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ABSTRACT

We prove that the entanglement entropy of the ground state of a
locally gapped frustration-free 2D lattice spin system satisfies an
area law with respect to a vertical bipartition of the lattice into left
and right regions. We first establish that the ground state projec-
tor of any locally gapped frustration-free 1D spin system can be
approximated to within error € by a degree O(+/nlog(e~1)) mul-
tivariate polynomial in the interaction terms of the Hamiltonian.
This generalizes the optimal bound on the approximate degree of
the boolean AND function, which corresponds to the special case of
commuting Hamiltonian terms. For 2D spin systems we then con-
struct an approximate ground state projector (AGSP) that employs
the optimal 1D approximation in the vicinity of the boundary of the
bipartition of interest. This AGSP has sufficiently low entanglement
and error to establish the area law using a known technique.
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1 INTRODUCTION

The information-theoretic view on quantum matter has had wide-
spread impact in physics. For instance, tools from quantum Shannon
theory have provided insights into the black-hole paradox [26] and
the notion of topological entanglement entropy has been crucial for
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understanding and classifying phases of matter [28]. This viewpoint
has also permeated the computational side of condensed matter
physics, and has led to the identification of entropic properties
known as the area laws, which are hallmarks of classical simula-
bility in many physically relevant settings. A state of a lattice spin
system is said to satisfy an area law if its entanglement entropy with
respect to any bipartition scales with the size of its boundary. This
restricts the quantum correlations arising in the state, and enables
an efficient classical representation of the state for one-dimensional
(1D) lattice systems [36]. A breakthrough result of Hastings [24]
established an area law for gapped ground states in one dimension.
Subsequent improvements were obtained in Refs. [8, 9] using new
tools from combinatorics and approximation theory. This led to an
efficient classical algorithm for computing ground states [10, 30],
providing a rigorous justification for the success of the DMRG algo-
rithm [37]. Recently, area law was also shown for the ground states
of 1D long range hamiltonians [29].

The area law conjecture for two or higher dimensional systems
has remained a significant open question, see e.g., Refs. [13, 17, 20,
32]. It can be motivated by the following “locality intuition":

Locality of correlations in the vicinity of the boundary of a region
should imply an area law for the region.

In particular, this suggests that the area law should hold for
gapped ground states since they possess a finite correlation length
[23]. Whether or not this intuition can be made rigorous remains
to be seen [25]. While correlation decay has been shown to imply
an area law in 1D [14], the locality intuition has no formal support
in higher dimensions.

In this work, we prove that the unique ground state of any
frustration-free, locally gapped 2D lattice spin system satisfies an
area law scaling of entanglement entropy with respect to a vertical
cut that partitions the system into left and right regions, see Fig. 1.

Theorem 1.1 (Informal). Consider a locally gapped, frustration-free
Hamiltonian with geometrically local interactions in 2D and a unique
ground state. The ground state entanglement entropy with respect to
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a vertical bipartition of length n is at most n (p"lyl"g(") )

A frustration-free quantum spin system has the property that its
ground state has minimal energy for each term in the Hamiltonian.
Such a system is said to be locally gapped if there exists a positive
constant that lower bounds the spectral gap of any subset of the
local Hamiltonian terms. We believe that our techniques readily
generalized to rectangular bi-partitions on the lattice. This can then
be used to prove area laws for other bi-partitions via appropriate
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Figure 1: L x (n+1) lattice, with local terms h;; acting on plaquettes
as depicted in green. A vertical cut (blue line) partitions the system
into left and right regions, and intersects n plaquettes.

tiling, including those featuring gapless edge excitations [11]. Using
the techniques introduced in [10] and further developed in [1], The-
orem 1.1 readily extends to degenerate ground states. We note that
a previous work [18] established the area law for the special case of
spin-1/2 frustration-free systems, using an exact characterization
of the ground space from Ref. [15]. The area law is known to be
false on general graphs [3, 7].

The proof of Theorem 1.1 is obtained via new insights in the
approximation theory of quantum ground states. For a Hamilton-
ian with unique ground state |Q), an e-approximate ground state
projector (AGSP) is an Hermitian operator K such that K|Q) = |Q)
and ||K — |Q){Q]||| < €. In Ref. [9] it has been shown that an AGSP
with small error € and low entanglement with respect to a given
bipartition of the lattice — as measured by its Schmidt rank SR(K)!
— implies an upper bound on the entanglement of the ground state
itself across the bipartition. In particular, Ref. [9] shows that if
€ - SR(K) < 1/2 then the entanglement of the ground state is at
most O(1) - log(SR(K)), see the full version [5, Theorem 4.1] for a
precise statement. In this way the study of entanglement in quan-
tum ground states can be reduced to the study of entanglement in
low-error AGSPs.

Approximate degree of quantum ground states. To describe our
techniques, consider a collection {H };.1:1 of Hermitian operators

satisfying 0 < H; < I for all j. Suppose the Hamiltonian H def
7:1 H; has a unique ground state |Q) satisfying H;|Q) = 0 for all

J
We consider AGSPs which are multivariate polynomial functions

K =P(Hy,Hy, ..., Hy). (1)

In general, this kind of polynomial is a linear combination of mono-
mials of the form

H; Hj, ... Hj,, Jk € [n].

As discussed above, in order to bound the entanglement of the
ground state, it suffices to construct an AGSP with sufficiently small
error and sufficiently small entanglement. Moreover, the techniques

!The Schmidt rank SR (K) of an operator K with respect to a bipartition of the system is
the minimal number R of tensor product operators A, ® B, such that K = Zg;l Ay ®
By
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of Ref. [8] suggest that polynomial degree can be taken as a proxy
for entanglement in AGSPs of this type. Thus, we ask: what is the
minimal polynomial degree s needed to approximate the ground
state projector to within a given error €?

Following Ref. [8], it is instructive to consider the special case
in which our AGSP (1) can be expressed as K = p(H) where p isa
univariate polynomial. This kind of AGSP has the nice feature that
it commutes with H and can therefore be diagonalized in the same
basis. Using this fact we see that such a polynomial is an e-AGSP iff

p(0)=1 @)

Here Spec, (H) is the set of nonzero eigenvalues of H. Note that
since 0 < H; < I'wehave ||H|| < nand therefore Spec, (H) C [y, n]
where y is the smallest nonzero eigenvalue or spectral gap of H. By
choosing p to be a rescaled and shifted Chebyshev polynomial of
degree s one obtains an AGSP with [8]

€= eiQ(s‘/g). (3)

This scaling of error with degree is optimal, a consequence of the
extremal property of Chebyshev polynomials [33, Proposition 2.4].
Here we did not use any properties of the Hamiltonian except the
fact that Spec(H) C [y, n]. We see that a spectral gap lower bounded
by a positive constant ensures a good € = O(1) approximation by a
O(+/n)-degree polynomial. This form of locality in the ground state
is somewhat distinct from finite correlation length.

Remarkably, the tradeoff Eq. (3) between polynomial degree
and error can be improved in certain important special cases. For
example, suppose the Hamiltonian terms are commuting projec-
tors, i.e., [H;, Hj] = 0 and le = H;. In that case the problem of
approximating the ground state is formally equivalent to the prob-
lem of approximating the multivariate AND function of n binary
variables (equivalently, the OR function), see the full version [5,
Section 3.1] for details?. The distinguishing feature of the com-
muting case for our purposes is that, crucially, all eigenvalues of
H are integers between 0 and n and by exploiting the fact that

and maXyeSpec, (H) |P(X)| < e

Spec, (H) C {1,2,...,n} one can construct a suitable univariate
polynomial p that achieves Eq. (2) with
€= e Q) (4)

This improves upon Eq. (3) in the low-error regime s > /n and is
known to be optimal in the commuting case [27].

More generally, for a collection of possibly non-commuting
operators {H; };’zl let us call a degree-s multivariate polynomial
AGSP (1) optimal if the approximation error matches Eq. (4). Our
first result establishes that one-dimensional frustration-free locally-
gapped ground states can be optimally approximated in this sense.

Theorem 1.2 (Optimal approximation of 1D ground states, infor-
mal). For any constant § € (0,1/2) and s € (Vn,n'~9), there is a
degree O(s) polynomial which approximates the ground state projec-
tor of a locallycally gapped 1D frustration-free quantum spin system
to within error Eq. (4).

’The e-approximate degree of AND has the remarkable low-error behaviour
deg. (AND) = O(y/nlog(e~1)) [16, 19]. The log under the square root reflects the
fact that the error probability of Grover’s search algorithm can be reduced using a
better strategy than the naive parallel amplification.
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We emphasize that the AGSP in the above theorem is a multi-
variate polynomial of the form (1), and as far as we know cannot
be expressed as a univariate polynomial function of H. This is be-
cause we may have [H;, Hiy1] # 0, and — in contrast with the
commuting case — the spectrum Spec, (H) does not appear to have
a nice characterization that allows us to improve upon Eq. (3) by
a suitable choice of univariate polynomial p. We construct our
AGSP via a recursive application of the robust polynomial method
of Ref. [4] (where a subvolume law for the same class of systems
was shown). The resulting polynomial, which is detailed in the full
version [5, Section 3.2], has a structure which is reminiscent of a
renormalization group flow.

Although it concerns 1D systems, Theorem 1.2 turns out to be
just what we need to establish the area law in two dimensions. The
key insight is captured by the following modified locality intuition
that we propose, which asserts a direct link between linear-degree
optimal polynomial approximations and area laws:

A linear-degree optimal polynomial approximation for the ground
state in the vicinity of the boundary of a region should imply an area
law for the region.

Here we mean linear in n, the number of inputs of the multivari-
ate polynomial (cf. Eq. (1)). To understand where this comes from,
suppose we can construct an optimal linear-degree polynomial P
that approximates the ground state projector and is localized in
a width ~ w neighborhood of the boundary of the bipartition of
interest (here we are intentionally vague about the meaning of
localized, see the full version [5, Section 4] for details). Thus, the
degree of P is ~ w - area and its error is € < e~ Q(wared) where
‘area’ is the size of the boundary. Now consider an AGSP K = P for
some positive integer g. The total polynomial degree of K is thus
D = qw-area, and its erroris €’ = €4 < e~R(gw-area) Now we shall
assume that the polynomial K7 is nicely behaved in a certain sense
first identified in Ref. [9]. In particular, we assume that its Schmidt
rank is amortized over the width w neighborhood of the boundary,
in that it scales as SR ~ eO(D/w+w-area) Choosing g = Q(w) (say)
and letting w be a large constant, we can ensure €’ - SR < 1/2, with
log(SR) = O(area). Thus, applying the aforementioned method
from Ref. [9] we would obtain the desired upper bound O(area) on
the ground state entanglement entropy.

Since the boundary of a region on a 2D lattice is one-dimensional,
the above argument suggests that the 2D area law should follow
from optimal linear-degree polynomial approximations in 1D. To
make this work, we show how our 1D approximation can be used
“in the vicinity of the boundary of the region" and we relate the
entanglement of the resulting AGSP to the polynomial degree. The
area law is then established using the aforementioned method from
Ref. [9]. The astute reader may note that Theorem 1.2 does not quite
provide a linear-degree optimal polynomial as the degree must be
n'=% for some § € (0, 1/2); a careful treatment of the § — 0 limit
leads to the slight deviation n'*°() from area law behaviour in
Theorem 1.1.

Discussion. There are at least three significant questions left
open by our work. Firstly, one may ask if the assumption of a local
spectral gap can be removed or replaced with one concerning the
global spectral gap of the Hamiltonian. We believe that this could
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lead to a generalization of our techniques to frustrated systems.
To make progress here may require a deeper understanding of the
interplay between the local spectral gap and the gap of the full
hamiltonian. Secondly, it is natural to ask if ground states of locally
gapped frustration-free systems can be approximated by efficiently
representable tensor networks such as PEPS of small bond dimen-
sion [35]. While it is known that a 2D area law does not imply
such a representation [21], a more detailed study of the optimal
polynomial approximations considered here may provide insight
into this question. Finally, a natural open question is to extend
our results to local hamiltonian systems on higher dimensional lat-
tices. As mentioned earlier, this is closely related to the question of
approximating ground states by linear-degree optimal polynomials.

2 POLYNOMIAL APPROXIMATION TOOLKIT

In this section we describe methods for approximating multivariate
functions by polynomials. We first describe polynomial approxima-
tions with real-valued variable inputs. Then we generalize these
methods to the local Hamiltonian setting by allowing operator-
valued inputs.

2.1 Approximation of Functions

Following Ref. [4] we shall build polynomial approximations by
combining two well-known ingredients: the univariate Chebyshev
polynomials and a robust polynomial [34].

We will use a rescaled and shifted Chebyshev polynomial defined
as follows. For every s € R>¢ and 5 € (0, 1) we define a polynomial
Tys : [0,1] — R of degree [s] by

()

T,
T (25 -1)
where Tj is the Chebyshev polynomial of the first kind. To ease
notation later on, the parameter s which determines the degree
is not required to be an integer. The polynomial Eq. (5) has the

following property which is a direct consequence of Lemma 4.1 of
Ref. [8].

def 1151

Tys(x) = ©)

Lemma 2.1 ([8]). For every s € Rxp and n € (0,1) we have
Ty,s(0) = 1 and

ITys(x)] <272V p<x<1,

Next, we describe the robust polynomial. Our starting point is
the function B : [0,1] — {0, 1} defined by
L,
B(x) & {

x=1 (6)

0, 0<x<1.

This function rounds x to a bit in a one-sided fashion. Using (6)
we define a (one-sided) “robust product” that takes real inputs
X1, %2, ..., Xm € [0,1] and outputs 1 if and only if they are all equal
to 1:

Rob(x1, X2, - .., xm) & B(x1)B(x2) . .. B(xm). )
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We note that since B(Xj)2 = B(x;) we may also express Eq. (7) as

Rob(x1,x2,...,%Xm)
= (B(xm)B(xm-1) ... B(x1)) (B(x1)B(x2) ... B(xm)). ~ (8)

The left-right symmetric expression will be useful to us momentar-
ily when we extend the definition of the function to allow operator-
valued inputs.

The robust polynomial of interest is an approximation to Eq. (7).
To this end, let

def | X, i=1
Bi(x) = . 9

1(x) {x’_l(x—l), 2<i< . ©)
Note that for any x € [0, 1] we have B(x) = lim;_, o Zj’:l Bj(x).
Define

def
S Xm) =

(B, Gom) - By (x0)) (B, (1) - By Cm)

(i i)+ (i +ip,) <3m

IEST)(xl, X2, ..

(10)

The above expression is obtained by starting with Eq. (8), substi-
tuting B « Zjil Bj, and then truncating the summation so that
the total degree of the polynomial is at most 3m (this is somewhat
arbitrary). This polynomial is a good approximation to Rob in the
following sense.

Lemma 2.2 (Special case of Lemma 2.4). Suppose that x1, xa, . .
[0,e] U {1} for some e < 1/10. Then

Xm €

[Rob(x1,. .., %m) — Rob(x1, ..., xm)| < (10¢)™ .

2.2 Approximation of Operators

Let us now extend our definitions from the previous section to allow
operator-valued inputs. Suppose O is a Hermitian operator with all
eigenvalues in the interval [0, 1]. The operator-valued Chebyshev
polynomial T, s(O) is defined in the usual way by substituting
x « O in Eq. (5). By applying Lemma 2.1 to each eigenvalue of O,
we obtain the following.

Lemma 2.3. Lets € Rxg and n € (0,1). Suppose that O is an
Hermitian operator with eigenvalues in the interval {0} U [, 1] and
let I1 be the projector onto the nullspace of O. Then Ty s(O)II = II

and ||T;,s(0) = II|| < 2¢725V7.

For the robust polynomial, we start by defining B(O) to be the
projector onto the eigenspace of O with eigenvalue 1. For Hermit-
ian operators O1, O, . .., O, such that each O; has eigenvalues in
the interval [0, 1], we define a Hermitian robust product which
generalizes Eq. (8):

def

Rob(01,0s,...,0m) = CTC where

def
C = B(01)B(03) ...B(Opm).
Note that due to the possible non-commutativity of the {O;} oper-
ators, Rob(01, Oy, ..., Op,) is generally not the projector onto the
intersection of the +1 eigenspaces of these operators.

Anurag Anshu, Itai Arad, and David Gosset

We also define the operator-valued polynomial B; (O) for positive
integers i by substituting x «— O in Eq. (9). The robust polynomial
is defined in parallel with (10), i.e.,

O &

(B, (Om) ... B (O) (B, (O1) ... By, (Om))

(i +i))+.. (i +in,) <3m

Rob(01, 0y, .

(11)

One can easily check that the operator in Eq. (11) is Hermitian. The
following error bound is established in the full version [5].

Lemma 2.4. Suppose that the eigenvalues of all operators {O;}]Z,
lie in the range [0, ¢] U {1} for some € < 1/10. Then

IRob(O1,...,0m) — Rob(O1, . ..,0m)|| < (10e)™.

3 OPTIMAL GROUND STATE
APPROXIMATIONS

Throughout this section we consider the following scenario. We
are given a set of Hermitian operators {H; };’:1 such that

0<Hj<I for all j € [n], (12)

which act on some finite-dimensional Hilbert space H. We are
interested in the nullspace of the operator

H= Zn:Hj.
=

Let us write IT for the projector onto the nullspace of H. In other
words, IT projects onto the intersection of the nullspaces of all
operators H; (we are interested in the case where II is nonzero).
Our goal is to approximate II by a low-degree polynomial in the
operators {H;}.

In Sec. 3.1 and Sec. 3.2 we work in a general setting and in par-
ticular we do not assume a tensor product structure of the Hilbert
space H or geometric locality of the operators {H;}. In Sec. 3.1
we consider the simplest case in which all operators H; are mu-
tually commuting and we describe the known optimal tradeoff
between approximation degree and error. Then, in Sec. 3.2 we show
that optimal approximations can be obtained more generally for
noncommuting operators which satisfy certain gap and merge prop-
erties. These properties themselves assert a kind of one-dimensional
structure with respect to the given ordering 1 < j < n of the opera-
tors. In Sec. 3.3 we describe how a direct application of these results
provides optimal ground state approximations for one-dimensional,
locally-gapped, frustration-free qudit Hamiltonians. Later we will
see how the results of Sec. 3.2 can provide low-entanglement ap-
proximations of ground states in the 2D setup.

3.1 Commuting Projectors

We begin with the easy case in which all {H;} are commuting
projectors:

H?=H; and [HyHj]=0 forall ije[n]. (13)

In this case (I — H;) is the projector onto the nullspace of H;, and
due to the commutativity Eq. (13) we may express II exactly as the
degree-n polynomial IT = []L, (I - Hj). Our goal is to construct a
lower degree polynomial P that approximates II. Since all operators
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{H;} commute and have {0, 1} eigenvalues, we may work in a basis
in which they are simultaneously diagonal and the problem reduces
to that of approximating the product of binary variables x € {0, 1}"
which label the eigenvalues of {I — H;}I_,. (Note that here we
do not require any properties of the basis which simultaneously
diagonalizes these operators, only that it exists). In other words,
the problem of approximating the ground space projector for a
Hamiltonian which is a sum of commuting projectors, reduces to
the problem of approximating the boolean AND function
AND(x1. g, ... %) = {1 ifxi=xp=...=x,=1
0 otherwise

We are faced with the task of constructing a multilinear polynomial
p which e-approximates AND in the sense that [p(x)—AND(x)| < €
for each x € {0, 1}". Remarkably, it is possible to achieve an arbi-
trarily small constant error € = O(1) using a polynomial of degree
O(+/n) [31]. For example, one can use the Chebyshev polynomial
Ti/ns (% T, xi) of degree [s] which achieves an approximation
error € = e=2(/V1) a5 can be seen from Lemma 2.1. Similarly, the
acceptance probability of the standard Grover search algorithm
[22], viewed as a function of the input bit string x provided as an or-
acle, constructs such an approximating polynomial [12]. However,
neither of these polynomials has optimal degree in the low-error
regime where € decreases with n. In that regime an optimal poly-
nomial can be constructed via a low-error refinement of Grover
search [16, 19] (see also Ref. [27]).

Here we provide a different family of polynomials that give an
optimal approximation to the AND function. These polynomials are
obtained in a simple way by combining the Chebyshev polynomial
Ty,s and the robust polynomial Rob from Sec. 2.1. Soon we will see
how this construction can be extended to the non-commuting case.
It is unclear to us whether one can alternatively extend the known
optimal polynomials constructed in Refs. [16, 19, 27].

Theorem 3.1 (Optimal approximation of AND). Letn be a pos-
itive integer. For every real number s € (v/n, n), there exists a polyno-
mial P(x) of degree O(s) such that

SZ
|P(x) — AND(x)| = e forall x € {0,1}"

2
Proor. Define the positive integer ¢ = |"sl—z'| and note that 1 <

t < n due to the specified bounds on s. Let p(y) def T1 57 (y). From
7
Lemma 2.1 we see that

p(0)=1 !

- <
t

1
p(yl<2- et < 2 for all

and

(14)

Since t < n, we may construct a partition [n] = UL U... Ul

where & def [n/t] and |I| < t for all 1 < k < & Our polynomial
approximation to AND is defined as

— 1 1
P(x) = Rob(p(l - E;IIXj)"'.’p(l A Z xj))'

3 JElg

Now we observe that the kth input to the Rob function on the
RHS approximates the AND of all bits in the set [;. To see this,
note that 1 — ﬁ 2jer, Xj = 0 when xj = 1 for all j € I, and

y<1
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1- ﬁ 2 jer, Xj 2 1/t if one or more x; = 0. Using this fact and

Eq. (14), we see that for each 1 < k < ¢ we have
1
=71 7)1

JEIk
Now applying Lemma 2.2 with ¢ = 1/20, and noting that Rob(x) =
AND(x) we see that, for each x € {0, 1}",

(15)

|P(x) — AND(x)| < 27¢ < 271/t < o75°/n,

The degree of the polynomial is at most 3¢ - 2/t = O(s). O

3.2 Operators with Gap and Merge Properties

We now consider a more general case in which the operators
{H; ;’:1 still satisfy (12), but may not be projectors and are not
assumed to commute. For any subset S C [n] of the operators, we
define the corresponding Hamiltonian

Hs € > H;
jes

and the projector ITs onto its nullspace. Similarly, we define gap(Hs)
to be the smallest nonzero eigenvalue of Hs . A crucial difference
between our setting here and the commuting setting considered
previously, is that a product IIgIIT is not in general equal to IIsyr.

We require our operators to satisfy two properties which are
defined with respect to the given ordering 1 < j < n. To describe
these properties it will be convenient to define an interval as a con-
tiguous subset {j, j+ 1,...,k — 1,k} C [n]. The gap property states
alower bound A on the smallest nonzero eigenvalue of any interval
Hamiltonian Hg. The merge property asserts that IIgIl = Igyr
for overlapping intervals S, T, with error decreasing exponentially
in the size of the overlap region. We now state these properties
more precisely.

Definition 3.2. Operators {H; }7:1 satisfy the gap and merge prop-
erties if, for some A € (0, 1], the following conditions hold for all

intervals S C [n] and any partition S = ABC into three consecutive
intervals:

gap(Hs) > A (16)

(17)

[Gap property]

IMaplpe — gl < 2¢~IBIVA [Merge property].

Note that the parameter A in this definition appears in both
the gap and merge properties. One could alternatively consider a
more general definition where each of these properties has its own

parameter, though we will not need to.
52

In the following we show that the optimal scaling e_Q(7) of
error with degree s can be recovered in this noncommutative setting,
by a recursive use of the robust polynomial, with one use of the
Chebyshev polynomial and gap property in the base level of the
recursion. The analysis uses the merge property to bound the error
in the recursion. The following theorem describes our results for
the case where the approximation degree scales less than linearly
inn.

3We use the convention that gap(h) = 1if h = 0.



STOC ’22, June 20-24, 2022, Rome, Italy

Theorem 3.3 (Less than linear degree). Suppose {H; };‘:1 satisfy
Egs. (12, 16,17) for some A € (0,1]. Let 6 € (0,1/4) be fixed and let s
be a real number satisfying

2vVnA™Y? <5 < (1/4)n' 0N/, (18)

There is a degree O(s) Hermitian multivariate polynomial P in the
operators {H; ;‘:1 such that
s%A
PI =11 |P—TI|| = e o . (19)
In the above, the big-O notation hides a constant which depends
only on §. We shall also be interested in a case where § is taken
very close to 0 and the degree is close to linear. This almost-linear
degree approximation will be used to establish the area law for two-
dimensional spin systems. For that application it will be useful to
describe the structure of the polynomial P in more detail. To this end,
we first define certain families P(e, ) of elementary polynomials
as follows.

Definition 3.4. For a, f > 0, let P(«a, ) denote the set of polyno-
mials of the form

(Hs,)(Hs,)? ... (Hs,)* ji+jo+...+jr<a and k<p.
LSk €

and

where ji, jo, ..., ji are positive integers and each set Sy, Sz, . .
[n] is an interval.

Theorem 3.5 (Near-linear degree). Suppose {H; ;’:1 satisfy Eqgs. (12,

16, 17) for some A € (0,1] and thatn > CA™Y, where C > 0 is some
absolute constant. There exist real numbers

5= A-1/2,1-0((ogm) /1)

such that the following holds. There exists a Hermitian multivariate

polynomial P in the operators {H;}?" | of degree at most a such that

1/4

a < nA” and (20)

IP —TI|| < exp (—ﬁe\“og(")), @1)

and such that P can be expressed as a linear combination of at most
(2a)# elements of P(a, ).

Theorems 3.3 and 3.5 are proven in the full version [5].

PII =11 and

3.3 Application to 1D Quantum Spin Systems

As a prototypical application of the results of the previous section,
here we specialize to the case of frustration-free one-dimensional
quantum spin systems with a local gap.

Consider a 1D system of n + 1 qudits of local dimension d > 2.

The Hilbert space is (Cd) et and the Hamiltonian is H = Z;’:l Hj,
where each operator H; satisfies 0 < H; < I and acts nontrivially
only on qudits j and j + 1 (and as the identity on all other qudits).
The local gap y is defined as the minimum spectral gap of a subset
of Hamiltonian terms

y & mingc ) gap( ZHJ)‘
jes
By definition, operators {H; ;’:1 satisfy the gap property Eq. (16)
with A = y. In the full version [5], we show that the merge property
is satisfied with A = y/80 (a consequence of the “detectability
lemma" [2, 6]). Therefore we may substitute A = y/80 in Theorems
3.3 and 3.5 to obtain optimal approximations to the ground state
projector I, as claimed in Theorem 1.2.
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4 2D AREA LAW

Here we consider a 2D locally gapped, frustration-free quantum
spin system along with a bipartition of the qubits into two regions.
We use the results of Sec. 3.2 to construct a polynomial approximate
ground state projector (AGSP) which has a kind of 1D structure
along the boundary of the bipartition. We show that this AGSP
has low enough error as a function of its Schmidt rank across the
bipartition, to establish the area law as stated in Theorem 1.1 using
the method from Refs. [2, 8, 9].

Consider a system of qudits of local dimension d arranged at the

vertices of an L X (n + 1) grid with n + 1 rows and L columns, as
®L(n+1)

shown in Fig. 1. The Hilbert space is (Cd , and we index

qudits by their (column, row) coordinates (i, j) € [L] X [n + 1]. We

consider a Hamiltonian which acts as a sum of local projectors*

L-1 n
=5
i=1

J=1

2
hij = hij

where h;; acts nontrivially only on the qudits in the set {i,i + 1} X
{J, j + 1}. We assume that Hy has a unique ground state |Q) such
that Hy|Q) = 0. Since h;j > 0, the latter condition is equivalent
to the frustration-free property h;;|Q) = 0 for all §, j. Our results
depend on the local gap of Hy:

def .
y = mingc[-1]x[n] gaP( Z hij). [Local gap] (22)

{i,j}eS

(recall gap(M) denotes the smallest nonzero eigenvalue of a positive
semidefinite operator M.) We note that for our purposes it would in
fact be sufficient to consider a local gap in which the minimization
is restricted to rectangular regions.

We consider a bipartition of the lattice into left and right regions,
corresponding to a “vertical cut” between a given column ¢ and
¢+ 1, as depicted in Fig. 1. In the following we write SR(M) for the
Schmidt rank of an operator with respect to the cut.

To bound the entanglement entropy of |Q2), we use the powerful
method of approximate ground state projectors (AGSP) developed in
Refs. [2, 8, 9, 24]. The following theorem is obtained by specializing
Corollary II1.4 of Ref. [9] to the case of Hermitian K.

Theorem 4.1 (Entanglement entropy from AGSP [9]). Suppose K
is a Hermitian operator satisfying K|Q) = |Q) and

1K = @)l SR(EK) < .

Then the entanglement entropy of |Q) across the cut is upper bounded
by O(1) - log (SR(K)).

We use the results of Sec. 3.2 to construct a suitable AGSP K. To
this end we construct a system of operators {H;}"_, which has the
gap and merge properties Egs. (16,17). See the full version [5] for
details.

4This is without loss of generality. Consider a frustration-free hamiltonian H’ =
2ij h;.j, where cI > h;-j > 0 are not projectors. Let h; j be the projector onto the

span of h:.,j, so that ch; j > h,i,j' The local spectral gap of Hj is at least % times the
local spectral gap of H' and they have the same ground space.
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