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Abstract. Recent developments in markerless tracking software such as
DeepLabCut (DLC) allow estimation of skin landmark positions during behav-
ioral studies. However, studies that require highly accurate skeletal kinematics
require estimation of 3D positions of subdermal landmarks such as joint centers
of rotation or skeletal features. In many animals, significant slippage between
the skin and underlying skeleton makes accurate tracking of skeletal configura-
tion from skin landmarks difficult. While biplanar, high-speed X-ray acquisition
cameras offer a way to measure accurate skeletal configuration using tantalum
markers and XROMM, this technology is expensive, not widely available, and
the manual annotation required is time-consuming. Here, we present an approach
that utilizes DLC to estimate subdermal landmarks in a rat from video collected
from two standard cameras. By simultaneously recording X-ray and live video
of an animal, we train a DLC model to predict the skin locations representing
the projected positions of subdermal landmarks obtained from X-ray data. Pre-
dicted skin locations from multiple camera views were triangulated to reconstruct
depth-accurate positions of subdermal landmarks. We found that DLCwas able to
estimate skeletal landmarks with good 3D accuracy, suggesting that this might be
an approach to provide accurate estimates of skeletal configuration using standard
live video.

1 Introduction

DeepLabCut (DLC), an open-source markerless tracking software package, allows auto-
mated and robust position estimation of skin landmarks [1], and has been widely adopted
for use in extracting kinematics from a wide range of animal behaviors. However, since
muscles and tendons act directly on bones and joints, quantifying accurate kinematics
often requires estimation of the skeletal structure itself, not the skin above [2].

X-ray reconstruction of moving morphology (XROMM) utilizes high-speed X-ray
cameras to obtain accurate 3D estimates of subdermal landmarks, such as skeletal fea-
tures or joint centers [3]. However, XROMM requires frame-by-frame manual annota-
tion, and subdermal landmarks frequently need to be ‘marked’ with implanted tantalum
beads to show up in X-ray videos. Moreover, because of their expense and complexity,
XROMM systems are difficult to use widely across experimental setups.
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Here we present an approach that leverages DLC’s ability to estimate skin land-
marks to increase the throughput and reduce the labor when quantifying kinematics with
XROMM. Instead of training DLC models with hand-annotated frames, we train DLC
models with frames that are labeled by projecting the 3D positions of skeletal land-
marks obtained with XROMM onto simultaneously obtained frames from live video.
Thus, well-trained DLC models can learn to estimate the position of subdermal skeletal
features using information present in the live video images. Predicted locations from
multiple camera views can then be triangulated to reconstruct depth-accurate positions
of subdermal landmarks.

In this paper, we demonstrate preliminary results evaluating this approach on the rat
forelimb from an overground running task.

2 Methods

2.1 Data Collection

4 trials of a rat performing an overground running task were recorded by two standard
video cameras and two high-speed X-ray acquisition cameras. ‘Objective’ 3D positions
of skeletal features and implanted tantalum landmarks in the rat forelimb were manually
annotated, using methods described elsewhere [4].

Training data for the DLC models was generated by projecting the 3D position of
subdermal landmarks identified using XROMM onto views from the live camera. Each
DLC model, one per camera, was trained with 20 equally spaced frames per trial, from
3 trials total. The fourth trial was held out for use in cross-validation of the method
(Fig. 1).

Fig. 1. (A) shows pipeline to generate frames of training data for DLCmodels. (B) shows pipeline
of using trained DLC models to predict 3D positions.
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3 Results

3.1 2D Estimation of Skeletal Landmarks

We first evaluated how well DLC models were able to predict the 2D positions of
subdermal landmarks.We compared the Euclidian distance between the actual projected
points and theDLCpredicted points on a trial neithermodelwas trained on.As illustrated
in Fig. 2B, we found that errors from this reconstruction were small (~2 pixels).

Fig. 2. (A) shows a zoomed in sample framewith projected positions andDLCpredicted position.
(B) Pixel error for DLCmodels for certain subdermal landmarks. Pixel error is Euclidean distance
between predicted and projected.

3.2 3D Estimation of Skeletal Landmarks

We then triangulated the DLC-predicted points from both cameras to obtain 3D position
estimations of subdermal landmarks, and then compared the Euclidian distance between
the DLC-predicted 3D points and the objective 3D points obtained by XROMM. As
illustrated in Fig. 3A, we found the error to be ~2 mm for each marker.

Finally, we quantified joint angle kinematics from DLC-predicted 3D points and
compared those to joint angles obtained from the objective 3D points identified using
XROMM. We considered three joint angles and found the average error to be less than
~ 4° (Fig. 3B).
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Fig. 3. (A) shows Euclidian distance between DLC triangulated 3D points and objective points.
(B) Frame by frame joint angles calculated from DLC predicted landmarks (orange) and from
objective (blue) landmarks identified using XROMM. The plot illustrates the joint angle between
the shoulder marker, elbow marker, and wrist marker. (C) Average error over all frames for each
calculated joint angle. Shoulder joint is calculated between scapular marker, shoulder marker, and
wrist marker. Elbow joint is between shoulder marker, elbow marker, and wrist marker. Radius
joint is calculated between humerus post marker, radius post landmark and wrist marker (Color
figure online).

4 Discussion

TrainedDLCmodelswere able to estimate 3Dpositions of subdermal, skeletal landmarks
with low error. At a minimum, this approach can increase the throughput of studies
needing 3D position estimates of subdermal landmarks in experiments using XROMM
data. DLC models can be trained on data from a small number of frames from each
trial in a study, and then used to generate 3D positions with low error. However, for the
purpose of reducing labor of analysis, it is debatable whether it might be more efficient
to instead apply DLC directly to X-ray data to automate the manual annotation process.

Instead, the promise of the method presented here comes from its potential for gen-
eralizability to trials and experiments that do not use XROMM recordings. For instance,
in this dataset, the field of view of the live video cameras was wider than the X-ray acqui-
sition cameras, allowing the DLC models to predict frames that the X-ray cameras had
no access to. Conceivably, a well-trained DLC model could estimate 3D positions for a
specific animal across a wide range of experimental conditions, even tasks where there
isn’t training data from the X-ray acquisition cameras. Even more speculatively, it might
be possible to standardize experimental conditions for a specific species across labora-
tories closely enough so that multiple investigators could estimate skeletal landmarks
with accuracy levels close to those achieved using XROMM but using only standard,
off-the-shelf, cameras. In future work, we will evaluate the generalizability of this app-
roach, testing whether it would be possible to create a DLC model for a specific species
that can be used across laboratories and experimental conditions to estimate accurate
skeletal kinematics.
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