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We demonstrate that with an optimally tuned scheduling function, adiabatic quantum computing (AQC) can

readily solve a quantum linear system problem (QLSP) with O (κ poly(log(κ/ϵ ))) runtime, where κ is the

condition number, and ϵ is the target accuracy. This is near optimal with respect to both κ and ϵ , and is

achieved without relying on complicated amplitude amplification procedures that are difficult to implement.

Our method is applicable to general non-Hermitian matrices, and the cost as well as the number of qubits

can be reduced when restricted to Hermitian matrices, and further to Hermitian positive definite matrices.

The success of the time-optimal AQC implies that the quantum approximate optimization algorithm (QAOA)

with an optimal control protocol can also achieve the same complexity in terms of the runtime. Numerical

results indicate that QAOA can yield the lowest runtime compared to the time-optimal AQC, vanilla AQC,

and the recently proposed randomization method.
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1 INTRODUCTION

Linear system solvers are used ubiquitously in scientific computing. Quantum algorithms for solv-
ing large systems of linear equations, also called the quantum linear system problem (QLSP),

This work was partially supported by the Department of Energy under Grant No. DE-SC0017867, the Quantum Algorithm

Teams Program under Grant No. DE-AC02-05CH11231 (L.L.), by a Google Quantum Research Award, and by the NSF

Quantum Leap Challenge Institute (QLCI) program through grant number OMA-2016245 (D. A. and L. L.).

Authors’ addresses: D. An, Department of Mathematics, University of California, Berkeley, California 94720; email:

dong_an@berkeley.edu; L. Lin, Department of Mathematics and Challenge Institute of Quantum Computation, University

of California, Berkeley, California 94720 and Computational Research Division, Lawrence Berkeley National Laboratory,

Berkeley, California 94720; email: linlin@math.berkeley.edu.

Author current affliation: DongAn’s, Joint Center for Quantum Information andComputer Science, University ofMaryland.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

2643-6817/2022/02-ART5 $15.00

https://doi.org/10.1145/3498331

ACM Transactions on Quantum Computing, Vol. 3, No. 2, Article 5. Publication date: February 2022.

https://doi.org/10.1145/3498331
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3498331
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3498331&domain=pdf&date_stamp=2022-03-04


5:2 D. An and L. Lin

have receivedmuch attention recently [8, 10–12, 16, 17, 30, 33, 34]. The goal of QLSP is to efficiently
compute |x〉 = A−1 |b〉 /‖A−1 |b〉‖2 on a quantum computer, where A ∈ CN×N , and |b〉 ∈ CN is
a normalized vector (for simplicity we assume N = 2n , and ‖A‖2 = 1). The ground-breaking
Harrow, Hassidim, and Lloyd (HHL) algorithm obtains |x〉 with cost O (poly(n)κ2/ϵ ), where
κ = ‖A‖‖A−1‖ is the condition number of A, and ϵ is the target accuracy. On the other hand, the
best classical iterative algorithm is achieved by the conjugate gradient method, where the cost is at
least O (N

√
κ log(1/ϵ )), with the additional assumptions that A should be Hermitian positive defi-

nite and a matrix-vector product can be done with O (N ) cost [29]. The complexity of direct meth-
ods based on the Gaussian elimination procedure removes the dependence on κ, but the depen-
dence on N is typically super-linear even for sparse matrices [21]. Therefore, the HHL algorithm
can potentially be exponentially faster than classical algorithmswith respect toN . The undesirable
dependence with respect to ϵ is due to the usage of the quantum phase estimation (QPE) algo-
rithm. Recent progresses based on linear combination of unitaries (LCU) [12] and quantum

signal processing (QSP) [16, 22] have further improved the scaling to O (κ2poly(log(κ/ϵ ))) under
different query models, without using QPE. However, the O (κ2) scaling can be rather intrinsic to
the methods, at least before complex techniques such as variable time amplitude amplification

(VTAA) algorithm [2] are applied.
The VTAA algorithm is a generalization of the conventional amplitude amplification algorithm,

and allows to quadratically amplify the success probability of quantum algorithms in which differ-
ent branches stop at different time. In [2], VTAA was first used to successfully improve the com-

plexity of HHL algorithm to Õ (κ/ϵ3). In [12], the authors further combine VTAA algorithm and a

low-precision phase estimate to improve the complexity of LCU to Õ (κ poly(log(κ/ϵ ))), which is
near-optimal with respect to both κ and ϵ . It is worth noting that the VTAA algorithm is a com-
plicated procedure and can be difficult to implement. Thus, it remains of great interest to obtain
alternative algorithms to solve QLSP with near-optimal complexity scaling without resorting to
VTAA.

Some of the alternative routes for solving QLSP are provided by the adiabatic quantum

computing (AQC) [1, 19] and a closely related method called the randomization method

(RM) [6, 30]. The key idea of both AQC and RM is to solve QLSP as an eigenvalue problem with re-
spect to a transformed matrix. Assume that a Hamiltonian simulation can be efficiently performed
on a quantum computer, it is shown that the runtime of RM scales as O (κ log(κ)/ϵ ) [30], which
achieves near-optimal complexity with respect to κ without using VTAA algorithm as a subrou-
tine. The key idea of the RM is to approximately follow the adiabatic path based on the quantum
Zeno effect (QZE) using a Monte Carlo method. Although RM is inspired by AQC, the runtime
complexity of the (vanilla) AQC is at least O (κ2/ϵ ) [1, 7, 30]. Therefore, the RM is found to be at
least quadratically faster than AQC with respect to κ.
In this article, we find that with a simple modification of the scheduling function to traverse

the adiabatic path, the gap between AQC and RM can be fully closed, along with the following
two aspects. (1) We propose a family of rescheduled AQC algorithms called AQC(p). Assuming κ
(or its upper bound) is known, we demonstrate that for any matrix A (possibly non-Hermitian or
dense), when 1 < p < 2, the runtime complexity of AQC(p) can be only O (κ/ϵ ). Thus, AQC(p)
removes a logarithmic factor with respect to κ compared to RM. (2) We propose another resched-
uled algorithm called AQC(exp), of which the runtime is O (κ poly(log(κ/ϵ ))). The main benefit of
AQC(exp) is the improved dependence with respect to the accuracy ϵ , and this is the near-optimal
complexity (up to logarithmic factors) with respect to both κ and ϵ . The scheduling function of
AQC(exp) is also universal because we do not even need the knowledge of an upper bound of κ. Ex-
isting works along this line [15, 25] only suggest that runtime complexity is O (κ3 poly(log(κ/ϵ ))),
which improves the dependence with respect to ϵ at the expense of a much weaker dependence
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on κ. Our main technical contribution is to again improve the dependence on κ . Since the cost
of any generic QLSP solver can not be less than O (κ) [17], our result achieves the near-optimal
complexity up to logarithmic factors. We remark that in the AQC based algorithm, only the total
runtime T depends on κ.
Beyond the runtime complexity, we also discuss gate-efficient approaches to implement our

AQC(p) and AQC(exp) methods. In particular, assume that we are given access to the same query
models as those in [12]: the sparse input model of a d-sparse matrix A and the prepare oracle of
the state |b〉. We demonstrate that, when the adiabatic dynamics is simulated using the truncated
Dyson series method [23], the query complexity of the AQC(p) method scales O (dκ/ϵ log(dκ/ϵ )),
and that of the AQC(exp) method scales O (dκ poly log(dκ/ϵ )). Both algorithms scale almost lin-
early in terms of κ, and the AQC(exp) method can achieve near-optimal scaling in both κ and ϵ .
Furthermore, the asymptotic scaling of theAQC(exp)method is the same as that of LCUwithVTAA
method [12, Theorem 5]. However, the AQC(exp) method avoids the usage of complex VTAA rou-
tine, which significantly simplifies its practical implementation.
The quantum approximate optimization algorithm (QAOA) [14], as a quantum variational

algorithm, has received much attention recently thanks to the feasibility of being implemented
on near-term quantum devices. Due to the natural connection between AQC and QAOA, our re-
sult immediately suggests that the time-complexity for solving QLSP with QAOA is also at most
O (κ poly(log(κ/ϵ ))), which is also confirmed by numerical results.We also remark that bothQAOA
and AQC schemes prepare an approximate solution to the QLSP in a pure state, while RM prepares
a mixed state. Moreover, all methods above can be efficiently implemented on gate-based comput-
ers and are much simpler than those using the VTAA algorithm as a subroutine.

2 QUANTUM LINEAR SYSTEM PROBLEM AND VANILLA AQC

Assume A ∈ CN×N is an invertible matrix with condition number κ and ‖A‖2 = 1. Let |b〉 ∈
C
N be a normalized vector. Given a target error ϵ , the goal of QLSP is to prepare a normalized

state |xa〉, which is an ϵ-approximation of the normalized solution of the linear system |x〉 =
A−1 |b〉 /‖A−1 |b〉‖2, in the sense that ‖ |xa〉 〈xa | − |x〉 〈x | ‖2 ≤ ϵ .

For simplicity, we first assume A is Hermitian and positive definite and will discuss the general-
ization to non-Hermitian case later.
The first step to design an AQC-based algorithm for solving QLSP is to transform the QLSP to

an equivalent eigenvalue problem. Here, we follow the procedure introduced in [30]. Let Qb =

IN − |b〉 〈b |. We introduce

H0 = σx ⊗ Qb =

(
0 Qb

Qb 0

)
,

then H0 is a Hermitian matrix and the null space of H0 is Null(H0) = span{|b̃〉 , |b̄〉}. Here, |b̃〉 =
|0,b〉 := (b, 0)
, |b̄〉 = |1,b〉 := (0,b)
. The dimension of H0 is 2N and one ancilla qubit is needed
to enlarge the matrix block. We also define

H1 = σ+ ⊗ (AQb ) + σ− ⊗ (QbA) =

(
0 AQb

QbA 0

)
.

Here, σ± =
1
2 (σx ± iσy ). Note that if |x〉 satisfies A |x〉 ∝ |b〉, we have QbA |x〉 = Qb |b〉 = 0. Then

Null(H1) = span{|x̃〉 , |b̄〉} with |x̃〉 = |0,x〉. Since Qb is a projection operator, the gap between 0
and the rest of the eigenvalues of H0 is 1. The gap between 0 and the rest of the eigenvalues of H1

is bounded from below by 1/κ (see Appendix A).
QLSP can be solved if we can prepare the zero-energy state |x̃〉 of H1, which can be achieved by

the AQC approach. LetH ( f (s )) = (1− f (s ))H0+ f (s )H1, 0 ≤ s ≤ 1. The function f : [0, 1]→ [0, 1]
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is called a scheduling function, and is a strictly increasing mapping with f (0) = 0, f (1) = 1. The
simplest choice is f (s ) = s , which gives the “vanilla AQC”. We sometimes omit the s-dependence
asH ( f ) to emphasize the dependence on f . Note that for any s , |b̄〉 is always in Null(H ( f (s ))), and
there exists a state |x̃ (s )〉 = |0,x (s )〉, such that Null(H ( f (s ))) = {|x̃ (s )〉 , |b̄〉}. In particular, |x̃ (0)〉 =
|b̃〉 and |x̃ (1)〉 = |x̃〉; and therefore, |x̃ (s )〉 is the desired adiabatic path. Let P0 (s ) be the projection
to the subspace Null(H ( f (s ))), which is a rank-2 projection operator P0 (s ) = |x̃ (s )〉 〈x̃ (s ) | + |b̄〉 〈b̄ |.
Furthermore, the eigenvalue 0 is separated from the rest of the eigenvalues of H ( f (s )) by a gap

Δ( f (s )) ≥ Δ∗ ( f (s )) := 1 − f (s ) + f (s )/κ . (1)

We refer to the Appendix A for the derivation.
Consider the adiabatic evolution

1

T
i∂s ��ψT (s )〉 = H ( f (s )) ��ψT (s )〉 , |ψT (0)〉 = |b̃〉 , (2)

where 0 ≤ s ≤ 1, and the parameter T is called the runtime of AQC. The quantum adiabatic
theorem [19, Theorem 3] states that for any 0 ≤ s ≤ 1,

|1 − 〈ψT (s ) |P0 (s ) |ψT (s )〉 | ≤ η2 (s ), (3)

where

η(s ) = C
⎧⎪⎨⎪⎩ ‖H

(1) (0)‖2
TΔ2 (0)

+
‖H (1) (s )‖2
TΔ2 ( f (s ))

+
1

T

ˆ s

0

�	 ‖H
(2) (s ′)‖2

Δ2 ( f (s ′))
+
‖H (1) (s ′)‖22
Δ3 ( f (s ′))


�ds ′
⎫⎪⎬⎪⎭ . (4)

The derivatives of H are taken with respect to s , i.e., H (k ) (s ) := dk

dsk
H ( f (s )),k = 1, 2. Throughout

the article, we shall use a generic symbol C to denote constants independent of s,Δ,T .
Intuitively, the quantum adiabatic theorem in Equation (3) says that, if the initial state is an eigen-

state corresponding to the eigenvalue 0, then for large enoughT the state |ψT (s )〉 will almost stay
in the eigenspace of H (s ) corresponding to the eigenvalue 0, where there is a double degeneracy
and only one of the eigenstate |x̃ (s )〉 is on the desired adiabatic path. However, such degeneracy
will not break the effectiveness of AQC for the following reason. Note that 〈b̄ |ψT (0)〉 = 0, and
H ( f (s )) |b̄〉 = 0 for all 0 ≤ s ≤ 1, so the Schrödinger dynamics Equation (2) implies 〈b̄ |ψT (s )〉 = 0,
which prevents any transition of |ψT (s )〉 to |b̄〉. Therefore, the adiabatic path will stay along |x̃ (s )〉.
Using 〈b̄ |ψT (s )〉 = 0, we have P0 (s ) |ψT (s )〉 = |x̃ (s )〉 〈x̃ (s ) |ψT (s )〉. Therefore, the estimate in Equa-
tion (3) becomes

1 − | 〈ψT (s ) |x̃ (s )〉 |2 ≤ η2 (s ).

This also implies that (see appendix)

‖|ψT (s )〉 〈ψT (s ) | − |x̃ (s )〉 〈x̃ (s ) |‖2 ≤ η(s ).

Therefore η(1) can be an upper bound of the distance of the density matrix.

If we simply assume ‖H (1) ‖2, ‖H (2) ‖2 are bounded by constants, and use the worst case bound
that Δ ≥ κ−1, we arrive at the conclusion that in order to have η(1) ≤ ϵ , the runtime of vanilla
AQC is T � κ3/ϵ .

3 AQC(P) METHOD

Our goal is to reduce the runtime by choosing a proper scheduling function. The key observation
is that the accuracy of AQC depends not only on the gap Δ( f (s )) but also on the derivatives of
H ( f (s )), as revealed in the estimate in Equation (4). Therefore, it is possible to improve the accuracy
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if a proper time schedule allows the Hamiltonian H ( f (s )) to slow down when the gap is close to
0. We consider the following schedule [1, 19]:

ḟ (s ) = cpΔ
p
∗ ( f (s )), f (0) = 0, p > 0. (5)

Here, Δ∗ is defined in Equation (1), and cp =
´ 1
0 Δ
−p
∗ (u)du is a normalization constant chosen so

that f (1) = 1. When 1 < p ≤ 2, Equation (5) can be explicitly solved as

f (s ) =
κ

κ − 1

[
1 −
(
1 + s (κp−1 − 1)

) 1
1−p

]
. (6)

Note that as s → 1, Δ∗ ( f (s )) → κ−1, and therefore the dynamics of f (s ) slows down as f → 1 and
the gap decreases towards κ−1. We refer to the adiabatic dynamics Equation (2) with the schedule
in Equation (5) as the AQC(p) scheme. Our main result is given in Theorem 1 (See Appendix D for
the proof).

Theorem 1. Let A ∈ CN×N be a Hermitian positive definite matrix with condition number κ. For
any choice of 1 < p < 2, the error of the AQC(p) scheme satisfies

‖ |ψT (1)〉 〈ψT (1) | − |x̃〉 〈x̃ | ‖2 ≤ Cκ/T . (7)

Therefore, in order to prepare an ϵ−approximation of the solution of QLSP, it suffices to choose the run-

timeT = O (κ/ϵ ). Furthermore, when p = 1, 2, the bound for the runtime becomesT = O (κ log(κ)/ϵ ).
The runtime complexity of the AQC(p) method with respect to κ is only O (κ). Compared to

Reference [30], AQC(p) further removes the log(κ) dependence when 1 < p < 2, and hence reaches
the optimal complexity with respect to κ. Interestingly, though not explicitly mentioned in [30],
the success of RM for solving QLSP relies on a proper choice of the scheduling function, which
approximately corresponds to AQC(p=1). It is this scheduling function, rather than the QZE or its
Monte Carlo approximation per se that achieves the desired O (κ logκ) scaling with respect to κ.
Furthermore, the scheduling function in RM is similar to the choice of the schedule in theAQC(p=1)
scheme. The speedup of AQC(p) versus the vanilla AQC is closely related to the quadratic speedup
of the optimal time complexity of AQC for Grover’s search [1, 19, 27, 28], in which the optimal time
scheduling reduces the runtime fromT ∼ O (N ) (i.e., no speedup compared to classical algorithms)

toT ∼ O (
√
N ) (i.e., Grover speedup). In fact, the choice of the scheduling function in Reference [28]

corresponds to AQC(p=2) and that in Reference [19] corresponds to AQC(1<p<2).

4 AQC(EXP) METHOD

Although AQC(p) achieves the optimal runtime complexity with respect to κ, the dependence on
ϵ is still O (ϵ−1), which limits the method from achieving high accuracy. It turns out that when T
is sufficiently large, the dependence on ϵ could be improved to O (poly log(1/ϵ )), by choosing an
alternative scheduling function.
The basic observation is as follows. In theAQC(p)method, the adiabatic error boundwe consider,

i.e., Equation (4), is the so-called instantaneous adiabatic error bound, which holds true for all
s ∈ [0, 1]. However, when using AQC for solving QLSP, it suffices only to focus on the error bound
at the final time s = 1. It turns out that this allows us to obtain a tighter error bound. In fact, such
an error bound can be exponentially small with respect to the runtime [1, 15, 25, 32]. Roughly
speaking, with an additional assumption for the Hamiltonian H ( f (s )) that the derivatives of any
order vanish at s = 0, 1, the adiabatic error can be bounded by c1 exp(−c2T α ) for some positive
constants c1, c2,α . Furthermore, it is proved in [15] that if the target eigenvalue is simple, then
c1 = O (Δ−1∗ ) and c2 = O (Δ3

∗). Note that Δ∗ ≥ κ−1 for QLSP, thus, according to this bound, to
obtain an ϵ-approximation, it suffices to choose T = O (κ3 poly(log(κ/ϵ ))). This is an exponential
speedup with respect to ϵ , but the dependence on the condition number becomes cubic again.
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However, it is possible to reduce the runtime if the change of the Hamiltonian is slow when
the gap is small, as we have already seen in the AQC(p) method. For QLSP, the gap monotonically
decreases, and the smallest gap occurs uniquely at the final time, where the Hamiltonian H (s ) can
be set to vary slowly by requiring its derivatives to vanish at the boundary.
We consider the following schedule

f (s ) = c−1e

ˆ s

0

exp

(
− 1

s ′(1 − s ′)

)
ds ′, (8)

where ce =
´ 1
0 exp (−1/(s ′(1 − s ′))) ds ′ is a normalization constant such that f (1) = 1. This sched-

ule can assure that H (k ) (0) = H (k ) (1) = 0 for all k ≥ 1. We refer to the adiabatic dynamics
Equation (2) with the schedule in Equation (8) as the AQC(exp) scheme. Our main result is given
in Theorem 2 (see Appendix E for the proof).

Theorem 2. LetA ∈ CN×N be a Hermitian positive definite matrix with condition number κ. Then
for large enough T > 0, the final time error ‖ |ψT (1)〉 〈ψT (1) | − |x̃〉 〈x̃ | ‖2 of the AQC(exp) scheme is

bounded by

C log(κ) exp ��	−C
(
κ log2 κ

T

)− 1
4 
�� . (9)

Therefore, for any κ > e , 0 < ϵ < 1, in order to prepare an ϵ−approximation of the solution of QLSP,

it suffices to choose the runtime T = O (κ log2 (κ) log4 ( logκ
ϵ

)).

Compared with RM and AQC(p), although the log(κ) dependence reoccurs, AQC(exp) achieves
an exponential speedup over RM and AQC(p) with respect to ϵ (and hence giving its name), and
thus is more suitable for preparing the solution of QLSP with high fidelity. Furthermore, the time
scheduling of AQC(exp) is universal and AQC(exp) does not require knowledge on the bound of κ.
We remark that the performance of the AQC(exp) method is sensitive to the perturbations in

the scheduling function, which can affect the final error in the AQC(exp) method. This is similar
to the finite precision effect in the adiabatic Grover search reported in [18]. Therefore, the sched-
uling function should be computed to sufficient accuracy on classical computers using numerical
quadrature, and implemented accurately as a control protocol on quantum computers.

5 GATE-BASED IMPLEMENTATION OF AQC

We briefly discuss how to implement AQC(p) and AQC(exp) on a gate-based quantum computer.
Since |ψT (s )〉 = T exp(−iT

´ s
0 H ( f (s ′))ds ′) |ψT (0)〉, where T is the time-ordering operator, it is

sufficient to implement an efficient time-dependent Hamiltonian simulation of H ( f (s )).
One straightforward approach is to use the Trotter splitting method. The lowest order approxi-

mation takes the form

T exp

(
−iT
ˆ s

0

H ( f (s ′)) ds ′
)
≈

M∏
m=1

exp (−iThH ( f (sm )))

≈
M∏

m=1

exp (−iTh(1 − f (sm ))H0) exp (−iThf (sm )H1) ,

(10)

where h = s/M, sm = mh. It is proved in [31] that the error of such an approximation is O (poly
(log(N ))T 2/M ), which indicates that to achieve an ϵ-approximation, it suffices to choose M =

O (poly(log(N ))T 2/ϵ ). On a quantum computer, the operations e−iτH0 and e−iτH1 require a time-
independent Hamiltonian simulation process, which can be implemented via techniques such as
LCU and QSP [4, 22]. For a d-sparse matrix A, according to [5], the query complexity is f =

Õ (д) if f = O (дpoly log(д)) for a single step. Here, the Õ means that we neglect the log log

ACM Transactions on Quantum Computing, Vol. 3, No. 2, Article 5. Publication date: February 2022.
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Table 1. Computational Costs of AQC(p) and AQC(exp) via a Time-dependent

Hamiltonian Simulation using the Truncated Dyson Expansion [23]

AQC(p) AQC(exp)

Queries O (dκ/ϵ log(dκ/ϵ )) O (dκ poly(log(dκ/ϵ )))

Qubits O (n + log(dκ/ϵ )) Õ (n + log(dκ/ϵ ))
Primitive gates O (ndκ/ϵ poly(log(dκ/ϵ ))) O (ndκ poly(log(dκ/ϵ )))

factors. Note that the total sum of the simulation time of single steps is exactly T regardless of

the choice of M , and the total query complexity is Õ (dT log(dT /ϵ )). Using Theorems 1 and 2,

the query complexity of AQC(p) and AQC(exp) is Õ (dκ/ϵ log(dκ/ϵ )) and Õ (dκ poly(log(dκ/ϵ ))),
respectively. Nevertheless,M scales as O (T 2) with respect to the runtimeT , which implies that the
number of time slices should be at least O (κ2). Therefore the gate complexity scales superlinearly
with respect to κ. The scaling of the Trotter expansion can be improved using high order Trotter–
Suzuki formula as well as the recently developed commutator-based error analysis [13], but we
will not pursue this direction here.

There is an efficient way to directly perform the time evolution of H ( f (s )) without using the
splitting strategy, following the algorithm proposed by Low and Wiebe in [23], where the time-
dependent Hamiltonian simulation is performed based on a truncated Dyson expansion. A detailed
discussion on how to implement this algorithm in a gate-efficientway is presented in [20, Appendix
C], and here we summarize the basic idea as follows. Assume that we are given two input query
models: PA that gives the locations and values of the nonzero entries of the matrixA, and PB that
produces the quantum state |b〉. Here, the input query models are the same as those in [12]. Then,
one can construct the block-encoding representations of the matrixA [16] and the matrixQb with
O (1) additional primitive gates. Next, the block-encodings ofA andQb can be applied to build the
block-encodings ofH0 andH1, and then the HAM-T model, which is a block-encoding of the select
oracle of the time-dependent Hamiltonian H (s ) evaluated at different time steps and serves as the
input model in the truncated Dyson series method [23]. Finally, after the construction of HAM-
T, the adiabatic dynamics can be simulated following the procedure for solving time-dependent
Schrödinger equations discussed in [23].
The costs of AQC(p) and AQC(exp) are summarized in Table 1, where for both AQC(p) and

AQC(exp), almost linear dependence with respect to κ is achieved. The almost linear dependence
on κ cannot be expected to be improved to O (κ1−δ ) with any δ > 0 [17]. Thus, both AQC(p) and
AQC(exp) are almost optimal with respect to κ, and AQC(exp) further achieves an exponential
speedup with respect to ϵ .

6 QAOA FOR SOLVING QLSP

The QAOA scheme [14] considers the following parameterized wavefunction

|ψθ 〉 := e−iγPH1e−iβPH0 · · · e−iγ1H1e−iβ1H0 |ψi 〉 . (11)

Here, θ denotes the set of 2P adjustable real parameters {βi ,γi }Pi=1, and |ψi 〉 is an initial wavefunc-
tion. The goal of QAOA is to choose |ψi 〉 and to tune θ , so that |ψθ 〉 approximates a target state. In

the context of QLSP, we may choose |ψi 〉 = |b̃〉, and each step of the QAOA ansatz in Equation (11)
can be efficiently implemented using the quantum singular value transformation [16]. More specif-
ically, as discussed in Section 5 and in [20], the block-encodings of H0 and H1 can be efficiently
constructed via the input models for the matrix A and the vector |b〉. Then, the quantum singular
value transformation can be directly applied to simulate e−iβH0 and e−iγH1 . According to [16, Corol-
lary 62], the cost of each single simulation scales linearly in time and logarithmically in precision,
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and hence the total complexity of implementing a QAOA ansatz scales linearly in total runtime
of QAOA, defined to be T :=

∑P
i=1 ( |βi | + |γi |), and logarithmically in precision. Notice that with a

sufficiently large P , the optimal Trotter splitting method becomes a special form of Equation (11).
Hence, Theorem 2 implies that with an optimal choice of {βi ,γi }Pi=1, the QAOA runtimeT is at most
O (κ poly(log(κ/ϵ ))). We remark that the validity of such an upper bound requires a sufficiently
large P and an optimal choice of θ . On the other hand, our numerical results suggest that the same
scaling can be achieved with a much smaller P .
For a given P , the optimal θ maximizes the fidelity as

max
θ

Fθ := | 〈ψθ |x̃〉 |2.

However, the maximization of the fidelity requires the knowledge of the exact solution |x̃〉 ,which
is not practical. We may instead solve the following minimization problem

min
θ
〈ψθ |H 2

1 |ψθ 〉 . (12)

Since the null space of H1 is of dimension 2, the unconstrained minimizer |ψθ 〉 seems possi-
ble to only have a small overlap with |x̃〉. However, this is not a problem due to the choice of

the initial state |ψi 〉 = |b̃〉. Notice that by the variational principle the minimizer |ψθ 〉 maxi-
mizes 〈ψθ |P0 (1) |ψθ 〉. Using the fact that e−iβH0 |b̄〉 = e−iγH1 |b̄〉 = |b̄〉 for any β,γ , we obtain

〈b̄ |ψθ 〉 = 〈b̄ |b̃〉 = 0, which means the QAOA ansatz prevents the transition to |b̄〉, similar to AQC.
Then, 〈ψθ |P0 (1) |ψθ 〉 = 〈ψθ |x̃〉 〈x̃ |ψθ 〉 = Fθ , so the minimizer of Equation (12) indeed maximizes the
fidelity.
For every choice of θ , we evaluate the expectation value 〈ψθ |H 2

1 |ψθ 〉. Then, the next θ is adjusted
on a classical computer towards minimizing the objective function. The process is repeated till con-
vergence. Efficient classical algorithms for the optimization of parameters in QAOA are currently
an active topic of research, including methods using gradient optimization [24, 36], Pontryagin’s
maximum principle [3, 35], reinforcement learning [9, 26], to name a few. Algorithm 1 describes
the procedure using QAOA to solve QLSP.

ALGORITHM 1: QAOA for solving QLSP

1: Initial parameters θ (0) = {βi ,γi }2Pi=1.
2: for k = 0, 1, . . . do

3: Perform Hamiltonian simulation to obtainψ (k )
θ

.

4: Measure O (θ (k ) ) = 〈ψ (k )
θ
|H 2

1 |ψ
(k )
θ
〉.

5: If O (θ (k ) ) < ϵ/κ2, exit the loop.
6: Choose θ (k+1) using a classical optimization method.
7: end for

Compared to AQC(p) and AQC(exp), the QAOA method has the following two potential ad-
vantages. The first advantage is that QAOA provides the possibility of going beyond AQC-based
algorithms. Notice that the Trotter splitting method is a special form of the QAOA ansatz in Equa-
tion (11). If the angles {βi ,γi }Pi=1 have been properly optimized (which is a very strong assumption
and will be further discussed later), the total QAOA runtimeT will be by definition comparable to
or even shorter than the runtime of AQC with the best scheduling function (after discretization).
Second, one way of implementing AQC(p) and AQC(exp) using an operator splitting method re-
quires the time interval to be explicitly split into a large number of intervals, while numerical
results indicate that the number of intervals P in QAOA can be much smaller. This could reduce
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the depth of the quantum circuit. Compared to AQC, QAOA has the additional advantage that it
only consists of 2P time-independent Hamiltonian simulation problem, once θ is known.

Despite the potential advantages, several severe caveats of using QAOA for QLSP arise when we
consider beyond the time complexity. The first is that classical optimization of the angles {βi ,γi }Pi=1
can be difficult. Commonly used classical optimization algorithms, such as the gradient descent
method, are likely to be stuck at local optimizers and thus result in sub-optimal performance. The
cost for the classical optimization is also hard to known a priori. The optimization may require
many iterations, which can diminish the gain of the runtime reduction. The second is related to

the accurate computation of the objective functionO (θ (k ) ). Note that the minimal spectrum gap of
H1 is O (κ−1). In order to obtain an ϵ-approximation, the precision of measuringO (θ ) = 〈ψθ |H 2

1 |ψθ 〉
should be at least O (ϵ2/κ2). Hence O (κ4/ϵ4) repeated measurements can be needed to achieve the
desired accuracy.

7 GENERALIZATION TO NON-HERMITIAN MATRICES

Now we discuss the case when A is not Hermitian positive definite. First, we still assume that A is
Hermitian (but not necessarily positive definite). In this case, we adopt the family of Hamiltonians
introduced in [30], which overcomes the difficulty brought by the indefiniteness ofA at the expense
of enlarging the Hilbert space to dimension 4N (so two ancilla qubits are needed to enlarge the
matrix block). Here, we define

H0 = σ+ ⊗
[
(σz ⊗ IN )Q+,b

]
+ σ− ⊗

[
Q+,b (σz ⊗ IN )

]
,

where Q+,b = I2N − |+,b〉 〈+,b |, and |±〉 = 1√
2
( |0〉 ± |1〉). The null space of H0 is Null(H0) =

span{|0,−,b〉 , |1,+,b〉}. We also define

H1 = σ+ ⊗
[
(σx ⊗ A)Q+,b

]
+ σ− ⊗

[
Q+,b (σx ⊗ A)

]
.

Note that Null(H1) = span{|0,+,x〉 , |1,+,b〉}. Therefore, the solution of the QLSP can be obtained
if we can prepare the zero-energy state |0,+,x〉 of H1.

The family of Hamiltonians for AQC(p) is still given by H ( f (s )) = (1 − f (s ))H0 + f (s )H1, 0 ≤
s ≤ 1. Similar to the case of Hermitian positive definite matrices, there is a double degeneracy
of the eigenvalue 0, and we aim at preparing one of the eigenstate via time-optimal adiabatic
evolution. More precisely, for any s , |1,+,b〉 is always in Null(H ( f (s ))), and there exists a state
|x̃ (s )〉 with |x̃ (0)〉 = |0,−,b〉 , |x̃ (1)〉 = |0,+,x〉, such that Null(H ( f (s ))) = {|x̃ (s )〉 , |1,+,b〉}. Such
degeneracy will not influence the adiabatic computation starting with |0,−,b〉 for the same reason
we discussed for Hermitian positive definite case (also discussed in [30]), and the error of AQC(p)
is still bounded by η(s ) given in Equation (4).

Furthermore, the eigenvalue 0 is separated from the rest of the eigenvalues of H ( f (s )) by a gap

Δ( f (s )) ≥
√
(1 − f (s ))2 + ( f (s )/κ)2 [30]. For technical simplicity, note that

√
(1 − f )2 + ( f /κ)2 ≥

(1 − f + f /κ)/
√
2 for all 0 ≤ f ≤ 1, we define the lower bound of the gap to be Δ∗ ( f ) = (1 − f +

f /κ)/
√
2, which is exactly proportional to that for the Hermitian positive definite case. Therefore,

we can use exactly the same time schedules as the Hermitian positive definite case to perform
AQC(p) andAQC(exp) schemes, and properties of AQC(p) andAQC(exp) are stated in the following
theorems (see Appendices D and E for the proof).

Theorem 3. LetA ∈ CN×N be a Hermitianmatrix (not necessarily positive definite) with condition

number κ. For any choice of 1 < p < 2, the AQC(p) scheme gives

‖ |ψT (s )〉 〈ψT (s ) | − |0,+,x〉 〈0,+,x | ‖2 ≤ Cκ/T . (13)

Therefore, in order to prepare an ϵ−approximation of the solution of QLSP, it suffices to choose the run-

time T = O (κ/ϵ ). Furthermore, when p = 1, 2, the bound of the runtime becomes T = O (κ log(κ)/ϵ ).
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Table 2. Numerical Scaling of the Runtime as a Function of

the Condition Number and the Accuracy, Respectively, for the

Hermitian Positive Definite Example

methods scaling w.r.t. κ scaling w.r.t. 1/ϵ

vanilla AQC 2.2022 /
RM 1.4912 1.3479
AQC(1) 1.4619 1.0482
AQC(1.25) 1.3289 1.0248
AQC(1.5) 1.2262 1.0008
AQC(1.75) 1.1197 0.9899
AQC(2) 1.1319 0.9904
AQC(exp) 1.3718 0.5377
AQC(exp) / 1.7326 (w.r.t. log(1/ϵ ))
QAOA 1.0635 0.4188
QAOA / 1.4927 (w.r.t. log(1/ϵ ))

Theorem 4. LetA ∈ CN×N be a Hermitianmatrix (not necessarily positive definite) with condition

number κ. Then, for large enough T > 0, the final time error ‖ |ψT (1)〉 〈ψT (1) | − |0,+,x〉 〈0,+,x | ‖2
of the AQC(exp) scheme is bounded by

C log(κ) exp ��	−C
(
κ log2 κ

T

)− 1
4 
�� . (14)

Therefore, for any κ > e , 0 < ϵ < 1, in order to prepare an ϵ−approximation of the solution of QLSP,

it suffices to choose the runtime T = O (κ log2 (κ) log4 ( logκ
ϵ

)).

For a most general square matrix A ∈ CN×N , following [17] we may transform it into the Her-
mitian case at the expense of further doubling the dimension of the Hilbert space. Consider an
extended QLSP A |x〉 = |b〉 in dimension 2N where

A = σ+ ⊗ A + σ− ⊗ A† =
(

0 A
A† 0

)
, |b〉 = |1,b〉 .

Note that A is a Hermitian matrix of dimension 2N , with condition number κ and ‖A‖2 = 1, and
|x〉 := |1,x〉 solves the extended QLSP. Therefore, we can directly apply AQC(p) and AQC(exp) for
Hermitian matrix A to prepare an ϵ-approximation of x . The total dimension of the Hilbert space
becomes 8N for non-Hermitian matrix A (therefore three ancilla qubits are needed).

8 NUMERICAL RESULTS

We first report the performance of AQC(p), AQC(exp), and QAOA for a series of Hermitian positive
definite dense matrices with varying condition numbers, together with the performance of RM and
vanilla AQC. The details of the setup of the numerical experiments are given in Appendix F.

Figure 1 shows how the total runtime T depends on the condition number κ and the accuracy
ϵ for the Hermitian positive definite case. The numerical scaling is reported in Table 2. For the κ
dependence, despite that RM andAQC(1) share the same asymptotic linear complexitywith respect
to κ, we observe that the preconstant of RM is larger due to its Monte Carlo strategy and the mixed
state nature resulting in the same scaling of errors in fidelity and density (see Appendix C for a
detailed explanation). The asymptotic scaling of the vanilla AQC is at least O (κ2). When higher
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Fig. 1. Simulation results for the Hermitian positive definite example. Top (left/right): the runtime to reach

desired fidelity 0.99/0.999 as a function of the condition number. Bottom: a log-log plot of the runtime as a

function of the accuracy with κ = 10.

fidelity (0.999) is desired, the cost of vanilla AQC becomes too expensive, and we only report the
timing of AQC(p), AQC(exp), and QAOA. For the κ dependence tests, the depth of QAOA ranges
from 8 to 60. For the ϵ dependence test, the depth of QAOA is fixed to be 20. We find that the
runtime for AQC(p), AQC(exp), and QAOA depends approximately linearly on κ, while QAOA has
the smallest runtime overall. It is also interesting to observe that although the asymptotic scalings
of AQC(1) and AQC(2) are both bounded by O (κ logκ) instead of O (κ), the numerical performance
of AQC(2) is much better than AQC(1); in fact, the scaling is very close to that with the optimal
value of p. For the ϵ dependence, the scaling of RM and AQC(p) is O (1/ϵ ), which agrees with the
error bound. Again the preconstant of RM is slightly larger. Our results also confirm that AQC(exp)
only depends poly logarithmically on ϵ . Note that when ϵ is relatively large, AQC(exp) requires a
longer runtime than that of AQC(p), and it eventually outperforms AQC(p) when ϵ is small enough.
The numerical scaling of QAOA with respect to ϵ is found to be only O (log1.5 (1/ϵ )) together with
the smallest preconstant.
Figure 2 and Table 3 demonstrate the simulation results for non-Hermitianmatrices.We find that

numerical performances of RM, AQC(p), AQC(exp), and QAOA are similar to that of the Hermitian
positive definite case. Again QAOA obtains the optimal performance in terms of the runtime. The
numerical scaling of the optimal AQC(p) is found to beO (κ/ϵ ), while the time complexity of QAOA
and AQC(exp) is only O (κ poly(log(κ/ϵ ))).
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Fig. 2. Simulation results for the non-Hermitian example. Top: the runtime to reach 0.999 fidelity as a func-

tion of the condition number. Bottom: a log-log plot of the runtime as a function of the accuracy with κ = 10.

Table 3. Numerical Scaling of the Runtime as a Function of

the Condition, Number, and the Accuracy, Respectively, for

the Non-Hermitian Example

methods scaling w.r.t. κ scaling w.r.t. 1/ϵ

vanilla AQC 2.1980 /
RM / 1.2259
AQC(1) 1.4937 0.9281
AQC(1.25) 1.3485 0.9274
AQC(1.5) 1.2135 0.9309
AQC(1.75) 1.0790 0.9378
AQC(2) 1.0541 0.9425
AQC(exp) 1.3438 0.4415
AQC(exp) 0.9316 (w.r.t. log(1/ϵ ))
QAOA 0.8907 0.3283
QAOA / 0.7410 (w.r.t. log(1/ϵ ))

9 DISCUSSION

By reformulating QLSP into an eigenvalue problem, AQC provides an alternative route to solve
QLSP other than those based on phase estimation (such as HHL) and those based on approximation
of matrix functions (such as LCU and QSP). However, the scaling of the vanilla AQC is at least
O (κ2/ϵ ), which is unfavorable with respect to both κ and ϵ . Thanks to the explicit information of
the energy gap along the adiabatic path, we demonstrate that we may reschedule the AQC and
dramatically improve the performance of AQC for solving QLSP. When the target accuracy ϵ is
relatively large, the runtime complexity of the AQC(p) method (1 < p < 2) is reduced to O (κ/ϵ );
for highly accurate calculations with a small ϵ , the AQC(exp) method is more advantageous, and
its runtime complexity is O (κ poly(log(κ/ϵ ))). To our knowledge, our ACP(exp) method provides
the first example that an adiabatic algorithm can simultaneously achieve near linear dependence
on the spectral gap, and poly-logarithmic dependence on the precision.
Due to the close connection between AQC and QAOA, the runtime complexity of QAOA for

solving QLSP is also bounded by O (κ poly(log(κ/ϵ ))). Both AQC and QAOA can be implemented
on gate-based quantum computers. Our numerical results can be summarized using the following
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relation:

QAOA � AQC(exp) � AQC(p) < RM < vanilla AQC.

Here, A < B means that the runtime of A is smaller than that of B. The two exceptions are:
QAOA � AQC(exp) means that the runtime of QAOA is smaller only when the optimizer θ is
found, while AQC(exp) � AQC(p) holds only when ϵ is sufficiently small. While the runtime
complexity of AQC(exp) readily provides an upper bound of the runtime complexity of QAOA,
numerical results indicate that the optimizer of QAOA often involves a much smaller depth,
and hence the dynamics of QAOA does not necessarily follow the adiabatic path. Therefore,
it is of interest to find alternative routes to directly prove the scaling of the QAOA runtime
without relying on AQC. In the work [20], our AQC based algorithm has been combined with
the eigenvector filtering technique. Reference [20] also proposed another AQC inspired quantum
linear system solver, which is based on the quantum Zeno effect. Both methods can scale linearly
in κ and logarithmically in 1/ϵ . We expect our AQC based QLSP solvers may serve as useful
subroutines in other quantum algorithms as well.

APPENDICES

A THE GAP OF H ( f (s )) FOR HERMITIAN POSITIVE DEFINITE MATRICES

The Hamiltonian H ( f ) can be written in the block matrix form as

H ( f ) =

(
0 ((1 − f )I + f A)Qb

Qb ((1 − f )I + f A) 0

)
. (15)

Let λ be an eigenvalue of H , then

0 = det

(
λI −((1 − f )I + f A)Qb

−Qb ((1 − f )I + f A) λI

)

= det
(
λ2I − ((1 − f )I + f A)Q2

b ((1 − f )I + f A)
)
,

where the second equality holds because the bottom two blocks are commutable. Thus, λ2 is an
eigenvalue of ((1− f )I+ f A)Q2

b
((1− f )I+ f A), andΔ2 ( f ) equals the smallest non-zero eigenvalue of

((1− f )I+ f A)Q2
b
((1− f )I+ f A). Applying a proposition of matrices thatXY andYX have the same

non-zero eigenvalues, Δ2 ( f ) also equals the smallest non-zero eigenvalue ofQb ((1− f )I + f A)2Qb .
Now we focus on the matrixQb ((1− f )I + f A)2Qb . Note that |b〉 is the unique eigenstate corre-

sponding to the eigenvalue 0, and all eigenstates corresponding to non-zero eigenvalues must be
orthogonal to with |b〉. Therefore,

Δ2 ( f ) = inf
〈b |φ〉=0,〈φ |φ〉=1

〈
φ ���Qb ((1 − f )I + f A)2Qb

���φ〉
= inf
〈b |φ〉=0,〈φ |φ〉=1

〈
φ ���((1 − f )I + f A)2���φ〉

≥ inf
〈φ |φ〉=1

〈
φ ���((1 − f )I + f A)2���φ〉

= (1 − f + f /κ)2,

and Δ( f ) ≥ Δ∗ ( f ) = 1 − f + f /κ.

B RELATIONS AMONG DIFFERENT MEASUREMENTS OF ACCURACY

We show two relations that connect the error of density matrix distance and the error of fidelity,
which are used in our proof for AQC(p) and AQC(exp). Following the notations in the main
text, let |x̃ (s )〉 denote the desired eigenpath of H ( f (s )) corresponding to the 0 eigenvalue, and
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Null(H ( f (s ))) = {|x̃ (s )〉 , |b̄〉}. P0 (s ) denotes the projector onto the eigenspace corresponding to
the 0 eigenvalue.

Lemma 5. (i) The following equation holds,

|1 − 〈ψT (s ) |P0 (s ) |ψT (s )〉 | = 1 − ��〈ψT (s ) |x̃ (s )〉��2 = ‖ |ψT (s )〉 〈ψT (s ) | − |x̃ (s )〉 〈x̃ (s ) | ‖22 . (16)

(ii) Assume that

|1 − 〈ψT (s ) |P0 (s ) |ψT (s )〉 | ≤ η2 (s ).

Then the fidelity can be bounded from below by 1 − η2 (s ), and the 2-norm error of the density matrix

can be bounded from above by η(s ).

Proof. It suffices only to prove part (i). Note that |b̄〉 is the eigenstate for both H0 and H1 cor-
responding the 0 eigenvalue, we have H ( f (s )) |b̄〉 = ((1 − f (s ))H0 + f (s )H1) |b̄〉 = 0, and thus
d
ds
〈b̄ |ψT (s )〉 = 0. Together with the initial condition 〈b̄ |ψT (0)〉 = 0, the overlap of |b̄〉 and |ψT (s )〉

remains to be 0 for the whole time period, i.e., 〈b̄ |ψT (s )〉 = 0. Since P0 (s ) = |x̃ (s )〉 〈x̃ (s ) | + |b̄〉 〈b̄ |,
we have P0 (s ) |ψT (s )〉 = |x̃ (s )〉 〈x̃ (s ) |ψT (s ))〉. Therefore,

|1 − 〈ψT (s ) |P0 (s ) |ψT (s )〉 | = |1 − 〈ψT (s ) |x̃ (s )〉 〈x̃ (s ) |ψT (s )〉 | = 1 − ��〈ψT (s ) |x̃ (s )〉��2 .
To prove the second equation, let M = |ψT (s )〉 〈ψT (s ) | − |x̃ (s )〉 〈x̃ (s ) |. Note that ‖M ‖22 =

λmax (M
†M ), we study the eigenvalues ofM†M by first computing that

M†M = |ψT (s )〉 〈ψT (s ) | + |x̃ (s )〉 〈x̃ (s ) | − 〈ψT (s ) |x̃ (s )〉 |ψT (s )〉 〈x̃ (s ) | − 〈x̃ (s ) |ψT (s )〉 |x̃ (s )〉 〈ψT (s ) | .

Since for any |y〉 ∈ span{|ψT (s )〉 , |x̃ (s )〉}⊥,M†M |y〉 = 0, and

M†M |ψT (s )〉 = (1 − ��〈ψT (s ) |x̃ (s )〉��2) |ψT (s )〉 ,
M†M |x̃ (s )〉 = (1 − ��〈ψT (s ) |x̃ (s )〉��2) |x̃ (s )〉 ,

we have ‖M ‖22 = λmax (M
†M ) = 1 − ��〈ψT (s ) |x̃ (s )〉��2. �

C DIFFERENCE BETWEEN THE SCALINGS OF AQC(P) AND RM

WITH RESPECT TO INFIDELITY

In our numerical test, we observe that to reach a desired fidelity, RM encounters a much larger
pre-constant than AQC(p). This is due to the following reason. Although the runtime of both RM
and AQC(p) scales as O (1/ϵ ) where ϵ is the 2-norm error of the density matrix, the scalings with
respect to the infidelity are different. More specifically, Lemma 5 shows that for AQC, the square
of the 2-norm error is exactly equal to the infidelity. Thus, in order to reach infidelity 1 − F using

AQC(p), it suffices to choose the runtime to be T = O (κ/
√
1 − F ). Meanwhile, it has been proved

in [6] that the runtime complexity of RM is Õ (κ/(1− F )). Therefore, to reach a desired fidelity, the
runtime of AQC(p) will be smaller than that of RM, as shown in our numerical examples.
We further verify the statement above by studying the relation between the 2-norm error of the

density matrix and the infidelity for AQC(p), AQC(exp), and RM using the positive definite exam-
ple with κ = 10. In AQC(p) and AQC(exp), we change the runtime to obtain approximations with
different errors and infidelity. In RM we vary the number of exponential operators to obtain dif-
ferent levels of accuracy. All other numerical treatments remain unchanged. As shown in Figure 3,
the infidelity is exactly the square of 2-norm error in the case of AQC(p) and AQC(exp), while the
infidelity of RM only scales approximately linearly with respect to 2-norm error. This also verifies
that although the runtime of both AQC(p) and RM scales linearly with respect to ϵ , the runtime of
AQC(p) can be much smaller to reach desired fidelity.
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Fig. 3. Relation between 2-norm error and infidelity of AQC and RM.

D PROOF OF THEOREMS 1 AND 3

The proof of Theorems 1 and 3 rests on some delicate cancellation of the time derivatives ‖H (1) ‖2,
‖H (2) ‖2 and the gap Δ( f (s )) in the error bound, and can be completed by carefully analyz-
ing the κ-dependence of each term in η(s ) given in Equation (4). Note that in both cases

H ( f ) = (1− f )H0 + f H1, and we let Δ∗ ( f ) = (1− f + f /κ)/
√
2 since such a choice of Δ∗ can serve

as a lower bound of the spectrum gap for both the cases of Theorems 1 and 3. We first compute
the derivatives of H ( f (s )) by chain rule as

H (1) (s ) =
d

ds
H ( f (s )) =

dH ( f (s ))

d f

d f (s )

ds
= (H1 − H0)cpΔ

p
∗ ( f (s )),

and

H (2) (s ) =
d

ds
H (1) (s ) =

d

ds

(
(H1 − H0)cpΔ

p
∗ ( f (s ))

)

= (H1 − H0)cppΔ
p−1
∗ ( f (s ))

dΔ∗ ( f (s ))

d f

d f (s )

ds

=
1
√
2
(−1 + 1/κ) (H1 − H0)c

2
ppΔ

2p−1
∗ ( f (s )).

Then the first two terms of η(s ) can be rewritten as

‖H (1) (0)‖2
TΔ2 (0)

+
‖H (1) (s )‖2
TΔ2 ( f (s ))

≤ ‖H
(1) (0)‖2

TΔ2
∗ (0)

+
‖H (1) (s )‖2
TΔ2
∗ ( f (s ))

=
‖ (H1 − H0)cpΔ

p
∗ ( f (0))‖2

TΔ2
∗ (0)

+
‖ (H1 − H0)cpΔ

p
∗ ( f (s ))‖2

TΔ2
∗ ( f (s ))

≤ C

T

(
cpΔ

p−2
∗ (0) + cpΔ

p−2
∗ ( f (s ))

)

≤ C

T

(
cpΔ

p−2
∗ (0) + cpΔ

p−2
∗ (1)

)
.
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Here, C stands for a general positive constant independent of s,Δ, and T . To compute the
remaining two terms of η(s ), we use the following change of variable

u = f (s ′), du =
d

ds ′
f (s ′)ds ′ = cpΔ

p
∗ ( f (s

′))ds ′,

and the last two terms of η(s ) become

1

T

ˆ s

0

‖H (2) ‖2
Δ2

ds ′ ≤ 1

T

ˆ s

0

‖H (2) ‖2
Δ2
∗

ds ′

=
1

T

ˆ s

0

‖ 1√
2
(−1 + 1/κ) (H1 − H0)c

2
ppΔ

2p−1
∗ ( f (s ′))‖2

Δ2
∗ ( f (s ′))

ds ′

=
1

T

ˆ f (s )

0

‖ 1√
2
(−1 + 1/κ) (H1 − H0)c

2
ppΔ

2p−1
∗ (u)‖2

Δ2
∗ (u)

du

cpΔ
p
∗ (u)

≤ C

T
�	(1 − 1/κ)cp

ˆ f (s )

0

Δ
p−3
∗ (u)du
�

≤ C

T

(
(1 − 1/κ)cp

ˆ 1

0

Δ
p−3
∗ (u)du

)
,

and similarly

1

T

ˆ s

0

‖H (1) ‖22
Δ3

ds ′ ≤ 1

T

ˆ s

0

‖H (1) ‖22
Δ3
∗

ds ′

=
1

T

ˆ s

0

‖ (H1 − H0)cpΔ
p
∗ ( f (s

′))‖22
Δ3
∗ ( f (s ′))

ds ′

=
1

T

ˆ f (s )

0

‖ (H1 − H0)cpΔ
p
∗ (u)‖22

Δ3
∗ (u)

du

cpΔ
p
∗ (u)

≤ C

T
�	cp
ˆ f (s )

0

Δ
p−3
∗ (u)du
�

≤ C

T

(
cp

ˆ 1

0

Δ
p−3
∗ (u)du

)
.

Summarize all terms above, an upper bound of η(s ) is

η(s ) ≤ C

T

{(
cpΔ

p−2
∗ (0) + cpΔ

p−2
∗ (1)

)
+

(
(1 − 1/κ)cp

ˆ 1

0

Δ
p−3
∗ (u)du

)
+

(
cp

ˆ 1

0

Δ
p−3
∗ (u)du

)}

=
C

T

{
2−(p−2)/2

(
cp + cpκ

2−p
)
+

(
(1 − 1/κ)cp

ˆ 1

0

Δ
p−3
∗ (u)du

)
+

(
cp

ˆ 1

0

Δ
p−3
∗ (u)du

)}
.

Finally, since for 1 < p < 2

cp =

ˆ 1

0

Δ
−p
∗ (u)du =

2p/2

p − 1
κ

κ − 1 (κ
p−1 − 1),

and ˆ 1

0

Δ
p−3
∗ (u)du =

2−(p−3)/2

2 − p
κ

κ − 1 (κ
2−p − 1),
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we have

η(s ) ≤C
T

{ κ

κ − 1 (κ
p−1 − 1) + κ

κ − 1 (κ − κ
2−p )

+
κ

κ − 1 (κ
p−1 − 1) (κ2−p − 1) +

( κ

κ − 1

)2
(κp−1 − 1) (κ2−p − 1)

}
.

The leading term of the bound is O (κ/T ) when 1 < p < 2.
Nowwe consider the limiting case whenp = 1, 2. Note that the bound forη(s ) can still be written

as

η(s ) ≤ C

T

{(
cpΔ

p−2
∗ (0) + cpΔ

p−2
∗ (1)

)
+

(
(1 − 1/κ)cp

ˆ 1

0

Δ
p−3
∗ (u)du

)
+

(
cp

ˆ 1

0

Δ
p−3
∗ (u)du

)}

=
C

T

{
2−(p−2)/2

(
cp + cpκ

2−p
)
+ (1 − 1/κ)cpc3−p + cpc3−p

}
.

Straightforward computation shows that

c1 =

ˆ 1

0

Δ−1∗ (u)du =
√
2

κ

κ − 1 log(κ),

and

c2 =

ˆ 1

0

Δ−2∗ (u)du = 2
κ

κ − 1 (κ − 1).

Hence, when p = 1, 2,

η(s ) ≤ C

T

{
2−(p−2)/2

(
cp + cpκ

2−p
)
+ (1 − 1/κ)c1c2 + c1c2

}
≤ C

κ log(κ)

T
.

This completes the proof of Theorems 1 and 3.

E PROOF OF THEOREMS 2 AND 4

We provide a rigorous proof of the error bound for the AQC(exp) scheme. We mainly follow the
methodology of [25] and a part of technical treatments of [15]. Our main contribution is carefully
revealing an explicit constant dependence in the adiabatic theorem, which is the key to obtain

the Õ (κ) scaling. In the AQC(exp) scheme, the Hamiltonian H (s ) = (1 − f (s ))H0 + f (s )H1 with
‖H0‖, ‖H1‖ ≤ 1 and

f (s ) =
1

ce

ˆ s

0

exp

(
− 1

s ′(1 − s ′)

)
ds ′. (17)

The normalization constant ce =
´ 1
0 exp(− 1

t (1−t ) )dt ≈ 0.0070. Let UT (s ) denote the corresponding

unitary evolution operator, and P0 (s ) denote the projector onto the eigenspace corresponding to

0. We use Δ∗ ( f ) = (1− f + f /κ)/
√
2 since this can serve as a lower bound of the spectrum gap for

both the cases of Theorems 2 and 4.
We first restate the theorems universally with more technical details as following.

Theorem 6. Assume the condition number κ > e . Then the final time adiabatic error |1 −
〈ψT (1) |P0 (1) |ψT (1)〉 | of AQC(exp) can be bounded by η21 where
(a) for arbitrary N ,

η21 = A1D log2 κ

(
C2

κ log2 κ

T
N 4

)N
,

where A1,D, and C2 are positive constants which are independent of T , κ and N ,

ACM Transactions on Quantum Computing, Vol. 3, No. 2, Article 5. Publication date: February 2022.
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(b) if T is large enough such that

16eA−11 D

(
4π 2

3

)3
κ log2 κ

T
≤ 1,

then

η21 = C1 log
2 κ exp ��	−

(
C2

κ log2 κ

T

)− 1
4 
�� ,

where A1,D,C1, and C2 are positive constants which are independent of T and κ.

Corollary 7. For any κ > e, 0 < ϵ < 1, to prepare an ϵ-approximation of the solution of QLSP

using AQC(exp), it is sufficient to choose the runtime T = O (κ log2 κ log4 ( logκ
ϵ

)).

Proof. We start the proof by considering the projector P (s ) onto an invariant space of H , then
P (s ) satisfies

i
1

T
∂sP (s ) = [H (s ), P (s )], P2 (s ) = P (s ). (18)

We try the ansatz (only formally)

P (s ) =
∞∑
j=0

Ej (s )T
−j . (19)

Substitute it into the Heisenberg equation and match terms with the same orders, we get

[H (s ),E0 (s )] = 0, i∂sEj (s ) = [H (s ),Ej+1 (s )], Ej (s ) =

j∑
m=0

Em (s )Ej−m (s ). (20)

It has been proved in [25] that the solution of Equation (20) with initial condition E0 = P0 is given
by

E0 (s ) = P0 (s ) = −(2π i)−1
˛
Γ(s )

(H (s ) − z)−1dz, (21)

Ej (s ) = (2π )−1
˛
Γ(s )

(H (s ) − z)−1[E (1)
j−1 (s ), P0 (s )](H (s ) − z)−1dz + S j (s ) − 2P0 (s )S j (s )P0 (s ), (22)

where Γ(s ) = {z ∈ C : |z | = Δ(s )/2} and

S j (s ) =

j−1∑
m=1

Em (s )Ej−m (s ). (23)

Furthermore, given E0 = P0, such a solution is unique.
In general, Equation (19) does not converge, so for arbitrary positive integer N we define a

truncated series as

PN (s ) =
N∑
j=0

Ej (s )T
−j . (24)

Then

i
1

T
P (1)
N
− [H , PN ] = i

1

T

N∑
j=0

E (1)
j T −j −

N∑
j=0

[H ,Ej ]T
−j = iT −(N+1)E (1)

N
.
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In Lemma 10, we prove that PN (0) = P0 (0) and PN (1) = P0 (1), then the adiabatic error becomes

|1 − 〈ψT (1) |P0 (1) |ψT (1)〉 | = | 〈ψT (0) |P0 (0) |ψT (0)〉 − 〈ψT (0) |UT (1)−1P0 (1)UT (1) |ψT (0)〉 |
≤ ‖P0 (1) −UT (1)−1P0 (0)UT (1)‖
= ‖PN (1) −UT (1)−1PN (0)UT (1)‖

=
�����
ˆ 1

0

ds
d

ds

(
U −1T PNUT

)����� .
Straightforward computations show that

d

ds
(U −1T ) = −U −1T

d

ds
(UT )U

−1
T = −U

−1
T

T

i
HUTU

−1
T = −

T

i
U −1T H ,

d

ds

(
U −1T PNUT

)
=

d

ds
(U −1T )PNUT +U

−1
T

d

ds
(PN )UT +U

−1
T PN

d

ds
(UT )

= −T
i
U −1T HPNUT +U

−1
T

T

i
[H , PN ]UT +U

−1
T T −N E (1)

N
UT +

T

i
U −1T PNHUT

= T −NU −1T E (1)
N
UT ,

therefore,

|1 − 〈ψT (1) |P0 (1) |ψT (1)〉 | ≤
�����
ˆ 1

0

T −NU −1T E (1)
N
UTds

����� ≤ T−N max
s ∈[0,1]

‖E (1)
N
‖.

In Lemma 15, we prove that (the constant cf = 4π 2/3)

‖E (1)
N
‖ ≤ A1A

N
2 A3

[(N + 1)!]4

(1 + 1)2 (N + 1)2

=
A1

4
D log2 κ

[
A−11 c3f

16

Δ
D log2 κ

]N [(N + 1)!]4

(N + 1)2

≤ A1

4
D log2 κ

[
16A−11 Dc3f κ log

2 κ
]N [(N + 1)!]4

(N + 1)2

≤ A1D log2 κ
[
16A−11 Dc3f κ log

2 κN 4
]N
,

where the last inequality comes from the fact that [(N + 1)!]4/(N + 1)2 ≤ 4N 4N . This completes
the proof of part (a).
When T is large enough, we now choose

N =

⎢⎢⎢⎢⎢⎢⎣
(
16eA−11 Dc3f

κ log2 κ

T

)− 1
4
⎥⎥⎥⎥⎥⎥⎦ ≥ 1,

then

|1 − 〈ψT (1) |P0 (1) |ψT (1)〉 | ≤ A1D log2 κ

[
16A−11 Dc3f

κ log2 κ

T
N 4

]N
≤ A1D log2 κ exp ��	−

(
16eA−11 Dc3f

κ log2 κ

T

)− 1
4 
�� .

This completes the proof of part (b). �
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The remaining part is devoted to some preliminary results regarding H ,E, and the technical es-
timates for the growth of Ej . It is worth mentioning in advance that in the proof we will encounter
many derivatives taken on a contour integral. In fact all such derivatives taken on a contour in-
tegral will not involve derivatives on the contour. Specifically, since (H (s ) − z)−1 is analytic for
any 0 < |z | < Δ(s ), for any s0 ∈ (0, 1), there exists a small enough neighborhood Bδ (s0) such that
∀s ∈ Bδ (s0),

¸
Γ(s ) G (s, (H (s )−z)−1)dz =

¸
Γ(s0 )

G (s, (H (s )−z)−1)dz for any smooth mappingG. This

means locally the contour integral does not depend on the smooth change of the contour, and thus
the derivatives will not involve derivatives on the contour. In the spirit of this trick, we write the

resolvent R (z, s, s0) = (H (s ) − z)−1 for 0 ≤ s ≤ 1, 0 ≤ s0 ≤ 1, z ∈ C and |z | = Δ(s0)/2 and let R (k )

denote the partial derivative with respect to s , i.e., ∂
∂s R (z, s, s0), which means by writing R (k ) we

only consider the explicit time derivatives brought by H .

Lemma 8. (a) H (s ) ∈ C∞ with H (k ) (0) = H (k ) (1) = 0 for all k ≥ 1.
(b) There is a gap Δ(s ) ≥ Δ∗ (s ) = ((1− f (s )) + f (s )/κ)/

√
2, which separates 0 from the rest of the

spectrum.

The following lemma gives the bound for the derivatives of H .

Lemma 9. For every k ≥ 1, 0 < s < 1,

‖H (k ) (s )‖ ≤ b (s )a(s )k
(k!)2

(k + 1)2
, (25)

where

b (s ) =
2e

ce
exp

(
− 1

s (1 − s )

)
[s (1 − s )]2, a(s ) =

(
2

s (1 − s )

)2
.

Proof. We first compute the derivatives of f . Let д(s ) = −s (1 − s ) and h(y) = exp(1/y), then
f ′(s ) = c−1e h(д(s )). By the chain rule of high order derivatives (also known as Faà di Bruno’s
formula),

f (k+1) (s ) = c−1e

∑ k!

m1!1!m1m2!2!m2 · · ·mk !k!mk
h (m1+m2+· · ·+mk ) (д(s ))

k∏
j=1

(
д(j ) (s )

)mj
,

where the sum is taken over all k-tuples of non-negative integers (m1, . . . ,mk ) satisfying∑k
j=1 jmj = k . Note that д(j ) (s ) = 0 for j ≥ 3, and the sum becomes

f (k+1) (s ) = c−1e

∑
m1+2m2=k

k!

m1!1!m1m2!2!m2
h (m1+m2 ) (д(s ))

(
д(1) (s )

)m1
(
д(2) (s )

)m2

= c−1e

∑
m1+2m2=k

k!

m1!m2!2m2
h (m1+m2 ) (д(s )) (2s − 1)m1 2m2

= c−1e

∑
m1+2m2=k

k!

m1!m2!
h (m1+m2 ) (д(s )) (2s − 1)m1 .
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To compute the derivatives of h, we use the chain rule again to get (the sum is over
∑m

j=1 jnj =m)

h (m) (y) =
∑ m!

n1!1!n1n2!2!n2 · · ·nm !m!nm
exp(1/y)

m∏
j=1

(
d j (1/y)

dy j

)nj

=
∑ m!

n1!1!n1n2!2!n2 · · ·nm !m!nm
exp(1/y)

m∏
j=1

(
(−1) j j!y−j−1

)nj

=
∑ (−1)mm!

n1!n2! · · ·nm !
exp(1/y)y−m−

∑
nj .

Since 0 ≤ nj ≤ m/j, the number of tuples (m1, . . . ,mn ) is less than (m + 1) (m/2 + 1) (m/3 +

1) . . . (m/m + 1) =
(
2m
m

)
< 22m , so for 0 < y < 1 andm ≤ k we have

|h (m) (y) | ≤ 22kk! exp(1/y)y−2k .

Therefore f (k+1) can be bounded as

| f (k+1) (s ) | ≤ c−1e

∑
m1+2m2=k

k!

m1!m2!
22kk! exp

(
− 1

s (1 − s )

) (
1

s (1 − s )

)2k
|2s − 1|m1

≤ c−1e exp

(
− 1

s (1 − s )

) (
2

s (1 − s )

)2k
(k!)2

∑
m1≤k

1

m1!

≤ ec−1e exp

(
− 1

s (1 − s )

) (
2

s (1 − s )

)2k
(k!)2.

Substitute k + 1 by k and for every k ≥ 1

| f (k ) (s ) | ≤ ec−1e exp

(
− 1

s (1 − s )

) (
2

s (1 − s )

)2(k−1)
((k − 1)!)2

≤ 4ec−1e exp

(
− 1

s (1 − s )

) (
2

s (1 − s )

)2(k−1)
(k!)2

(k + 1)2
.

Noting that ‖H0‖ ≤ 1, ‖H1‖ ≤ 1 and H (k ) = (H1 − H0) f
(k ) , we complete the proof of bounds for

H (k ) . �

The following result demonstrates that Ej ’s for all j ≥ 1 vanish on the boundary.

Lemma 10. (a) For all k ≥ 1, E (k )
0 (0) = P (k )

0 (0) = 0,E (k )
0 (1) = P (k )

0 (1) = 0.

(b) For all j ≥ 1,k ≥ 0, E (k )
j (0) = E (k )

j (1) = 0.

Proof. We will repeatedly use the fact that R (k ) (0) = R (k ) (1) = 0. This can be proved by taking
the k-th order derivative of the equation (H − z)R = I and

R (k ) = −R
k∑
l=1

(
k

l

)
(H − z) (l )R (k−l ) = −R

k∑
l=1

(
k

l

)
H (l )R (k−l ) .

(a) This is a straightforward result by the definition of E0 and the fact that R (k ) ’s vanish on the
boundary.
(b) We prove by induction with respect to j. For j = 1, Equation (22) tells that

E1 = (2π )−1
˛
Γ
R[P (1)

0 , P0]Rdz.
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Therefore, each term in the derivatives of E1 must involve at least one of the derivative of R or the
derivative of P0, which means the derivatives of E1 much vanish on the boundary.

Assume the conclusion holds for < j, then for j, first each term of the derivatives of S j must
involve the derivative of some Em withm < j, which means the derivatives of S j must vanish on
the boundary. Furthermore, for the similar reason, Equation (22) tells that the derivatives of Ej
must vanish on the boundary. �

Before we process, we recall three technical lemmas introduced in [15, 25]. Throughout let cf =
4π 2/3 denote an absolute constant.

Lemma 11. Let α > 0 be a positive real number, p,q be non-negative integers, and r = p +q. Then,

k∑
l=0

(
k

l

)
[(l + p)!(k − l + q)!]1+α

(l + p + 1)2 (k − l + q + 1)2 ≤ cf
[(k + r )!]1+α

(k + r + 1)2
.

Lemma 12. Let k be a non-negative integer, then

k∑
l=0

1

(l + 1)2 (k + 1 − l )2 ≤ cf
1

(k + 1)2
.

Lemma 13. Let A(s ),B (s ) be two smooth matrix-valued functions defined on [0, 1] satisfying

‖A(k ) (s )‖ ≤ a1 (s )a2 (s )
k [(k + p)!]

1+α

(k + 1)2
, ‖B (k ) (s )‖ ≤ b1 (s )b2 (s )

k [(k + q)!]
1+α

(k + 1)2
,

for some non-negative functions a1,a2,b1,b2, non-negative integers p,q, and for all k ≥ 0. Then, for
every k ≥ 0, 0 ≤ s ≤ 1,

‖ (A(s )B (s )) (k ) ‖ ≤ cf a1 (s )b1 (s )max{a2 (s ),b2 (s )}k
[(k + r )!]1+α

(k + 1)2
,

where r = p + q.

Next we bound the derivatives of the resolvent. This bound provides the most important im-
provement of the general adiabatic bound.

Lemma 14. For all k ≥ 0,

‖R (k ) (z, s0, s0)‖ ≤
2

Δ(s0)

(
D log2 κ

)k (k!)4

(k + 1)2
,

where

D = cf
2048
√
2e2

ce
.

Proof. We prove by induction, and for simplicity we will omit explicit dependence on argu-
ments z, s, and s0. The estimate obviously holds for k = 0. Assume the estimate holds for < k . Take
the k-th order derivative of the equation (H − z)R = I and we get

R (k ) = −R
k∑
l=1

(
k

l

)
(H − z) (l )R (k−l ) = −R

k∑
l=1

(
k

l

)
H (l )R (k−l ) .

Using Lemma 9 and the induction hypothesis, we have

‖R (k ) ‖2 ≤
2

Δ

k∑
l=1

(
k

l

)
bal

(l !)2

(l + 1)2
2

Δ

(
D log2 κ

)k−l [(k − l )!]4
(k − l + 1)2 .
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To proceed we need to bound the term Δ−1bal for l ≥ 1. Let us define

F (s ) =
ce

22l2
√
2e

Δ−1∗ (s )b (s )a(s )l =
exp(− 1

s (1−s ) )

(1 − f (s ) + f (s )/κ)[s (1 − s )]2l−2
.

Note that F (0) = F (1) = 0, F (s ) > 0 for s ∈ (0, 1) and F (1/2 + t ) > F (1/2 − t ) for t ∈ (0, 1/2), then
there exists a maximizer s∗ ∈ [1/2, 1) such that F (s ) ≤ F (s∗),∀s ∈ [0, 1]. Furthermore, F ′(s∗) = 0.
Now we compute the F ′ as

[(1 − f + f /κ)[s (1 − s )]2l−2]2F ′(s )

= exp

(
− 1

s (1 − s )

)
1 − 2s

s2 (1 − s )2 (1 − f + f /κ)[s (1 − s )]2l−2

− exp
(
− 1

s (1 − s )

) [
(−f ′ + f ′/κ)[s (1 − s )]2l−2 + (1 − f + f /κ) (2l − 2)[s (1 − s )]2l−3 (1 − 2s )

]
= exp

(
− 1

s (1 − s )

)
[s (1 − s )]2l−4

×
[
(1 − f + f /κ) (1 − 2s )[1 − (2l − 2)s (1 − s )] − exp

(
− 1

s (1 − s )

)
c−1e (−1 + 1/κ)s2 (1 − s )2

]
= exp

(
− 1

s (1 − s )

)
[s (1 − s )]2l−4G (s ),

where

G (s ) = (1 − f + f /κ) (1 − 2s )[1 − (2l − 2)s (1 − s )] + exp
(
− 1

s (1 − s )

)
c−1e (1 − 1/κ)s2 (1 − s )2.

The sign of F ′(s ) for s ∈ (0, 1) is the same as the sign of G (s ).
We now show that s∗ cannot be very close to 1. Precisely, we will prove that for all s ∈ [1 −
c

l logκ , 1) with c =
√
ce/4 ≈ 0.021,G (s ) < 0. For such s , we have

1 − f + f /κ ≥ f (1/2)/κ > 0,

1 − 2s < −1/2,
and

1 − (2l − 2)s (1 − s ) ≥ 1 − (2l − 2) (1 − s ) ≥ 1 − 2c

logκ
≥ 1/2,

then

(1 − f + f /κ) (1 − 2s )[1 − (2l − 2)s (1 − s )] ≤ − f (1/2)
4κ

= − 1

8κ
.

On the other hand,

exp

(
− 1

s (1 − s )

)
≤ exp �	−

(
1 − c

l logκ

)−1 l logκ
c


�
= κ−(1−

c
l logκ )−1 lc

≤ κ−l/c

≤ κ−1,
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then

exp

(
− 1

s (1 − s )

)
c−1e (1 − 1/κ)s2 (1 − s )2

≤ 1
κ

1

ce

(
c

l logκ

)2

≤ 1

16κ
.

Therefore, for all s ∈ [1 − c
l logκ , 1] we have G (s ) ≤ −1/(16κ) < 0, which indicates s∗ ≤ 1 − c

l logκ .

We are now ready to bound F (s ). From the equationG (s∗) = 0, we get

exp
(
− 1
s∗ (1−s∗ )

)
1 − f + f /κ

=
(1 − 2s∗)[1 − (2l − 2)s∗ (1 − s∗)]

c−1e (−1 + 1/κ)s2∗ (1 − s∗)2
,

which gives

F (s ) ≤ F (s∗)

=
(1 − 2s∗)[1 − (2l − 2)s∗ (1 − s∗)]
c−1e (−1 + 1/κ)[s∗ (1 − s∗)]2l

≤ 2s∗ − 1
c−1e (1 − 1/κ)[s∗ (1 − s∗)]2l

≤ 2ce · 22l (1 − s∗)−2l

≤ 2ce · 22l
(
l logκ

c

)2l

= 2ce

(
64

ce

) l
(logκ)2l l2l

≤ 2ce
e2

(
64e2

ce

) l
(logκ)2l (l !)2.

The last inequality comes from the fact l l ≤ el−1l !, which can be derived from the fact that

n∑
i=1

log i ≥
ˆ n

1

logx dx = n logn − (n − 1).

By definition of F (s ) we immediately get

Δ−1bal ≤ 2
√
2e

ce
4lF ≤ 4

√
2

e

(
256e2

ce

) l
(logκ)2l (l !)2.

Now we go back to the estimate of R (k ) . By Lemma 11,

‖R (k ) ‖2 ≤
2

Δ

k∑
l=1

(
k

l

)
bal

(l !)2

(l + 1)2
2

Δ

(
D log2 κ

)k−l [(k − l )!]4
(k − l + 1)2

≤ 2

Δ

k∑
l=1

(
k

l

)
8
√
2

e

(
256e2

ce

) l
(logκ)2l (l !)2

(l !)2

(l + 1)2

(
D log2 κ

)k−l [(k − l )!]4
(k − l + 1)2
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≤ 2

Δ
(D log2 κ)kc−1f

k∑
l=1

(
k

l

)
(l !)4[(k − l )!]4

(l + 1)2 (k − l + 1)2

≤ 2

Δ
(D log2 κ)k

(k!)4

(k + 1)2
.

This completes the proof. �

The next lemma is the main technical result, which gives the bound of derivatives of Ej defined
in Equation (20).

Lemma 15. (a) For all k ≥ 0,

|E (k )
0 | = |P

(k )
0 | ≤ (D log2 κ)k

(k!)4

(k + 1)2
. (26)

(b) For all k ≥ 0, j ≥ 1,

‖E (k )
j ‖ ≤ A1A

j
2A

k
3

[(k + j )!]4

(k + 1)2 (j + 1)2
, (27)

with

A1 =
1

2

[
c2f
(
1 + 2c2f

)]−1
,

A2 = A−11 c3f
16

Δ
D log2 κ,

A3 = D log2 κ .

Remark 16. The choice of A1,A2 can be rewritten as

c3f
16

Δ
D log2 κ = A1A2,

c2f
(
1 + 2c2f

)
A1 =

1

2
.

Furthermore, using cf > 1, we have

c3f
16

Δ

A3

A2
= A1 ≤

1

2
.

These relations will be used in the proof later.

Proof. (a) By Lemma 14,

|P (k )
0 (s0) | = ‖ (2π i)−1

˛
Γ(s0 )

R (k ) (z, s0, s0)dz‖ ≤ (D log2 κ)k
(k!)4

(k + 1)2

(b) We prove by induction with respect to j. For j = 1, Equation (22) tells

‖E (k )
1 ‖ = ‖ (2π )

−1
˛
Γ

dk

dsk
(R[P (1)

0 , P0]R)dz‖ ≤
Δ

2
‖ d

k

dsk
(R[P (1)

0 , P0]R)‖.

By Lemmas 13 and 14,

‖E (k )
1 ‖ ≤ Δc3f

(
2

Δ

)2
D log2 κ (D log2 κ)k

[(k + 1)!]4

(k + 1)2

≤ A1A2A
k
3

[(k + 1)!]4

(k + 1)2 (1 + 1)2
.
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Now assume < j the estimate holds, for j, by Lemmas 12, 13, and the induction hypothesis,

‖S (k )j ‖ ≤
j−1∑
m=1

cf A1A
m
2 A1A

j−m
2 Ak

3

[(k + j )!]4

(k + 1)2 (m + 1)2 (j −m + 1)2

= A2
1A

j
2A

k
3

[(k + j )!]4

(k + 1)2
cf

j−1∑
m=1

1

(m + 1)2 (j −m + 1)2

≤ c2f A
2
1A

j
2A

k
3

[(k + j )!]4

(k + 1)2 (j + 1)2
.

Again by Lemmas 13, 14, and the induction hypothesis,

‖E (k )
j ‖ ≤

����� d
k

dsk

(
(2π )−1

˛
Γ
R[E (1)

j−1, P0]Rdz

)����� +
����� d

k

dsk
S j
����� +

����� d
k

dsk

(
2P0S jP0

)�����
≤ Δc3f

(
2

Δ

)2
A1A

j−1
2 A3

1

j2
Ak
3

[(k + j )!]4

(k + 1)2
+ c2f A

2
1A

j
2A

k
3

[(k + j )!]4

(k + 1)2 (j + 1)2

+ 2c2f c
2
f A

2
1A

j
2

1

(j + 1)2
Ak
3

[(k + j )!]4

(k + 1)2

≤ c3f
16

Δ
A1A

j−1
2 Ak+1

3

[(k + j )!]4

(k + 1)2 (j + 1)2
+ c2f A

2
1A

j
2A

k
3

[(k + j )!]4

(k + 1)2 (j + 1)2

+ 2c4f A
2
1A

j
2A

k
3

[(k + j )!]4

(k + 1)2 (j + 1)2

=

[
c3f

16

Δ

A3

A2
+ c2f
(
1 + 2c2f

)
A1

]
×
[
A1A

j
2A

k
3

[(k + j )!]4

(k + 1)2 (j + 1)2

]
≤ A1A

j
2A

k
3

[(k + j )!]4

(k + 1)2 (j + 1)2
. �

F DETAILS OF THE NUMERICAL TREATMENTS AND EXAMPLES

For simulation purpose, the AQC schemes are carried out using and the induction hypothesis
with a time step size 0.2. We use the gradient descent method to optimize QAOA and record the
running time corresponding to the lowest error in each case. In QAOA, we also use the true fidelity
to measure the error. RM is a Monte Carlo method, and each RM calculation involves performing

200 independent runs to obtain the density matrix ρ (i ) for i-th repetition, then we use the averaged
density ρ̄ = 1/nrep

∑
ρ (i ) to compute the error. We report the averaged runtime of each single RM

calculation. We perform calculations for a series of 64-dimensional Hermitian positive definite
dense matrices A1, and 32-dimensional non-Hermitian dense matrices A2 with varying condition
number κ.
For concreteness, for the Hermitian positive definite example, we choose A = UΛU †. Here,

U is an orthogonal matrix obtained by Gram–Schmidt orthogonalization (implemented via a QR
factorization) of the discretized periodic Laplacian operator given by

L =

�����������	

1 −0.5 −0.5
−0.5 1 −0.5

−0.5 1 −0.5
. . .

. . .
. . .

−0.5 1 −0.5
−0.5 −0.5 1


�����������
. (28)
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Λ is chosen to be a diagonal matrix with diagonals uniformly distributed in [1/κ, 1]. More precisely,
Λ = diag(λ1, λ2, . . . , λN ) with λk = 1/κ+ (k−1)h,h = (1−1/κ)/(N −1). Such construction ensures
A to be a Hermitian positive definite matrix which satisfies ‖A‖2 = 1 and the condition number
of A is κ. We choose |b〉 = ∑N

k=1 uk/‖
∑N

k=1 uk ‖2 where {uk } is the set of the column vectors of U .
Here, N = 64.
For the non-Hermitian positive definite example, we choose A = UΛV †. Here, U is the same

as those in the Hermitian positive definite case, except that the dimension is reduced to N = 32.
Λ = diag(λ1, λ2, . . . , λN ) with λk = (−1)k (1/κ+ (k−1)h),h = (1−1/κ)/(N −1).V is an orthogonal
matrix obtained by Gram–Schmidt orthogonalization of the matrix

K =

�����������	

2 −0.5 −0.5
−0.5 2 −0.5

−0.5 2 −0.5
. . .

. . .
. . .

−0.5 2 −0.5
−0.5 −0.5 2


�����������
. (29)

Such construction ensures A to be non-Hermitian, satisfying ‖A‖2 = 1 and the condition number
of A is κ. We choose the same |b〉 as that in the Hermitian positive definite example.

ACKNOWLEDGMENTS

We thank Rolando Somma, Yu Tong and Nathan Wiebe for helpful discussions.

REFERENCES

[1] Tameem Albash and Daniel A. Lidar. 2018. Adiabatic quantum computation. Rev. Mod. Phys. 90, 1 (2018), 015002.

[2] Andris Ambainis. 2012. Variable time amplitude amplification and quantum algorithms for linear algebra problems.

In Proceedings of the STACS’12 (29th Symposium on Theoretical Aspects of Computer Science). Vol. 14. LIPIcs, Paris,

France, 636–647.

[3] Seraph Bao, Silken Kleer, Ruoyu Wang, and Armin Rahmani. 2018. Optimal control of superconducting gmon qubits

using pontryagin’s minimum principle: Preparing a maximally entangled state with singular bang-bang protocols.

Phys. Rev. A 97, 6 (2018), 062343.

[4] Dominic W. Berry, AndrewM. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. 2015. Simulating hamil-

tonian dynamics with a truncated taylor series. Phys. Rev. Lett. 114, 9 (2015), 090502.

[5] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. 2015. Hamiltonian simulation with nearly optimal depen-

dence on all parameters. In Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

IEEE, Piscataway, NJ, 792–809.

[6] Sergio Boixo, Emanuel Knill, and Rolando D. Somma. 2009. Eigenpath traversal by phase randomization. Quantum

Info. Comput. 9 (2009), 833–855.

[7] Sergio Boixo and Rolando D. Somma. 2010. Necessary condition for the quantum adiabatic approximation. Phys. Rev.

A 81, 3 (2010), 032308.

[8] Carlos Bravo-Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles. 2020. Variational

Quantum Linear Solver. arXiv:1909.05820. Retrieved from https://arxiv.org/abs/1909.05820.

[9] Marin Bukov, Alexandre G. R. Day, Dries Sels, Phillip Weinberg, Anatoli Polkovnikov, and Pankaj Mehta. 2018. Re-

inforcement learning in different phases of quantum control. Phys. Rev. X 8, 3 (2018), 031086.

[10] Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, Joseph Traub, and Sabre Kais. 2013. Quantum algorithm and

circuit design solving the poisson equation. New J. Phys. 15, 1 (2013), 013021.

[11] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. 2019. The power of block-encoded matrix powers: Im-

proved regression techniques via faster hamiltonian simulation. In Proceedings of the 46th International Colloquium

on Automata, Languages, and Programming (ICALP 2019) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 132). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 33:1–33:14.

[12] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. 2017. Quantum algorithm for systems of linear equations

with exponentially improved dependence on precision. SIAM J. Comput. 46, 6 (2017), 1920–1950.

ACM Transactions on Quantum Computing, Vol. 3, No. 2, Article 5. Publication date: February 2022.

http://arxiv.org/abs/1909.05820.
https://arxiv.org/abs/1909.05820


5:28 D. An and L. Lin

[13] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu. 2021. Theory of trotter error with

commutator scaling. Physical Review X 11, 1 (2021), 011020.

[14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approximate Optimization Algorithm.

arXiv:1411.4028. Retrieved from https://arxiv.org/abs/1411.4028.

[15] Yimin Ge, András Molnár, and J. Ignacio Cirac. 2016. Rapid adiabatic preparation of injective projected entangled

pair states and gibbs states. Phys. Rev. Lett. 116 (2016), 080503.

[16] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. 2019. Quantum singular value transformation and

beyond: Exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing (STOC 2019). Association for Computing Machinery, New York, NY, 193–204.

[17] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations.

Phys. Rev. Lett. 103, 15 (2009), 150502.

[18] Itay Hen. 2019. How quantum is the speedup in adiabatic unstructured search? Quant. Inf. Proc. 18, 6 (2019), 162.

[19] Sabine Jansen, Mary-Beth Ruskai, and Ruedi Seiler. 2007. Bounds for the adiabatic approximation with applications

to quantum computation. J. Math. Phys. 48, 10 (2007), 102111.

[20] Lin Lin and Yu Tong. 2020. Optimal polynomial based quantum eigenstate filtering with application to solving quan-

tum linear systems. Quantum 4 (2020), 361.

[21] Joseph W. H. Liu. 1992. The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev. 34, 1

(1992), 82–109.

[22] Guang Hao Low and Isaac L. Chuang. 2017. Optimal hamiltonian simulation by quantum signal processing. Phys.

Rev. Lett. 118, 1 (2017), 010501.

[23] Guang Hao Low and Nathan Wiebe. 2019. Hamiltonian Simulation in the Interaction Picture. arXiv:1805.00675. Re-

trieved from https://arxiv.org/abs/1805.00675.

[24] YvonMaday and Gabriel Turinici. 2003. New formulations of monotonically convergent quantum control algorithms.

J. Chem. Phys. 118, 18 (2003), 8191–8196.

[25] Gheorghe Nenciu. 1993. Linear adiabatic theory exponential estimates. Comm. Math. Phys. 152, 3 (1993), 479–496.

[26] Murphy Yuezhen Niu, Sergio Boixo, Vadim N. Smelyanskiy, and Hartmut Neven. 2019. Universal quantum control

through deep reinforcement learning. npj Quantum Info. 5, 1 (2019), 33.

[27] Ali T. Rezakhani, W.-J. Kuo, Alioscia Hamma, Daniel A. Lidar, and Paolo Zanardi. 2009. Quantum adiabatic brachis-

tochrone. Phys. Rev. Lett. 103 (2009), 080502.

[28] Jérémie Roland and Nicolas J. Cerf. 2002. Quantum search by local adiabatic evolution. Phys. Rev. A 65, 4 (2002),

042308.

[29] Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems. Vol. 82. SIAM, Philadelphia, PA.

[30] Yiğit Subaşı, Rolando D. Somma, and Davide Orsucci. 2019. Quantum algorithms for systems of linear equations

inspired by adiabatic quantum computing. Phys. Rev. Lett. 122, 6 (2019), 060504.

[31] Wim van Dam, Michele Mosca, and Umesh Vazirani. 2001. How powerful is adiabatic quantum computation? In

Proceedings 42nd IEEE Symposium on Foundations of Computer Science. IEEE, Piscataway, NJ, 279–287.

[32] Nathan Wiebe and Nathan S. Babcock. 2012. Improved error-scaling for adiabatic quantum evolutions. New J. Phys.

14, 1 (2012), 1–10.

[33] Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. 2018. Quantum linear system algorithm for dense matrices.

Phys. Rev. Lett. 120, 5 (2018), 050502.

[34] Xiaosi Xu, Jinzhao Sun, Suguru Endo, Ying Li, Simon C. Benjamin, and Xiao Yuan. 2021. Variational algorithms for

linear algebra. Science Bulletin in press (2021).

[35] Zhi-Cheng Yang, Armin Rahmani, Alireza Shabani, Hartmut Neven, and Claudio Chamon. 2017. Optimizing varia-

tional quantum algorithms using pontryagin’s minimum principle. Phys. Rev. X 7, 2 (2017), 021027.

[36] Wusheng Zhu andHerschel Rabitz. 1998. A rapidmonotonically convergent iteration algorithm for quantum optimal

control over the expectation value of a positive definite operator. J. Chem. Phys. 109, 2 (1998), 385–391.

Received April 2020; revised September 2021; accepted November 2021

ACM Transactions on Quantum Computing, Vol. 3, No. 2, Article 5. Publication date: February 2022.

https://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1805.00675
https://arxiv.org/abs/1805.00675

