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Abstract

We investigate transport of an inert solute in multidimensional porous media characterized
by spatially variable hydraulic conductivity. Through the use of a GPU-accelerated solute
transport simulator based on the Random Walk Particle Tracking technique, we show how
different factors such as the degree of heterogeneity, flow dimensionality and source zone
configurations impact mixing. Solute mixing is quantified in terms of the temporal evo-
lution of the plume’s statistics (mean, variance and probability density function) and the
dilution index. Our analysis show that mixing is strongly affected by the above mentioned
factors. We also compare the probability distributions obtained from the numerical simula-
tions with the beta distribution. Despite the discrepancies at very low concentrations, our
results show that the fitting with the beta distribution is improved for transport in three-
dimensional settings originating from a vertical planar source. To improve the fit at low
concentrations, we utilize two one-to-one variable transformation, namely the logarithm
and power law transformations. Results demonstrate that the Pareto-type IV and the uni-
form distributions are capable to capture the lower tail of the cumulative distribution func-
tion. Numerical results are validated against existing analytical solution for both homoge-
neous and heterogeneous media.

Keywords Heterogeneity - Mixing - Random walk particle tracking - Stochastic
hydrogeology - Computational modeling - Porous media

1 Introduction

The spatial variability of the hydraulic conductivity in porous formations leads to complex
flow patterns which in turn lead to mixing dynamics that differ from the ones observed
under uniform flow conditions. Transport in heterogeneous porous media is characterized
by early solute breakthrough, tailing behavior of the concentration at late times and irregu-
lar spreading and mixing rates (Neuman and Tartakovsky 2009; Dentz et al. 2011; Fiori
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et al 2015). The presence of heterogeneity is also responsible for poorly mixed conditions
and spatially dispersed solute plumes (Dentz et al. 2011). The interplay between advec-
tive and local-scale dispersive fluxes in heterogeneous porous media results in non-trivial
macroscopic transport behavior which is of importance for a broad range of scientific fields
and engineering applications (Sahimi 2011). Examples consist of contaminant migration
in hydrology (Dagan and Neuman 2005), aquifer remediation (Chapman and Parker 2005),
human health-risk assessment (Im et al. 2020), geological storage of CO, (Hidalgo and
Carrera 2009) and safety assessment of waste repositories (Selroos 1997). Improved under-
standing of the effects of heterogeneity on mixing is imperative to improve the predictive
capabilities of models in the above-mentioned applications.

Many works focused on understanding the role of conductivity heterogeneity on tem-
poral scaling properties of solute mixing. Mixing in heterogeneous porous media has been
analyzed in terms of effective dispersion coefficients (Dentz et al. 2000; Fiori and Dagan
2000; Fiori 2001), entropy-based mixing metrics (Kitanidis 1994; de Barros et al. 2015)
and the temporal decay of the concentration variability (Kapoor and Kitanidis 1998).
Through the use of numerical simulations, Le Borgne et al. (2010) showed how moderate-
to-strong levels of heterogeneity induced anomalous temporal scaling for the scalar dis-
sipation rate of a solute plume originating from a line source in a two-dimensional porous
medium. Other studies investigated the impact of the sequence of fluid deformation events
in two-dimensional flows on mixing metrics (de Barros et al. 2012; Le Borgne et al. 2013,
2015). The effects of flow focusing on the transverse dilution behavior of steady-state
plumes have been topic of numerical (de Barros and Nowak 2010; Cirpka et al. 2011) and
experimental investigations (Rolle et al. 2009; Gueting and Englert 2013). Kapoor and
Kitanidis (1998) analyzed the rate of destruction of the concentration variance by local-
scale dispersion through the use of numerical simulations and approximate analytical solu-
tions. Dentz et al. (2018) showed the importance of the initial condition of the solute plume
(i.e., its spatial distribution) on the temporal mixing evolution in two-dimensional porous
media. Semi-analytical solutions for the statistical description of the concentration field in
spatially heterogeneous porous formations are also reported in the literature (Rubin et al.
1994; Fiori and Dagan 2000; Fiori 2001; Tonina and Bellin 2008; Meyer et al. 2010; Dentz
and Tartakovsky 2010; Dentz 2012; de Barros and Fiori 2014). Approximate semi-ana-
lytical solutions for the dilution index, introduced by Kitanidis (1994), in two- and three-
dimensional porous formations are reported in de Barros et al. (2015) and compared with
results from numerical simulators (Boso et al. 2013a; de Barros et al. 2015) and field data
(de Barros et al. 2015; Soltanian et al. 2020; de Barros and Fiori 2021).

In general, the above-mentioned semi-analytical solutions are based on perturbation theory,
and therefore restricted to low-to-moderate levels of hydraulic conductivity heterogeneity. To
address mixing in porous formations displaying a stronger degree of heterogeneity (i.e., log-
conductivity variance larger than unity), numerical methods are needed. However, traditional
Eulerian grid-based numerical approaches are often plagued by oscillations and numerical
dispersion which impact the accuracy of the numerical scheme (Zheng et al. 2002; Ferziger
et al. 2002; Gotovac et al. 2007). Furthermore, in order to capture the effects of small scale
heterogeneity on solute mixing, a fine spatial resolution in the numerical model is required
which increases the computational burden associated with flow and transport simulations
(Ababou et al. 1989; Bellin et al. 1993). This computational burden is augmented within the
context of uncertainty quantification where a Monte Carlo framework is needed (Moslehi
et al. 2015) . Lagrangian-based methods, such as the Random Walk Particle Tracking (RWPT)
technique (Salamon et al. 2006), are an appealing alternative since they are globally mass con-
servative and no subject to artificial oscillation and numerical dispersion. RWPT was used
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to study dispersion in both two- and three-dimensional heterogeneous porous media (Bellin
et al. 1992; de Dreuzy et al. 2007; Beaudoin and de Dreuzy 2013). Jankovic et al. (2017) used
RWPT to examine the impact of conductivity structure in the mass breakthrough curve in a
three-dimensional setting. Sole-Mari et al. (2021), used RWPT simulations to key metrics of
transport originating from a source zone occupying the entire inlet area of a bounded three-
dimensional porous media displaying non-Gaussian features and a logconductivity variance of
unity. Libera et al. (2019) used RWPT to analyze the joint effects of porosity and conductiv-
ity variability on both the peak flux-averaged concentration and solute arrival times in three-
dimensional porous media for low and high levels of heterogeneity. Using different numerical
schemes, including RWPT and smoothed particle hydrodynamics (SPH), Boso et al. (2013b)
investigated the impact of heterogeneity in transport metrics such as the second central spatial
moments of the solute plume and the dilution index. Results obtained from different numerical
schemes were compared and reported for a point-like injection and two-dimensional domains
for different logconductivity variances (ranging from 0.2 to 10). Despite the benefits associ-
ate with RWPT, there are drawbacks such as the presence of local concentration fluctuations
and the need to have a significant number of particles to achieve numerical precision of the
concentration field, especially when dealing with heterogeneous porous media (Herrera et al.
2009; Boso et al. 2013b). The need to use a large number of particles has implications on the
computational costs associated with transport.

To overcome this challenge and improve the efficiency associated with Lagrangian-based
methods, Rizzo et al. (2019) introduced a GPU-accelerated RWPT, denoted as PAR?, that 1)
enables the use of a large number of particles and 2) is computationally efficient. PAR? has
been employed to study hydrogeological connectivity in both Gaussian and non-Gaussian
flow fields (Rizzo and de Barros 2019; Morvillo et al. 2021a), aquifer resilience loss and prob-
abilistic-risk analysis (Morvillo et al. 2022), solute transport at the pore-scale (Kamrava et al.
2021) and has been expanded to account for chemical reactions (Morvillo et al. 2021b). The
code is open source (see details in Rizzo et al. (2019)) and a step-by-step tutorial on its use and
how to connect to existing groundwater flow simulation tools can be found in Morvillo et al.
(2022).

The objectives of this work is to provide a systematic numerical investigation of the impact
of flow dimensionality, source zone configuration and the degree of heterogeneity on metrics
of solute mixing. To achieve our goals, we rely on the RWPT-based simulator PAR? (Rizzo
et al. 2019) to show the importance of the aforementioned factors in mixing metrics such as
the global spatial mean and variance of the concentration field, the dilution index and the con-
centration probability distribution function. Results are compared to existing analytical solu-
tions for homogeneous and heterogeneous porous media.

2 Problem Statement
2.1 Flow and Transport Model
We consider a d-dimensional porous medium with constant porosity ¢ and spatially variable

(locally isotropic) hydraulic conductivity K(x) with x = [x;, ...,xd]T denoting the Cartesian
coordinate system and d =2 and 3. The flow field is given by

V- qx) =0 (1)

where the specific discharge q is obtained through Darcy’s law
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q(x) = —K(x)VA(x), 2)

with & representing the hydraulic head. Equation (1) is subject to the following bound-
ary conditions: prescribed hydraulic head along the longitudinal direction x; and no-flow
boundary conditions along directions x; for j =2 and 3. These conditions ensures that flow
is uniform-in-the-mean along the longitudinal direction. That implies that the mean veloc-
ity field is (u) = (U, 0) for d =2 and {(u) = (U, 0, 0) for d = 3. Here the angled brackets
represent the ensemble expected value and U denotes the mean longitudinal velocity given
by U = K5 J/¢ where K, is the geometric mean of the hydraulic conductivity and 7 is the
spatially uniform mean hydraulic head gradient.

An inert solute is instantaneously released in a domain V), located within the porous forma-
tion. Depending on the dimensionality of the flow field, the domain V), can represent a volume
or an area. In this work, we will consider different geometrical configurations for the source
zone. The geometrical configurations considered are point, line and planar sources in both
two- and three dimensional porous formations. Details pertaining the dimensions of the solute
injection zone are provided further below in Sect. 5. The spatiotemporal dynamics of the sol-
ute plume’s resident concentration ¢ is assumed to be governed by the local advection disper-
sion equation (ADE):

ac(x D, u(x) - Ve(x, 1) = V - [D(x)Ve(x, 1], ®)

where u = q/¢ is the velocity vector and D is the local scale dispersion tensor given by

(ap — ar)
D) = (ar|u(x)| + D,,)1 + )] L __Tuxux)’ 4)
with D,, denoting the molecular diffusion coefficient and 1 representing the identity matrix.
Equation (3) is subject to the following initial condition

c, ifxeV;
ox,0) = { 0 otherwise. )

Due to the spatial randomness of the hydraulic conductivity, the velocity field is spatially
variable which impacts solute mixing and spreading rates. In the following subsection, we
will describe the details regarding the spatial structure of the K field.

2.2 Stochastic Model

To simulate flow and transport in a spatially random porous medium, we assume that the log-
conductivity field, namely f(x) = In K(x), is multivariate Gaussian and statistically stationary.
Therefore, fis fully characterized by i) its mean value (f) = In K; where Kj; is the geomet-
ric mean of the conductivity field K; and ii) its spatial covariance Cy¢(r) = (f(x)f(x)) with
r = x — x'. The logconductivity variance is given by o-% = Cy;(0). In this work, we consider
an isotropic correlation length A. In the following, we adopt an exponential spatial covariance
model for C;; (see Ch. 2 of Rubin (2003)) such that

Cet(r) = o} exp (—%) (6)

@ Springer



Mixing in Multidimensional Porous Media: A Numerical Study... 373

2.3 Mixing Metrics

To quantify mixing, we will rely on four descriptors. The first descriptor is the spa-
tially averaged concentration of the plume over volume ¢, of the d-dimensional
domain characterized by ¢ > ¢* where ¢* is a low concentration threshold value. The
volume ¢, (¢|c*) represents a line in d = 1, an area for d = 2 and volume for d = 3 and is
defined as follows

@ (tlc") = / Hle(x, 1) — c*]dx 7
Q

where H[-]is the Heaviside function and €2 is the flow domain. This means, ¢,(¢|c*) denotes
the volume occupied by the solute, or, in other words, the mixing volume.
The spatially averaged concentration is defined by

1
—_— — 9 d .
#el) @, (1]c*) wmc*)dx DX ®

Note that for a sufficiently small c*, the integral on the right side may be approximated by 1
due to mass conservation. Thus, the spatial mean concentration is inversely proportional to
the mixing volume @ (f|c*).

The second descriptor is the spatial variance of the concentration

1

ol (1) = .
Pa(tle*) J o 100

c(x, 02dx — [u (0], )

with p, given in Eq. (8).

We also examine the concentration probability density function (PDF) p(c). The
PDF p(c) is obtained from spatially sampling the concentration point values within the
domain @ (t|c*), see Eq. (7). It can be formally written as

p(c) = / 6[c — c(x, 1)]dx, (10)
@4(tlc*)

where 6(c) is the Dirac delta distribution.

Finally, the fourth mixing metric investigated in this work is the dilution index E
introduced by Kitanidis (1994). The dilution index represents a global measure of dilu-
tion. It measures the temporal evolution of the volume occupied by the solute plume
and allows to quantify the combined effects of advection and local scale dispersive
fluxes on mixing. The dilution index is mathematically expressed as

E(t) =exp[A(?)], with
A@=—/”“”mr“”kx (an
o M, M

o0 o

where M, = c,V,¢ is the total mass injected into the porous formation.
We will compute 4., o-f, p and E for different values of 0?, distinct source dimen-
sions (point, line and planar source zones) and for different flow dimensionality (d =2

and 3).
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2.4 Reference Solutions for Homogeneous Media

For reference, we give in the following the expected behaviors of these mixing metrics for
homogeneous media in d spatial dimensions. The concentration distribution in response to an
instantaneous point source, c(X, = 0) = ¢(6(X), in an infinite v-dimensional domain is given
by the Gaussian distribution

3 I _(x- ur)?
c(x,t) = —(47rDt)V/2 exp [ D ] (12)

Note that solution for an infinitely extended line source in d = 2 spatial dimensions and for
an infinitely extended planar source in d = 3 is given by expression (12) for v = 1, the solu-
tion for an infinitely extended line source in d = 3 spatial dimensions is given by expres-
sion (12) for v = 2. In general, v = d — d,, where d is the dimension of space and d, the
dimension of the source distribution. The source dimension is d, = 1 for a line source and
d,; = 2 for a planar source. In the following we rescale ¢ — c/c,,.

2.4.1 Concentration PDF

In order to determine the concentration PDF we note that the radius of a concentration isoline
measured from the center of mass at uz is related to the concentration ¢ by

— /@D Tnle, ), -
r(c) (4Dt) In[c,,(t)/c], c,,(®) @nDiy 2 (13)

Thus, we can write Eq. (10) for the concentration PDF in spherical coordinates as
r(c*)

/ drr'8le = (), f(r) =

0

exp(—r? /4Dt)
(4xDr)v/?

pc) = (14)

d
r(c*)

We can evaluate this integral explicitly by using that 6[1 — f(r)] = 1/|df /dr|6[r — r(c)].
Thus, we obtain

=2 In[c,,()/c]v~2/?
ple) =

= 2 i, fe R ¢ S OS O (15)

2.4.2 Concentration Moments

The concentration moments are defined in terms of the concentration PDF by

(S}

uP @ = / dc *p(o). (16)

0

Using the explicit expression (15) for the concentration PDF and rescaling the integration
variable by c,,(t), we obtain
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1

. k

Wy = v / de & Incl /o) v-212

WD) Inle_ (/T2 2 cc™ In(1/c) (17)
¢t /c(D)

We consider situations for which (¢*/c,,(f) < 1). In this limit we obtain
u®@) = A, 0 + ..., (18)

where the dots denote subleading contributions. The constant A, is defined by

1

_ v k—1 (v=2)/2
Ay =———— [ dc ™ In(1/c . 19
‘ 21n(l/c*)v/z/ (1/e) 19)
0
It depends on the dimension v of space and the order k of the moment. We denote the mean
concentration by uV = p..
We obtain for the mean concentration in leading order

(1) = Ajc, (1) ~ 172, (20)
where p1.(t) = uV(¢). For the concentration variance, we obtain

o2 (1) = ¢, (1 (A, — A ~ 17" 3))

2.4.3 Dilution Index

The expression for the dilution index is obtained by inserting the Gaussian solution (12)
into the definition (11). The explicit analytical solutions are (Kitanidis 1994)

exp(d/2) o

E@) = T

(22)
Note that is scales as 1/u,.(¢). This is due to the fact that the mean concentration scales as
the inverse mixing volume, while the dilution index describes the evolution of the mixing
volume.

3 Methods

For all results presented in Sect. 6, the spatially variable logconductivity field f'is randomly
generated using the SGeMS tool (Remy et al. 2009). SGeMs is based on a sequential
Gaussian simulation model (Rubin 2003). The flow Eq. (1) is solved using the finite-dif-
ference solver MODFLOW (Harbaugh 2005) with the Python package FloPy (Bakker et al.
2016). The flow domain, L, X L, (for d = 2) or L, X L, X L; (for d = 3), is discretized into
a regular grid with numerical grid blocks of dimension A.

To simulate solute transport (3), we make use of the PAR? code developed Rizzo et al.
(2019). PAR? is an open source, GPU-accelerated, simulator based on the Random Walk
Particle Tracking (RWPT) (Rizzo et al. 2019). A step-by-step tutorial of PAR?, and the
details of how to link it to an open source Python package, is reported in Morvillo et al.
(2022). PAR? has been employed to study transport at both field and pore scales (Rizzo

@ Springer



376 A.Bonazzi et al.

et al. 2019; Kamrava et al. 2021). The RWPT is based on the trajectory of the i’ solute par-
ticle that can be computed using the Itd -Taylor integration scheme (Salamon et al. 2006):

X, (1 + Ar) = X() + ACX(6) At + BX(1) - E0)V AL 23)

where & is a normally distributed random variable with zero mean and unit standard devia-
tion, At is the time step, and the drift vector A and the displacement matrix B are defined
by:

AX)=uXx)+ V- -D(x) + éD(x) - Vo (24)

2D(x) = B(x) - B(x)". (25)

4 Validation

In this section we validate the results from the numerical simulators with existing analyti-
cal solutions for two-dimensional domains. For a homogeneous conductivity field, Kitan-
idis (1994) derived the following expression for the dilution index for a point source (see
also Eq. 22):

E(t) = (47rDt)d/zexp<g> (26)
For a heterogeneous porous medium, de Barros et al. (2015) used perturbation theory to
derive a semi-analytical solution for the dilution index. The semi-analytical expression is
valid for a point-like instantaneous injection, uniform-in-the-mean flow conditions in the
absence of sinks and sources and low-to-mild levels of heterogeneity, i.e., 6> < 1. The

f
semi-analytical solution for the temporal evolution of the dilution index E is given by

d
E® = CoPexp(£) [ VW0 @7)
i=1

where Wi is the relative particle trajectory covariance along the i direction given by Fiori
(2001)

W, () = X;;(t) + 2Dt — Z,;(;0), (28)

where X, and Z;; correspond to the one- and two-particle trajectory covariances respec-
tively (Fiori and Dagan 2000). Note that the “0” present in the two-particle trajectory
covariance Z;; is to emphasize that the function is evaluated for a point-like source, i.e.,
the separation distance between two particles originally located within the source zone
is approximately zero (details provided in de Barros et al. (2015)). The semi-analytical
expressions for the particle trajectory covariances X; and Z; were derived in Fiori and
Dagan (2000) and are reproduced in Eqs. (29) and (30). These expressions are valid for
low-to-mild levels of heterogeneity and uniform-in-the-mean flow conditions. For an iso-
tropic and constant local dispersion D and point-like injection, the particle trajectories are

@ Springer



Mixing in Multidimensional Porous Media: A Numerical Study... 377

91+d/2

O / / (¢ = r)coslk, UrleP i1, (k)dzdk, (29)

2 d/2 «© ! ! 2040 4 41
%w=&)/ﬂ//w%wﬁmVWWm®MMk (30)
0 0o Jo

where mean longitudinal velocity is denoted by U and #;(k) corresponds to the Eulerian
velocity covariance in Fourier space. The wave number vector is given by k and k? =
ZJ | k2 for j =1, ..., d. Equations (29) and (30) are limited to small to mild levels of heter-
ogenelty The expression for the velocity covariance in Fourier space, i.e., fi;;(k), is (Dagan

1984)
kik; kik:\ .
Iflu(k) =U? (5]:' - ]i_> (51/ ]izj >Ct‘r‘(k)a (€1Y)

where §; is Kronecker’s delta and Ci¢(k) is the Fourier transform of the logconductivity
covariance, Eq. (6). For the purpose of validation, we will restrict ourselves to a two-
dimensional setting. Therefore, the Fourier transform of the isotropic logconductivity
exponential covariance function for d = 2 is (Rubin 2003)

Crr(k) = o7 22(1 + k{42 + kg 4372, (32)

Figure 1 (left) shows how the flow and transport simulator was able to capture the dilu-
tion of a plume in a two-dimensional homogeneous porous medium. The numerical results
shows an excellent agreement with the analytical solution, see Eq. (26). The parameters
used for the simulations in the homogeneous setting are reported in Table 1.

Next, we compare the numerical results with the semi-analytical solutions derived in
de Barros et al. (2015) in a heterogeneous setting, see Eq. (27). The results reported in
Fig. 1 (right) are for a two-dimensional heterogeneous aquifer characterized by af2 = 1. For
this comparison, the spatially random porous medium was generated using HYDRO_GEN

x104
5 on =0
\ 5
=] 2
1 — Kitanidis (1994) de Barros et al. (2015)
+ Numerical + Numerical
00 0.05 0.1 0.15 0 5 10 15

t/7a /7

Fig. 1 Comparison between the results from the numerical flow and transport simulators (red crosses)
against the analytical results (continuous line) derived by Kitanidis (1994) for a homogeneous medium
(left) and the semi-analytical solution derived by de Barros et al. (2015) for a heterogeneous medium char-
acterized by afz = 1 (right). Results depicted for d = 2 and a point source. The advective time scale for the
homogeneous medium (left) is given by 7, = L, /U where L, is the longitudinal dimension of the domain.
The advective time scale for the heterogeneous medium (right) is 7, = 4/U with 4 as the correlation scale
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Table 1 Input parameters used in the simulations

Parameter Symbol Value Calculated as
Correlation length in x, and x, A 10 m -
Correlation length in x5 (d = 3 only) A 10 m -
Domain length in x; L, 1000 m 1004
Domain length in x, L, 200 m 204
Domain length in x; (d = 3 only) L, 200 m 204
Mesh size in x,; and x, A 1m /10
Mesh size in x; (d = 3 only) A 1m /10
Porosity 1) 0.25 -
Mean (geometric) hydraulic conductivity K 1 m/d -
Mean longitudinal flow velocity U 0.02 m/d -
Dispersivity in x; ay 0.1 m? 0.1A
Dispersivity in x, (except Sect. 4) ar 0.01 m? 0.01A
Dispersivity in x, (Sect. 4 only) ar 0.1 m? 0.1A
Dispersivity in x5 (d = 3 only) ar 0.01 m? 0.01A
Molecular diffusion D, 8.64 x 10> m?/d -
Number of particles N, 107 -

(Bellin and Rubin 1996). Given the stochastic nature of the flow field, we averaged the
temporal evolution of the dilution index over five random realizations. The results depicted
in Fig. 1 (right) show an excellent agreement with the numerical simulator and the semi-
analytical results. This is remarkable given that the perturbation theory-based solution, Eq.
(27), is expected to deteriorate for sz > 1,

5 Numerical Set-Up

A description of the scenarios investigated is displayed in Fig. 2. As shown in Fig. 2, we
will consider both two- and three dimensional flows characterized by two distinct logcon-
ductivity variances, namely afz =1 and 4. These values were selected to represent a mildly
heterogeneous case and a highly heterogeneous case. In order to capture the effects of het-
erogeneity of the flow field on mixing, we consider a ratio of A/A = 10. The ratio /A was
selected based on the analysis carried out in the literature (Ababou et al. 1989; Bellin et al.
1993, 1994; de Dreuzy et al. 2007; Moslehi et al. 2015). A detailed numerical error analy-
sis regarding the spatial resolution of the flow field on simulations is reported in Figs. 5,
6 of Leube et al. (2013) and Figs. 2-6 of Moslehi et al. (2015). Figure 2 also provides
a graphical representation of the different geometrical configurations for the source zone
explored in our study. Details regarding the different scenarios are provide below.

Two-dimensional case: For d =2, we will consider a point source of dimensions
0.14%x 0.14 centered at x = (24, 100). We will also consider a line source of length 34
located at x; = 24 with transverse dimension x, € [85, 115].

Three-dimensional case: For d = 3, we will consider, analogously to the case for
d =2, a point source of dimensions 0.14 X 0.14 centered at x = (24, 100, 100) and also
a line source located at x; = 24 and x; = 100 with transverse dimension x, € [85, 115].
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2D 3D
.20 -
0 =
20 A
29[S % Poz| = i 2
% = & pos s [ 100
0 50 100 g | %
A 0 -y
x/ 010 40 xal*
*2/.
= g0 _
2 AM <
20 - ¥ E
2_4 S o 2 .80_2 20 ¥y ; L P
of = N T e Bos | SRR 100
0 50 100 g 1 g 50
0 0 5
X /A 210 o0 M|7»
*2/4
POINT POINT
4 ° 4 °
X2 X3
L 5 >
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at x,1 /A =24
LINE LINE
Type of
source 4 4
X2 X3
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X1 X2
atx, /A =24
PLANE
1
X3
atx, /A =24

Fig.2 Summary of the considered scenarios. We analyze transport in domains with d = 2 and d = 3 char-
acterized by logconductivity fields with variance crf2 =1and o'f2 = 4. In each field we study the impact on
solute transport of the source dimension

We will also consider a plane source located at x; = 24 with transverse dimension x, €
[85, 115] and x5 € [85, 115] (i.e., of dimensions 34 X 34).

All other parameter values used in the simulations presented in this work are listed
in Table 1. All the simulations were performed on a desktop computer equipped with
a GPU NVIDIA GeForce GTX 745/PCle/SSE2 necessary to use PAR? and with 4GB
of internal RAM memory. The time required to complete a high-resolution simulation
(i.e., A/A =0.1) with 107 particles ranged from about three hours for the two-dimen-
sional cases to up to six hours for the three-dimensional cases.
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6 Computational Results

Figures 3 and 4 provide examples of the simulated concentration fields in two- and three-
dimensional flows for afz =1 and 4 at the final simulation time. The spatial concentration
plume shows more complex features with increasing o-% that are accompanied with overall
lower concentration values, which indicates increased dilution. In the following, we study
the mixing and dilution dynamics in a more quantitative fashion in terms of the evolution
of the mean concentrations, concentration variance, concentration PDF and dilution index
introduced in Sect. 2.3.

6.1 Concentration Mean and Variance

Figures 5 and 6 report the temporal evolution of the spatial concentration mean and vari-
ance defined in Egs. (8) and (9) for d = 2 and d = 3 spatial dimensions for point, line and
planar source distributions. The scalings derived in Sect. 2.4 for homogeneous media indi-
cate the dependence of the decay of the concentration mean and variance on the dimensions
of space and the source distribution. Such scalings are reported in Figs. 5 and 6 as dashed
lines, and their slope is denoted by the value b. We found that the mean concentration scales
as p (1) ~ r~@=4)/2 and the concentration variance as o>(r) ~ 1~@=%), where d is the space
dimension and d, the source dimension. This means, that the concentration mean and vari-
ance for a homogeneous medium decay faster for higher spatial dimensions and lower source
dimension. We observe qualitatively similar dependence on space and source dimension for
heterogeneous media, while the decay is in general faster for the heterogeneous than for the
homogeneous media. This effect is increasing with increasing 0f2. For 6f2 = 1, we find that the
concentration mean and variance for point and line sources in d = 2 and 3 decay only slightly
faster than expected for homogeneous media. For af =4, in contrast we observe a strong
acceleration of the decay of concentration mean and variance compared to homogeneous

Point source Line source
c/eo /ey
x107

Now N

0 10 20 30 40
/A

L

L% o3

0 10 20 30 40 0 10 20 30 40
/A @ /A

Fig.3 Concentration field for d = 2 at the final simulation time ¢/, = 20 for point (left column) and line

source (right column), in the conductivity field with a? =1 (top row) and afz =4 (bottom row). In all
four images, the initial position of the solute source is depicted in orange color
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Fig.4 Concentration fields at the final simulation time /7, = 20 for d = 3 with o-f = 1 (top box) and o'f =4
(bottom box) for a vertical planar source

media. For the planar source in d = 3 dimensions, concentration mean and variance decay
significantly faster than for a homogeneous medium both for o-? = 1 and 4. Such faster decay
can be explained by the fact that a planar source is able to sample more fluctuations of the
permeability field. This means that higher concentration gradients have the opportunity to be
generated, thus leading to faster mixing. As illustrated in Figs. 3 and 4, the concentration dis-
tributions are strongly dispersed for both heterogeneity strengths, and the initial distribution
evolves into a lamellar structure. This means, spatial heterogeneity creates strong concentra-
tion gradients, which are efficiently degraded through local scale dispersion, thus explaining
the faster decay of mean concentration and concentration variance in heterogeneous media

compared with homogeneous media.
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Fig.5 Mean concentration in time for: point source (top left), line source (top right), 3d field with a? =1
(bottom left), and 3d field with afz = 4 (bottom right)

6.2 Concentration Distribution

Figure 7 illustrates the concentration PDF, p(c) for point and line sources in both d = 2 and
3 spatial dimensions at different times. As discussed in the previous section, at increasing
times the concentration mean and variance decrease. The maximum observable concen-
trations are shifted toward smaller values. At small concentration values, p(c) behaves as
predicted for a homogeneous medium as p(c) ~ ¢! for all cases under consideration. The
solutions for a homogeneous medium are given by Eq. (15). At increasing concentration
values, the behaviors expected for a homogeneous medium are different from the obser-
vations for the heterogeneous media. For the point source in d = 2 and the line source in
d = 3, we expect p(c) ~ ¢~ for ¢ < c,,(¢). For the point source in d = 3, the concentration
PDF behaves as p(c) ~ c(In¢)'/? and for the line source in d = 2 as p(c) ~ ¢(Inc)~'/2. The
concentration PDF decreases faster toward smaller maximum values than the correspond-
ing homogeneous solutions.

These behaviors can be understood in the lamellar mixing framework of Villermaux
(2012) and Le Borgne et al. (2015) as the result of stretching-enhanced local dispersion. As
shown in Figs. 3 and 4, in heterogeneous media, the initially homogeneous solute distribu-
tion evolves into a lamellar structure due to the spatial variability of the underlying flow
field. Across individual lamellae, the concentration distribution can be approximated by
Gaussian distributions characterized by a maximum distribution that depends on the lamel-
la’s stretching history. For a lamella that has passed through regions of strong stretching,
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Fig.6 Concentration variance in time for: point source (top left), line source (top right), three-dimensional
field with a? = 1 (bottom left), and three-dimensional field with a? = 4 (bottom right)

the maximum concentration decreases much faster than for the lamella that remains unde-
formed, as long as the values of local dispersion are large enough to efficiently dissipate
concentration gradients. The concentration PDF for an individual lamella is then charac-
terized by (15) for a Gaussian concentration distribution. The full concentration PDF is
then constructed by the superposition of lamellae with different stretching histories. This
explains the behavior of p(c) ~ ¢! at small concentration values, which is characteristic
of the Gaussian concentration profile across lamellae, and the decay behavior at large con-
centration values, which reflects the stretching and deformation history of the lamellae. In
this sense, the mixing behavior at the simulation times under consideration here, which are
smaller than the characteristic dispersion time over a correlation length, can be understood
by the superposition of independent stretched lamellae. At times larger than the charac-
teristic dispersion time scale, lamellae start coalescing, which leads to different behaviors
of the concentration PDF as discussed in Le Borgne et al. (2015). However, this regime is
beyond the scope of this paper.

Next, we compare the cumulative distribution function (CDF), namely P(c) =
foc p(w)dy, obtained from the numerical simulations with a parametric CDF model, the
beta CDF. The beta CDF was originally suggested by Fiori (2001) as a potential distribu-
tion to capture the statistics of the concentration field given its flexibility to shift from a
bimodal to a unimodal PDF. It has been widely employed to quantify the distribution of
the concentration values in heterogeneous domains (Fiorotto and Caroni 2002; Bellin and
Tonina 2007) and tested against numerical and analytical solutions (Schwede et al. 2008;
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Fig.7 Concentration PDF for distinct source configurations and flow dimensionality. The results in this
Figure are for the fields with o-f = 1. Results reported for a point source for d = 2 (top left), point source
for d = 3 (top right), line source for d = 2 (bottom left), and line source for d = 3 (bottom right). The dotted
line represents the concentration PDF in a homogeneous field according to Eq. (15)

Boso et al. 2013a; de Barros and Fiori 2014; Boso and Tartakovsky 2016). The perfor-
mance of the beta distribution model was also assessed for mixing of fluids with distinct
viscosities (Bonazzi et al. 2021) as well as mixing in non-Gaussian random flow fields
(de Barros et al. 2022). The beta CDF model is defined by:

Ia,+b,]1 [€

_ ‘ a~1¢1 _ . b1
P(C)_—F[ao]F[b,,] A dwwb ™ (1 —w)™", (33)

where I'[z] is the Gamma function. The exponents a and b are given in terms of the empiri-

cally determined concentration mean y, and variance 062 as

po(0) 1= p.(0) o (1)
0 = —, bo = —— ﬂ = s
] ] D[ = p (D] = 62(1)

a (34)

Note that the symbol b, here has a different meaning than the slope b in Figs. 5 and
6. The results displayed in Fig. 8 show the comparison between the CDF obtained from
the numerical simulations and the beta CDF model (34) fitted with Egs. (8) and (9), i.e.,
we calculated the spatial average and spatial variance of the concentration in the mix-
ing volume obtained from the numerical simulations and used those values to estimate
the parameters a, and b, in Eq. (34). Figure 8 illustrates the comparison in both two-
dimensional (Fig. 8, left) and three-dimensional (Fig. 8, right) domains for distinct source
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Fig.8 Comparison between the concentration cumulative distribution function (CDF) and beta distribu-
tion model for d =2 (left) and d = 3 (right). The results in this Figure are for the fields with o-? =1at
time #/7, = 12.3. Results computed for different source zone configurations (point, line and vertical planar
sources)

configurations at #/7, = 12.3. In agreement with previous findings reported in the literature
(Fiorotto and Caroni 2002; Boso et al. 2013a; de Barros and Fiori 2014), the beta distribu-
tion fails to capture the probabilities at low concentrations. This is particularly evident in
the case of two-dimensional domains (see Fig. 8, left). The fitting of the beta distribution
improves with an increase in the dimensionality of the porous medium (compare Fig. 8 left
and right). As depicted in Fig. 8 (right), the agreement between the beta CDF model and
the empirical CDF is augmented when the solute source zone is a vertical plane.

The discrepancy between the beta model and the data at small concentrations can be
traced back to the fact that the mixing behavior at the small concentration fringes of the
solute plume is dominated by diffusion. We further explore this discrepancy at low concen-
trations by analyzing the third (skewness) and fourth (kurtosis) statistical moments of the
concentration data at /7, = 12.3 for a log-conductivity variance of unity. Table 2 provides
a comparison between the higher order moments obtained from the fitted beta CDF and
the empirical CDF obtained from the high resolution numerical simulations. The higher
moments of the beta distributions were calculated from the distribution coefficients in Eq.
(34). As expected, the higher order moments estimated from the fitted beta model are dif-
ferent than the ones characterizing the empirical distribution.

Table2 Skewness and kurtosis of the concentration empirical distribution (originated from the numeri-
cal simulations) and of the fitted beta distribution at 7/7, = 12.3. The ratios of the higher order moments
between the empirical and the beta distributions are also reported. The skewness and kurtosis of the empiri-
cal distribution obtained from the numerical simulations are represented by u® and y® whereas the ones
for the beta distribution are ;4;3) and ;4;4)

Skewness Kurtosis
Simulation u® M;3> ud/ ”;3) u® M;‘) Py /4;4)
d =2, point 3.05 4.55 0.67 12.54 30.94 0.41
d =2, line 1.82 2.92 0.62 5.82 12.58 0.46
d = 3, point 4.15 5.14 0.81 22.94 39.71 0.58
d =3, line 3.79 4.23 0.90 20.17 26.71 0.76
d = 3, plane 2.28 2.72 0.84 8.85 10.98 0.81
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To overcome the limitations of the beta distribution at capturing the probabilities
of low concentration occurrences, we explore alternative distributions. To do so, we
propose to employ two one-to-one variable transforms, namely the power law and loga-
rithm transforms. We transform the concentration data originated from the numerical
simulations as follows: \/E and In[c]. The results depicted in Fig. 9 show a good per-
formance, within the low concentration range, of the Pareto-type IV distribution for the
\/Z and a uniform distribution for In[c]. Table 3 reports the relative error between the
estimates for the probability that ¢ < ¢* obtained from the fitted concentration CDFs and
the empirical CDF. The relative error is given by e = 100 X |P(c*) — P(c*)|/P(c*), where
P(c) is the empirical concentration CDF obtained from the numerical simulations and
I/-\’(c) is the fitted CDF (i.e., beta, uniform or Pareto-type IV). The concentration thresh-
old c* is defined as follows:

(1) = Coyin (1) + Nl (1) = Cin (D], (35)

where ¢, and c,;, are the maximum and minimum concentrations within in the plume at
time . The quantities are defined as:

Conin (1) = }{22} c(x,1); (36)
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Fig.9 Comparison between the concentration cumulative distribution function (CDF) and the Pareto distri-
bution model for d = 2 (top left) and d = 3 (top right), and between the concentration CDF and the uniform
distribution model for d = 2 (bottom left) and d = 3 (bottom right). Results are for the fields with 0(2 =1lat
timet/7, = 12.3
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Table 3 Relative errors e

. Simulation c* e forbeta e for Pareto- e for uniform

between the fitted concentration tvpe IV

CDFs and the empirical CDF P

obtained from the numerical _

X . n=0.01

simulations. Results computed . .

for different values of #, see Eq. d=2,point  9.5x10 13.97 220 7.60

(35) d =2, line 6.4%x10™*  36.55 6.99 13.27
d=3,point 15x107° 2.02 2.12 1.59
d =3, line 1.1x10™* 258 6.38 3.32
d=3,plane 7.8x10™* 9.47 3.87 6.25
n=0.05
d=2,point 47x107* 5.80 4.21 5.12
d =2, line 3.1x1073  13.67 12.01 15.63
d = 3, point 72%x107° 229 1.19 0.95
d =3, line 52x107*  1.75 2.07 1.00
d=3,plane 32x1073 459 11.87 421
n=0.1
d=2,point 95x10™* 2.11 3.69 5.27
d =2, line 6.3x1073  3.20 11.55 9.51
d = 3, point 1.4x10™*  0.77 0.90 0.21
d =3, line 1.0 x1073 1.38 0.42 0.81
d=3,plane  6.2x1073 1.83 6.58 1.91

c t) =max c(X, 1),
max(t) =[x 0%, 1) (37)

where @, is defined in Eq. (7). For the results present in Table 3, we compute ¢* for n =
0.01, 0.05 and 0.1. The results reported in Table 3 inform that at low concentrations, both
the Pareto-type IV and uniform distributions perform well. As expected, the fit of the beta
distribution improves as c* increases.

6.3 Dilution Index

The temporal evolution of the dilution index defined by Eq. (11) is shown in Fig. 10. The
evolution of the dilution index mirrors the evolution of the mean concentration. Both
quantities are related to the mixing volume. The mean concentration is inversely propor-
tional to the mixing volume, while the dilution index is directly a measure for the mix-
ing volume (Kitanidis 1994). For a homogeneous medium, the dilution index scales as
E(f) ~ 1@=4)/2_Thus, it increases faster with increasing dimension d of space and decreas-
ing source dimension d.

While the dependence on space and source dimensions is qualitatively similar for hetero-
geneous media, dilution is significantly accelerated compared to homogeneous media (note
that in Fig. 10, analogously to Figs. 5 and 6, b denotes the slope of the homogeneous scal-
ing). In analogy to the behaviors observed for the mean concentration, dilution increases
with increasing variance afz, this means with increasing level of heterogeneity (see top row,
Fig. 10). This is because the macro-scale spreading of the solute plume increases with an
increase in afz. Larger values of afz implies more erratically shaped plumes and an increase
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Fig. 10 Dilution index in time for: point source (top left), line source (top right), 3d field with o-f = 1 (bot-
tom left), and 3d field with a? = 4 (bottom right)

in the plume’s surface area with the surrounding (i.e., ambient) fluid. As a consequence,
diffusive and local-scale dispersive solute mass fluxes are augmented. Comparing, for
instance, the plots in the bottom row of Fig. 10, one can observe that, for all source dimen-
sions, the rate of increase in the dilution index is higher when compared to the homogene-
ous scaling depicted by the dashed lines. The strongest increase, compared to the behavior
for homogeneous media, is observed for the planar source case (Fig. 10, bottom). This is in
agreement with what was observed for the mean concentration results reported in Sect. 6.1.

Close inspection of Fig. 10 (bottom row) also reveals that the source zone mainly
impacts the rate of dilution. The rate of dilution is highest for a point-like injection. For
this case, the particles that constitute the point-like source, in a three-dimensional setting,
will all occupy the same position at ¢ = ¢,. However, at the next considered time, #; > t,,
each particle will have moved in a different direction due the combination of advection and
dispersion. This means that the mixing volume at #; would have significantly increased (due
to spreading in all three directions) when compared to the initial volume at #,, when it was
just a point.
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7 Summary

Modeling solute mixing in spatially heterogeneous porous media flows is a challenging
task. The multiscale variability of the hydraulic conductivity impacts both spreading and
mixing rates of the solute body. The presence of preferential flow paths (i.e., hydrogeologi-
cal connectivity), low-conductivity zones and abrupt facies transitions require numerical
models to have a high spatial resolution. The need for such fine spatial resolution increases
the computational costs associated with flow and transport simulations, especially when
dealing with three-dimensional stochastic systems.

In this work, we performed high resolution numerical simulations to study the tem-
poral evolution of the mixing behavior of a solute plume in heterogeneous porous
media. Mixing is quantified in terms of the solute plume’s concentration mean and vari-
ance, probability distribution and the dilution index. Our analysis showed how mixing is
affected by different factors such as the dimensionality of the flow domain, the degree of
heterogeneity in the conductivity field and the geometrical configuration of the source
zone.

With few exceptions, most studies up-to-date have focused their attention solely to
studying mixing in spatially heterogeneous two-dimensional domains for point and line
sources. In this work, we provide a systematic investigation of mixing in both two- and
three-dimensional spatially heterogeneous porous media flows using a computationally
efficient transport simulator denoted PAR? developed in Rizzo et al. (2019). PAR? code
is an open source, GPU accelerated transport simulator based on the random walk particle
tracking technique. Morvillo et al. (2022) provides additional the details as well as a step-
by-step tutorial on how to connect the GPU accelerated particle tracking code employed
in this work with other tools (such as the flow simulator and the random conductivity field
generator). All codes can be also obtained from the information provided in Morvillo et al.
(2022). We tested the accuracy of the numerical results with analytical and semi-analytical
results reported in the literature for both homogeneous and heterogeneous porous media.

Our results highlight the importance of the source configuration and flow dimensional-
ity on the temporal evolution of different mixing patterns. In particular, hydraulic conduc-
tivity fields with d = 3 exhibit faster decays in time of both . and (73 respect to d = 2 fields
with the same level of heterogeneity. Moreover, such decays of p, and o-f happen faster
for a point source and slower for a planar source, analogously to the analytical results in a
homogeneous field. The source configuration also affects dilution, since the dilution index
is higher for a planar source and lower for a point source, although such difference seems
to decreases when heterogeneity is increased. These results are in agreement with the theo-
retical analysis of Dentz and de Barros (2013) where it was analytically shown that both
source zone configuration and flow spatial dimension impact the self-averaging transport
behavior of the solute plume. Here we expand this theoretical analysis for different mixing
metrics and higher levels of heterogeneity in the conductivity field.

Finally, we compared the statistics of the concentration values with the beta PDF model.
Using a parametric model to approximate the concentration PDF is appealing given that
one can estimate the concentration mean and variance from a limited data set (i.e., due
to high costs of data acquisition). Previous works showed the suitability of the beta PDF
model to capture the main features of the concentration field statistics for both point-like
and line sources (Bellin and Tonina 2007; Boso et al. 2013a). Our results show that the
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performance of the beta PDF improves when the flow field is three-dimensional and trans-
port originates from a vertical planar source. Given that the performance of the beta distri-
bution deteriorates for low concentration values, we propose two alternative distributions
to better capture the probabilities of observing ¢ < c,. Our results show that the Pareto-
type IV distribution performs well after employing a power-law transform to the concen-
tration data. Similarly, the uniform distribution also performs well at low concentrations
when a logarithm transform is applied to the concentration data. The analysis carried out in
this study shows a promising path in employing a mixture distribution approach to model
the statistics of solute concentration field.
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