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Abstract

We investigate transport of an inert solute in multidimensional porous media characterized 

by spatially variable hydraulic conductivity. Through the use of a GPU-accelerated solute 

transport simulator based on the Random Walk Particle Tracking technique, we show how 

different factors such as the degree of heterogeneity, flow dimensionality and source zone 

configurations impact mixing. Solute mixing is quantified in terms of the temporal evo-

lution of the plume’s statistics (mean, variance and probability density function) and the 

dilution index. Our analysis show that mixing is strongly affected by the above mentioned 

factors. We also compare the probability distributions obtained from the numerical simula-

tions with the beta distribution. Despite the discrepancies at very low concentrations, our 

results show that the fitting with the beta distribution is improved for transport in three-

dimensional settings originating from a vertical planar source. To improve the fit at low 

concentrations, we utilize two one-to-one variable transformation, namely the logarithm 

and power law transformations. Results demonstrate that the Pareto-type IV and the uni-

form distributions are capable to capture the lower tail of the cumulative distribution func-

tion. Numerical results are validated against existing analytical solution for both homoge-

neous and heterogeneous media.

Keywords Heterogeneity · Mixing · Random walk particle tracking · Stochastic 

hydrogeology · Computational modeling · Porous media

1 Introduction

The spatial variability of the hydraulic conductivity in porous formations leads to complex 

flow patterns which in turn lead to mixing dynamics that differ from the ones observed 

under uniform flow conditions. Transport in heterogeneous porous media is characterized 

by early solute breakthrough, tailing behavior of the concentration at late times and irregu-

lar spreading and mixing rates (Neuman and Tartakovsky 2009; Dentz et al. 2011; Fiori 
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et al 2015). The presence of heterogeneity is also responsible for poorly mixed conditions 

and spatially dispersed solute plumes (Dentz et  al. 2011). The interplay between advec-

tive and local-scale dispersive fluxes in heterogeneous porous media results in non-trivial 

macroscopic transport behavior which is of importance for a broad range of scientific fields 

and engineering applications (Sahimi 2011). Examples consist of contaminant migration 

in hydrology (Dagan and Neuman 2005), aquifer remediation (Chapman and Parker 2005), 

human health-risk assessment (Im et  al. 2020), geological storage of CO
2
 (Hidalgo and 

Carrera 2009) and safety assessment of waste repositories (Selroos 1997). Improved under-

standing of the effects of heterogeneity on mixing is imperative to improve the predictive 

capabilities of models in the above-mentioned applications.

Many works focused on understanding the role of conductivity heterogeneity on tem-

poral scaling properties of solute mixing. Mixing in heterogeneous porous media has been 

analyzed in terms of effective dispersion coefficients (Dentz et al. 2000; Fiori and Dagan 

2000; Fiori 2001), entropy-based mixing metrics (Kitanidis 1994; de Barros et al. 2015) 

and the temporal decay of the concentration variability (Kapoor and Kitanidis 1998). 

Through the use of numerical simulations, Le Borgne et al. (2010) showed how moderate-

to-strong levels of heterogeneity induced anomalous temporal scaling for the scalar dis-

sipation rate of a solute plume originating from a line source in a two-dimensional porous 

medium. Other studies investigated the impact of the sequence of fluid deformation events 

in two-dimensional flows on mixing metrics (de Barros et al. 2012; Le Borgne et al. 2013, 

2015). The effects of flow focusing on the transverse dilution behavior of steady-state 

plumes have been topic of numerical (de Barros and Nowak 2010; Cirpka et al. 2011) and 

experimental investigations (Rolle et  al. 2009; Gueting and Englert 2013). Kapoor and 

Kitanidis (1998) analyzed the rate of destruction of the concentration variance by local-

scale dispersion through the use of numerical simulations and approximate analytical solu-

tions. Dentz et al. (2018) showed the importance of the initial condition of the solute plume 

(i.e., its spatial distribution) on the temporal mixing evolution in two-dimensional porous 

media. Semi-analytical solutions for the statistical description of the concentration field in 

spatially heterogeneous porous formations are also reported in the literature (Rubin et al. 

1994; Fiori and Dagan 2000; Fiori 2001; Tonina and Bellin 2008; Meyer et al. 2010; Dentz 

and Tartakovsky 2010; Dentz 2012; de  Barros and Fiori 2014). Approximate semi-ana-

lytical solutions for the dilution index, introduced by Kitanidis (1994), in two- and three-

dimensional porous formations are reported in de Barros et al. (2015) and compared with 

results from numerical simulators (Boso et al. 2013a; de Barros et al. 2015) and field data 

(de Barros et al. 2015; Soltanian et al. 2020; de Barros and Fiori 2021).

In general, the above-mentioned semi-analytical solutions are based on perturbation theory, 

and therefore restricted to low-to-moderate levels of hydraulic conductivity heterogeneity. To 

address mixing in porous formations displaying a stronger degree of heterogeneity (i.e., log-

conductivity variance larger than unity), numerical methods are needed. However, traditional 

Eulerian grid-based numerical approaches are often plagued by oscillations and numerical 

dispersion which impact the accuracy of the numerical scheme (Zheng et al. 2002; Ferziger 

et al. 2002; Gotovac et al. 2007). Furthermore, in order to capture the effects of small scale 

heterogeneity on solute mixing, a fine spatial resolution in the numerical model is required 

which increases the computational burden associated with flow and transport simulations 

(Ababou et al. 1989; Bellin et al. 1993). This computational burden is augmented within the 

context of uncertainty quantification where a Monte Carlo framework is needed (Moslehi 

et al. 2015) . Lagrangian-based methods, such as the Random Walk Particle Tracking (RWPT) 

technique (Salamon et al. 2006), are an appealing alternative since they are globally mass con-

servative and no subject to artificial oscillation and numerical dispersion. RWPT was used 
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to study dispersion in both two- and three-dimensional heterogeneous porous media (Bellin 

et al. 1992; de Dreuzy et al. 2007; Beaudoin and de Dreuzy 2013). Jankovic et al. (2017) used 

RWPT to examine the impact of conductivity structure in the mass breakthrough curve in a 

three-dimensional setting. Sole-Mari et al. (2021), used RWPT simulations to key metrics of 

transport originating from a source zone occupying the entire inlet area of a bounded three-

dimensional porous media displaying non-Gaussian features and a logconductivity variance of 

unity. Libera et al. (2019) used RWPT to analyze the joint effects of porosity and conductiv-

ity variability on both the peak flux-averaged concentration and solute arrival times in three-

dimensional porous media for low and high levels of heterogeneity. Using different numerical 

schemes, including RWPT and smoothed particle hydrodynamics (SPH), Boso et al. (2013b) 

investigated the impact of heterogeneity in transport metrics such as the second central spatial 

moments of the solute plume and the dilution index. Results obtained from different numerical 

schemes were compared and reported for a point-like injection and two-dimensional domains 

for different logconductivity variances (ranging from 0.2 to 10). Despite the benefits associ-

ate with RWPT, there are drawbacks such as the presence of local concentration fluctuations 

and the need to have a significant number of particles to achieve numerical precision of the 

concentration field, especially when dealing with heterogeneous porous media (Herrera et al. 

2009; Boso et al. 2013b). The need to use a large number of particles has implications on the 

computational costs associated with transport.

To overcome this challenge and improve the efficiency associated with Lagrangian-based 

methods, Rizzo et al. (2019) introduced a GPU-accelerated RWPT, denoted as PAR2 , that 1) 

enables the use of a large number of particles and 2) is computationally efficient. PAR2 has 

been employed to study hydrogeological connectivity in both Gaussian and non-Gaussian 

flow fields (Rizzo and de Barros 2019; Morvillo et al. 2021a), aquifer resilience loss and prob-

abilistic-risk analysis (Morvillo et al. 2022), solute transport at the pore-scale (Kamrava et al. 

2021) and has been expanded to account for chemical reactions (Morvillo et al. 2021b). The 

code is open source (see details in Rizzo et al. (2019)) and a step-by-step tutorial on its use and 

how to connect to existing groundwater flow simulation tools can be found in Morvillo et al. 

(2022).

The objectives of this work is to provide a systematic numerical investigation of the impact 

of flow dimensionality, source zone configuration and the degree of heterogeneity on metrics 

of solute mixing. To achieve our goals, we rely on the RWPT-based simulator PAR2 (Rizzo 

et al. 2019) to show the importance of the aforementioned factors in mixing metrics such as 

the global spatial mean and variance of the concentration field, the dilution index and the con-

centration probability distribution function. Results are compared to existing analytical solu-

tions for homogeneous and heterogeneous porous media.

2  Problem Statement

2.1  Flow and Transport Model

We consider a d-dimensional porous medium with constant porosity � and spatially variable 

(locally isotropic) hydraulic conductivity K(x) with x = [x1, ..., x
d
]T denoting the Cartesian 

coordinate system and d = 2 and 3. The flow field is given by

where the specific discharge q is obtained through Darcy’s law

(1)∇ ⋅ q(x) =0
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with h representing the hydraulic head. Equation (1) is subject to the following bound-

ary conditions: prescribed hydraulic head along the longitudinal direction x
1
 and no-flow 

boundary conditions along directions xj for j = 2 and 3. These conditions ensures that flow 

is uniform-in-the-mean along the longitudinal direction. That implies that the mean veloc-

ity field is ⟨u⟩ = (U, 0) for d = 2 and ⟨u⟩ = (U, 0, 0) for d = 3 . Here the angled brackets 

represent the ensemble expected value and U denotes the mean longitudinal velocity given 

by U = K
G
J∕� where K

G
 is the geometric mean of the hydraulic conductivity and J  is the 

spatially uniform mean hydraulic head gradient.

An inert solute is instantaneously released in a domain V
o
 located within the porous forma-

tion. Depending on the dimensionality of the flow field, the domain V
o
 can represent a volume 

or an area. In this work, we will consider different geometrical configurations for the source 

zone. The geometrical configurations considered are point, line and planar sources in both 

two- and three dimensional porous formations. Details pertaining the dimensions of the solute 

injection zone are provided further below in Sect. 5. The spatiotemporal dynamics of the sol-

ute plume’s resident concentration c is assumed to be governed by the local advection disper-

sion equation (ADE):

where u = q∕� is the velocity vector and D is the local scale dispersion tensor given by

with D
m
 denoting the molecular diffusion coefficient and 1 representing the identity matrix. 

Equation (3) is subject to the following initial condition

Due to the spatial randomness of the hydraulic conductivity, the velocity field is spatially 

variable which impacts solute mixing and spreading rates. In the following subsection, we 

will describe the details regarding the spatial structure of the K field.

2.2  Stochastic Model

To simulate flow and transport in a spatially random porous medium, we assume that the log-

conductivity field, namely f (x) = ln K(x) , is multivariate Gaussian and statistically stationary. 

Therefore, f is fully characterized by i) its mean value ⟨f ⟩ = ln KG where K
G
 is the geomet-

ric mean of the conductivity field K
G
 and ii) its spatial covariance Cf f (r) = ⟨f (x)f (x�)⟩ with 

r = x − x
� . The logconductivity variance is given by �2

f
≡ Cf f (0) . In this work, we consider 

an isotropic correlation length � . In the following, we adopt an exponential spatial covariance 

model for C
f f

 (see Ch. 2 of Rubin (2003)) such that

(2)q(x) = −K(x)∇h(x),

(3)
�c(x, t)

�t

+ u(x) ⋅ ∇c(x, t) = ∇ ⋅ [D(x)∇c(x, t)],

(4)D(x) = (�
T
|u(x)| + D

m
)1 +

(�
L
− �

T
)

|u(x)|
u(x)u(x)T

(5)c(x, 0) =

{

c
o

if x ∈ V
o
;

0 otherwise.

(6)Cf f (r) = �
2
f

exp

(
−
|r|
�

)
.
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2.3  Mixing Metrics

To quantify mixing, we will rely on four descriptors. The first descriptor is the spa-

tially averaged concentration of the plume over volume �
d
 of the d-dimensional 

domain characterized by c > c
∗ where c∗ is a low concentration threshold value. The 

volume �
d
(t|c∗) represents a line in d = 1 , an area for d = 2 and volume for d = 3 and is 

defined as follows

where ℍ[⋅] is the Heaviside function and Ω is the flow domain. This means, �
d
(t|c∗) denotes 

the volume occupied by the solute, or, in other words, the mixing volume.

The spatially averaged concentration is defined by

Note that for a sufficiently small c∗ , the integral on the right side may be approximated by 1 

due to mass conservation. Thus, the spatial mean concentration is inversely proportional to 

the mixing volume �
d
(t|c∗).

The second descriptor is the spatial variance of the concentration

with �
c
 given in Eq. (8).

We also examine the concentration probability density function (PDF) p(c). The 

PDF p(c) is obtained from spatially sampling the concentration point values within the 

domain �
d
(t|c∗) , see Eq. (7). It can be formally written as

where �(c) is the Dirac delta distribution.

Finally, the fourth mixing metric investigated in this work is the dilution index E 

introduced by Kitanidis (1994). The dilution index represents a global measure of dilu-

tion. It measures the temporal evolution of the volume occupied by the solute plume 

and allows to quantify the combined effects of advection and local scale dispersive 

fluxes on mixing. The dilution index is mathematically expressed as

where M
o
= c

o
V

o
� is the total mass injected into the porous formation.

We will compute �
c
 , �2

c
 , p and E for different values of �2

f
 , distinct source dimen-

sions (point, line and planar source zones) and for different flow dimensionality ( d = 2 

and 3).

(7)�
d
(t|c∗) = ∫

Ω

ℍ[c(x, t) − c
∗]dx

(8)�
c
(t) =

1

�
d
(t|c∗) ∫

�
d
(t|c∗)

c(x, t)dx.

(9)�
2

c
(t) =

1

�
d
(t|c∗) ∫

�
d
(t|c∗)

c(x, t)2dx − [�
c
(t)]2,

(10)p(c) = ∫
�d(t|c

∗)

�[c − c(x, t)]dx,

(11)

E(t) =exp[Λ(t)], with

Λ(t) = − ∫Ω

c(x, t)

M
o

ln

[

c(x, t)

M
o

]

dx
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2.4  Reference Solutions for Homogeneous Media

For reference, we give in the following the expected behaviors of these mixing metrics for 

homogeneous media in d spatial dimensions. The concentration distribution in response to an 

instantaneous point source, c(x, t = 0) = c0�(x) , in an infinite �-dimensional domain is given 

by the Gaussian distribution

Note that solution for an infinitely extended line source in d = 2 spatial dimensions and for 

an infinitely extended planar source in d = 3 is given by expression (12) for � = 1 , the solu-

tion for an infinitely extended line source in d = 3 spatial dimensions is given by expres-

sion (12) for � = 2 . In general, � = d − d
s
 , where d is the dimension of space and d

s
 the 

dimension of the source distribution. The source dimension is d
s
= 1 for a line source and 

d
s
= 2 for a planar source. In the following we rescale c → c∕c

0
.

2.4.1  Concentration PDF

In order to determine the concentration PDF we note that the radius of a concentration isoline 

measured from the center of mass at ut is related to the concentration c by

Thus, we can write Eq. (10) for the concentration PDF in spherical coordinates as

We can evaluate this integral explicitly by using that �[1 − f (r)] = 1∕|df∕dr|�[r − r(c)] . 

Thus, we obtain

2.4.2  Concentration Moments

The concentration moments are defined in terms of the concentration PDF by

Using the explicit expression (15) for the concentration PDF and rescaling the integration 

variable by c
m
(t) , we obtain

(12)c(x, t) =
c0

(4�Dt)�∕2
exp

[

−
(x − ut)2

4Dt

]

.

(13)r(c) =
√

(4Dt) ln[c
m
(t)∕c], c

m
(t) =

1

(4�Dt)�∕2
.

(14)p(c) =
d

r(c∗)

r(c∗)

∫
0

dr r�−1
�[c − f (r)], f (r) =

exp(−r2∕4Dt)

(4�Dt)�∕2
.

(15)p(c) =
𝜈

2c

ln[cm(t)∕c](𝜈−2)∕2

ln[cm(t)∕c∗]𝜈∕2
�(c∗ < c ≤ cm(t)).

(16)�
(k)(t) =

∞

∫
0

dc ckp(c).
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We consider situations for which ( c∗∕c
m
(t) ≪ 1 ). In this limit we obtain

where the dots denote subleading contributions. The constant A
k
 is defined by

It depends on the dimension � of space and the order k of the moment. We denote the mean 

concentration by �(1)
≡ �

c
.

We obtain for the mean concentration in leading order

where �
c
(t) ≡ �

(1)(t) . For the concentration variance, we obtain

2.4.3  Dilution Index

The expression for the dilution index is obtained by inserting the Gaussian solution (12) 

into the definition (11). The explicit analytical solutions are (Kitanidis 1994)

Note that is scales as 1∕�
c
(t) . This is due to the fact that the mean concentration scales as 

the inverse mixing volume, while the dilution index describes the evolution of the mixing 

volume.

3  Methods

For all results presented in Sect. 6, the spatially variable logconductivity field f is randomly 

generated using the SGeMS tool (Remy et  al. 2009). SGeMs is based on a sequential 

Gaussian simulation model (Rubin 2003). The flow Eq. (1) is solved using the finite-dif-

ference solver MODFLOW (Harbaugh 2005) with the Python package FloPy (Bakker et al. 

2016). The flow domain, L
1
× L

2
 (for d = 2 ) or L

1
× L

2
× L

3
 (for d = 3 ), is discretized into 

a regular grid with numerical grid blocks of dimension Δ.

To simulate solute transport (3), we make use of the PAR2 code developed Rizzo et al. 

(2019). PAR2 is an open source, GPU-accelerated, simulator based on the Random Walk 

Particle Tracking (RWPT) (Rizzo et  al. 2019). A step-by-step tutorial of PAR2 , and the 

details of how to link it to an open source Python package, is reported in Morvillo et al. 

(2022). PAR2 has been employed to study transport at both field and pore scales (Rizzo 

(17)�
(k)(t) =

c
m
(t)k

ln[c
m
(t)∕c∗]�∕2

�

2

1

∫
c∗∕c

m
(t)

dc c
k−1

ln(1∕c)(�−2)∕2
.

(18)�
(k)(t) = A

k
c

m
(t)k +… ,

(19)A
k
=

�

2 ln(1∕c∗)�∕2

1

∫
0

dc c
k−1

ln(1∕c)(�−2)∕2
.

(20)�
c
(t) = A1c

m
(t) ∼ t

−�∕2
,

(21)�
2

c
(t) = c

m
(t)2(A

2
− A

2

1
) ∼ t

−�
.

(22)E(t) =
exp(d∕2)

c
m
(t)

∼ t
�∕2.
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et al. 2019; Kamrava et al. 2021). The RWPT is based on the trajectory of the ith solute par-

ticle that can be computed using the Itô -Taylor integration scheme (Salamon et al. 2006):

where � is a normally distributed random variable with zero mean and unit standard devia-

tion, Δt is the time step, and the drift vector A and the displacement matrix B are defined 

by:

4  Validation

In this section we validate the results from the numerical simulators with existing analyti-

cal solutions for two-dimensional domains. For a homogeneous conductivity field, Kitan-

idis (1994) derived the following expression for the dilution index for a point source (see 

also Eq. 22):

For a heterogeneous porous medium, de Barros et al. (2015) used perturbation theory to 

derive a semi-analytical solution for the dilution index. The semi-analytical expression is 

valid for a point-like instantaneous injection, uniform-in-the-mean flow conditions in the 

absence of sinks and sources and low-to-mild levels of heterogeneity, i.e., 𝜎2

f
≲ 1 . The 

semi-analytical solution for the temporal evolution of the dilution index E is given by

where W
ii
 is the relative particle trajectory covariance along the ith direction given by Fiori 

(2001)

where X
ii
 and Z

ii
 correspond to the one- and two-particle trajectory covariances respec-

tively (Fiori and Dagan 2000). Note that the “0” present in the two-particle trajectory 

covariance Z
ii
 is to emphasize that the function is evaluated for a point-like source, i.e., 

the separation distance between two particles originally located within the source zone 

is approximately zero (details provided in de  Barros et  al. (2015)). The semi-analytical 

expressions for the particle trajectory covariances X
ii
 and Z

ii
 were derived in Fiori and 

Dagan (2000) and are reproduced in Eqs. (29) and (30). These expressions are valid for 

low-to-mild levels of heterogeneity and uniform-in-the-mean flow conditions. For an iso-

tropic and constant local dispersion D and point-like injection, the particle trajectories are

(23)X
i
(t + Δt) = X

i
(t) + A(X

i
(t))Δt + B(X

i
(t)) ⋅ �(t)

√

Δt

(24)A(x) = u(x) + ∇ ⋅ D(x) +
1

�
D(x) ⋅ ∇�

(25)2D(x) = B(x) ⋅ B(x)T .

(26)E(t) = (4�Dt)d∕2exp
(

d

2

)

(27)E(t) = (2�)d∕2exp
�

d

2

�

d
�

i=1

√

W
ii
(t)

(28)W
ii
(t) = X

ii
(t) + 2Dt − Z

ii
(t;0),
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where mean longitudinal velocity is denoted by U and û
ii
(k) corresponds to the Eulerian 

velocity covariance in Fourier space. The wave number vector is given by k and k
2
= 

∑

∞

j=1
k2

j
 for j = 1, ..., d. Equations (29) and (30) are limited to small to mild levels of heter-

ogeneity. The expression for the velocity covariance in Fourier space, i.e., ûij(k) , is (Dagan 

1984)

where �ij is Kronecker’s delta and Ĉf f (k) is the Fourier transform of the logconductivity 

covariance, Eq. (6). For the purpose of validation, we will restrict ourselves to a two-

dimensional setting. Therefore, the Fourier transform of the isotropic logconductivity 

exponential covariance function for d = 2 is (Rubin 2003)

Figure 1 (left) shows how the flow and transport simulator was able to capture the dilu-

tion of a plume in a two-dimensional homogeneous porous medium. The numerical results 

shows an excellent agreement with the analytical solution, see Eq. (26). The parameters 

used for the simulations in the homogeneous setting are reported in Table 1.

Next, we compare the numerical results with the semi-analytical solutions derived in 

de  Barros et  al. (2015) in a heterogeneous setting, see Eq. (27). The results reported in 

Fig. 1 (right) are for a two-dimensional heterogeneous aquifer characterized by �2

f
= 1 . For 

this comparison, the spatially random porous medium was generated using HYDRO_GEN 

(29)X
ii
(t) =

21+d∕2

𝜋d∕2 ∫
∞

0
∫

t

0

(t − 𝜏)cos[k1U𝜏]e−Dk2
𝜏
û

ii
(k)d𝜏dk,

(30)Z
ii
(t;0) =

(

2

𝜋

)d∕2

∫
∞

0
∫

t

0
∫

t

0

cos[k1U(t� − t
��)]e−Dk2(t�+t��)

û
ii
(k)dt

�
dt

��
dk,

(31)ûij(k) = U2

(

𝛿1i −
k1ki

k2

)(

𝛿1j −
k1kj

k2

)

Ĉf f (k),

(32)Ĉf f (k) = 𝜎
2

f
𝜆

2(1 + k
2

1
𝜆

2 + k
2

2
𝜆

2)−3∕2
.

Fig. 1  Comparison between the results from the numerical flow and transport simulators (red crosses) 

against the analytical results (continuous line) derived by Kitanidis (1994) for a homogeneous medium 

(left) and the semi-analytical solution derived by de Barros et al. (2015) for a heterogeneous medium char-

acterized by �2

f
= 1 (right). Results depicted for d = 2 and a point source. The advective time scale for the 

homogeneous medium (left) is given by �
a
= L

1
∕U where L

1
 is the longitudinal dimension of the domain. 

The advective time scale for the heterogeneous medium (right) is �
a
= �∕U with � as the correlation scale
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(Bellin and Rubin 1996). Given the stochastic nature of the flow field, we averaged the 

temporal evolution of the dilution index over five random realizations. The results depicted 

in Fig. 1 (right) show an excellent agreement with the numerical simulator and the semi-

analytical results. This is remarkable given that the perturbation theory-based solution, Eq. 

(27), is expected to deteriorate for 𝜎2

f
≳ 1,

5  Numerical Set-Up

A description of the scenarios investigated is displayed in Fig. 2. As shown in Fig. 2, we 

will consider both two- and three dimensional flows characterized by two distinct logcon-

ductivity variances, namely �2

f
= 1 and 4. These values were selected to represent a mildly 

heterogeneous case and a highly heterogeneous case. In order to capture the effects of het-

erogeneity of the flow field on mixing, we consider a ratio of �∕Δ = 10 . The ratio �∕Δ was 

selected based on the analysis carried out in the literature (Ababou et al. 1989; Bellin et al. 

1993, 1994; de Dreuzy et al. 2007; Moslehi et al. 2015). A detailed numerical error analy-

sis regarding the spatial resolution of the flow field on simulations is reported in Figs. 5, 

6 of Leube et  al. (2013) and Figs.  2–6 of Moslehi et  al. (2015). Figure  2 also provides 

a graphical representation of the different geometrical configurations for the source zone 

explored in our study. Details regarding the different scenarios are provide below.

Two-dimensional case: For d = 2 , we will consider a point source of dimensions 

0.1� × 0.1� centered at x = (24, 100) . We will also consider a line source of length 3� 

located at x
1
= 24 with transverse dimension x

2
∈ [85, 115].

Three-dimensional case: For d = 3 , we will consider, analogously to the case for 

d = 2 , a point source of dimensions 0.1� × 0.1� centered at x = (24, 100, 100) and also 

a line source located at x
1
= 24 and x

3
= 100 with transverse dimension x

2
∈ [85, 115]. 

Table 1  Input parameters used in the simulations

Parameter Symbol Value Calculated as

Correlation length in x
1
 and x

2
� 10 m –

Correlation length in x
3
 ( d = 3 only) � 10 m –

Domain length in x
1

L
1

1000 m 100�

Domain length in x
2

L
2

200 m 20�

Domain length in x
3
 ( d = 3 only) L

3
200 m 20�

Mesh size in x
1
 and x

2
Δ 1 m �∕10

Mesh size in x
3
 ( d = 3 only) Δ 1 m �∕10

Porosity � 0.25 –

Mean (geometric) hydraulic conductivity K
G

1 m/d –

Mean longitudinal flow velocity U 0.02 m/d –

Dispersivity in x
1

�
L 0.1 m 2 0.1Δ

Dispersivity in x
2
 (except Sect. 4) �

T 0.01 m 2 0.01Δ

Dispersivity in x
2
 (Sect. 4 only) �

T 0.1 m 2 0.1Δ

Dispersivity in x
3
 ( d = 3 only) �

T 0.01 m 2 0.01Δ

Molecular diffusion D
m 8.64 × 10−5 m 2/d –

Number of particles Np 10
7 –
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We will also consider a plane source located at x
1
= 24 with transverse dimension x

2
∈ 

[85, 115] and x
3
∈ [85, 115] (i.e., of dimensions 3� × 3�).

All other parameter values used in the simulations presented in this work are listed 

in Table 1. All the simulations were performed on a desktop computer equipped with 

a GPU NVIDIA GeForce GTX 745/PCIe/SSE2 necessary to use PAR2 and with 4GB 

of internal RAM memory. The time required to complete a high-resolution simulation 

(i.e., Δ∕� = 0.1 ) with 10
7 particles ranged from about three hours for the two-dimen-

sional cases to up to six hours for the three-dimensional cases.

Fig. 2  Summary of the considered scenarios. We analyze transport in domains with d = 2 and d = 3 char-

acterized by logconductivity fields with variance �2

f
= 1 and �2

f
= 4 . In each field we study the impact on 

solute transport of the source dimension
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6  Computational Results

Figures 3 and 4 provide examples of the simulated concentration fields in two- and three-

dimensional flows for �2

f
= 1 and 4 at the final simulation time. The spatial concentration 

plume shows more complex features with increasing �2

f
 that are accompanied with overall 

lower concentration values, which indicates increased dilution. In the following, we study 

the mixing and dilution dynamics in a more quantitative fashion in terms of the evolution 

of the mean concentrations, concentration variance, concentration PDF and dilution index 

introduced in Sect. 2.3.

6.1  Concentration Mean and Variance

Figures  5 and 6 report the temporal evolution of the spatial concentration mean and vari-

ance defined in Eqs. (8) and (9) for d = 2 and d = 3 spatial dimensions for point, line and 

planar source distributions. The scalings derived in Sect. 2.4 for homogeneous media indi-

cate the dependence of the decay of the concentration mean and variance on the dimensions 

of space and the source distribution. Such scalings are reported in Figs. 5 and 6 as dashed 

lines, and their slope is denoted by the value b. We found that the mean concentration scales 

as �
c
(t) ∼ t

−(d−d
s
)∕2 , and the concentration variance as �2

c
(t) ∼ t

−(d−d
s
) , where d is the space 

dimension and d
s
 the source dimension. This means, that the concentration mean and vari-

ance for a homogeneous medium decay faster for higher spatial dimensions and lower source 

dimension. We observe qualitatively similar dependence on space and source dimension for 

heterogeneous media, while the decay is in general faster for the heterogeneous than for the 

homogeneous media. This effect is increasing with increasing �2

f
 . For �2

f
= 1 , we find that the 

concentration mean and variance for point and line sources in d = 2 and 3 decay only slightly 

faster than expected for homogeneous media. For �2

f
= 4 , in contrast we observe a strong 

acceleration of the decay of concentration mean and variance compared to homogeneous 

Fig. 3  Concentration field for d = 2 at the final simulation time t∕�
a
= 20 for point (left column) and line 

source (right column), in the conductivity field with �2

f
= 1 (top row) and �2

f
= 4 (bottom row). In all 

four images, the initial position of the solute source is depicted in orange color
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media. For the planar source in d = 3 dimensions, concentration mean and variance decay 

significantly faster than for a homogeneous medium both for �2

f
= 1 and 4. Such faster decay 

can be explained by the fact that a planar source is able to sample more fluctuations of the 

permeability field. This means that higher concentration gradients have the opportunity to be 

generated, thus leading to faster mixing. As illustrated in Figs. 3 and 4, the concentration dis-

tributions are strongly dispersed for both heterogeneity strengths, and the initial distribution 

evolves into a lamellar structure. This means, spatial heterogeneity creates strong concentra-

tion gradients, which are efficiently degraded through local scale dispersion, thus explaining 

the faster decay of mean concentration and concentration variance in heterogeneous media 

compared with homogeneous media. 

Fig. 4  Concentration fields at the final simulation time t∕�
a
= 20 for d = 3 with �2

f
= 1 (top box) and �2

f
= 4 

(bottom box) for a vertical planar source
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6.2  Concentration Distribution

Figure 7 illustrates the concentration PDF, p(c) for point and line sources in both d = 2 and 

3 spatial dimensions at different times. As discussed in the previous section, at increasing 

times the concentration mean and variance decrease. The maximum observable concen-

trations are shifted toward smaller values. At small concentration values, p(c) behaves as 

predicted for a homogeneous medium as p(c) ∼ c
−1 for all cases under consideration. The 

solutions for a homogeneous medium are given by Eq.  (15). At increasing concentration 

values, the behaviors expected for a homogeneous medium are different from the obser-

vations for the heterogeneous media. For the point source in d = 2 and the line source in 

d = 3 , we expect p(c) ∼ c
−1 for c < c

m
(t) . For the point source in d = 3 , the concentration 

PDF behaves as p(c) ∼ c(ln c)1∕2 and for the line source in d = 2 as p(c) ∼ c(ln c)−1∕2 . The 

concentration PDF decreases faster toward smaller maximum values than the correspond-

ing homogeneous solutions.

These behaviors can be understood in the lamellar mixing framework of Villermaux 

(2012) and Le Borgne et al. (2015) as the result of stretching-enhanced local dispersion. As 

shown in Figs. 3 and 4, in heterogeneous media, the initially homogeneous solute distribu-

tion evolves into a lamellar structure due to the spatial variability of the underlying flow 

field. Across individual lamellae, the concentration distribution can be approximated by 

Gaussian distributions characterized by a maximum distribution that depends on the lamel-

la’s stretching history. For a lamella that has passed through regions of strong stretching, 

Fig. 5  Mean concentration in time for: point source (top left), line source (top right), 3d field with �2

f
= 1 

(bottom left), and 3d field with �2

f
= 4 (bottom right)
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the maximum concentration decreases much faster than for the lamella that remains unde-

formed, as long as the values of local dispersion are large enough to efficiently dissipate 

concentration gradients. The concentration PDF for an individual lamella is then charac-

terized by  (15) for a Gaussian concentration distribution. The full concentration PDF is 

then constructed by the superposition of lamellae with different stretching histories. This 

explains the behavior of p(c) ∼ c
−1 at small concentration values, which is characteristic 

of the Gaussian concentration profile across lamellae, and the decay behavior at large con-

centration values, which reflects the stretching and deformation history of the lamellae. In 

this sense, the mixing behavior at the simulation times under consideration here, which are 

smaller than the characteristic dispersion time over a correlation length, can be understood 

by the superposition of independent stretched lamellae. At times larger than the charac-

teristic dispersion time scale, lamellae start coalescing, which leads to different behaviors 

of the concentration PDF as discussed in Le Borgne et al. (2015). However, this regime is 

beyond the scope of this paper.

Next, we compare the cumulative distribution function (CDF), namely P(c) = 

∫ c

0
p(�)d� , obtained from the numerical simulations with a parametric CDF model, the 

beta CDF. The beta CDF was originally suggested by Fiori (2001) as a potential distribu-

tion to capture the statistics of the concentration field given its flexibility to shift from a 

bimodal to a unimodal PDF. It has been widely employed to quantify the distribution of 

the concentration values in heterogeneous domains (Fiorotto and Caroni 2002; Bellin and 

Tonina 2007) and tested against numerical and analytical solutions (Schwede et al. 2008; 

Fig. 6  Concentration variance in time for: point source (top left), line source (top right), three-dimensional 

field with �2

f
= 1 (bottom left), and three-dimensional field with �2

f
= 4 (bottom right)
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Boso et  al. 2013a; de  Barros and Fiori 2014; Boso and Tartakovsky 2016). The perfor-

mance of the beta distribution model was also assessed for mixing of fluids with distinct 

viscosities (Bonazzi et  al. 2021) as well as mixing in non-Gaussian random flow fields 

(de Barros et al. 2022). The beta CDF model is defined by:

where Γ[z] is the Gamma function. The exponents a and b are given in terms of the empiri-

cally determined concentration mean �
c
 and variance �2

c
 as

Note that the symbol bo here has a different meaning than the slope b  in Figs.  5 and 

6. The results displayed in Fig. 8 show the comparison between the CDF obtained from 

the numerical simulations and the beta CDF model (34) fitted with Eqs. (8) and (9), i.e., 

we calculated the spatial average and spatial variance of the concentration in the mix-

ing volume obtained from the numerical simulations and used those values to estimate 

the parameters ao and bo in Eq. (34). Figure  8 illustrates the comparison in both two-

dimensional (Fig. 8, left) and three-dimensional (Fig. 8, right) domains for distinct source 

(33)P(c) =
Γ[a

o
+ b

o
]

Γ[a
o
]Γ[b

o
] ∫

c

0

dw w
ao−1(1 − w)bo−1

,

(34)a
o
=

�
c
(t)

�
, b

o
=

1 − �
c
(t)

�
� =

�2

c
(t)

�
c
(t)[1 − �

c
(t)] − �2

c
(t)

,

Fig. 7  Concentration PDF for distinct source configurations and flow dimensionality. The results in this 

Figure are for the fields with �2

f
= 1 . Results reported for a point source for d = 2 (top left), point source 

for d = 3 (top right), line source for d = 2 (bottom left), and line source for d = 3 (bottom right). The dotted 

line represents the concentration PDF in a homogeneous field according to Eq. (15)
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configurations at t∕�
a
= 12.3 . In agreement with previous findings reported in the literature 

(Fiorotto and Caroni 2002; Boso et al. 2013a; de Barros and Fiori 2014), the beta distribu-

tion fails to capture the probabilities at low concentrations. This is particularly evident in 

the case of two-dimensional domains (see Fig. 8, left). The fitting of the beta distribution 

improves with an increase in the dimensionality of the porous medium (compare Fig. 8 left 

and right). As depicted in Fig. 8 (right), the agreement between the beta CDF model and 

the empirical CDF is augmented when the solute source zone is a vertical plane.

The discrepancy between the beta model and the data at small concentrations can be 

traced back to the fact that the mixing behavior at the small concentration fringes of the 

solute plume is dominated by diffusion. We further explore this discrepancy at low concen-

trations by analyzing the third (skewness) and fourth (kurtosis) statistical moments of the 

concentration data at t∕�
a
= 12.3 for a log-conductivity variance of unity. Table 2 provides 

a comparison between the higher order moments obtained from the fitted beta CDF and 

the empirical CDF obtained from the high resolution numerical simulations. The higher 

moments of the beta distributions were calculated from the distribution coefficients in Eq. 

(34). As expected, the higher order moments estimated from the fitted beta model are dif-

ferent than the ones characterizing the empirical distribution.

Fig. 8  Comparison between the concentration cumulative distribution function (CDF) and beta distribu-

tion model for d = 2 (left) and d = 3 (right). The results in this Figure are for the fields with �2

f
= 1 at 

time t∕�
a
= 12.3 . Results computed for different source zone configurations (point, line and vertical planar 

sources)

Table 2  Skewness and kurtosis of the concentration empirical distribution (originated from the numeri-

cal simulations) and of the fitted beta distribution at t∕�
a
= 12.3 . The ratios of the higher order moments 

between the empirical and the beta distributions are also reported. The skewness and kurtosis of the empiri-

cal distribution obtained from the numerical simulations are represented by �(3) and �(4) whereas the ones 

for the beta distribution are �
(3)

�
 and �

(4)

�

Skewness Kurtosis

Simulation �
(3)

�
(3)

�
�(3)∕�

(3)

�
�
(4)

�
(4)

�
�(4)∕�

(4)

�

d = 2 , point 3.05 4.55 0.67 12.54 30.94 0.41

d = 2 , line 1.82 2.92 0.62 5.82 12.58 0.46

d = 3 , point 4.15 5.14 0.81 22.94 39.71 0.58

d = 3 , line 3.79 4.23 0.90 20.17 26.71 0.76

d = 3 , plane 2.28 2.72 0.84 8.85 10.98 0.81
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To overcome the limitations of the beta distribution at capturing the probabilities 

of low concentration occurrences, we explore alternative distributions. To do so, we 

propose to employ two one-to-one variable transforms, namely the power law and loga-

rithm transforms. We transform the concentration data originated from the numerical 

simulations as follows: 
√

c and ln[c] . The results depicted in Fig. 9 show a good per-

formance, within the low concentration range, of the Pareto-type IV distribution for the 
√

c and a uniform distribution for ln[c] . Table 3 reports the relative error between the 

estimates for the probability that c < c
∗ obtained from the fitted concentration CDFs and 

the empirical CDF. The relative error is given by � = 100 × |P(c∗) − P̂(c∗)|∕P(c∗) , where 

P(c) is the empirical concentration CDF obtained from the numerical simulations and 

P̂(c) is the fitted CDF (i.e., beta, uniform or Pareto-type IV). The concentration thresh-

old c∗ is defined as follows:

where c
max

 and c
min

 are the maximum and minimum concentrations within in the plume at 

time t. The quantities are defined as:

(35)c
∗(t) = cmin(t) + �[cmax(t) − cmin(t)],

(36)cmin(t) = min
x∈�

d

c(x, t);

Fig. 9  Comparison between the concentration cumulative distribution function (CDF) and the Pareto distri-

bution model for d = 2 (top left) and d = 3 (top right), and between the concentration CDF and the uniform 

distribution model for d = 2 (bottom left) and d = 3 (bottom right). Results are for the fields with �2

f
= 1 at 

time t∕�
a
= 12.3
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where �
d
 is defined in Eq. (7). For the results present in Table 3, we compute c∗ for � = 

0.01, 0.05 and 0.1. The results reported in Table 3 inform that at low concentrations, both 

the Pareto-type IV and uniform distributions perform well. As expected, the fit of the beta 

distribution improves as c∗ increases.

6.3  Dilution Index

The temporal evolution of the dilution index defined by Eq. (11) is shown in Fig. 10. The 

evolution of the dilution index mirrors the evolution of the mean concentration. Both 

quantities are related to the mixing volume. The mean concentration is inversely propor-

tional to the mixing volume, while the dilution index is directly a measure for the mix-

ing volume  (Kitanidis 1994). For a homogeneous medium, the dilution index scales as 

E(t) ∼ t
(d−d

s
)∕2 . Thus, it increases faster with increasing dimension d of space and decreas-

ing source dimension d
s
.

While the dependence on space and source dimensions is qualitatively similar for hetero-

geneous media, dilution is significantly accelerated compared to homogeneous media (note 

that in Fig. 10, analogously to Figs. 5 and 6, b denotes the slope of the homogeneous scal-

ing). In analogy to the behaviors observed for the mean concentration, dilution increases 

with increasing variance �2

f
 , this means with increasing level of heterogeneity (see top row, 

Fig. 10). This is because the macro-scale spreading of the solute plume increases with an 

increase in �2

f
 . Larger values of �2

f
 implies more erratically shaped plumes and an increase 

(37)cmax(t) =max
x∈�

d

c(x, t),

Table 3  Relative errors � 

between the fitted concentration 

CDFs and the empirical CDF 

obtained from the numerical 

simulations. Results computed 

for different values of � , see Eq. 

(35)

Simulation c
∗

� for beta � for Pareto-

type IV

� for uniform

� = 0.01

d = 2 , point 9.5 ×10−5 13.97 2.20 7.60

d = 2 , line 6.4 ×10
−4 36.55 6.99 13.27

d = 3 , point 1.5 ×10−5 2.02 2.12 1.59

d = 3 , line 1.1 ×10
−4 2.58 6.38 3.32

d = 3 , plane 7.8 ×10
−4 9.47 3.87 6.25

� = 0.05

d = 2 , point 4.7 ×10
−4 5.80 4.21 5.12

d = 2 , line 3.1 ×10
−3 13.67 12.01 15.63

d = 3 , point 7.2 ×10−5 2.29 1.19 0.95

d = 3 , line 5.2 ×10
−4 1.75 2.07 1.00

d = 3 , plane 3.2 ×10
−3 4.59 11.87 4.21

� = 0.1

d = 2 , point 9.5 ×10
−4 2.11 3.69 5.27

d = 2 , line 6.3 ×10
−3 3.20 11.55 9.51

d = 3 , point 1.4 ×10
−4 0.77 0.90 0.21

d = 3 , line 1.0 ×10
−3 1.38 0.42 0.81

d = 3 , plane 6.2 ×10
−3 1.83 6.58 1.91
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in the plume’s surface area with the surrounding (i.e., ambient) fluid. As a consequence, 

diffusive and local-scale dispersive solute mass fluxes are augmented. Comparing, for 

instance, the plots in the bottom row of Fig. 10, one can observe that, for all source dimen-

sions, the rate of increase in the dilution index is higher when compared to the homogene-

ous scaling depicted by the dashed lines. The strongest increase, compared to the behavior 

for homogeneous media, is observed for the planar source case (Fig. 10, bottom). This is in 

agreement with what was observed for the mean concentration results reported in Sect. 6.1.

Close inspection of Fig.  10 (bottom row) also reveals that the source zone mainly 

impacts the rate of dilution. The rate of dilution is highest for a point-like injection. For 

this case, the particles that constitute the point-like source, in a three-dimensional setting, 

will all occupy the same position at t = t
0
 . However, at the next considered time, t

1
> t

0
 , 

each particle will have moved in a different direction due the combination of advection and 

dispersion. This means that the mixing volume at t
1
 would have significantly increased (due 

to spreading in all three directions) when compared to the initial volume at t
0
 , when it was 

just a point.

Fig. 10  Dilution index in time for: point source (top left), line source (top right), 3d field with �2

f
= 1 (bot-

tom left), and 3d field with �2

f
= 4 (bottom right)
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7  Summary

Modeling solute mixing in spatially heterogeneous porous media flows is a challenging 

task. The multiscale variability of the hydraulic conductivity impacts both spreading and 

mixing rates of the solute body. The presence of preferential flow paths (i.e., hydrogeologi-

cal connectivity), low-conductivity zones and abrupt facies transitions require numerical 

models to have a high spatial resolution. The need for such fine spatial resolution increases 

the computational costs associated with flow and transport simulations, especially when 

dealing with three-dimensional stochastic systems.

In this work, we performed high resolution numerical simulations to study the tem-

poral evolution of the mixing behavior of a solute plume in heterogeneous porous 

media. Mixing is quantified in terms of the solute plume’s concentration mean and vari-

ance, probability distribution and the dilution index. Our analysis showed how mixing is 

affected by different factors such as the dimensionality of the flow domain, the degree of 

heterogeneity in the conductivity field and the geometrical configuration of the source 

zone.

With few exceptions, most studies up-to-date have focused their attention solely to 

studying mixing in spatially heterogeneous two-dimensional domains for point and line 

sources. In this work, we provide a systematic investigation of mixing in both two- and 

three-dimensional spatially heterogeneous porous media flows using a computationally 

efficient transport simulator denoted PAR2 developed in Rizzo et  al. (2019). PAR2 code 

is an open source, GPU accelerated transport simulator based on the random walk particle 

tracking technique. Morvillo et al. (2022) provides additional the details as well as a step-

by-step tutorial on how to connect the GPU accelerated particle tracking code employed 

in this work with other tools (such as the flow simulator and the random conductivity field 

generator). All codes can be also obtained from the information provided in Morvillo et al. 

(2022). We tested the accuracy of the numerical results with analytical and semi-analytical 

results reported in the literature for both homogeneous and heterogeneous porous media.

Our results highlight the importance of the source configuration and flow dimensional-

ity on the temporal evolution of different mixing patterns. In particular, hydraulic conduc-

tivity fields with d = 3 exhibit faster decays in time of both �
c
 and �2

c
 respect to d = 2 fields 

with the same level of heterogeneity. Moreover, such decays of �
c
 and �2

c
 happen faster 

for a point source and slower for a planar source, analogously to the analytical results in a 

homogeneous field. The source configuration also affects dilution, since the dilution index 

is higher for a planar source and lower for a point source, although such difference seems 

to decreases when heterogeneity is increased. These results are in agreement with the theo-

retical analysis of Dentz and de Barros (2013) where it was analytically shown that both 

source zone configuration and flow spatial dimension impact the self-averaging transport 

behavior of the solute plume. Here we expand this theoretical analysis for different mixing 

metrics and higher levels of heterogeneity in the conductivity field.

Finally, we compared the statistics of the concentration values with the beta PDF model. 

Using a parametric model to approximate the concentration PDF is appealing given that 

one can estimate the concentration mean and variance from a limited data set (i.e., due 

to high costs of data acquisition). Previous works showed the suitability of the beta PDF 

model to capture the main features of the concentration field statistics for both point-like 

and line sources (Bellin and Tonina 2007; Boso et al. 2013a). Our results show that the 
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performance of the beta PDF improves when the flow field is three-dimensional and trans-

port originates from a vertical planar source. Given that the performance of the beta distri-

bution deteriorates for low concentration values, we propose two alternative distributions 

to better capture the probabilities of observing c ≪ c
o
 . Our results show that the Pareto-

type IV distribution performs well after employing a power-law transform to the concen-

tration data. Similarly, the uniform distribution also performs well at low concentrations 

when a logarithm transform is applied to the concentration data. The analysis carried out in 

this study shows a promising path in employing a mixture distribution approach to model 

the statistics of solute concentration field.
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