to a quantitative analysis of the trajectory of the hip joint.
This analysis was done by comparing the simulated hip joint vs. time to animal
data. Note that the animal data is for the average hip trajectory of the rats
during experiments, and may vary from step to step and animal to animal. The
comparison was done in attempt to minimize a cost function, which was the sum
of three equally weighted factors: the root means square error for a single stride,
the frequency error, and the error in the swing/stance ratio. In the hip angle
vs. time plots shown in Fig. 4, the stance and swing phases can be differentiated
by the direction of motion. The stance phase corresponds to an increasing angle
while the swing phase occurs while the angle is decreasing. The frequency and
swing/stance ratio errors were taken in the form of percent error:

VA — VR

%Error = (8)

VE
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where v, is the observed value, in this case the simulated value, and vg is
the expected value, the value from the animal data. The values used for the
simulated data were the averages over multiple gait cycles. Although this method
was designed to provide a quantitative approach to the tuning of the CMM, the
decisions on which parameters to change and how was largely based on knowledge
gained during the tuning process.

3 Results

The CMM was successfully tuned such that the trajectory of the simulated hip
joint matched the animal data. The oscillatory behavior is driven by the interplay
between the fast Ia feedback from the muscles and the slow time constant of the
Renshaw cells. Figure4 shows the angle vs. time plots for the simulation and
animal data for both a single and multiple gait cycles. The results from the
simulation including neuron potentials and stretch receptor discharge rates can
be found in Fig.5. Note that the plot of the hip angle in Figs.4 and 5 are
the same data. Due to constraints in Animatlab, the joint angle begins at zero,
Fig. 4 shows only the time period of oscillations, removing the initial descent into
oscillatory behavior. The time axis was also shifted to remove this introductory
period.
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Fig. 4. Hip Angle vs. Time for simulated hindlimb and rat walking on a treadmill.
Left: single gait cycle. Right: continuous oscillations. For the single gait cycle (left),
transition from swing to stance occurs at 0.3582s seconds for the animal data and
0.3807 s seconds for the simulated data.

The synaptic parameters in the simulation above can be found in Table 1.
Notice that the strength of the synapse going from the extensor to the flexor
Renshaw cell is zero. This indicates that, for this set of parameters, this synapse
does not exist. Therefore, there is no reciprocal inhibition between the Renshaw
cells. In addition to these synaptic parameters, the strength of the feedback from
the stretch receptors had a significant impact on the behavior of the model. As
shown in Eq. 2, this Ia type feedback is modeled as an applied current, Table 2
shows the values used to model this current. Table 2 also shows the amplification
of the motor neuron output to the muscles.
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Fig. 5. Animatlab simulation outputs.

4 Discussion

The results show that a CMM modeled with non-spiking leaky-integrator neu-
rons can be used to generate the oscillatory motion of a rat’s hip joint which
largely matches animal data. However, there is a noticeable difference in that
the simulated hip angle rotates at relatively constant velocities for much of the
stance and swing phases with a transition period between. Whereas the animal
data shows a change in angular velocity throughout the stance and swing phases,
as shown in Fig. 4. This is likely due to the simplified models of both the biome-
chanics and neural circuit in the simulation. For the given model, the hip joint
is actuated by only two muscles forming an agonist-antagonist pair. In reality,
the motion of a rat’s hip joint is caused by the contraction of several muscles
working together to cause a moment about the hip joint. The simplification to
a single muscle lifting the leg vastly simplifies the forces acting on the joint.
Additionally, each of the muscles in a rat may be activated by separate pools
of motor neurons. The variation of motor neuron activity acting on different
muscles would likely lead to a system with dynamics that more closely match
the animal data. Although it is reasonable to assume that a more biologically
accurate model would be able to fully capture the dynamics of the hip joint
during locomotion, it is not a necessary step to evaluate the CMM. We also see
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that the error in the hip trajectory is larger in the stance phase than in the
swing phase. This is likely due to the simulation being done with an air stepping
model and lacks the external forces from the treadmill acting on the body. The
simplified models were able to replicate the trajectory of a rat’s hip joint during
locomotion well with understandable discrepancies.

Table 1. Hand Tuned Synaptic parameters.

Synapse gmax Esyn Eni Eio
(from - to) (ns) (mV) (mV) (mV)
la flx. — la ext. 2.5 -99.7 -40 -62
la ext. — la flx. 2.198 -99.7 -40 -62
la flx. — MN ext. 1.076 -100 -40 -62
la ext. — MN flx. 1.0 -100 -40 -62
MN flx. = RC flx. 0.6 0 -54.35 -78
MN ext. — RC ext. 0.5 0 -54.35 -78
RC ext. —la ext. 5.0 -70 -40 -60
RC flx. — la flx. 4.2 -70 -40 -60
RC ext. — MN ext. 0.55 -70 -40 -60
RC flx. — MN flx. 0.45 -70 -40 -60
RC fIx. — RC ext. 1.8 -100 -40 -60
RC ext. — RC flx. 0.0 -100 -40 -60

Relatively little work has been done to provide quantifiable values for the
strength of the synapses in the CMM circuit. It had been predicted that the
strength of inhibition acting on the motor neurons from the Renshaw cells was
much less than the inhibition of the Ia neurons by the Renshaw cells. The result-
ing parameters shown in Table1 support this claim as the strength of these
synapses, represented by ¢, differ by an order of magnitude. Table1 also
shows that there is no mutual inhibition between Renshaw cells in this system.
Therefore, the issue of the Renshaw cells as a point of gain control is unclear at
present because the Renshaw cells have modest effects, but strong actions on the
motor neurons [5]. This would indicate that the primary function of the Renshaw
cells in this CMM model is to regulate the potential of the corresponding motor
neurons.
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Table 2. Hand Tuned Gain parameters (as used in Eq. 2). SR: Stretch Receptor. MN:
Motor Neuron

) Slope y-intercept (b)
Connection
(m)
SR —la Flx 10.032 n -2.864 p
SR —la Ext 10.04 p -2.234 u
SR — MN FIx 2.04 p -0.599 p
SR —MN Ext 1.002 p -0.227 p
MN — FIx Muscle 0.965 0
MN — Ext Muscle 1.026 0

While this is true for the set of parameters found in Table1, this set of
parameters is by no means the only set that would produce similar results.
Therefore, it would be difficult to make any conclusions on the functionality
of Renshaw cells with much certainty. It is reasonable to assume that there is
a larger family of possible solutions for the various parameters in the model.
The method of hand-tuning parameters failed to find these other solution sets.
Ongoing work is being conducted to implement a Bayesian/Monte Carlo/Markov
Chain approach that will automate the parameter search of the network [18].
Ideally this approach would search a larger space than was done through hand-
tuning the network and would provide sets of parameters which produce similar
results to those shown in Fig.4 as opposed to the single set found while hand
tuning. We could then compare the strength of the mutual inhibition between
Renshaw cells for multiple sets of parameters to create a clearer image of their
impact on motor output.

While the simulation has shown that a CMM is able to produce the rhythmic,
oscillatory motion required for locomotion, it is likely that this circuit receives
input from a central pattern generator [8,12,14,16]. However, this work aimed
to evaluate the oscillatory properties of the isolated CMM. In future works, the
CMM network will be evaluated with the addition of a CPG as an input to both
the motor neurons and Ia inhibitory neurons. We can then compare the results of
the CPG-fed CMM control strategy to previous works such as a two-layer CPG
and muscle synergy and the functional subnetwork approach to neural controllers
[4,6]. In this way we can evaluate various neural control strategies for robotics.
Perhaps the more interesting implications of this research is the insight gained
on the neural system. Through simulations such as this we can test theories in
neuroscience and evaluate the purpose of specific neurons and synapses. This
will ultimately lead to a better understanding of the neural circuitry responsible
for locomotion in humans and animals alike and may inform medical efforts to
restore motor function after spinal cord injuries.
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