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Generic many-body systems coupled to an environment lose their quantum entanglement due to
decoherence and evolve to a mixed state with only classical correlations. Here, we show that measurements
can stabilize quantum entanglement within open quantum systems. Specifically, in random unitary circuits
with dephasing at the boundary, we find both numerically and analytically that projective measurements
performed at a small nonvanishing rate result in a steady state with an L1=3 power-law scaling entanglement
negativity within the system. Using an analytical mapping to a statistical mechanics model of directed
polymers in a random environment, we show that the power-law negativity scaling can be understood as
Kardar-Parisi-Zhang fluctuations due to the random measurement locations. Further increasing the
measurement rate leads to a phase transition into an area-law negativity phase, which is of the same
universality as the entanglement transition in monitored random circuits without decoherence.
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The dynamics of quantum entanglement is being inves-
tigated extensively as a potential resource for quantum
information processing [1–9]. Recent theoretical develop-
ments have shown that large-scale quantum entanglement
can be established in monitored quantum systems under-
going unitary evolution interspersed by measurements
[4,5,10–15]. For moderate measurement rates below a
threshold, the entanglement generated by the unitary
evolution can overcome the disentangling effect of mea-
surements, leading to volume-law scaling of the entangle-
ment entropy in individual quantum state trajectories at late
times. Increasing the measurement rate beyond a critical
value drives a measurement-induced phase transition
(MIPT) to a steady state with area-law scaling of the
entanglement entropy [4,5].
Studies of monitored systems thus far have largely

focused on dynamics involving only unitary gates and
projective measurements, which preserves the purity of
the quantum state. Insofar as such monitored circuits can be
understood as models for entanglement dynamics in
generic many-body systems, they are missing an important
ingredient. Real systems always exhibit unintended deco-
herent interactions with their environment, leading inevi-
tably to mixed-state dynamics. Such effects typically
destroy internal entanglement, as the system degrees of
freedom become entangled with the infinite bath instead of
with each other. For example, in monitored random
circuits, a nonvanishing rate of decoherence throughout
the bulk inevitably results in a short-range entangled steady
state at late times [16]. It is therefore natural to ask if a
monitored system with weaker decoherence can sustain
large-scale entanglement in the steady state.
In this Letter, we address this question in models of one-

dimensional quantum circuits consisting of random unitary

gates and measurements, coupled to an infinite bath at the
boundary implemented as a dephasing quantum channel
[see Fig. 1(a)]. Using the logarithmic entanglement neg-
ativity as a measure of mixed-state entanglement [17–26],
we employ both numerical simulations of Clifford circuits
and an analytical mapping to a statistical mechanics model
to assess the scaling of internal entanglement in the circuit
qubits.

(a) (b)

FIG. 1. (a) Circuit diagram for the model studied. Qudits are
evolved under random unitary gates (blue) and projective
measurements (red dots) occurring randomly at a rate p, along
with dephasing channels (green) applied on the first and last qudit
between each layer of unitary gates. (b) Late-time logarithmic
negativity between subsystems A and B, taken to be the left and
right halves of the qubit chain, as a function of measurement rate
p. Different curves indicate various system sizes L, ranging from
40 (light blue) to 280 (dark green). Inset: Logarithmic negativity
as a function of L1=3 (blue dots) at p ¼ 0.1, along with the
fitting curve y ¼ c1L1=3 þ c2 (orange line) with c1 ≈ 0.779
and c2 ≈ −1.307. The numerical results are averaged over 200
random circuit realizations.
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While the entanglement negativity vanishes in the
absence of measurements as expected, we find numerically
that the half-system negativity exhibits an L1=3 power-law
scaling with system size for nonzero measurement rates
below the MIPT critical point [see Fig. 1(b)]. This power
law persists until a critical measurement rate pc, above
which the negativity exhibits an area law.
To develop a theoretical understanding of the observed

power-law negativity, we build on previous works mapping
the dynamics of entanglement entropy in random circuits to
effective statistical mechanics models [3,16,27–29]. Using
a similar replica formalism to previous works, we show that
the negativity can be calculated using the same effective
model of ferromagnetic spins with different boundary
conditions [30]. The vanishing of the volume-law contri-
bution to the negativity in the presence of dephasing
channels is immediately seen to be a consequence of
symmetry-breaking boundary conditions imposed by
dephasing.
The exponent 1=3 has previously been observed in

subleading contributions to the bipartite entanglement
entropy in the pure state dynamics of circuit models, both
in t1=3 subleading growth of entanglement entropy over
time in pure unitary circuits [3,28], and in l1=3 subleading
scaling of late-time entanglement entropy with subsystem
size in monitored circuits within the volume-law phase
[31]. This exponent was explained as the Kardar-Parisi-
Zhang (KPZ) fluctuations of the domain walls, interpreted
as directed polymers in a random environment [32–35].
Here, we analytically derive a mapping relating the
negativity to a collection of directed polymers within a
limit of large qudit dimension d → ∞ and verify its
prediction of L1=3 negativity scaling. Building on previous
works [28,31,36], we explicitly demonstrate the role of
measurements in generating a random attractive potential
on the polymers, which naturally lead to KPZ fluctuations
in the negativity for nonzero measurement rates.
Model.—We consider a chain of L d-qudits with open

boundary conditions, initialized in the product state j0i⊗L,
and evolved under a brick-wall random unitary circuit [see
Fig. 1(a)], where each gate is independently drawn from the
Haar ensemble. In between layers of unitary gates, each ith
qudit is measured in the computational basis fjaigd−1a¼0 with
probability p, which collapses the system onto the state
ρ ↦ Pa

i ρP
a
i =trðPa

i ρÞ with probability trðPa
i ρÞ given by the

Born rule, where Pa
i ¼ jaihaji projects the ith qudit onto

the state jai. To model the coupling to an infinite bath, the
boundary qudits i ¼ 1 and i ¼ L are subjected to local
dephasing described byDi½ρ� ¼

P
d−1
a¼0 P

a
i ρP

a
i [37,38]. This

coupling can also be understood as a measurement in which
we average the density matrix over all possible measure-
ment outcomes.
The addition of dephasing channels results in open-

system dynamics and inevitably drives the system into a
mixed state, for which the von Neumann entropy is no

longer a meaningful measure of entanglement [39,40].
To quantify quantum entanglement within the system at
late times, we employ the logarithmic negativity [18–
26,30], a measure of mixed-state bipartite entanglement
and a rigorous upper bound to the distillable entanglement
of a mixed state [17,40–44]:

EA∶B½ρ� ¼ log kρTBk1; ð1Þ

where ρTB is the partial transpose of ρ in subsystem B, and
k · k1 denotes the trace norm. Throughout this Letter, we
take A and B to respectively consist of the left and right
halves of the qudit chain. Note that Ref. [25] previously
used the logarithmic negativity to characterize the
conformal field theory underlying the MIPT without
decoherence.
Numerical results.—To efficiently simulate the circuit, we

employ randomClifford unitary gates acting on d ¼ 2 qubits
using the stabilizer formalism [3,10,45–49]. While the
Clifford gates are not generic, they form a unitary 3-design
[50] and are expected to give the same qualitative behavior
as the Haar random circuit. The late-time negativity as a
function of measurement rate p for system sizes up to L ¼
280 is shown in Fig. 1(b).
In the case without measurements (i.e., p ¼ 0), the late-

time negativity is uniformly zero independent of system
size. This is to be expected both from general physical
considerations and from Page’s theorem [24,51,52]: if the
dephasing channels are understood as an effective coupling
to an infinitely large bath, then the system becomes
maximally entangled with the bath at late times and no
bipartite entanglement within the system remains.
Remarkably, the negativity sharply increases as p

increases from zero and exhibits nontrivial scaling with
the system size. At moderate measurement rates, for
example p ¼ 0.1, the scaling of the negativity is consistent
with a power law of the form EA∶B ¼ c1L1=3 þ c2 for two
fitting parameters c1;2 as shown in the inset.
At sufficiently high measurement rates, the negativity

begins to decrease as a function of measurement strength.
This culminates in a measurement-induced transition at pc
in which the power-law coefficient c1 vanishes. Since our
circuit model differs from previous pure-state circuits only
in its boundary conditions, we expect the bulk critical
behavior to be identical to that of the ordinary MIPT
without dephasing. In the Supplemental Material [49] we
perform a finite-size scaling analysis and find pc ≃ 0.16
consistent with previous works [4,10,53], but we cannot
reliably extract a correlation length exponent ν due to the
numerical smallness of the negativity.
Effective statistical mechanics model.—Our numerical

results can be understood analytically by relating the
averaged logarithmic negativity to the free energy of
directed polymers in a random environment. Here, we
consider the Haar random circuit acting on d-qudits with
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d → ∞ allowing for greater analytical control
[3,16,28,29,49]. Within the effective model, the L1=3

negativity scaling can be understood as KPZ fluctuations
of the directed polymers. Complete details of the statistical
mechanics model can be found in the Supplemental
Material [49].
The nth Rényi negativity [19–22] (properly defined for

n ≥ 4) for a fixed set of measurement locations X in
spacetime, averaged over Haar unitary gates U ¼ fUij;tg
and measurement outcomes m, is given by

EðnÞ
A∶BðXÞ ¼ EU

X
m

pm
1

2 − n
log

�
tr½ðρTB

m Þn�
trρnm

�
; ð2Þ

where ρm is the unnormalized density matrix obtained
along the measurement trajectory m, and pm ¼ trρm is the
probability for achieving the measurement outcomes m
conditioned on the locations of the measurements X and
the unitary realization U. The logarithmic negativity
[Eq. (1)] is obtained from Eq. (2) using the peculiar limit
n → 1 along even n [19,20].

To facilitate the mapping, we employ the replica trick

[35,54] to write EðnÞ
A∶B ¼ limk→0E

ðn;kÞ
A∶B , where Eðn;kÞ

A∶B can be
interpreted as being proportional to the difference of two
free energies:

Eðn;kÞ
A∶B ðXÞ ¼ −

1

kðn − 2Þ log
�
Zðn;kÞ

Zðn;kÞ
0

�
; ð3Þ

where the two “partition functions” Zðn;kÞ and Zðn;kÞ
0 differ

only in their boundary conditions at the final time slice.
Note that these partition functions contain the averages over
unitary realizations and measurement outcomes, but not the
locations of measurements; following Ref. [36], and in
contrast to previous works [16,29], we leave the locations
of measurements as quenched disorder.
As in previous works [16,28,29,36,55–58], averaging

over Haar random unitary gates results in a sum over
pairing configurations between the replicated copies of the
density matrix. The bulk effective statistical mechanics
model is then a lattice magnet containing permutation-
valued spins with ferromagnetic interactions, where a given
permutation σ from the permutation group Snkþ1 represents
a local tensor contraction between each lth ket and the

σðlÞth bra. The boundary conditions of Zðn;kÞ and Zðn;kÞ
0 at

the final time, which are unique to the calculation of the
Rényi negativity [30], are shown in Fig. 2: Zðn;kÞ contains
cyclic permutations C at the top of region A and anticyclic

permutations C̄ at the top of region B, while Zðn;kÞ
0 contains

cyclic permutations along the entire top boundary. Eðn;kÞ
A∶B is

thus proportional to the free energy cost of imposing a
domain wall between C and C̄ at the interface of A and B at
the final time boundary. In the analytically tractable d → ∞

limit, the energetic cost per length of a domain wall away
from a measured site is [16,28,29]

βEðσi; σjÞ ¼ jσ−1i σjj logd ðd → ∞Þ; ð4Þ

where jσ−1i σjj is the number of transpositions required to
obtain the permutation σj from σi. The limit d → ∞
imposes zero temperature, β−1 → 0. Reference [28] argued
(in the absence of measurements) that a domain wall
between permutations σi and σj should be viewed as a
collection of jσ−1i σjj “elementary” domain walls given by
transpositions, which become noninteracting in the d → ∞
limit according to Eq. (4). Weak interactions between such
elementary domain walls can be calculated perturbatively
in powers of 1=d.
The presence of boundary dephasing channels modifies

the left and right boundary conditions of the effective
model. In contrast to the open boundary conditions for
models without decoherence [28], dephasing imposes
identity permutation spins I at the left and right boundaries,
leading to the domain wall structure in Fig. 2; note that an
intermediate domain of spins D (green) can appear in Zðn;kÞ

without additional energy cost provided that jσ−1Dj þ
jD−1τj ¼ jσ−1τj for σ; τ ¼ C; C̄; I [30,49]. Using Eq. (4),
this domain wall structure leads to a negativity in the
d → ∞ limit of the form

Eðn;kÞ
A∶B ðXÞ ¼ log d

2
flA þ lB − lABg; ð5Þ

where lR is the length of the minimal domain wall
separating the top boundary of region R from the rest of

FIG. 2. Schematic zero temperature spin configurations of

Zðn;kÞ and Zðn;kÞ
0 for a fixed disorder realization of measurement

locations. The final time boundary conditions are shown at the
top of each diagram: Zðn;kÞ contains cyclic permutations C
(orange) at the top of region A and anticyclic permutations C̄

(red) at the top of region B, while Zðn;kÞ
0 contains cyclic

permutations along the entire top boundary. Dephasing at the
left and right boundaries of the chain enforces identity permu-
tations I (blue) at the left and right boundaries of the effective
model. An intermediate domain of spins D (green) appears in
Zðn;kÞ by a similar mechanism as in Ref. [30]. Viewing domain
walls as collections of polymers, measurements result in a
random attractive potential on the polymers, leading to KPZ
fluctuations in the negativity.
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the system. Note that this quantity is independent of the
replica indices ðn; kÞ, allowing for the replica limit to be
trivially taken. In the absence of measurements these
domain walls take straight lines through the system, and
the negativity therefore vanishes [49]. This is consistent
both with the expectation from Page’s theorem and the
p ¼ 0 numerical results of Fig. 1.

To explain the L1=3 scaling of negativity at nonzero
measurement rates, we must address the role of measure-
ments in the effective spin model. By keeping the spacetime
locations of measurements as unaveraged quenched disorder,
we find that measurements effectively eliminate the ferro-
magnetic bonds between adjacent spins. In the d → ∞ limit,
each domain wall will optimize to pass through as many
measurement locations as possible to minimize its energy.
Viewing each domain wall as a collection of polymers as in
[28], the elimination of ferromagnetic bonds can be under-
stood as a random attractive potential on the polymers,
wherein the energy of a polymer is reduced by logd for each
measured site the polymer passes through. The total energy
cost of a single polymer, directed [59] in the x direction with
spatial profile yðxÞ, is given by

βH½yðxÞ� ¼ log d
Z

dx
�
1þ 1

2
ð∂xyÞ2 þ Vðx; yÞ

�
; ð6Þ

where Vðx; yÞ is a random potential with mean p logd

and variance pð1 − pÞðlog dÞ2δðx − x0Þδðy − y0Þ. Eðn;kÞ
A∶B is

then simply proportional to the sum of the polymer ground

state energies in Zðn;kÞ, minus those in Zðn;kÞ
0 . Each such

energy may then be averaged over measurement locations
independently.
The free energy of a directed polymer in a random

environment has been well-studied—it is equivalent to
the KPZ equation via the Hopf-Cole transformation
[32,33,35,60]. Since the polymers here are restricted to
the half-plane below the final time slice, a solution for the
free energy of each polymer is obtained from the KPZ
equation in the half-plane, which can be calculated ana-
lytically using Bethe ansatz methods [31,61,62]. The result
is an energetic contribution s0lþ s1l1=3 for each polymer
of horizontal length l, where s0 and s1 are nonuniversal
positive constants. It can then be seen from Eq. (5) that the
linear contributions from each polymer cancel as in the
p ¼ 0 case, but the l1=3 contributions due to KPZ
fluctuations in the polymer lengths do not—they yield a

positive L1=3 growth of the averaged Rényi negativity EðnÞ
A∶B.

Although this analytical argument cannot compute the
dependence of the power-law coefficient s1 on the meas-
urement rate, the qualitative prediction of L1=3 negativity
scaling for nonzero measurement rates is consistent with
the Clifford numerical results.
Discussion.—We have shown that the active monitoring

of a random quantum circuit with decoherence at the

boundaries can stabilize large-scale entanglement. This is
evinced by the L1=3 power-law scaling of late-time entan-
glement negativity, which is obtained only for nonzero
measurement rates below a critical threshold pc. The
enhancement of quantum entanglement by measurements
in the presence of decoherence stands in contrast with the
effect of measurements in random circuits featuring strictly
pure-state dynamics [4,5,10,11,16,29], wherein measure-
ments disentangle system qubits from each other and
decrease the internal entanglement of the system. Here,
in the mixed-state dynamics, measurements can play an
additional role by curtailing decoherence. This occurs both
by disentangling system qudits from the bath, allowing
them to reentangle with each other, as well as by diminish-
ing long-range entanglement structures with which the
boundary dephasing channels could decohere the bulk.
Remarkably, while measurements cannot protect the full
volume-law entanglement from decoherence, the interplay
between dephasing and measurements has revealed the
“critical” L1=3 scaling of entanglement that was previously
hidden as a subleading contribution in the pure-state
dynamics [31].
In random Clifford circuits with strictly pure-state

dynamics, the distribution of stabilizer lengths has pre-
viously offered insight on the bipartite entanglement
entropy [10]. It is therefore interesting to see how the
stabilizer length distribution is modified in the presence of
boundary dephasing channels (see Fig. 3). Although the
length distribution does not directly determine the neg-
ativity in a mixed state, it can be used to compute the
mutual information IA∶B ¼ SA þ SB − SAB [37], which
shows qualitatively similar behavior to the negativity
[49] despite failing as a mixed-state entanglement measure.
On one hand, we see that dephasing channels act as a
stabilizer “sink” by destroying the buildup at lengths

FIG. 3. Late-time stabilizer length distribution in log-log scale.
Here, we consider a circuit with decoherence at two random sites
rather than two edges in each time step. Blue and red curve
represent the results with and without dephasing baths at the
boundary, respectively. The numerical simulation is performed in
the circuits of size L ¼ 480 and with measurement rate p ¼ 0.1.
The results are averaged over 200 random circuit realizations.
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x ¼ L=2, which was previously responsible for the vol-
ume-law contribution to the mutual information with no
dephasing [10]. On the other hand, measurements can act as
a “source,” both by creating new short stabilizers, and by
preventing stabilizers from becoming so long that they
reach the system boundaries and dephase. This is evident in
the power-law ramp, which is robust to dephasing and
would be absent without measurements, and is responsible
for the power-law scaling of IA∶B. The resulting steady-
state dynamics of the stabilizer length distribution is
reminiscent of energy transfer under turbulent cascade,
and it is tempting to develop an effective classical model for
the stabilizer dynamics to capture the power law length
distribution.
It is also interesting to consider how the negativity is

affected by replacing the Markovian quantum channels
with explicit bath qudits. For bath sizes smaller than the
system, it is expected by Page’s theorem that the negativity
within the system can retain volume-law scaling in the
absence of measurements. However, since the continuous
monitoring of the system reduces the effective number of
qudits participating in the system-bath entanglement
dynamics, the negativity can undergo a first order Page-
like transition within the volume-law entropy phase of the
monitored circuit. The details of this Page-like negativity
transition will be left for future work [63].
In our analysis, it was crucial that decoherence occurred

only at the boundary. Instead, bulk decoherence will
manifest as a symmetry-breaking field in the statistical
mechanics model reducing ðSnkþ1 × Snkþ1Þ⋊Z2 down to a
residual Snkþ1 × Z2 symmetry [64]. The decoherence pins
the spins to the state I, which is symmetric under the
residual symmetry, resulting in a maximally mixed state in
the circuit. To establish a large-scale entanglement neg-
ativity in the presence of bulk decoherence, one needs to
spontaneously break the residual Z2 Hermiticity symmetry.
One possibility is to introduce additional nonunitary
elements, such as active feedback. A designed feedback
process using the knowledge of measurement results might
possibly create preference of C and C̄ over I, leading to a
residual Z2 symmetry-breaking state with large-scale
entanglement.
More broadly, we expect our results to be relevant

beyond random circuit models to more realistic
Hamiltonian dynamics. Given the significant recent interest
in open-system quantum dynamics, it is interesting to
consider whether the unique interplay between measure-
ments and decoherence exhibited here can lead to new
phases of nonequilibrium dynamics in settings accessible to
modern experiments.
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