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ABSTRACT
We prove that the entanglement entropy of the ground state of a

locally gapped frustration-free 2D lattice spin system satisfies an

area law with respect to a vertical bipartition of the lattice into left

and right regions. We first establish that the ground state projec-

tor of any locally gapped frustration-free 1D spin system can be

approximated to within error 𝜖 by a degree 𝑂 (
√
𝑛 log(𝜖−1)) mul-

tivariate polynomial in the interaction terms of the Hamiltonian.

This generalizes the optimal bound on the approximate degree of

the boolean AND function, which corresponds to the special case of

commuting Hamiltonian terms. For 2D spin systems we then con-

struct an approximate ground state projector (AGSP) that employs

the optimal 1D approximation in the vicinity of the boundary of the

bipartition of interest. This AGSP has sufficiently low entanglement

and error to establish the area law using a known technique.
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1 INTRODUCTION
The information-theoretic view on quantum matter has had wide-

spread impact in physics. For instance, tools from quantum Shannon

theory have provided insights into the black-hole paradox [26] and

the notion of topological entanglement entropy has been crucial for
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understanding and classifying phases of matter [28]. This viewpoint

has also permeated the computational side of condensed matter

physics, and has led to the identification of entropic properties

known as the area laws, which are hallmarks of classical simula-

bility in many physically relevant settings. A state of a lattice spin

system is said to satisfy an area law if its entanglement entropy with

respect to any bipartition scales with the size of its boundary. This

restricts the quantum correlations arising in the state, and enables

an efficient classical representation of the state for one-dimensional

(1D) lattice systems [36]. A breakthrough result of Hastings [24]

established an area law for gapped ground states in one dimension.

Subsequent improvements were obtained in Refs. [8, 9] using new

tools from combinatorics and approximation theory. This led to an

efficient classical algorithm for computing ground states [10, 30],

providing a rigorous justification for the success of the DMRG algo-

rithm [37]. Recently, area law was also shown for the ground states

of 1D long range hamiltonians [29].

The area law conjecture for two or higher dimensional systems

has remained a significant open question, see e.g., Refs. [13, 17, 20,

32]. It can be motivated by the following “locality intuition":

Locality of correlations in the vicinity of the boundary of a region
should imply an area law for the region.

In particular, this suggests that the area law should hold for

gapped ground states since they possess a finite correlation length

[23]. Whether or not this intuition can be made rigorous remains

to be seen [25]. While correlation decay has been shown to imply

an area law in 1D [14], the locality intuition has no formal support

in higher dimensions.

In this work, we prove that the unique ground state of any

frustration-free, locally gapped 2D lattice spin system satisfies an

area law scaling of entanglement entropy with respect to a vertical

cut that partitions the system into left and right regions, see Fig. 1.

Theorem 1.1 (Informal). Consider a locally gapped, frustration-free
Hamiltonian with geometrically local interactions in 2D and a unique
ground state. The ground state entanglement entropy with respect to

a vertical bipartition of length 𝑛 is at most 𝑛
1+𝑂

(
1

polylog(𝑛)

)
.

A frustration-free quantum spin system has the property that its

ground state has minimal energy for each term in the Hamiltonian.

Such a system is said to be locally gapped if there exists a positive

constant that lower bounds the spectral gap of any subset of the

local Hamiltonian terms. We believe that our techniques readily

generalized to rectangular bi-partitions on the lattice. This can then

be used to prove area laws for other bi-partitions via appropriate
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Figure 1: 𝐿× (𝑛+1) lattice, with local termsℎ𝑖 𝑗 acting on plaquettes
as depicted in green. A vertical cut (blue line) partitions the system
into left and right regions, and intersects 𝑛 plaquettes.

tiling, including those featuring gapless edge excitations [11]. Using

the techniques introduced in [10] and further developed in [1], The-

orem 1.1 readily extends to degenerate ground states. We note that

a previous work [18] established the area law for the special case of

spin-1/2 frustration-free systems, using an exact characterization

of the ground space from Ref. [15]. The area law is known to be

false on general graphs [3, 7].

The proof of Theorem 1.1 is obtained via new insights in the

approximation theory of quantum ground states. For a Hamilton-

ian with unique ground state |Ω⟩, an 𝜖-approximate ground state

projector (AGSP) is an Hermitian operator 𝐾 such that 𝐾 |Ω⟩ = |Ω⟩
and ∥𝐾 − |Ω⟩⟨Ω | ∥ ≤ 𝜖 . In Ref. [9] it has been shown that an AGSP

with small error 𝜖 and low entanglement with respect to a given

bipartition of the lattice — as measured by its Schmidt rank SR(𝐾)1
— implies an upper bound on the entanglement of the ground state

itself across the bipartition. In particular, Ref. [9] shows that if

𝜖 · SR(𝐾) ≤ 1/2 then the entanglement of the ground state is at

most 𝑂 (1) · log(SR(K)), see the full version [5, Theorem 4.1] for a

precise statement. In this way the study of entanglement in quan-

tum ground states can be reduced to the study of entanglement in

low-error AGSPs.

Approximate degree of quantum ground states. To describe our

techniques, consider a collection {𝐻 𝑗 }𝑛𝑗=1 of Hermitian operators

satisfying 0 ≤ 𝐻 𝑗 ≤ 𝐼 for all 𝑗 . Suppose the Hamiltonian 𝐻
def

=∑𝑛
𝑗=1 𝐻 𝑗 has a unique ground state |Ω⟩ satisfying 𝐻 𝑗 |Ω⟩ = 0 for all

𝑗 .

We consider AGSPs which are multivariate polynomial functions

𝐾 = 𝑃 (𝐻1, 𝐻2, . . . , 𝐻𝑛). (1)

In general, this kind of polynomial is a linear combination of mono-

mials of the form

𝐻 𝑗1𝐻 𝑗2 . . . 𝐻 𝑗𝑚 𝑗𝑘 ∈ [𝑛] .
As discussed above, in order to bound the entanglement of the

ground state, it suffices to construct an AGSP with sufficiently small

error and sufficiently small entanglement. Moreover, the techniques

1
The Schmidt rank SR(𝐾) of an operator𝐾 with respect to a bipartition of the system is

the minimal number𝑅 of tensor product operators𝐴𝛼 ⊗𝐵𝛼 such that𝐾 =
∑𝑅

𝛼=1𝐴𝛼 ⊗
𝐵𝛼 .

of Ref. [8] suggest that polynomial degree can be taken as a proxy

for entanglement in AGSPs of this type. Thus, we ask: what is the

minimal polynomial degree 𝑠 needed to approximate the ground

state projector to within a given error 𝜖?

Following Ref. [8], it is instructive to consider the special case

in which our AGSP (1) can be expressed as 𝐾 = 𝑝 (𝐻 ) where 𝑝 is a

univariate polynomial. This kind of AGSP has the nice feature that

it commutes with 𝐻 and can therefore be diagonalized in the same

basis. Using this fact we see that such a polynomial is an 𝜖-AGSP iff

𝑝 (0) = 1 and max𝑥 ∈Spec+ (H) |𝑝 (𝑥) | ≤ 𝜖. (2)

Here Spec+ (𝐻 ) is the set of nonzero eigenvalues of 𝐻 . Note that

since 0 ≤ 𝐻 𝑗 ≤ 𝐼 we have ∥𝐻 ∥ ≤ 𝑛 and therefore Spec+ (𝐻 ) ⊆ [𝛾, 𝑛]
where 𝛾 is the smallest nonzero eigenvalue or spectral gap of 𝐻 . By

choosing 𝑝 to be a rescaled and shifted Chebyshev polynomial of

degree 𝑠 one obtains an AGSP with [8]

𝜖 = 𝑒
−Ω (𝑠

√
𝛾

𝑛
)
. (3)

This scaling of error with degree is optimal, a consequence of the

extremal property of Chebyshev polynomials [33, Proposition 2.4].

Here we did not use any properties of the Hamiltonian except the

fact that Spec(𝐻 ) ⊆ [𝛾, 𝑛].We see that a spectral gap lower bounded

by a positive constant ensures a good 𝜖 = 𝑂 (1) approximation by a

𝑂 (
√
𝑛)-degree polynomial. This form of locality in the ground state

is somewhat distinct from finite correlation length.

Remarkably, the tradeoff Eq. (3) between polynomial degree

and error can be improved in certain important special cases. For

example, suppose the Hamiltonian terms are commuting projec-

tors, i.e., [𝐻𝑖 , 𝐻 𝑗 ] = 0 and 𝐻2

𝑖
= 𝐻𝑖 . In that case the problem of

approximating the ground state is formally equivalent to the prob-

lem of approximating the multivariate AND function of 𝑛 binary

variables (equivalently, the OR function), see the full version [5,

Section 3.1] for details
2
. The distinguishing feature of the com-

muting case for our purposes is that, crucially, all eigenvalues of

𝐻 are integers between 0 and 𝑛 and by exploiting the fact that

Spec+ (𝐻 ) ⊆ {1, 2, . . . , 𝑛} one can construct a suitable univariate

polynomial 𝑝 that achieves Eq. (2) with

𝜖 = 𝑒−Ω (𝑠
2/𝑛) . (4)

This improves upon Eq. (3) in the low-error regime 𝑠 ≫
√
𝑛 and is

known to be optimal in the commuting case [27].

More generally, for a collection of possibly non-commuting

operators {𝐻 𝑗 }𝑛𝑗=1 let us call a degree-𝑠 multivariate polynomial

AGSP (1) optimal if the approximation error matches Eq. (4). Our

first result establishes that one-dimensional frustration-free locally-

gapped ground states can be optimally approximated in this sense.

Theorem 1.2 (Optimal approximation of 1D ground states, infor-

mal). For any constant 𝛿 ∈ (0, 1/2) and 𝑠 ∈ (
√
𝑛, 𝑛1−𝛿 ), there is a

degree 𝑂 (𝑠) polynomial which approximates the ground state projec-
tor of a locallycally gapped 1D frustration-free quantum spin system
to within error Eq. (4).

2
The 𝜖-approximate degree of AND has the remarkable low-error behaviour

d̃eg𝜖 (AND) = 𝑂 (
√
𝑛 log(𝜖−1)) [16, 19]. The log under the square root reflects the

fact that the error probability of Grover’s search algorithm can be reduced using a

better strategy than the naive parallel amplification.
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We emphasize that the AGSP in the above theorem is a multi-

variate polynomial of the form (1), and as far as we know cannot

be expressed as a univariate polynomial function of 𝐻 . This is be-

cause we may have [𝐻𝑖 , 𝐻𝑖+1] ≠ 0, and — in contrast with the

commuting case — the spectrum Spec+ (𝐻 ) does not appear to have
a nice characterization that allows us to improve upon Eq. (3) by

a suitable choice of univariate polynomial 𝑝 . We construct our

AGSP via a recursive application of the robust polynomial method

of Ref. [4] (where a subvolume law for the same class of systems

was shown). The resulting polynomial, which is detailed in the full

version [5, Section 3.2], has a structure which is reminiscent of a

renormalization group flow.

Although it concerns 1D systems, Theorem 1.2 turns out to be

just what we need to establish the area law in two dimensions. The

key insight is captured by the following modified locality intuition

that we propose, which asserts a direct link between linear-degree

optimal polynomial approximations and area laws:

A linear-degree optimal polynomial approximation for the ground
state in the vicinity of the boundary of a region should imply an area
law for the region.

Here we mean linear in 𝑛, the number of inputs of the multivari-

ate polynomial (cf. Eq. (1)). To understand where this comes from,

suppose we can construct an optimal linear-degree polynomial 𝑃

that approximates the ground state projector and is localized in

a width ∼ 𝑤 neighborhood of the boundary of the bipartition of

interest (here we are intentionally vague about the meaning of

localized, see the full version [5, Section 4] for details). Thus, the

degree of 𝑃 is ∼ 𝑤 · area and its error is 𝜖 ≤ 𝑒−Ω (𝑤 ·area) , where
‘area’ is the size of the boundary. Now consider an AGSP𝐾 = 𝑃𝑞 for

some positive integer 𝑞. The total polynomial degree of 𝐾 is thus

𝐷 = 𝑞𝑤 · area, and its error is 𝜖 ′ = 𝜖𝑞 ≤ 𝑒−Ω (𝑞𝑤 ·area) . Now we shall

assume that the polynomial 𝐾𝑞 is nicely behaved in a certain sense

first identified in Ref. [9]. In particular, we assume that its Schmidt

rank is amortized over the width𝑤 neighborhood of the boundary,

in that it scales as SR ∼ 𝑒𝑂 (𝐷/𝑤+𝑤 ·area) . Choosing 𝑞 = Ω(𝑤) (say)
and letting𝑤 be a large constant, we can ensure 𝜖 ′ · SR ≤ 1/2, with
log(SR) = 𝑂 (area). Thus, applying the aforementioned method

from Ref. [9] we would obtain the desired upper bound𝑂 (area) on
the ground state entanglement entropy.

Since the boundary of a region on a 2D lattice is one-dimensional,

the above argument suggests that the 2D area law should follow

from optimal linear-degree polynomial approximations in 1D. To

make this work, we show how our 1D approximation can be used

“in the vicinity of the boundary of the region" and we relate the

entanglement of the resulting AGSP to the polynomial degree. The

area law is then established using the aforementioned method from

Ref. [9]. The astute reader may note that Theorem 1.2 does not quite

provide a linear-degree optimal polynomial as the degree must be

𝑛1−𝛿 for some 𝛿 ∈ (0, 1/2); a careful treatment of the 𝛿 → 0 limit

leads to the slight deviation 𝑛1+𝑜 (1) from area law behaviour in

Theorem 1.1.

Discussion. There are at least three significant questions left

open by our work. Firstly, one may ask if the assumption of a local

spectral gap can be removed or replaced with one concerning the

global spectral gap of the Hamiltonian. We believe that this could

lead to a generalization of our techniques to frustrated systems.

To make progress here may require a deeper understanding of the

interplay between the local spectral gap and the gap of the full

hamiltonian. Secondly, it is natural to ask if ground states of locally

gapped frustration-free systems can be approximated by efficiently

representable tensor networks such as PEPS of small bond dimen-

sion [35]. While it is known that a 2D area law does not imply

such a representation [21], a more detailed study of the optimal

polynomial approximations considered here may provide insight

into this question. Finally, a natural open question is to extend

our results to local hamiltonian systems on higher dimensional lat-

tices. As mentioned earlier, this is closely related to the question of

approximating ground states by linear-degree optimal polynomials.

2 POLYNOMIAL APPROXIMATION TOOLKIT
In this section we describe methods for approximating multivariate

functions by polynomials. We first describe polynomial approxima-

tions with real-valued variable inputs. Then we generalize these

methods to the local Hamiltonian setting by allowing operator-

valued inputs.

2.1 Approximation of Functions
Following Ref. [4] we shall build polynomial approximations by

combining two well-known ingredients: the univariate Chebyshev

polynomials and a robust polynomial [34].

We will use a rescaled and shifted Chebyshev polynomial defined

as follows. For every 𝑠 ∈ R≥0 and 𝜂 ∈ (0, 1) we define a polynomial

𝑇𝜂,𝑠 : [0, 1] → R of degree ⌈𝑠⌉ by

𝑇𝜂,𝑠 (𝑥)
def

=

𝑇⌈𝑠 ⌉
(
2(1−𝑥)
1−𝜂 − 1

)
𝑇⌈𝑠 ⌉

(
2

1−𝜂 − 1
) , (5)

where 𝑇𝑗 is the Chebyshev polynomial of the first kind. To ease

notation later on, the parameter 𝑠 which determines the degree

is not required to be an integer. The polynomial Eq. (5) has the

following property which is a direct consequence of Lemma 4.1 of

Ref. [8].

Lemma 2.1 ([8]). For every 𝑠 ∈ R≥0 and 𝜂 ∈ (0, 1) we have
𝑇𝜂,𝑠 (0) = 1 and

|𝑇𝜂,𝑠 (𝑥) | ≤ 2𝑒−2𝑠
√
𝜂 𝜂 ≤ 𝑥 ≤ 1.

Next, we describe the robust polynomial. Our starting point is

the function 𝐵 : [0, 1] → {0, 1} defined by

𝐵(𝑥) def=
{
1, 𝑥 = 1

0, 0 ≤ 𝑥 < 1.
. (6)

This function rounds 𝑥 to a bit in a one-sided fashion. Using (6)

we define a (one-sided) “robust product" that takes real inputs

𝑥1, 𝑥2, . . . , 𝑥𝑚 ∈ [0, 1] and outputs 1 if and only if they are all equal

to 1:

Rob(𝑥1, 𝑥2, . . . , 𝑥𝑚)
def

= 𝐵(𝑥1)𝐵(𝑥2) . . . 𝐵(𝑥𝑚). (7)

14
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We note that since 𝐵(𝑥 𝑗 )2 = 𝐵(𝑥 𝑗 ) we may also express Eq. (7) as

Rob(𝑥1, 𝑥2, . . . , 𝑥𝑚)
=

(
𝐵(𝑥𝑚)𝐵(𝑥𝑚−1) . . . 𝐵(𝑥1)

) (
𝐵(𝑥1)𝐵(𝑥2) . . . 𝐵(𝑥𝑚)

)
. (8)

The left-right symmetric expression will be useful to us momentar-

ily when we extend the definition of the function to allow operator-

valued inputs.

The robust polynomial of interest is an approximation to Eq. (7).

To this end, let

𝐵𝑖 (𝑥)
def

=

{
𝑥, 𝑖 = 1

𝑥𝑖−1 (𝑥 − 1), 2 ≤ 𝑖 ≤ ∞.
(9)

Note that for any 𝑥 ∈ [0, 1] we have 𝐵(𝑥) = lim𝑖→∞
∑𝑖
𝑗=1 𝐵 𝑗 (𝑥).

Define

R̃ob(𝑥1, 𝑥2, . . . , 𝑥𝑚)
def

=∑
(𝑖1+𝑖′

1
)+...+(𝑖𝑚+𝑖′𝑚) ≤3𝑚

(
𝐵𝑖′𝑚 (𝑥𝑚) . . . , 𝐵𝑖′1 (𝑥1)

) (
𝐵𝑖1 (𝑥1) . . . , 𝐵𝑖𝑚 (𝑥𝑚)

)
.

(10)

The above expression is obtained by starting with Eq. (8), substi-

tuting 𝐵 ← ∑∞
𝑗=1 𝐵 𝑗 , and then truncating the summation so that

the total degree of the polynomial is at most 3𝑚 (this is somewhat

arbitrary). This polynomial is a good approximation to Rob in the

following sense.

Lemma2.2 (Special case of Lemma 2.4). Suppose that𝑥1, 𝑥2, . . . , 𝑥𝑚 ∈
[0, 𝜀] ∪ {1} for some 𝜖 ≤ 1/10. Then

|R̃ob(𝑥1, . . . , 𝑥𝑚) − Rob(𝑥1, . . . , 𝑥𝑚) | ≤ (10𝜀)𝑚 .

2.2 Approximation of Operators
Let us now extend our definitions from the previous section to allow

operator-valued inputs. Suppose𝑂 is a Hermitian operator with all

eigenvalues in the interval [0, 1]. The operator-valued Chebyshev

polynomial 𝑇𝜂,𝑠 (𝑂) is defined in the usual way by substituting

𝑥 ← 𝑂 in Eq. (5). By applying Lemma 2.1 to each eigenvalue of 𝑂 ,

we obtain the following.

Lemma 2.3. Let 𝑠 ∈ R≥0 and 𝜂 ∈ (0, 1). Suppose that 𝑂 is an
Hermitian operator with eigenvalues in the interval {0} ∪ [𝜂, 1] and
let Π be the projector onto the nullspace of 𝑂 . Then 𝑇𝜂,𝑠 (𝑂)Π = Π

and ∥𝑇𝜂,𝑠 (𝑂) − Π∥ ≤ 2𝑒−2𝑠
√
𝜂 .

For the robust polynomial, we start by defining 𝐵(𝑂) to be the

projector onto the eigenspace of 𝑂 with eigenvalue 1. For Hermit-

ian operators 𝑂1,𝑂2, . . . ,𝑂𝑚 such that each 𝑂𝑖 has eigenvalues in

the interval [0, 1], we define a Hermitian robust product which

generalizes Eq. (8):

Rob(𝑂1,𝑂2, . . . ,𝑂𝑚)
def

= 𝐶†𝐶 where

𝐶
def

= 𝐵(𝑂1)𝐵(𝑂2) . . . 𝐵(𝑂𝑚).

Note that due to the possible non-commutativity of the {𝑂𝑖 } oper-
ators, Rob(𝑂1,𝑂2, . . . ,𝑂𝑚) is generally not the projector onto the

intersection of the +1 eigenspaces of these operators.

We also define the operator-valued polynomial𝐵𝑖 (𝑂) for positive
integers 𝑖 by substituting 𝑥 ← 𝑂 in Eq. (9). The robust polynomial

is defined in parallel with (10), i.e.,

R̃ob(𝑂1,𝑂2, . . . ,𝑂𝑚)
def

=∑
(𝑖1+𝑖′

1
)+...+(𝑖𝑚+𝑖′𝑚) ≤3𝑚

(
𝐵𝑖′𝑚 (𝑂𝑚) . . . , 𝐵𝑖′1 (𝑂1)

) (
𝐵𝑖1 (𝑂1) . . . , 𝐵𝑖𝑚 (𝑂𝑚)

)
.

(11)

One can easily check that the operator in Eq. (11) is Hermitian. The

following error bound is established in the full version [5].

Lemma 2.4. Suppose that the eigenvalues of all operators {𝑂𝑖 }𝑚𝑖=1
lie in the range [0, 𝜀] ∪ {1} for some 𝜖 ≤ 1/10. Then

∥R̃ob(𝑂1, . . . ,𝑂𝑚) − Rob(𝑂1, . . . ,𝑂𝑚)∥ ≤ (10𝜀)𝑚 .

3 OPTIMAL GROUND STATE
APPROXIMATIONS

Throughout this section we consider the following scenario. We

are given a set of Hermitian operators {𝐻 𝑗 }𝑛𝑗=1 such that

0 ≤ 𝐻 𝑗 ≤ 𝐼 for all 𝑗 ∈ [𝑛], (12)

which act on some finite-dimensional Hilbert space H . We are

interested in the nullspace of the operator

𝐻 =

𝑛∑
𝑗=1

𝐻 𝑗 .

Let us write Π for the projector onto the nullspace of 𝐻 . In other

words, Π projects onto the intersection of the nullspaces of all

operators 𝐻 𝑗 (we are interested in the case where Π is nonzero).

Our goal is to approximate Π by a low-degree polynomial in the

operators {𝐻 𝑗 }.
In Sec. 3.1 and Sec. 3.2 we work in a general setting and in par-

ticular we do not assume a tensor product structure of the Hilbert

space H or geometric locality of the operators {𝐻 𝑗 }. In Sec. 3.1

we consider the simplest case in which all operators 𝐻 𝑗 are mu-

tually commuting and we describe the known optimal tradeoff

between approximation degree and error. Then, in Sec. 3.2 we show

that optimal approximations can be obtained more generally for

noncommuting operators which satisfy certain gap andmerge prop-
erties. These properties themselves assert a kind of one-dimensional

structure with respect to the given ordering 1 ≤ 𝑗 ≤ 𝑛 of the opera-

tors. In Sec. 3.3 we describe how a direct application of these results

provides optimal ground state approximations for one-dimensional,

locally-gapped, frustration-free qudit Hamiltonians. Later we will

see how the results of Sec. 3.2 can provide low-entanglement ap-

proximations of ground states in the 2D setup.

3.1 Commuting Projectors
We begin with the easy case in which all {𝐻𝑖 } are commuting

projectors:

𝐻2

𝑖 = 𝐻𝑖 and [𝐻𝑖 , 𝐻 𝑗 ] = 0 for all 𝑖, 𝑗 ∈ [𝑛] . (13)

In this case (𝐼 − 𝐻𝑖 ) is the projector onto the nullspace of 𝐻𝑖 , and

due to the commutativity Eq. (13) we may express Π exactly as the

degree-𝑛 polynomial Π =
∏𝑛
𝑖=1 (𝐼 − 𝐻𝑖 ). Our goal is to construct a

lower degree polynomial 𝑃 that approximates Π. Since all operators
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{𝐻𝑖 } commute and have {0, 1} eigenvalues, we may work in a basis

in which they are simultaneously diagonal and the problem reduces

to that of approximating the product of binary variables 𝑥 ∈ {0, 1}𝑛
which label the eigenvalues of {𝐼 − 𝐻𝑖 }𝑛𝑖=1. (Note that here we

do not require any properties of the basis which simultaneously

diagonalizes these operators, only that it exists). In other words,

the problem of approximating the ground space projector for a

Hamiltonian which is a sum of commuting projectors, reduces to

the problem of approximating the boolean AND function

AND(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
{
1 if 𝑥1 = 𝑥2 = . . . = 𝑥𝑛 = 1

0 otherwise

.

We are faced with the task of constructing a multilinear polynomial

𝑝 which 𝜖-approximatesAND in the sense that |𝑝 (𝑥)−AND(𝑥) | ≤ 𝜖
for each 𝑥 ∈ {0, 1}𝑛 . Remarkably, it is possible to achieve an arbi-

trarily small constant error 𝜖 = 𝑂 (1) using a polynomial of degree

𝑂 (
√
𝑛) [31]. For example, one can use the Chebyshev polynomial

𝑇
1/𝑛,𝑠

(
1

𝑛

∑𝑛
𝑖=1 𝑥𝑖

)
of degree ⌈𝑠⌉ which achieves an approximation

error 𝜖 = 𝑒−Ω(𝑠/
√
𝑛)

as can be seen from Lemma 2.1. Similarly, the

acceptance probability of the standard Grover search algorithm

[22], viewed as a function of the input bit string 𝑥 provided as an or-

acle, constructs such an approximating polynomial [12]. However,

neither of these polynomials has optimal degree in the low-error

regime where 𝜖 decreases with 𝑛. In that regime an optimal poly-

nomial can be constructed via a low-error refinement of Grover

search [16, 19] (see also Ref. [27]).

Here we provide a different family of polynomials that give an

optimal approximation to theAND function. These polynomials are

obtained in a simple way by combining the Chebyshev polynomial

𝑇𝜂,𝑠 and the robust polynomial R̃ob from Sec. 2.1. Soon we will see

how this construction can be extended to the non-commuting case.

It is unclear to us whether one can alternatively extend the known

optimal polynomials constructed in Refs. [16, 19, 27].

Theorem 3.1 (Optimal approximation of AND). Let 𝑛 be a pos-
itive integer. For every real number 𝑠 ∈

(√
𝑛, 𝑛

)
, there exists a polyno-

mial 𝑃 (𝑥) of degree 𝑂 (𝑠) such that

|𝑃 (𝑥) − AND(𝑥) | = 𝑒−Ω (
𝑠2

𝑛
) for all 𝑥 ∈ {0, 1}𝑛 .

Proof. Define the positive integer 𝑡 = ⌈𝑛2
𝑠2
⌉ and note that 1 ≤

𝑡 ≤ 𝑛 due to the specified bounds on 𝑠 . Let 𝑝 (𝑦) def= 𝑇 1

𝑡
,2
√
𝑡
(𝑦). From

Lemma 2.1 we see that

𝑝 (0) = 1 and |𝑝 (𝑦) | ≤ 2 · 𝑒−4 ≤ 1

20

for all

1

𝑡
≤ 𝑦 ≤ 1.

(14)

Since 𝑡 ≤ 𝑛, we may construct a partition [𝑛] = 𝐼1 ∪ 𝐼2 ∪ . . . ∪ 𝐼𝜉
where 𝜉

def

= ⌈𝑛/𝑡⌉ and |𝐼𝑘 | ≤ 𝑡 for all 1 ≤ 𝑘 ≤ 𝜉 . Our polynomial

approximation to AND is defined as

𝑃 (𝑥) = R̃ob

(
𝑝

(
1 − 1

|𝐼1 |
∑
𝑗 ∈𝐼1

𝑥 𝑗

)
, . . . , 𝑝

(
1 − 1

|𝐼𝜉 |
∑
𝑗 ∈𝐼𝜉

𝑥 𝑗

))
.

Now we observe that the 𝑘th input to the R̃ob function on the

RHS approximates the AND of all bits in the set 𝐼𝑘 . To see this,

note that 1 − 1

|𝐼𝑘 |
∑
𝑗 ∈𝐼𝑘 𝑥 𝑗 = 0 when 𝑥 𝑗 = 1 for all 𝑗 ∈ 𝐼𝑘 , and

1 − 1

|𝐼𝑘 |
∑
𝑗 ∈𝐼𝑘 𝑥 𝑗 ≥ 1/𝑡 if one or more 𝑥 𝑗 = 0. Using this fact and

Eq. (14), we see that for each 1 ≤ 𝑘 ≤ 𝜉 we have����𝑝 (
1 − 1

|𝐼𝑘 |
∑
𝑗 ∈𝐼𝑘

𝑥 𝑗

)
−

∏
𝑗 ∈𝐼𝑘

𝑥 𝑗

���� ≤ 1

20

. (15)

Now applying Lemma 2.2 with 𝜀 = 1/20, and noting that Rob(𝑥) =
AND(𝑥) we see that, for each 𝑥 ∈ {0, 1}𝑛 ,

|𝑃 (𝑥) − AND(𝑥) | ≤ 2
−𝜉 ≤ 2

−𝑛/𝑡 ≤ 2
−𝑠2/𝑛 .

The degree of the polynomial is at most 3𝜉 · 2
√
𝑡 = 𝑂 (𝑠). □

3.2 Operators with Gap and Merge Properties
We now consider a more general case in which the operators

{𝐻 𝑗 }𝑛𝑗=1 still satisfy (12), but may not be projectors and are not

assumed to commute. For any subset 𝑆 ⊆ [𝑛] of the operators, we
define the corresponding Hamiltonian

𝐻𝑆
def

=
∑
𝑗 ∈𝑆

𝐻 𝑗

and the projectorΠ𝑆 onto its nullspace. Similarly, we define gap(𝐻𝑆 )
to be the smallest nonzero eigenvalue of 𝐻𝑆

3
. A crucial difference

between our setting here and the commuting setting considered

previously, is that a product Π𝑆Π𝑇 is not in general equal to Π𝑆∪𝑇 .
We require our operators to satisfy two properties which are

defined with respect to the given ordering 1 ≤ 𝑗 ≤ 𝑛. To describe

these properties it will be convenient to define an interval as a con-
tiguous subset { 𝑗, 𝑗 + 1, . . . , 𝑘 − 1, 𝑘} ⊆ [𝑛]. The gap property states

a lower bound Δ on the smallest nonzero eigenvalue of any interval

Hamiltonian 𝐻𝑆 . The merge property asserts that Π𝑆Π𝑇 ≊ Π𝑆∪𝑇
for overlapping intervals 𝑆,𝑇 , with error decreasing exponentially

in the size of the overlap region. We now state these properties

more precisely.

Definition 3.2. Operators {𝐻 𝑗 }𝑛𝑗=1 satisfy the gap andmerge prop-

erties if, for some Δ ∈ (0, 1], the following conditions hold for all

intervals 𝑆 ⊆ [𝑛] and any partition 𝑆 = 𝐴𝐵𝐶 into three consecutive

intervals:

gap(𝐻𝑆 ) ≥ Δ [Gap property] (16)

∥Π𝐴𝐵Π𝐵𝐶 − Π𝑆 ∥ ≤ 2𝑒−|𝐵 |
√
Δ [Merge property]. (17)

Note that the parameter Δ in this definition appears in both

the gap and merge properties. One could alternatively consider a

more general definition where each of these properties has its own

parameter, though we will not need to.

In the following we show that the optimal scaling 𝑒
−Ω

(
𝑠2

𝑛

)
of

error with degree 𝑠 can be recovered in this noncommutative setting,

by a recursive use of the robust polynomial, with one use of the

Chebyshev polynomial and gap property in the base level of the

recursion. The analysis uses the merge property to bound the error

in the recursion. The following theorem describes our results for

the case where the approximation degree scales less than linearly

in 𝑛.

3
We use the convention that gap(ℎ) = 1 if ℎ = 0.
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Theorem 3.3 (Less than linear degree). Suppose {𝐻 𝑗 }𝑛𝑗=1 satisfy
Eqs. (12, 16,17) for some Δ ∈ (0, 1]. Let 𝛿 ∈ (0, 1/4) be fixed and let 𝑠
be a real number satisfying

2

√
𝑛Δ−1/2 ≤ 𝑠 ≤ (1/4)𝑛1−𝛿Δ−1/4 . (18)

There is a degree 𝑂 (𝑠) Hermitian multivariate polynomial 𝑃 in the
operators {𝐻 𝑗 }𝑛𝑗=1 such that

𝑃Π = Π and ∥𝑃 − Π∥ = 𝑒−
𝑠2Δ
4𝑛 . (19)

In the above, the big-O notation hides a constant which depends

only on 𝛿 . We shall also be interested in a case where 𝛿 is taken

very close to 0 and the degree is close to linear. This almost-linear

degree approximation will be used to establish the area law for two-

dimensional spin systems. For that application it will be useful to

describe the structure of the polynomial 𝑃 inmore detail. To this end,

we first define certain families 𝑃 (𝛼, 𝛽) of elementary polynomials

as follows.

Definition 3.4. For 𝛼, 𝛽 > 0, let P(𝛼, 𝛽) denote the set of polyno-
mials of the form

(𝐻𝑆1 )
𝑗1 (𝐻𝑆2 )

𝑗2 . . . (𝐻𝑆𝑘 )
𝑗𝑘 𝑗1 + 𝑗2 + . . . + 𝑗𝑘 ≤ 𝛼 and 𝑘 ≤ 𝛽.

where 𝑗1, 𝑗2, . . . , 𝑗𝑘 are positive integers and each set 𝑆1, 𝑆2, . . . , 𝑆𝑘 ⊆
[𝑛] is an interval.

Theorem3.5 (Near-linear degree). Suppose {𝐻 𝑗 }𝑛𝑗=1 satisfy Eqs. (12,
16, 17) for some Δ ∈ (0, 1] and that 𝑛 ≥ 𝐶Δ−1, where 𝐶 > 0 is some
absolute constant. There exist real numbers

𝛼 ≤ 𝑛Δ−1/4 and 𝛽 = Δ−1/2𝑛
1−𝑂

(
(log𝑛)−1/4

)
(20)

such that the following holds. There exists a Hermitian multivariate
polynomial 𝑃 in the operators {𝐻𝑖 }𝑛𝑖=1 of degree at most 𝛼 such that

𝑃Π = Π and ∥𝑃 − Π∥ ≤ exp

(
−𝛽𝑒
√
log(𝑛)

)
, (21)

and such that 𝑃 can be expressed as a linear combination of at most
(2𝛼)𝛽 elements of P(𝛼, 𝛽).

Theorems 3.3 and 3.5 are proven in the full version [5].

3.3 Application to 1D Quantum Spin Systems
As a prototypical application of the results of the previous section,

here we specialize to the case of frustration-free one-dimensional

quantum spin systems with a local gap.

Consider a 1D system of 𝑛 + 1 qudits of local dimension 𝑑 ≥ 2.

The Hilbert space is

(
C𝑑

)⊗𝑛+1
and the Hamiltonian is𝐻 =

∑𝑛
𝑗=1 𝐻 𝑗 ,

where each operator 𝐻 𝑗 satisfies 0 ≤ 𝐻 𝑗 ≤ 𝐼 and acts nontrivially

only on qudits 𝑗 and 𝑗 + 1 (and as the identity on all other qudits).

The local gap 𝛾 is defined as the minimum spectral gap of a subset

of Hamiltonian terms

𝛾
def

= min𝑆⊆[𝑛] gap
( ∑
𝑗 ∈𝑆

𝐻 𝑗
)
.

By definition, operators {𝐻 𝑗 }𝑛𝑗=1 satisfy the gap property Eq. (16)

with Δ = 𝛾 . In the full version [5], we show that the merge property

is satisfied with Δ = 𝛾/80 (a consequence of the “detectability

lemma" [2, 6]). Therefore we may substitute Δ = 𝛾/80 in Theorems

3.3 and 3.5 to obtain optimal approximations to the ground state

projector Π, as claimed in Theorem 1.2.

4 2D AREA LAW
Here we consider a 2D locally gapped, frustration-free quantum

spin system along with a bipartition of the qubits into two regions.

We use the results of Sec. 3.2 to construct a polynomial approximate

ground state projector (AGSP) which has a kind of 1D structure

along the boundary of the bipartition. We show that this AGSP

has low enough error as a function of its Schmidt rank across the

bipartition, to establish the area law as stated in Theorem 1.1 using

the method from Refs. [2, 8, 9].

Consider a system of qudits of local dimension 𝑑 arranged at the

vertices of an 𝐿 × (𝑛 + 1) grid with 𝑛 + 1 rows and 𝐿 columns, as

shown in Fig. 1. The Hilbert space is

(
C𝑑

)⊗𝐿 (𝑛+1)
, and we index

qudits by their (column, row) coordinates (𝑖, 𝑗) ∈ [𝐿] × [𝑛 + 1]. We

consider a Hamiltonian which acts as a sum of local projectors
4

𝐻0 =

𝐿−1∑
𝑖=1

𝑛∑
𝑗=1

ℎ𝑖 𝑗 ℎ2𝑖 𝑗 = ℎ𝑖 𝑗

where ℎ𝑖 𝑗 acts nontrivially only on the qudits in the set {𝑖, 𝑖 + 1} ×
{ 𝑗, 𝑗 + 1}. We assume that 𝐻0 has a unique ground state |Ω⟩ such
that 𝐻0 |Ω⟩ = 0. Since ℎ𝑖 𝑗 ≥ 0 , the latter condition is equivalent

to the frustration-free property ℎ𝑖 𝑗 |Ω⟩ = 0 for all 𝑖, 𝑗 . Our results

depend on the local gap of 𝐻0:

𝛾
def

= min𝑆⊆[𝐿−1]×[𝑛] gap
( ∑
{𝑖, 𝑗 }∈𝑆

ℎ𝑖 𝑗
)
. [Local gap] (22)

(recall gap(𝑀) denotes the smallest nonzero eigenvalue of a positive

semidefinite operator𝑀 .) We note that for our purposes it would in

fact be sufficient to consider a local gap in which the minimization

is restricted to rectangular regions.

We consider a bipartition of the lattice into left and right regions,

corresponding to a “vertical cut” between a given column 𝑐 and

𝑐 + 1, as depicted in Fig. 1. In the following we write SR(𝑀) for the
Schmidt rank of an operator with respect to the cut.

To bound the entanglement entropy of |Ω⟩, we use the powerful
method of approximate ground state projectors (AGSP) developed in

Refs. [2, 8, 9, 24]. The following theorem is obtained by specializing

Corollary III.4 of Ref. [9] to the case of Hermitian 𝐾 .

Theorem 4.1 (Entanglement entropy from AGSP [9]). Suppose 𝐾
is a Hermitian operator satisfying 𝐾 |Ω⟩ = |Ω⟩ and

∥𝐾 − |Ω⟩⟨Ω | ∥ · SR(𝐾) ≤ 1

2

.

Then the entanglement entropy of |Ω⟩ across the cut is upper bounded
by 𝑂 (1) · log

(
SR(𝐾)

)
.

We use the results of Sec. 3.2 to construct a suitable AGSP 𝐾 . To

this end we construct a system of operators {𝐻 𝑗 }𝑛𝑗=1 which has the

gap and merge properties Eqs. (16,17). See the full version [5] for

details.

4
This is without loss of generality. Consider a frustration-free hamiltonian 𝐻 ′ =∑
𝑖,𝑗 ℎ

′
𝑖,𝑗 , where 𝑐𝐼 ≥ ℎ′𝑖,𝑗 ≥ 0 are not projectors. Let ℎ𝑖,𝑗 be the projector onto the

span of ℎ′𝑖,𝑗 , so that 𝑐ℎ𝑖,𝑗 ≥ ℎ′𝑖,𝑗 . The local spectral gap of 𝐻0 is at least
1

𝑐
times the

local spectral gap of 𝐻 ′ and they have the same ground space.
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