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Abstract. Quantum subspace diagonalization methods are an exciting new class of algorithms
for solving large-scale eigenvalue problems using quantum computers. Unfortunately, these methods
require the solution of an ill-conditioned generalized eigenvalue problem, with a matrix pencil cor-
rupted by a nonnegligible amount of noise that is far above the machine precision. Despite pessimistic
predictions from classical worst-case perturbation theories, these methods can perform reliably well
if the generalized eigenvalue problem is solved using a standard truncation strategy. By leveraging
and advancing classical results in matrix perturbation theory, we provide a theoretical analysis of
this surprising phenomenon, proving that under certain natural conditions, a quantum subspace di-
agonalization algorithm can accurately compute the smallest eigenvalue of a large Hermitian matrix.
We give numerical experiments demonstrating the effectiveness of the theory and providing practical
guidance for the choice of truncation level. Our new results can also be of independent interest to
solving eigenvalue problems outside the context of quantum computation.
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1. Introduction. Quantum computing is a fundamentally new computational
paradigm, which has the potential to have a transformative impact on certain areas
of computational science [27, 28]. One particularly compelling use case for quantum
computers is to solve eigenvalue problems related to quantum many-body systems,
for which the dimension of the discretized matrix grows exponentially with respect to
the number of particles.

Quantum subspace diagonalization (QSD) methods [6, 13, 15, 20, 21, 26, 31, 32],
also known as quantum Krylov methods, are an exciting class of quantum algorithms
for solving large-scale Hermitian eigenvalue problems. One common key step of these
algorithms is to solve a nearly singular generalized eigenvalue problem, where each
entry of the associated matrix pair can be corrupted by Monte Carlo errors many
orders of magnitude larger than the round-off error typically seen in classical compu-
tation. For such noisy generalized eigenvalue problems, classical perturbation theory
fails to explain why such problems could be solved accurately. Despite this, QSD
methods appear to work in practice, at least on some examples and with some proce-
dure to compensate for the measurement error. This article is addressed squarely at
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explaining why, in theory, QSD algorithms perform well and how, in practice, errors
in the problem data can be effectively dealt with.

While our analysis is centered around the context of QSD, the underlying prob-
lem of solving an ill-conditioned generalized eigenvalue problem with noisy data is a
fundamental linear algebra problem, which emerges in multiple application areas such
as electronic structure theory [3, 14], control theory [9], and variational Monte Carlo
optimization [30]. Our results may be of particular interest in filter diagonalization
methods [18, 36] which were a classical antecedent to QSD methods [26] and also
require the solution of an ill-conditioned generalized eigenvalue problem.

Notation. Vectors and matrices will be denoted by boldface lower- and upper-
case letters, respectively. We denote the conjugate transpose by *. All matrices and
vectors are assumed to be over the complex numbers. The unembellished norm |||
shall refer to the Euclidean norm of a vector ||| = +/x*x or the spectral norm
(largest singular value) of a matrix. At times, we shall also make use of the Frobenius
norm ||B||p := /tr(B*B). The absolute values of the generalized eigenvalues of a
pair (H,S) are denoted |A(H,S)|. Relations ~, 3, <, etc., are informal, with no
precise mathematical relation being implied.

1.1. Quantum subspace diagonalization and its numerical challenges.
We begin by describing a simple QSD algorithm developed in parallel by Parrish and
McMahon [26] and Stair, Huang, and Evangelista [32] with a focus on its linear alge-
braic (Krylov) structure. For readers unfamiliar with quantum computation and why
it might be advantageous over classical computing for certain problems, we recom-
mend the classic textbook [24] as well as a recent tutorial aimed at a mathematical
audience [22].

Suppose we are interested in the ground-state energy! (least eigenvalue) Ey of
a Hamiltonian operator (Hermitian matrix) H. Our goal shall be to compute an
approximation E, for which the (forward) error |E0 — FEy| is small. For the problem

sizes for which QSD is appropriate, vectors with the dimension of the operator H
are too large to store classically, so we would like to represent them as states in a
quantum computer. The QSD method rests on two assumptions:
1. We can efficiently prepare a state ¢, on the quantum device that has a
nontrivial overlap |¢§1p,| > 0 to the true ground-state eigenvector 1.
2. The time evolution ¢ ~ el*H
device.

To improve on our initial guess ¢, we enlarge to a subspace spanned by vectors

¢ can be efficiently simulated on the quantum

(1.1) @; = for j=0,...,n—1,

where t; = jAt are a time sequence with step size At > 0. The subspace span{¢;}
forms a “unitary Krylov space” and plays a role analogous to the Krylov subspace in
the Lanczos method. Eigenvalue estimates for the operator H can be computed from
this unitary Krylov subspace by applying the Rayleigh-Ritz method [25, sect. 11].

In a classical Krylov method, one would usually orthogonalize the basis vectors
(1.1). Unfortunately, this orthogonalization operation can be inherently difficult to
perform on a quantum computer, so we instead work in the basis (1.1) as computed.
In a nonorthogonal basis, the Rayleigh-Ritz eigenvalue estimates are obtained by
solving a generalized eigenvalue problem

IThe ground-state energy, by itself, is a useful quantity for applications in electronic structure,

as it determines the energy landscape for dynamical simulation.
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(1.2) Hc=FESc.

Here the projected Hamiltonian and overlap matrices H and S are Hermitian—Toeplitz
matrices defined as

(1.3) Hj). = SO;HSOIC’ Sijr = 90;90167

c is the reduced Ritz vector, and F is the Ritz value. Each matrix entry H i, Sk
can be estimated via a Monte Carlo sampling procedure such as the Hadamard test
on a quantum computer (see, e.g., [24, Chapt. 5], [6, App. D]). Once a sufficiently
good estimate to H, S is obtained, the generalized eigenvalue problem (1.2) is solved
on a classical computer.

Remark 1.1 (other QSD methods). A number of QSD methods have been pro-
posed which differ in how the basis states (1.1) are generated and how the eigenvalue
estimates are obtained. Alternative methods for basis vector generation (1.1) from
one or more initial guesses include multiplication by creation and annihilation opera-
tors [5, 20] and imaginary-time evolution ¢ := el H p [21] (with ¢; > 0). Methods
also differ in whether the Rayleigh—Ritz procedure is applied to H itself [26, 32] or

the time evolution operator eiAtH [6, 15]. For concreteness, we shall focus in this
article on the QSD method as discussed, though our analysis should have insights for
understanding the broader class of QSD algorithms.

There are two main questions in the analysis of the (forward) error of the QSD
method:
(A) How to analyze the Rayleigh—-Ritz error due to the use of a finite-dimensional
unitary Krylov subspace.
(B) How to analyze the error of the generalized eigenvalue problem (1.2) in the
presence of the Monte Carlo noise for estimating the matrix entries in H, S.
Below we first discuss issues related to question (B), which are particularly challenging
from the perspective of numerical linear algebra.

1.2. Numerical issues with QSD. Numerical results indicate that the size of
n needed to obtain desired accuracy can be very modest (e.g., 10 < n < 100), so
we are free to use any algorithm [11, 25] to solve the dense generalized eigenvalue
problem (1.2). However, it is frequently observed that the states ,...,p,,_; are
very close to being linearly dependent, leading to the matrices H and S being nearly
rank-deficient and the generalized eigenvalue problem (1.2) nearly singular. This
ill-conditioning is an intrinsic feature of this method since the problem necessarily
becomes ill-conditioned if the initial guess ¢, possesses the desirable property of
approximately lying in a low-dimensional invariant subspace.

The near-singularity of the problem (1.2) becomes particularly alarming when
taken in conjunction with the fact that the matrix elements (1.3) will be corrupted
by several types of error when measured from a quantum computer. Some forms
of error, such as discretization error in evaluating the time evolution e’y by a
Trotter formula [4] and gate errors, can in principle be systematically controlled on
a fault-tolerant quantum device. However, even on a flawless quantum device, the
matrix elements (1.3) still need to be computed via sampling, which incurs Monte
Carlo-type ~ 62 samples to compute each entry to d-accuracy. We shall refer to all
of these errors collectively as “noise.”
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Classical perturbation theory [34, sect. VI.3] as well as modern improvements [19]
do not apply when the perturbation is large enough to make the problem (1.2) singular,
which is almost always the case for the QSD algorithm because of sampling error and
ill-conditioning. Indeed, the following variant of the classical example [39, eq. (4.10)]
shows that a perturbation just a touch larger than the distance to singularity can
send the eigenvalues (originally, 1 and 2) to any pair of numbers «, 8 € C:

12 0 |1 0 o@error. = 12 «ae| g5 _ |1 €
no om0 so [t 0] oo g2 e 5[t o

Even the well-conditioned eigenvalue 2 can be perturbed arbitrarily far if the noise is
large enough to make the problem singular!

There is evidence that adversarially chosen perturbations such as (1.4) are patho-
logically unlikely to occur, with the well-conditioned eigenvalues of a pair (H,S)
changing only modestly after perturbation. Indeed, Wilkinson showed that “most”
O(¢) perturbations to (1.4) have an eigenvalue near the well-conditioned eigenvalue
of 2 [39], and recent analysis by Lotz and Noferini [16] showed that some eigenval-
ues of genuinely singular generalized eigenvalue problems can, in effect, be locally
well-conditioned with high probability.

Even if a good approximation to the ground-state energy is among the eigenvalues
of (H,S), identifying it can be difficult. When the pair (H,S) is nearly singular,
the perturbed problem is almost ensured to possess spurious eigenvalues. To see why
this is the case, observe that if (H,S) is nearly singular, there exists an eigenpair
(¢, E) such that He, Sc ~ 0. Perturbations in H and S create large changes in both
the numerator and the denominator of the Rayleigh quotient E = ¢*He/c* Sc; since
eigenvalues of a pair with positive definite S extremize the Rayleigh quotient, noise
can easily introduce fake eigenvalues much smaller than the genuine least eigenvalue
of (H,S). Reliably distinguishing genuine eigenvalues from such fake eigenvalues is
challenging; we tried many heuristics and all of them failed for a nontrivial fraction
of random initializations of the measurement error (see section SM2).

To address these issues, we shall solve the eigenvalue problem (1.2) using the
following truncation scheme: First, compute an eigendecomposition of the matrix
S and discard all eigenvalues smaller than or equal to a threshold € > 0. Then,
letting V'~ denote a matrix whose columns are the nondiscarded eigenvectors and
A=V SV, we solve the reduced generalized eigenvalue problem

ViHV_ _c=EVLSV_.c,

or equivalently find the eigenvalues of A;:/2V;ESV>€A;/2. This procedure ap-
pears to have been first discovered in quantum physics by Lowdin in 1967 [17] (also
rediscovered in [12]), where it is associated with the name canonical orthogonalization.
We shall call this procedure thresholding and present it in Algorithm 1.1 for conve-
nient reference in the rest of the document. A more careful variant of thresholding
from the numerical analysis community was proposed by Fix and Heiberger in 1972
[10], though its authors expressly advise against using it in precisely the setting of
the QSD algorithm where the pair (H,S) is nearly singular.

Despite appearing quite natural, there are examples where thresholding fails to
work and is thus not appropriate for arbitrary Hermitian definite generalized eigen-
value problems. For instance, if one applies thresholding with parameter € to the
pair
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Algorithm 1.1 Thresholding procedure for solving a noise-corrupted or nearly sin-
gular generalized eigenvalue problem Hec = F He.

procedure THRESHOLDING(H, S| ¢)

(V,D) + eig(S)

I+ {’L Dy > 6}

V V(I

return smallest eigenvalue of (V*HV ,V*SV)
end procedure

(1.5) H:[l 62} S:[(l) %}

€ € €

one recovers an eigenvalue of 1, which is far from the genuine eigenvalues 0 and 2 of the
pair. Even with the existence of bad examples like (1.5), thresholding appears to be
quite reliable at filtering out noise and dealing with the ill-conditioning of the overlap
matrix for QSD-derived pairs (H,S) in our experiments, with similar results being
observed for an SVD-based truncation strategy in [15, sect. IL.F]. Despite truncation
strategies such as canonical orthogonalization and Fix—Heiberger having a 50-year
history, we are unaware of any general theory of why these methods work.

1.3. Overview and main results. We aim to elucidate why the QSD algorithm
works when combined with the thresholding procedure, undeterred by the presence
of negative examples such as (1.4) and (1.5). Our main three results are as follows:

(i) In the absence of noise and with an appropriate choice of the time sequence,
the QSD procedure with thresholding is accurate. This provides a positive
answer to the question (A) in the error analysis of the QSD method due to
the Krylov subspace approximation in the presence of thresholding.

(ii) The thresholded problem is stable under noise in the sense that the thresh-
olded problem we solve from the noise-corrupted pair (ﬁ , §) is close to the
unperturbed pair (H, S).

(iii) If the thresholded problem and its noisy perturbation are sufficiently close
(as we establish with the previous result), the well-conditioned and well-
separated eigenvalues of the thresholded problem are accurately computed in
the presence of noise. Results (ii) and (iii) provide a positive answer to the
question (B) in the error analysis of the QSD method due to the classical
solution of the noisy generalized eigenvalue problem.

Together, these results paint a reasonably complete picture of why the QSD algorithm
works in the presence of noise when thresholding is used. To our knowledge, this
is the first work providing rigorous analysis of the theoretical efficacy of QSD-type
algorithms, both in the noise-free and noisy settings.

Our first main result can be summarized informally as follows (a formal statement
is presented as Theorem 2.7).

INFORMAL THEOREM 1.2. Suppose the thresholding procedure (Algorithm 1.1) is
applied to the perturbed pair (ﬁ, §) = (H+Ag,S+Ag), which are Hermitian matri-
ces of size n. Consider the thresholded matriz pair (A, B) := (VL HV 5.,V SV ,)
and let Ey be its least eigenvalue. Assume Eqy is sufficiently well-separated from other
eigenvalues of (A, B), let dal denote the condition number of the eigenangle tan~"' Fy,
and suppose the perturbations Ay and Ag have spectral norm not exceeding n. There
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exists a constant 0 < a < 1/2 such that the recovered eigenvalue Eg from the noise-
1

perturbed pair (ﬁ, §) using threshold parameter e = ©(nl+a) satisfies the bound
1
< O<d01771+a)-

The implicit constant in the O-notation depends on the eigenvalues of (H,S), the
spectrum of S, and n.

(1.6) tan~' E" — tan~! B

Our result shows that, using the empirically observed value o« = 1/4 (see sec-
tion SM6), we are able to recover the smallest eigenvalue of (H,S) (or more specifi-
cally its arctangent) with error proportional to 7*/5 times its condition number. Given
examples (1.4) and (1.5) showing arbitrarily large errors for small perturbations of
nearly singular generalized eigenvalue problems and thresholding, the fact that we are
able to obtain any nontrivial error bounds for the QSD algorithm with thresholding
may be regarded as surprising.

Our second main result provides an end-to-end bound for the QSD method.

INFORMAL THEOREM 1.3. Let AE; denote the difference between the jth smallest

and the smallest eigenvalue Eqy of H and let Yo denote the inner product between the
initial state @, and the true ground-state eigenvector of H. Let (H,S) denote the
noise-free output of the QSD algorithm for a particular choice of time step, and instate
the notation and assumptions of Informal Theorem 1.2. Then

- _ 2 _,0 AFE, 1
tan ! B —tan"! Ey| < O ﬂe " (AENﬂ) + ABN +dpTha .
’ [70l? [70[? 0

The remainder of this paper is organized as follows. For expository reasons, we
present our main results in the reverse order outlined here. Section 2 discusses pertur-
bation analysis for the thresholded problem, leading to a formalization, Theorem 2.7,
of Informal Theorem 1.2 in section 2.3. Section 3 discusses Rayleigh—Ritz errors due
to approximation by the finite-dimensional unitary Krylov subspace and thresholding
procedure. We then present additional results in section 4 which are independent of
the rest of the presentation. We draw particular attention to Theorem 4.2, which
shows that thresholding applied to a general pair (H, S) recovers the least eigenvalue
accurately if it is well-conditioned. This does not contradict the bad example (1.5)
since both its eigenvalues are ill-conditioned with condition numbers ©(e~1). We
conclude with numerical experiments (section 5) and conclusions (section 6).

2. Perturbation analysis for the thresholded problem. In this section, we
analyze the effects of noise on the solution of the generalized eigenvalue problem (1.2)
using the thresholding algorithm, Algorithm 1.1. The main result of this section is
that well-separated, well-conditioned eigenvalues of the thresholded problem can be
recovered accurately in the presence of noise. Together with section 3, which analyzes
both the Rayleigh—Ritz and thresholding errors, this makes up a fairly complete ex-
planation for the success of the QSD algorithm when implemented with thresholding.

Let H and S denote the exact outputs of the QSD algorithm (1.3) and V the
eigenvectors of S with eigenvalues greater than e. Dependence of V :=V . on ¢, as
in the introduction, has been suppressed for conciseness. The thresholded problem
is described by the pair (A,B) := (V*HV,V*SV).2 When implemented on a

2To make the output of the thresholding procedure unambiguous, we assume eigenvectors are
arranged left to right in decreasing order of the corresponding eigenvalues. The ordering convention
does not effect the outputs of the thresholding procedure, Algorithm 1.1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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quantum computer, H and S are corrupted by noise as H:=H+ Apg and S =
S + Ag. As a simple measure of the size of the perturbation, we introduce

(2.1) ni=\Juk + 1% = 1Al + |1As]?,

which represents the noise level. In principle, one could undertake a careful analysis
of the different sources of error (e.g., discretization, gate, and sampling) to obtain
probabilistic bounds on 7. (We provide such a bound for the sampling error alone in
section 4.1.) For now, we shall just assume 71 or a good bound for it is known, and
the threshold level € is chosen to be (at least) larger than 7. With the perturbations

H and S in hand, the practitioner computes the large-eigenvalue eigenvectors V of
the perturbation S and constructs the perturbed thresholded problem (A, B) :=
(‘N/*ﬁf/, ‘7*§‘~/) We denote the dimension of A and B as q.

We hope to show that the smallest eigenvalue of the pair (Av, ﬁ)—i.e., our com-
puted approximation to the ground state energy—is close to the smallest eigenvalue
of (A, B). Unfortunately, there are a number of reasons to worry this might not be
the case. First, even if (ﬁ, S) is close to (H, S), it is still possible that (A, B) is not
close to (A, B). A small perturbation in just S can lead to a large perturbation of
A: For a small parameter 1 > 0,

(2.2)
120 0 |1 0 nerror  —~ 120 0| 5 |1 0
S e e e T et
120 0 |1 0 ~ |1 0] 1+3 0
A{O 1]’3[0 1—’27} A= [O 20} B= { 0 1]'

Additionally, A and A can even be of different sizes if the perturbation causes the
number of eigenvalues larger than e to change. Fortunately, (2.2) suggests that the
potential for small errors in S to magnify into large errors in A might have a benign
source, with the error in this example caused simply by a reordering of the eigenvec-
tors. The eigenvalues of the pair (AV B ) are indifferent to a symmetric reordering of its
rows and columns or, more generally, a *-conjugation (A, B) (W7 AW, W*BW).
Thus, it is sufficient for purposes of analysis to show that (A B) are close to (A, B)
after (Av7 E) is replaced by an appropriate *-conjugation.

Assume this issue is addressed, and we obtain a *-conjugation of (Av, E) that is
close to (A, B). Classical worst-case perturbation theory still paints a grim portrait
on the sensitivities of the eigenvalues of the thresholded pair (A, B). After possibly
replacing (A, B) by a s-conjugation, let (A, B) = (A+ A4, B+ Ag). A measure
of the difference between (A, B) and (A, B) is given by

(2.3) = IlAal® + AP

Let E be the least eigenvalue of (A, B) and E be the least eigenvalue of (A, B). The
classical perturbation theorem of Stewart [33, Thm. 3.2] can only show that

X < sin~! X

(2.4) tan~' E — tan ™ E’ < sin~! (A B) = -

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Here,

(2.5) (A, B) = min \/(z*Az)’ + (2" Bx)?

llzl=1

is the Crawford number, which is only guaranteed to be larger than e under the
standing assumptions. This leads to pessimistic error bounds on the order of x/e.
We would much prefer a bound which scales like x times the condition number of
tan~! E, without an explicit € dependence.

In the rest of this section, we address these challenges. The analysis has two parts.
In the first part, we use the Davis—Kahan sin © theorem to show that, after replacing
by a x-conjugation, (A, B) is x < O(n/e“)-close to (A, B), where 0 < o < 1/2 is a
constant. In particular, « is ensured to be no more than 1/2, with « = 1/4 appearing
to be more representative in numerical experiments. For the second part, we use
the perturbation theory of Mathias and Li [19] to improve on Stewart’s bound (2.4)
in the case when the eigenvalue of interest is well-conditioned, obtaining the desired
dependence on x rather than y/e. We present these pieces in reverse order.

2.1. Eigenvalue perturbation bounds. Suppose that, potentially after a re-
defining (A, B) to a x-conjugation, (A, B) and (A, B) are separated by a small dis-
tance x, as defined in (2.3). We shall show that the perturbation theory developed by
Mathias and Li [19] allows us to significantly improve on the bound (2.4) furnished by
Stewart’s theory. The beauty of the Mathias—Li theory is that the Crawford number
in (2.4) can be replaced by a quantity related to the conditioning of E, provided a
spectral gap condition is satisfied. We begin with a mildly specialized version of [19,
Thm. 3.3].

FacT 2.1. Let (A, B) be a pair of ¢ x ¢ Hermitian matrices with all eigenvalues
of B larger than e. Consider perturbations (A, B) := (A+ Aa, B+ Ap) where A
and Ap are Hermitian matrices and x is defined in (2.3) and satisfies qx < €. Let

Ey,...,Eq_1 be the eigenvalues of (A, B) with unit-norm eigenvectors o, ..., Tq—1.
Define
(2.6) 4 =tan~' B —sin ' Xy, = tan~' B +sin 1 X,
d; dj
where

Let {E;}j;(l) and {uj}j;(l) denote the increasing rearrangements of the bounds {¢; }3;3

and {uj}g;é Then with Ey < Ey < --- < E,_; the eigenvalues of (A, B), the
following bound holds:

—

F <tan™' E; <wul.

We show a pictorial comparison of the proof of Stewart’s bound (2.4) and the
Mathias—Li bound (2.9) in Figure 1. The perturbation theory of the definite general-
ized eigenvalues is naturally phrased in terms of the eigenangle 6; := tan™! E;, which
represents the angle of the ray through the complex number (A + iB)x; and the
positive imaginary axis. In Stewart’s theory, one argues that, for a unit vector x, the
complex number z := x*(A+iB)x must be a distance at least ¢(A, B) from the origin

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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F1G. 1. Pictorial comparison of the proofs of Stewart’s bound (2.4) and Mathias and Li’s bound
(2.9).

and the perturbed point % := z*(A +iB)z is a distance at most y from z. In view of
a variational characterization Stewart proved for the eigenangles [33, Thm. 3.1], it fol-
lows that the eigenangles change by at most sin~!(x/c(A, B)). Mathias and Li instead
consider the points z; := xj(A + iB)z; for the unit-norm eigenvectors ;. A disk of
radius  centered at z; is enclosed by rays with angles {#; +sin~'(x/d;)} = {£;,u;}.
Using Stewart’s variational principle, Mathias and Li prove that, while the perturbed
eigenangle 6; := tan~! E; need not lie within [¢;,u;], it must lie in [Z}, uj]

A consequence of Mathias and Li’s analysis (see [19, eq. (3.6)]) is that ¢; < ¢9~j <y
does hold if there is a large enough gap between ; and other eigenangles relative to
the size of the perturbation. This bound ¢; < §j < u; is nearly as good a bound as
one could hope since d;l is the condition number of 6; [34, Thm. VI.2.2].

COROLLARY 2.2. Instate the notation and assumptions of Fact 2.1. Suppose that
E; satisfies the gap condition

(2.8) min(tan™' E; —tan~' E;_q, tan”' Ej 4y —tan~' E;) >sin~! X in~? Z—X,
€ J

where the first or second term of the minimum can be ignored if j =0 or j =q—1,
respectively. Then

(2.9) tan~! Ej — tan™* Ej‘ < sin~! I
j

A couple comments are in order before we proceed with the proof of Corollary 2.2.
We have purged the suboptimal factor x/e from the eigenangle bound (2.9) and re-
placed it with the often much smaller quantity x/d; (tempered by a dimensional
factor). However, x/e remains, just in the gap condition (2.8) (and the hypothesis
gx < ¢). If the eigenangle gap on the left-hand side of (2.8) is reasonably large, then
€ must merely be a modest multiple of x for (2.8) to be satisfied.

Proof of Corollary 2.2. Denote 52 = tan~! and 0; := tan~! E; for every i =
0,1,...,¢ — 1. We shall prove the upper bound 6; — 6; < sin~'(gx/d;) with the

corresponding lower bound being proven in exactly the same way. We shall do this
by showing uj < u; under the gap assumption (2.8). To do this, we shall show that
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u; < 0; +sin~*(gx/d;) for every 0 < i < j. If j = 0, then no such i exists and the
upper bound is automatically true. We thus continue in the case j7 > 0.

Fix 0 < ¢ < j. Since every eigenvalue of B is at least ¢, we have that d; =
|zf(A+iB)x;| > x; Bx; > e. Thus, we have u; < 0; +sin™ ' (gx/¢). Since E; < E;_1,
we have ; = tan™! E; < tan~! E;_1. Thus,
ax —1 9X

w; <tan ' E; +sin~ ! 4
J

< tan~! E;_ 1+ sin~! ax < tan~? E; +sin
€

by (2.8). From this we conclude ujT < u; so, by Fact 2.1, gj < u; <wu; =0; +
sin~! (qx/d;). 0

2.2. How do perturbations affect the thresholded problem? In this sec-
tion, we seek to understand how perturbations of the pair (H,S) affect the thresh-
olded problem (A, B). As the example (2.2) shows, it need not be the case that
(A, B) is close to (A, B) if (H, S) is close to (H, S). Thus, in view of the fact that *-
conjugations do not change the eigenvalues of a matrix pair [34, Thm. VI.1.8], our goal
will be to show there exists a nonsingular matrix W such that (W* AW, W* BW)
is close to (A, B). An instrumental tool in this goal will be the Davis—-Kahan sin ©
theorem [7], which we state a somewhat less general version here for reference.

Fact 2.3 (Davis-Kahan sin ©® Theorem; see also [1, Thm. VIL3.1]).  Consider
Hermitian matrices M and M and let TI and TI be the spectral projectors of M and
M associated with collections of eigenvalues of M within an interval [a,b] and ofM

outside the interval [a — 8,b+ 6], respectively. Then ||TITI|| < ||[M — M| /5.

We begin with some notation. Let v1,...,v, denote the eigenvectors of S with
associated eigenvalues A1, ..., A, and IT denote the spectral projector associated with
eigenvalues of S which are larger than e. We denote by m the critical index for which
Am > € > Apy1. All quantities with tildes shall denote quantities defined as above
for the perturbed problem.

We begin with the following simple bound.

PROPOSITION 2.4. Suppose that

(2.10) ITLHTI — TTHTI|| < v,
(2.11) ITLSTI — TISTI|| < xs,

and suppose that S and S have the same number of eigenvalues larger than €. Then
for the nonsingular matrizr W :=V V

\/IIW*AW — A|? +|W*BW — B2 < /(xar +11)? + (xs +11s)%

This result gives a bound on y as defined in (2.3) if one redefines (ﬁ, E) to its
x-conjugation by W.

Proof. First, note that W is nonsingular because it is the product of a matrix
with full row rank and full column rank. Note also that ||V, ||V, |IX], |TI|| = 1

since V and V have orthonormal columns. The result then follows immediately by
the bound
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IW*AW — A|| = |V*VV HVV V — V*HV| = |V*(IIHII — IIHI)V |
< ||V*(IIHII — THM)V || + |V*TI(H — H)IIV||
< |THI - THTI| + |H - H| < x5 + 11

and similarly for |W*BW — B||. O

Note that a necessary condition for the hypotheses of our error bound Corol-
lary 2.2 is for the distance x (2.3) between (A, B) and (A, B) to be strictly smaller
than e. This forecloses our ability to use simple bounds for, e.g., (2.11) such as

|TISTI — ILSTI|| < ||[TISTI — S| + ||S — S| + ||S — ILSTI|| < 2(e + 7).

We thus seek bounds of the form (2.10) and (2.11) without an additive O(e) term.

We begin with the more challenging of the two bounds, namely (2.10). Certainly,
we should not expect a meaningful bound (2.10) if H and S have no relation to each
other. For the sake of generality, we shall perform analysis under the assumption that
(H,S) obey a weighted geometric mean inequality of the form

(2.12) lviHv;| < pmin(\;, A\;) ™% max(\;, A\;)* for all 1 <4,5 <n,

where 0 < o < 1/2 and p > 0 are constants. While this may appear strange, (2.12)
necessarily holds with ¢ = max|A(H,S)| and o = 1/2 by a direct application of
the Courant—Fischer principle for generalized eigenvalue problems [34, Cor. VI.1.16].
Numerical experiments suggest that & = 1/4 and p ~ max|A(H,S)| appear to be
more revealing of the empirically observed values of |vf Hv,| for (H, S) computed by
QSD for the physical models we tried; see section SM6.

Our most challenging technical result of this section will be a bound on the pro-
jection difference (2.10) under the assumption (2.12).

THEOREM 2.5. Instate the prevailing notation and assume the bound (2.12) holds
for 0 < a <1/2. Assume the eigenvalue gap condition

(2.13) Amt1+ns <e< (14+ple< Ay

for some p > 0. Suppose in addition that ns is sufficiently small that (1+p~1)ns/e <
1. Then the projection error (2.10) obeys the following bound:

~ S\ <
(2.14) |TLHTI — ILHTI|| §3Mn3(1+p_1)<||€”> ns,

where ng is defined in (2.1).

There are some unappealing features of this result, namely the cubic dependence
on the problem size and the O(ng/e*) scaling. The first of these, the cubic dependence
on n, we believe to likely be an artifact of our proof technique, applying Davis—Kahan
“entry by entry.” Fortunately, numerical experiments do not suggest a dramatic
dependence of the error on n. The second effect—the ng/e* dependence rather than
a more desirable g dependence—appears to be a genuine feature of this problem, at
least without additional assumptions; see section SM5.3 Fortunately, we have yet to

30ur evidence for this, presented in section SM5, is a synthetically generated pair (H, S) obeying
the geometric mean condition (2.12); we did not obtain this pair from QSD.
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find an instance of a pair (H,S) generated by the QSD algorithm for which the €
factor appears to be necessary to understand the true error.

Finally, we note that the separation hypothesis (2.13) is relatively mild. The first
inequality of (2.13) is necessary just to ensure that A and A have the same size. If we
assume just a little more of a spectral gap around the thresholding level, quantified
by the requirement that p is bounded away from zero, then we get a nice bound. A
less careful application of Davis—Kahan would require that all the eigenvalues of S
are well-separated, so we consider a modest gap at the thresholding level to be a fairly
mild requirement.

Proof of Theorem 2.5. The proof shall be an enthusiastic exercise in applying the
Davis-Kahan sin ® theorem, Fact 2.3. We begin by bounding

|ITHTI — ITHTII|? < |TLHII — ILHTI||?

_ zn: (v; (AT - ﬁHﬁ)vj)2 - zn: 2.

i,j=1 1,5=1

(2.15)

Our strategy will be to bound each of the terms I;;.

For each 7, we can expand f['v,- = Y p_, Cikk. Multiplying through by v} then
gives that ¢;, = v;‘ﬁvk, which shows in particular that c;; = cg;. Our first goal will
be to bound |c;x|. We break into two cases, k < m and k > m.

For case one, assume that k& < m. By Weyl’s inequality [34, Cor. IV.4.9], the
(m + 1)st largest eigenvalue of S satisfies Xm+l < Am+1 +1s < e. The Davis—Kahan
theorem shows the difference 6, := ﬁvk — vy, satisfies

s s 1+p Y)ns
log < — 28 < M AEeJns
/\k—E )\k

k — \m+1
This gives a bound on the coefficients c;, for i # k:

(1+p s

(2.16) lci| = X

viTlvy| = [vjvp + v} 8] = [v76x] < 8] <

For i = k, we have

(1+p ")ns

(2.17) 11— cisl = 1 —vj(vi + 85 < [|04]] < "

Now consider case two where k > m. Since Xm,—i—l < € as argued above, IT and I

are projections onto subspaces of the same dimensions so ||[II — II|| = ||[II(I — IT)|| by
[34, Thm. 1.5.5]. Applying Davis—Kahan then gives

= i ns
(1T —IIf| = [[II(L — ID)[| < —.
pE
Then

(2.18) ‘Cik| =

'v;f‘f['uk‘ < ‘v;‘(ﬁ )| + |viTe| < |ITT - 10 < 5.
pe

With these bounds in hand, we return to bounding I;; as defined in (2.15). Let
us introduce shorthand notation a A b and a V b for the minimum and maximum of a
and b, respectively. Expanding ITv; and Ilv; and using the bound (2.12), we obtain
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(2.19)
Iz'j = ’UZ(HHH — ﬁHﬁ)’l}J = (1 767“'ij) . ’UIH'U]' — Z ﬂngvl];H’Ug
k=1
k#i or £L#£j

< |11 =i (N AN T VAN + D [eincsel Ak V A T (A A Ao
fof=
ki or %#j

We thus turn our attention to bounding the summands in the second term of (2.19)
for k # i or j # L. First, assume that k # ¢ and suppose that k& < m; we bound using
(2.16)

(1+ p~HnsA,[IS||
Ak

lcinCiel (e A X)) ™ (A V A < Jear] Ay IS~ <
< (14 p Hns(IS]l/e)*.
Next assuming k > m, (2.18) yields
leinciel e ANk V A)® < el "SI < msp™ ([1S]]/€)*

Turning our attention to the first term of the final bound in (2.19), (2.17) and the
assumption (1 + p~1)ng/e < 1 give
T CP ) R O
< (11 =il + 11— ejl + 11— eal[L — g5 (0 A X) IS
< 3ns(1+p7")(IIS]I/€)"

Using the three previous displays to bound each of the n? summands in (2.19), we
obtain

Ly < 3 (1 + p~)(IIS]l/€)*ns.

which then leads to the stated bound. 0

A bound for (2.11) is entirely analogous. The analysis is made significantly easier
by the fact that the spectral projector IT is defined in terms of the matrix S itself.

THEOREM 2.6. Instate the prevailing notation. Assume that (2.13) holds for some
p > 0. The projection error (2.11) satisfies the bound

|ITLSTI — TISTI|| < |TISTI — TISTI||r < 2(1+ p~ Ynsn+e ' [(1+p Hnsn]”.
In particular if (14 p~Y)nsn/e < 1, we have
ITLSTI — IISTI|| < || TISTI — IISTI||p < 3(1 + p~')nsn.

Proof. The proof is quite similar to Theorem 2.5 and we shall thus proceed more
quickly. First, we bound

|TLSTI — TISTI|? < ||ILST — IISTI|% = z": (v; (nsn - ﬁsﬁ)vj)2 - Xn: .

ij=1 1,5=1
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Consider the expansion ﬁvi = ZZ’ZI cikVi as in the proof of Theorem 2.5. By
the same arguments, the bounds (2.16), (2.17), and (2.18) hold under the respective
hypotheses that ¢ < m and i # k, i = k, and i > m.

We now compute I;; using the fact that v;Sv; = \;0;; where d;; denotes the
Kronecker delta:

I'L'j = 'U:(HSH - ﬁSﬁ)’U] = (1 - @ij) . 'U;(S’Uj - E @ng’v;‘;H’Ug
k=1
k#i OT £+#j

n
= Xidij = > TrCirA-
k=1

We now distinguish two cases. First suppose ¢ # j. Then we bound using (2.16) and
(2.18):

|I;;] < Z lcincin] Ak < leijl(Ni + Aj) + Z |CikCjr| Ak + Z |CirnCin] Ak
k=1 =1 mt1
kg{ij}

n(l+p~ )%

<2s(1+p 1)+ -

Next suppose ¢ = j. Then applying (2.16), (2.17), and (2.18) gives the same bound

n(l+p~1)ng

;] < 2ns(1+p71) + ;

This entrywise bound immediately gives the desired result. ]

2.3. Main result. We conclude this section by combining Corollary 2.2, Propo-
sition 2.4, and Theorems 2.5 and 2.6 into our main result, which provides a formal
statement of Informal Theorem 1.2 from the introduction.

THEOREM 2.7. Let (H,S) be a pair of n x n Hermitian matrices perturbed to a
pair (ﬁ, §) by perturbations Ag and Ag of spectral norms ng and ng. Assume the
following:

e The pair (H, S) satisfies the geometric mean bound (2.12) for some param-
eters >0 and 0 < a < 1/2.
o There exists an index m for which (2.13) holds for some p > 0.
o The noise ng is sufficiently small so that (1+ p~1)ng/e < 1.
Let (A,B) = (V*HV ,V*SV) denote the thresholded matriz pair. The eigenvalues
recovered by the thresholding procedure applied to the noise-perturbed pair (ﬁ, §) are
the same as the eigenvalues of a pair (A, E) satisfying

— — 3 S\ <
VIA= a1 - B2 < 52w+ (1E0) st =

Let Ey and Ey denote the least and second-to-least eigenvalues of (A, B). Suppose
further that

e the error bound x is sufficiently small: ny < ¢;

e the gap condition tan=' E; — tan—' Ey > sin™*(nx/€) holds.
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Then with dal the condition number of the eigenangle tan™! Eqy and Ey the eigenvalue
recovered by thresholding applied to (H,S),

~ n
tan~! Fy — tan~! E0’ <sin~! —X.
0
In particular, for the theorem to hold, the threshold parameter must be chosen,

S [e3
e>nx =32+ un*(1+p") (e”) ns + .

1 ~
This leads to the claimed value € = ©(nl+a) and bound |tan™! Ey — tan™! Ey| <

1
O(dy'nT+a) in Informal Theorem 1.2.

3. Analysis of unitary Krylov subspace approximation with threshold-
ing. Having studied the errors due to noise in the previous section, we now turn to
analyzing the Rayleigh—Ritz errors in computing the ground-state eigenvalue Fy of H
using the unitary Krylov space (1.1) and the thresholding procedure Algorithm 1.1.
Specifically, we shall bound the difference between Ey and the result Eq of applying
thresholding to the pair (H,S) (1.3) computed on an error-free quantum computer.

If one considers our analysis with the threshold parameter € set to zero, one
obtains an analysis of the QSD method with no truncation. To our knowledge, this is
the first quantitative error analysis of the QSD method even in the noise-free setting.
This builds on two earlier explanations of the success of QSD. The first, by Stair,
Huang, and Evangelista [32], argues based on Taylor series that the QSD subspaces
approximately coincide with the classical polynomial Krylov space. This explanation
has two drawbacks: (1) small time steps make the ill-conditioning of H and S worse
[32, sect. 2.1] and (2) QSD often performs better with larger time steps [15, sect. IL.BJ.
An alternate analysis based on filter diagonalization is provided by Klymko et al.
[15], which provides an overcomplete set of phase cancellation conditions under which
QSD computes the eigenvalues of interest with zero error. They then argue that these
conditions hold approximately in the long-time limit for a randomly chosen time step.

Our analysis is more direct than the two previous, emulating the classical analysis
of the Lanczos method by Saad [29]. This leads to a quantitative error bound in
terms of the distribution of the spectra which decreases exponentially in the number
of time steps used. The basic idea will be to use a linear combination of the QSD
basis states ¢; which has the effect of applying a trigonometric polynomial to the

eigenvalues Ey,...,En_1 of H. If ¢; approximately lies in the span of the first
M + 1 eigenstates, we shall choose this trigonometric polynomial to be large at the
eigenvalue of interest and exponentially small (in n) at eigenvalues Fy, ..., Ep. The
trigonometric polynomial will be bounded so it won’t amplify any components of the
eigenvector in the direction of any of the remaining eigenvectors. As an additional
feature of this analysis, we are able to directly analyze thresholding “for free” in the
noiseless setting, where thresholding has the effect of perturbing this trigonometric
polynomial. The main theorem of this section is as follows.

THEOREM 3.1. Let ¥, ..., % _; be the eigenvectors of a Hermitian operator H
with eigenvalues Ey, ..., En_1. Suppose the initial vector is expanded as
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(3.1) Po = Z Vi

Let AE; := E; — Ey and choose an index 0 < M < N — 1. Suppose the QQSD
algorithm is implemented with time sequence {tj}l?z_k for t; = mj/AEN. Suppose
the generalized eigenvalue problem (1.2) is solved with thresholding parameter € and
let €iota1 be the sum of the eigenvalues of S discarded by thresholding. Then

(3.2)
N—
2| AEN_1€total +4(]_ + ZAE'?\;) 2k Z AE; |'72|2 + Z AE |’V7,‘

1701 = 2|0l (2k + 1)e

Remark 3.2. The value |v0|? = (0 | 10)|? is referred to as the initial overlap. In
order for the QSD algorithm to succeed with a relatively small number of Krylov steps,
|70|? must be sufficiently large (for instance, > 0.1). This is qualitatively different from
the assumption of classical Krylov subspace methods for solving eigenvalue problems,
where the initial overlap |yo|? should also be nonzero but can be very small.

0< Ey—Ey <

Let us note some salient features of this result. First, if we consider the noise-free
case without thresholding, we obtain the bound

= 0 0> f E 2 2
| =M+ | |

The error bound has two terms, a term concerning the eigenvalues FE, ..., Ej; which
is damped exponentially fast with rate AE;/AFE); and an undamped (but also un-
amplified) term with the eigenvalues Fpry1, ..., En—1. If the components of ¢, in
the directions of the (M + 1)st to (IV — 1)st eigenvectors are small in the sense that
AE;|v;|? < 1, this second term will be small. This bound thus has a tradeoff: If M is
chosen larger (i.e., the time step becomes smaller), more terms will be exponentially
damped but at a slower rate as AFE;/AFE); will decrease. One can obtain the simplest
bound by choosing M = N — 1 and bounding AF; < AEN_1, leading to

~ 1-— "}/0|2 ’/TAEl 2k
. < FEy— Ey <8AFEN_ 1 .
(33) 0<Ey—Ey<8AEN_: PAE + ABy .

Unfortunately, this simplified bound often grossly overestimates the error.

Our analysis also indicates that thresholding has only a mild effect on the accu-
racy. We pick up a 1+ (’)(\/ﬂ) prefactor and an additional term proportional to the
sum of the discarded eigenvalues of S, which in turn can be bounded €0t < (2k+1)e.
In practice, we usually have €iota = € due to rapid spectral decay.

Combining Theorem 3.1 with Informal Theorem 1.2 (formalized as Theorem 2.7)
leads directly to Informal Theorem 1.3. More precise but also more complex error
bounds can be obtained by using the full power (3.2) of Theorem 3.1 directly with
Theorem 2.7.

3.1. Proof of Theorem 3.1. Our proof is based on the observation that thresh-
olding is equivalent to applying the Rayleigh-Ritz procedure with a subspace spanned
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by the dominant left singular vectors of the Krylov matrix. Consider the Krylov ma-
trix K defined and factorized as

K=lpn - @i
o e—ikEBo ... aikEo
(3.4) = [ - Yy

= YN-1

e—ikEx_1 .. GikEx_y

=T =F

Then we easily see that H = K*HK and S = K*K. Since the eigenvalues of K*K
are the squares of singular values of K with eigenvectors equal to the right singular
vectors of K, it follows that the thresholded problem is precisely the Rayleigh-Ritz
procedure applied to the left singular subspace of K with singular values larger than
V€. From these left singular vectors, we are able to reconstruct the matrix K up to
a Frobenius norm error /€ioal. We thus can analyze QSD with thresholding in much
the same way as Saad’s analysis of the Lanczos method [29] with two twists. First, we
have trigonometric polynomials in place of polynomials owing to the QSD algorithm’s
use of the unitary time-evolution operator. Second, our trigonometric basis functions
are perturbed as a result of the truncated singular value decomposition.

With this roadmap in mind, we begin with a trigonometric version of a classic
result in polynomial approximation theory.

LEMMA 3.3. Let0 < a < m and denote by Ty, the space of degree < k trigonometric
polynomials. The trigonometric polynomial minimax approximation problem

k) = mi t
Bla, k) min  _max Ip(t)]
p(0)=1

is solved by

T 1+2c059—cosa
(35) p(o) = 20 et
Tk(1+2 COSCL)

cosa+1

where Ty, denotes the kth Chebyshev polynomial. The optimum value is

—k
-1 1—cosa

(3.6)  Blak) = (Tk(l + 2;0;;;‘;)) < 2(1 +2 cosa+1> <2(1+a)7".

Proof. Once one convinces oneself that an optimal solution can be taken to be
real and even, this result follows immediately from the analogous result for polyno-
mial approximation [2, Thm. 4.1.11] together with the standard reparametrization
f(z) = f°(0) := f(cosf) which puts into bijection algebraic and even trigonometric
polynomials. O

We shall need a bound for the optimal trigonometric polynomial (3.5).

PROPOSITION 3.4. The trigonometric polynomial p* defined in (3.5) is bounded
in absolute value by 1 and satisfies the L? bound

(3.7) /W I (0)2 d0 < 20+ (27 — 20)(B(a, k))? < 2r.

—Tr
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Proof. First, we show that p* is monotone on [0,a] by showing its derivative
can’t have a zero on (0,a). Up to a scaling factor and a change of variables on the
input, p* coincides with T} on [a,w]. Thus, p* has k — 1 local extrema on (a,)
and symmetrically k — 1 on (—7, —a). Since p* is even and 2m-periodic, p* has local
extrema at 0 and 7. Since (p*)’ is a degree-k trigonometric polynomial, it has at most
2k zeros, all of which have already been accounted for. Thus, p* is monotone on [0, a].

Since p*(a) < B(a, k) < 1, p* is monotone decreasing on [0, a] and thus achieves
its maximum value on [—a,a] of 1 at 0. On (—x,7) \ [—a,a], [p*| < B(a,k), from
which the bound (3.7) follows. |

We shall be content with using the looser upper bound 27 in (3.7) in our subse-
quent analysis. With these approximation results in hand, we prove Theorem 3.1.

Proof of Theorem 3.1. Let ¢, be expanded as (3.1) and consider the Krylov ma-
trix and its factorization defined in (3.4). Let K represent the truncation of K by

settings its singular values which are at most /€ to zero and factor it as K = UTF
so that

2

N—-1 k
(38 o= K- KR =I0F-F)2=Y Y ppP|f - e
1=0 j:—k %’2_/

=g

where f;j denotes the ij entry of F.
Let R. denote the range of K. By the Courant—Fischer theorem [34, Cor. IV.4.7],

~ . xi*(H — BEoI)¢
3.9 Ey—FEy= min —— —22
(3.9) 00T geraio) 33

where I denotes the identity. Since H — Ey1 is positive semidefinite, we have EO—EO >
0. The remainder of our effort will be dedicated to establishing an upper bound.
We shall use the minimax optimal trigonometric polynomial p* (3.5) to construct

an ansatz &, to plug into (3.9). Let p*(0 — nEo/AEpN_1) = Z?:—k cje’? be the

Fourier series of the mEy/AE;_i-translate of p*. Choose as ansatz

N-1 k
£ = Z Z Vi fizcit; € Re.

i=0 j=—k

Plugging this into (3.9), we obtain an upper bound
2
— N-1 k 3
&(H — Eg)E, Dic AEZ’W@‘P‘Zj:-k fijcj‘
* - 2 :
L€, N— k ¥
e SIS bal2| S Fes|

First, focus on the numerator of the final bound in (3.10). We bound

(3.10) Ey— Eg <

2 2

Yo Fue| <Y (Fy =€)+ D el <[ D e +p7(Ei— Eo) |

Jj== Jj== Jj== l71<k

where o;; > 0 is defined in (3.8).
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First suppose that 1 < ¢ < M. Then by the fact that |p*(F; — Ep)| < B(a, k) as
defined in (3.6) with a := 7AFE;/AE);, the Parseval theorem (i.e., 27 Z?:—k ;|2 =
J7_Ip*(0)|? dh), and the bound (3.7) we obtain

(3.11)
k

2
k k k
S fac] <2 Yo DD ad | +208(a,k)? <2 Y o +2(8(a, k).

j=—k j=—k j=—k j=—k

For M < i < N, we get the same bound except with 1 in place of 3(a, k) since |p*| < 1
by Proposition 3.4.
For the denominator of the final bound in (3.10), we bound

k

k k
~ 1
(312) E ijCj Z 1-— E Qp; Z 1-— (2]{} + 1) E Oz%j Z 1-— m (2]{} + 1)6,
. . X 0
j=—k j=—k j=—k

where we used a spectral norm bound similar to (3.8):

k

E 2
an'

j=—

__ _ LI 2
e>|K - K| =|T'F-F)> MPE‘M*WE
P

= |’Yo\

Plugging (3.11) and (3.12) into (3.10),

2{% AB(Th o2+ (Bak)?) + Y Ag(XE, a?ﬁl)]

=1 i=M+1

o (1ol - VT 1)’

2[ABN-1¢totar + (Bla, ) T AB il + L1y MBI

<
[70l* = 2|yolv/(2k + 1)e
Using the bound (3.6) with a« = nAE;/AE); leads precisely to (3.2). 0

4. Additional results and discussions. In this section, we include some ad-
ditional results and discussions which follow from our analysis but are not directly
germane to the main analysis of the QSD algorithm comprising Theorems 2.7 and
3.1.

4.1. On the Toeplitz structure of H,S. With the choice of the basis vectors

p; = eiti ¢, as in the Parrish-McMahon QSD procedure, the matrix elements of
the projected matrices satisfy

Hj, = Sojfj[\gpk = Sogﬁei(tk_tj)HQOO and Sjk = ‘P;on = ‘Paei(tk_tj)HQOO.
Therefore, both H, S are Hermitian—Toeplitz matrices. Unfortunately, the Toeplitz
structure relies on the assumption that the Hamiltonian simulation problem (i.e.,
elifl ) is computed exactly. In practice, the Hamiltonian simulation problem is
often performed with approximate techniques (such as Trotter splitting), and the

resulting projected matrices H and S may not have the Toeplitz structure. If this is
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the case, all n? entries of H (and perhaps S as well) need to be computed to apply
the Rayleigh-Ritz procedure to the computed basis states ¢,...,®,,_; in earnest.
However, if one measures only the first row of H and S and imputes the remaining
entries from the Hermitian-Toeplitz structure, then resulting recovered matrices H
and S represent the true H and S corrupted by both Monte Carlo and discretization
errors. Our main analysis makes no use of the Toeplitz structure.

An important question for the QSD procedure is how entrywise errors in the
entries H and S correspond to errors in the spectral norm. For the standard QSD
estimation procedure, the entries of M € {H, S} are approximated by averaging m
unbiased estimators each with maximum error B (B = O(1) for S and B = O(| H||)
for H). Consider the case where the Hamiltonian simulation problem is solved exactly
and we compute estimates for M € {H, S} by measuring the first row of M and com-
puting the remaining entries from the Hermitian—Toeplitz structure. Straightforward
application of matrix concentration inequalities then shows that the approximation is

O(B+y/(nlogn)/m)-close to M (see, e.g., [35, Thms. 3.6.1 and 4.6.1]).

4.2. Stability of best low-rank approximation. Theorem 2.6 constitutes a
stability result for the Eckart—Young best rank-m approximation [S],, = ILSII to S.
Since this result may be of independent interest, we state it here unburdened by the
particularities of the QSD context.

THEOREM 4.1. Let A € C™*™ be a positive semidefinite matriz with eigenvalues
A > Xy > >N\, >0. Let [A],, denote the Eckart-Young best rank-m approzi-
mation to A. Then, for any quadratic unitarily invariant norm ||-||qui (such as the
spectral or Frobenius norms; see [1, Def. IV.2.9]),

2nAm [|A] ( 0.5n([Al >
1+ :
Am — )\m+1 - ||AH )\m - )‘m-i-l - ||A||

1A+ AL, = [AlLllqu < [[Allqur +

Proof. This follows immediately from Theorem 2.6 and the maximality of the
Frobenius norm among quadratic unitarily invariant norms [1, eq. (IV.38)]. d

This bound is interesting because, in the setting where the gap A\, — Ajpg1 —
[|A]l is comparable in size to A, the best rank-m approximation changes only by
~ n||Al/qur independent of the approximation error |A — [[A]]mHQUI' This can be
a large improvement over the general-purpose bound (similar to [8, Cor. 2.4]) which
holds for general unitarily invariant norms ||-||ur,

I[A+ AL, = [AlLllo < 2314 = [AL, Ly, + [[Af[vr),

which does depend on the approximation error [|A — [A], [;;- We believe the di-
mensional factor n is likely quite pessimistic and can hopefully be replaced by a small
constant (at least) if the matrix enjoys a rapidly decaying spectrum.

4.3. General analysis of thresholding. We have presented an analysis in
Theorem 3.1 of thresholding for the QSD problem, which simultaneously treats the
Rayleigh—Ritz error from approximation from the titular quantum subspace and the
thresholding procedure together. This is quite natural as the total error is what is
most important to the practitioner, and one should in principle be able to obtain
a more precise error bound by not decoupling these pieces. However, it remains a
question of mathematical interest and of interest to the broader uses of thresholding
beyond QSD to provide an analysis of thresholding for general matrices.

As the bad example (1.5) shows, thresholding may not work for general matri-
ces, with thresholding with parameter € able to introduce errors > €. This behavior
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is less surprising, however, when one notes that neither eigenvalue of (1.5) is well-
conditioned, with both having a condition number ©(e~!). In fact, this is the only
obstruction to thresholding working (at least for recovering the smallest eigenvalue),
as we shall show that the least eigenvalue is recovered accurately by thresholding if it is
well-conditioned. (We recall [34, Thm. VI.2.2] that the condition number of the eige-
nangle tan~! Ey associated with the least eigenvalue Ey of (H, S) is ||co|*\/1 + E3
where ¢ is the S-normalized eigenvector, ¢ Scy = 1, associated with Ej.)

THEOREM 4.2. Let ¢y be the S-normalized eigenvector associated with the least
eigenvalue Eq of the generalized eigenvalue problem (1.2) for a Hermitian and Her-
maitian positive matric H and S. Then, for E‘O the least eigenvalue recovered by
thresholding with parameter e and provided 2+/e||co|| < 1,

~ AFE 2
0< By — By < 2Eeel”
1 —2y/e||eo|

where AE is the difference between the largest and smallest eigenvalue of (H,S).

Proof. Let R be the span of the eigenvectors of S with eigenvalue greater than
€. Using the same observation which motivated the proof of Theorem 3.1, we have

*
(4.1) By Fy= mn SH—ESe
ceR\{0} c*Sc

In particular, since H — EyS is positive semidefinite, this implies Eo —FEq > 0so0
we just need to concern ourselves with obtaining an upper bound. Letting S be the
S matrix with all its eigenvalues at most € set to zero, we shall evaluate (4.1) at
Cy = S_1/2§1/2co, obtaining an upper bound. Defining the error § := ¢y — ¢g, we
have that 4 satisfies the bound HSl/QdH < ||.S’1/2 - Sl/QHHcoH < Velleo||. Thus

;8¢ > ciScy — 2|c; 88| > 1 — 2(c;Sey)/?(6°86)' % > 1 — 2v/e| co|
and
¢o(H — EoS)e = 6" (H — E,8)d < ||S™V2HS /2~ EoI|| ||S*/?8]]> < AE ¢[|eo .

Plugging ¢, into (4.1) and applying the previous two displays leads immediately to
the stated result. |

Theorem 4.2 yields an alternative analysis of the QSD algorithm with thresh-
olding: Combine Theorem 3.1 with ¢ = 0 (to measure the Rayleigh-Ritz error in
isolation) together with Theorem 4.2 (to measure the thresholding error). Compared
to using Theorem 3.1 alone, this alternative analysis has the advantage that the two
types of error (Rayleigh-Ritz and thresholding) can be bounded independently of
each other. However, to use Theorems 3.1 and 4.2 in this way, an additional piece
of information is needed beyond what is required by Theorem 3.1 alone, namely the
norm ||cg||.* See SM4 for a comparison of these two approaches on some numerical
examples.

4The norm of the smallest eigenvector of the perturbed thresholded pair (ﬁ, §) can provide a

good a posteriori estimate of this quantity in the limit of a small perturbation (see [16, sect. 6.2]).
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5. Numerical experiments. In this section, we present some numerical exper-
iments demonstrating the success of the theory in explaining the performance of QSD
and other features of the numerical performance of the QSD method. We consider
two sets of examples: the one-dimensional transverse field Ising model (TFIM) and
the one-dimensional Hubbard model.

The Hamiltonian of the TFIM with L spins is

L L
i=1 i=1

where X, i Zi are the Pauli X, Z operators acting on the ith spin, respectively. We
use the periodic boundary condition, and therefore Z 4 is identified with Z;.
The Hamiltonian for the (spinful) Hubbard model of L sites is

L
(5.2) H=->" %" @,6i1,+U) a,a1a; a:.
i=1loe{t.l} =1
Here a;,,a;, are the fermionic creation and annihilation operators at site 7 with

spin ¢, which can be expressed in terms of spin operators following the Jordan—
Wigner transformation (see, e.g., [23]). Similarly due to periodic boundary conditions,
azﬂ’a, ar.1, are identified with @j,,ay,, respectively. We are interested in finding

the ground state energy of H. The dimension of H of the TFIM is 2 and that
for the Hubbard model is 22X (due to spin degrees of freedom). Due to the high
dimensionality, these models are generally intractable to be solved directly when L
is large.” In all examples below, we set L = 10, g = —+/2 for the TFIM model and
L = 10, U = 8 for the Hubbard model.® The Hubbard model also has an extra
parameter called the total number of fermions denoted by N, which constrains H
to a smaller diagonal block, and its value is set to the half filling with N, = L = 10.
We find that the numerical results do not depend sensitively on these parameters.
Additional numerical results with other values of L, U, etc., can be found in the
accompanying supplemental file supplement.pdf [local/web 2.10MB].

The number of time steps used shall be denoted by n, and the time grid is t; = jA¢t
where j = 0,...,n — 1. The initial vector ¢, of the TFIM model is taken to be a
product state (an eigenstate with g = 0), and that of the Hubbard model is taken
to be a Slater determinant state (an eigenstate with U = 0), respectively. We find
that such a setup leads to a sufficiently large initial overlap |vo|? = |(po | ¥0)|?. This
ensures that in the noiseless setting, the ground state energy of H can be estimated
to high accuracy with a very modest value of n (see Table 1).

The Hamiltonian simulation and the computation of the projected matrix el-
ements are performed using the QuSpin package [37, 38] in Python on a classical
computer. All further experiments are performed in MATLAB, with the noise ma-
trices Ay and Ag modeled as complex Gaussian Hermitian—Toeplitz matrices with
the entries in the first rows independent with specified variances.

5There exist special techniques that are particularly efficient for handling one-dimensional quan-
tum systems. The main point of our numerical results is to demonstrate the performance of QSD
algorithms, which does not rely on such special properties.

SIn particular, U = 8.0 for the Hubbard model corresponds to a strongly correlated quantum
system and is typically considered to be difficult.
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TABLE 1
Some parameters for the TFIM and the Hubbard models. Ezact Eq is obtained by diagonalizing
H. Noiseless Eg 1is obtained by solving the projected generalized eigenvalue problem (of size n X n)
using the QSD algorithm in the noiseless setting.

TFIM (L = 10)  Hubbard (L = 10)

Time step At 1.0 0.1

Initial overlap |vo|? 0.079 0.122

Exact Eg —15.9799750 —3.31499673

Noiseless Eo with n = 40 —15.9799748 —3.31499670
-10° -10°

E()

-10° : ‘ -10° : ‘
10710 10°® 10° 10710 10°® 10°

a a

(a) n=20 (b) n =80

Fi1G. 2. Least eigenvalues computed from the perturbed pair (ﬁ, §) without any procedure to
ameliorate the affects of noise. Shown are 10 random initializations of the noise for several random
noise levels o for the Hubbard example with n = 20 (left) and n = 80 (right). The true eigenvalue
is shown as a horizontal dashed line.

5.1. The need for thresholding. We first demonstrate why we advocate the
use of thresholding by showing the potential pitfalls of some other strategies. Natu-
rally, the first strategy one might attempt would be to do nothing at all: just solve
the generalized eigenvalue problem

(5.3) Heé=FESe¢

and return the least computed eigenvalue. The futility of this strategy is shown in
Figure 2. Even for extremely low noise levels (o ~ 10719), we see that the recovered
least eigenvalue can deviate quite far from the genuine least eigenvalue with high
probability. For nicer problem instances (see, e.g., Figure 2(a)), characterized by an
only modestly ill-conditioned (e.g., x(8) = ||S|||S™"|| < 10'?) S matrix, the eigen-
value of interest could perhaps be reliably recovered by taking a median over multiple
trials (each requiring the quantum computation to be rerun). However, for problem
instances with a more ill-conditioned S matrix, such as shown in Figure 2(b), the
probability of finding an eigenvalue close to the genuine smallest eigenvalue appears
to occur with vanishingly small probability.

Alternately, one might try to apply “just a bit of thresholding” by setting the
threshold parameter at a small constant value, independent of the noise level. This
can be modestly effective for a well-conditioned S matrix (particularly if combined
with a median of multiple trials), but it falls down as soon as ¢ Z € in general. See
Figure SM6 for a demonstration of this. If one is to rely on thresholding alone to deal
with the noise, then the threshold parameter must be chosen large enough.
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As another alternative to thresholding, one might attempt to solve the problem
without explicitly filtering out the noise by thresholding (or using only a tiny threshold
much smaller than the noise level) and attempting to systematically determine which
eigenvalues are “real.” We investigate such strategies in section SM2 and ultimately
conclude that these are less robust and less accurate than thresholding.

5.2. Choice of the thresholding parameter. Now that we have demon-
strated why we prefer thresholding for solving the noise-perturbed QSD generalized
eigenvalue problem (5.3), let us demonstrate the success of thresholding. In Figure 3,
we demonstrate the error for the thresholding procedure with a threshold parameter
e proportional to the noise level.” (See also Figure SM7 for more examples.) As the
plots show, thresholding is robust on these examples in the sense that the maximum
error over multiple trials is similar to the median, showing that thresholding is reli-
ably able to filter out the noise over different random initializations.® Since the norm
of the noise matrix is a random quantity prone to occasionally being appreciably larger

—= 10° —Max Error - 100
=k - - Median Error =k
= - =~
o =]
Z 10? :
i 5
[ I
S <
% 10 % 108
g g
& &=
10° 10 5 0 10 5 0
107 107 10 107 107 10
o g
(a) Hubbard, n = 20 (b) Hubbard, n = 40
B 100
S S
= =
g i
< &Y
| | -4
B <1
5 10
g s
& & 406
10710 10
10710 107 10° 10710 10°° 10°
o g
(c) Ising, n = 20 (d) Ising, n = 40

F1G. 3. Mazimum (blue solid) and median (red dashed) error over 100 initializations for eigen-
values computed from the noise-perturbed pair (H,S) using thresholding with threshold parameter
250||S|| for Hubbard model (top) and Ising model (bottom) with n = 20 (left) and 40 (right).

"This is smaller than the theory (Theorem 2.5 and Corollary 2.2) predicts e should be taken as,
which suggests that one should choose € o< o1/(11®) (o < 1/2 is the value for which (2.12) holds).

8This is seen to be not true for one example (Figure SM7d) in the Supplementary Materials.
This shows that thresholding is not infallible but is still better than alternate strategies within our
knowledge (section SM2).
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than its average value, the threshold parameter must be somewhat larger than the
expected noise level to achieve good performance with high probability. These plots
demonstrate that, for these examples at least, this multiple can be quite modest—just
25 is enough. In the error plots in Figure 3 we see two types of behavior: sometimes
the error increases relatively continuously with the thresholding parameter (e.g., most
of Figure 3(c)) whereas other times it increases in a more stepwise fashion (e.g.,
low noise levels in Figure 3(a)). The first behavior is indicative of the error being
dominated by the noise level (with the slope in log-log space being ~ 1 demonstrating
a linear dependence of the error on the noise level) with the second exemplifying
the thresholding error being the dominant contribution. Behavior of the second type
might suggest that the threshold parameter is being chosen conservatively and lower
error could be achieved with a smaller threshold value.

The choice of the thresholding parameter is critical to the success of the method,
as is demonstrated in Figure 4. In these plots, we show the median and maximum
error for the computed eigenvalue over 100 random initializations of the noise (fixed to
o = 1079) for different thresholding levels. In the normative case, the error decreases
as the threshold parameter is decreased up until the threshold parameter reaches
a modest multiple of the noise level, after which the error sharply rises. In the
Supplementary Materials (section SM3), we discuss an automatically tuned variant
of the thresholding procedure which can help in picking a good threshold level e.

—Max Error

= - - Median Error =

= = .

—~ \ —~
2 10° ER T -

So 'tﬂe "l

| | 1

S -7 g L

1078 1 107
10710 10 10° 10710 107® 10°
e/I8| e/I8|
(a) Hubbard, n = 20 (b) Hubbard, n = 40

5 §
—~ —~
2 10° o100 -
5] //——/‘ [

| | \

105 T 107
10710 107° 10° 10710 107® 10°
e/I8l e/[Sl

(c) Ising, n = 20 (d) Ising, n =40
Fic. 4. Mazimum (blue solid) and median (red dashed) error over 100 initializations for eigen-

values computed from the noise-perturbed pair (H, §) using thresholding for various values of the
threshold € for a fized noise level o = 107% (dotted black line) for Hubbard model (top) and Ising
model (bottom) with n = 20 (left) and 40 (right).
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6. Conclusions. In this article, we have presented the first theoretical analysis
of the accuracy of the quantum subspace diagonalization method with a thresholding
procedure. Our explanation has two parts:

1. With an appropriate choice of time sequence {t;}, QSD with thresholding
(Algorithm 1.1) can compute an accurate approximation to the ground-state
energy (Theorem 3.1).

2. Under appropriate conditions, the thresholding procedure can robustly de-
termine the smallest eigenvalue in the presence of perturbations to the pair
(H,S) (Theorem 2.7).

These two pieces combine to give a bound on the total error of the QSD procedure
(comprising Rayleigh-Ritz, thresholding, and perturbation errors) in Informal Theo-
rem 1.3. The conditions of our theory are natural, and many of the parameters in our
bounds can be estimated in the presence of noise, allowing our bounds to be able to
give approximate bounds on the error a posteriori. Our numerical experiments (in-
cluding additional experiments in the accompanying supplemental file supplement.pdf
[local/web 2.10MB]) support the conclusion that QSD is accurate when implemented
with thresholding (and not accurate when implemented without).

Our theoretical estimates can still be significantly improved, such as the bound
xeH < O(ns/e* + nu) (see Theorem 2.5) for the discrepancy between the thresh-

olded H and H matrices, where 0 < o < 1/2. This suggests that we need to take

€= Q(n;/ (H_a)) for accurate recovery to be guaranteed by Corollary 2.2, which has
hypothesis x < €/q. This is in contradiction to our numerical experiments, where ¢
can be chosen to be a small multiple of . Synthetically generated worst-case examples
(see section SM5) suggest the bound x g < O(ns/e®+ngr) is tight, but it remains pos-
sible a better bound can be derived for pairs (H, S) generated by QSD. An interesting
open question is to give a convincing explanation for why we appear to have a = 1/4
and p ~ max |A(H, S)| in (2.12) for many QSD instances. Despite the modest size of
n in practice, the polynomial dependence on n in Corollary 2.2 and Theorems 2.5, 2.6,
and 4.1 can lead to significant overestimates of the error. Therefore, another natural
question is whether these dimensional factors can be improved.

Natural extensions of this work are to generalize our analysis to excited states (in-
terior eigenvalues) and to develop bounds on the accuracy of the computed eigenvec-
tors. Although the QSD algorithm cannot be used to coherently prepare an eigenstate
on a quantum computer, we may still compute other physical observables from the
approximate eigenstate. Mathias and Li’s theory [19, sect. 6] suggests eigenvectors
might be more sensitive to the noise than the eigenvalues, and we plan to study the
accuracy of the computed eigenvectors in future work.

Disclaimer. This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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